
1.  Introduction
It has been recognized that the continents do not deform like the oceans and continental deformation represents 
a significant departure from the kinematic rules of plate tectonics (England & McKenzie, 1982; Tapponnier & 
Molnar, 1976). However, the kinematics and dynamics of continental tectonics are still unclear. Despite decades 
of study, large continental earthquakes continue to surprise us, for example, by occurring in unexpected locations 
(e.g., the 2019 Ridgecrest earthquake sequence, Ross et al., 2019), or exhibiting remarkable complexity (e.g., 
the 2016 MW 7.8 Kaikoura earthquake, Hamling et al., 2017). On 21 May 2021, a strong (MW ∼ 7.4) earthquake 
(referred to here as the Maduo earthquake) hit Maduo County in eastern Tibetan Plateau, rupturing a fault away 
from the main crustal block boundaries hypothesized for this region. We measure and model the coseismic, 
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Plain Language Summary  Collision between the Indian and Eurasian plates has created the 
largest deforming region on the planet. Part of the resultant deformation is accommodated by movements on 
block-bounding faults where major earthquakes usually occur. A large earthquake ruptured a slow-moving 
fault away from the major pre-identified block boundaries on 21 May 2021. We used 7 years of satellite radar 
images to measure the deformation that occurred before, during, and after the earthquake. We also used seismic 
observations to investigate the temporal evolution of the earthquake rupture. Our model agrees with the results 
from field mapping. Postseismic deformation at shallow and deep depths shows different temporally varying 
behavior, which is likely caused by the frictional properties of the fault associated with different physical 
characteristics of rocks. The causative fault was accumulating relatively subtle strain before the earthquake. We 
observed the strain being localized on one of the faults in the block interior, highlighting elevated earthquake 
potential in the future.
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postseismic and interseismic deformation on the causative fault. This allows us to explore (a) the hazard of earth-
quakes in block interiors, (b) the role of geology in controlling frictional properties on faults, and (c) how strain 
rates vary through the earthquake cycle on a fault that is not a major block-bounding fault.

A popular approach for explaining continental deformation is to model the deformation as the motion of a number 
of blocks, or microplates, each following the kinematic rules of plate tectonics (Avouac & Tapponnier, 1993; 
Meade & Hager, 2005; McCaffrey et al., 2000; McClusky et al., 2001; Socquet et al., 2006; Thatcher, 2007; 
Wallace et al., 2004, 2005; W. Wang et al., 2017; Wang, Qiao, & Ding, 2021). They are useful in that they can 
help derive slip rates on major faults from geodesy (e.g., W. Wang, Qiao, & Ding, 2021; W. Wang et al., 2017). In 
most formulations of block models, no strain (and hence no earthquakes) occurs in the block interiors, although 
a few can account for internal strain (e.g., Q. Chen et al., 2004; Loveless & Meade, 2011). However, a number of 
earthquakes have occurred away from major block boundaries, for example, the 1947 M 7.7 Dari (eastern Tibet) 
earthquake (L. Liu, Li, et al., 2021), the 1992 MW 7.3 Landers earthquake (Massonnet et al., 1993), the 1999 MW 
7.1 Hector Mine earthquake (Gomberg et al., 2001), the 2014 MW 6.2 Ludian (southeastern Tibet) earthquake 
(Cheng et al., 2014), the 2019 Ridgecrest earthquakes (Ross et al., 2019), etc. It is noteworthy that the Landers/
Hector Mine/Ridgecrest earthquakes occurred as a surprise to seismologists but geodetic strain within the Eastern 
California Shear Zone was visible before the events (Dokka & Travis, 1990a, 1990b). This raises the following 
key questions regarding earthquakes that occur in block interiors: What is the hazard from earthquakes in block 
interiors? Do earthquakes behave differently in continental interiors because of the relative structural immaturity 
of seismogenic faults, where the term structural maturity is used to describe the slip longevity of a fault (e.g., 
Manighetti et al., 2007, 2021; Perrin et al., 2016; Radiguet et al., 2009)? If Global Navigation Satellite System 
(GNSS) data are sparse, can Interferometric Synthetic Aperture Radar (InSAR) illuminate strain away from the 
main faults?

Tectonic strain can be accommodated in a variety of ways including through earthquakes and aseismic processes 
such as fault creep (Harris, 2017). Fault creep has been hypothesized to be controlled by the frictional resistance 
of specific rock materials as well as fault maturity/geometry and conditions on the fault such as temperature, fluid 
pressure, and stress state (Avouac, 2015; Byerlee & Brace, 1968; Collettini et al., 2009; Fagereng & Sibson, 2010; 
Gratier et al., 2011; Irwin & Barnes, 1975; Mavko, 1982; C. Marone, 1998; Reinen et al., 1991, 1992; Scholz, 1998; 
Thomas, Avouac, Champenois, et al., 2014; Thomas, Avouac, Gratier, & Lee, 2014; Wesson, 1988). Examples 
where lithology has been shown to play a role include the creeping section of the Longitudinal Valley Fault in 
Taiwan, which coincides with the clay-rich Lichi Mélang (Thomas, Avouac, Champenois, et al., 2014), the main 
creeping strand of the San Andreas Fault, which is related to abundant magnesium-rich clays revealed by deep 
drilling of borehole (Carpenter et al., 2012, 2015), and the creeping segment of the North Anatolian Fault, which 
is associated with lithologies that have low frictional strength (Cetin et al., 2014). The occurrence of postseismic 
afterslip following earthquakes and lack of shallow seismicity can also be explained by velocity-strengthening 
behavior of rocks in the uppermost crust (C. J. Marone et al., 1991; Shearer et al., 2005). Floyd et al. (2016) 
suggest the heterogeneity in the behavior of postseismic afterslip following the 2014 Napa earthquake is caused 
by spatial variations in fault friction linked to lithology. However, the number of cases where this has been docu-
mented is relatively small. By combining information from geological data with detailed models of coseismic slip 
and postseismic afterslip evolution, we can assess the role of lithological variations in controlling the frictional 
behavior of the Maduo earthquake.

Understanding how strain rates vary through an earthquake cycle is essential if we are to use short-term obser-
vations of present-day deformation to infer long-term slip rates on faults (Dolan et al., 2007; Elliott et al., 2016; 
Hussain et  al.,  2018; Khazaradze & Klotz,  2003; Nishimura,  2014; Salditch et  al.,  2020; Thatcher,  1993; 
Wright,  2016). Particularly powerful are observations of interseismic deformation that have been made 
prior to a major earthquake, whose coseismic and postseismic deformation are then observed (e.g., Hussain 
et  al.,  2016, 2018). However, only a handful of continental earthquakes have all three of these observations. 
For example, Elliott et al. (2016) found only 4 cases (i.e., the 1997 MW 7.5 Manyi earthquake, the 1999 MW 7.6 
Izmit  earthquake, the 2002 MW 7.9 Denali earthquake, and the 2004 MW 6.0 Parkfield earthquake), all of which 
were on major block-bounding faults. In all these cases, focused interseismic strain was observed prior to the 
earthquake, and this was followed by rapid postseismic deformation (Elliott et al., 2016; Hussain et al., 2018). 
The 2021 MW 7.4 Maduo earthquake provides an opportunity to test whether this pattern exists also for major 
earthquakes that occur away from block-bounding faults.
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It has been hypothesized that major active structures cut the Tibetan Plateau into several active tectonic blocks 
(Q. Chen et  al.,  2004; Loveless & Meade,  2011; Thatcher,  2007; W. Wang, Qiao, & Ding,  2021; W. Wang 
et al., 2017; P. Zhang et al., 2003; G. Zhang, Ma, et al., 2004) that play an important role in accommodating 
the crustal deformation and as a consequence control the spatial distribution of strong earthquakes (S. F. Chen 
et  al.,  1994; Q.-D. Deng et  al.,  2014; Wright et  al.,  2013; P.-Z. Zhang,  2013b). The Kunlun Fault (KF), the 
Longmenshan Fault, the Ganzi-Yushu-Xianshuihe Fault, and the western Altyn Tagh Fault define the bounda-
ries of the Bayan Har Block (BHB) around which large earthquakes have struck frequently in recent decades. 
Such major events include the 1997 MW 7.5 Manyi earthquake (Peltzer et  al.,  1999; Funning et  al.,  2007; 
Y.-Y. Wen & Ma, 2010), the 2001 MW 7.8 Kokoxili earthquake (Lasserre et al., 2005; Ozacar & Beck, 2004; 
Walker & Shearer, 2009), the 2008 MW 7.9 Wenchuan earthquake (Shen et al., 2009; Q. Wang et al., 2011; P.-Z. 
Zhang, 2013a), the 2010 MW 6.9 Yushu earthquake (Z. Li et al., 2011), the 2013 MW 6.6 Lushan earthquake 
(Y. Li, Jia, et al., 2014), and the 2017 MW 6.5 Jiuzhaigou earthquake (X.-W. Xu et al., 2017) (Figure 1a). The 
2021 MW 7.4 Maduo earthquake ruptured a secondary fault within the BHB, ∼70  km south of the KF. The 
seismogenic fault, the Jiangcuo Fault, was previously identified in the database of active faults from Q. Deng 
et al. (2003). However, it had received little attention before the occurrence of the 2021 Maduo earthquake due 
to the absence of large earthquakes. Among all the block models of Tibet (Q. Chen et al., 2004; Loveless & 
Meade, 2011; Thatcher, 2007; W. Wang, Qiao, & Ding, 2021; W. Wang et al., 2017), the Jiangcuo Fault has never 
been defined as a block boundary, including the most recently published 30-element block model for Tibet (W. 
Wang et al., 2017) (Figure 1c). Geodetic observations from GNSS reveal that the fault is slow-moving, with a 
maximum slip rate of less than 2 mm/yr (Guo et al., 2021; Y. Zhu, Diao, et al., 2021), exhibiting a relatively low 
interseismic strain rate either from GNSS (20–30 nanostrain/yr, M. Wang, Shen, et al., 2021; M. Wang, Wang, 
et al., 2021) or InSAR (<20 nanostrain/yr, Zhao et al., 2021); both show a distributed deformation around the 
fault. A very slow slip rate of ∼0.6 mm/yr (strike-slip) has been estimated geologically (Pan et al., 2022).

In this study, we conduct a comprehensive analysis of geodetic observations of earthquake cycle deformation for 
the 2021 MW 7.4 Maduo earthquake. We use Sentinel-1 InSAR data to investigate the coseismic deformation and 
time series of postseismic deformation occurring in the first ∼6 months following the Maduo earthquake. We 
apply a Bayesian method incorporating self-similarity to solve for coseismic slip and early afterslip models. We 
also analyze the rupture evolution by incorporating teleseismic data. In addition, we characterize the interseismic 
strain accumulation by combining Sentinel-1 InSAR and GNSS data. We further evaluate Coulomb stress loading 
caused by the Maduo earthquake. We discuss the lithological contrasts around the fault which likely control the 
fault slip behavior and the implications of our findings for the seismic hazard of low-slip-rate faults in “block” 
interiors.

2.  Data and Methods
2.1.  InSAR Data and Processing

Lazecký et al. (2020) developed an operational system based on the GAMMA software (Wegnüller et al., 2016), 
referred to as “Looking into Continents from Space with Synthetic Aperture Radar” (LiCSAR), to produce 
large-scale Sentinel-1 interferograms and derived products automatically for tectonic and volcanic areas. We 
used this system to process Sentinel-1 satellite data from ascending track 99 and descending track 106 for all 
epochs from 2021/05/20 to 2021/11/28. Interferograms were generated between each epoch and four preced-
ing and/or following epochs. The coherence was calculated by 5 × 5 window convolution over interferograms 
multilooked by 20/4 pixels in range/azimuth direction. We then geocoded and exported it to 8-bit datatype. 
The values of the derived coherence vary between 0 and 255 where 0 refers to the lowest coherence and 255 
indicates the highest value of coherence. We used single shortest interferogram pairs to capture the coseismic 
signals. The earliest acquisition after the earthquake was on 2021/05/26, meaning that the data contain 5 days 
of postseismic signal in addition to coseismic deformation (Figure  2). The interferogram unwrapping was 
performed using the Statistical-cost, Network-flow Algorithm for Phase Unwrapping approach (C. W. Chen & 
Zebker, 2000, 2001, 2002), with Gaussian-filtered pixel offsets in the SAR range direction as a coarse estimate to 
guide the unwrapping for coseismic interferograms, considering high deformation gradients in the near field that 
cause decorrelation of the radar phase. We then built small baseline networks (Figure S1 in Supporting Informa-
tion S1) to analyze the postseismic time series. To investigate the tectonic strain accumulation in this region, we 
processed data from 5 ascending and 5 descending LiCSAR frames each covering approx. 250 × 250 km 2 area 
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since October 2014 until a pre-earthquake date in May 2021. The interseismic interferogram networks can be 
found in Figure S2 in Supporting Information S1.

To account for the covariance of atmospheric noise, we used the semi-variogram method (e.g., Lohman & 
Simons, 2005) to calculate a variance-covariance matrix for InSAR data. We selected an undeforming area of 
the interferogram and calculated the semi-variogram and the exponential fit (Figure S3 in Supporting Informa-
tion S1), assuming that errors in the InSAR data can be simulated using an exponential function fitted to the 
isotropic experimental semi-variogram (Webster & Oliver, 2007). We downsampled the data by using a nested 

Figure 1.  Tectonic setting of the 2021 Maduo earthquake. (a) The early definition of active tectonic blocks in Tibet (P. Zhang et al., 2003). Gray lines depict fault 
traces from Q. Deng et al. (2003). Blue beach ball marks the epicenter of the Maduo earthquake while orange ones are several large earthquakes occurring around the 
BHB in recent years. (b) The close-up for the blue rectangle in (a). Thick black lines show fault traces from Q. Deng et al. (2003). Thin dark red lines show fault traces 
from the Global Earthquake Model Global Active Faults Database (Styron & Pagani, 2020). White square represents Maduo County. Beach ball shows the location and 
focal mechanism of the earthquake from the Global Centroid Moment Tensor (GCMT) catalog (Dziewonski et al., 1981; Ekström et al., 2012). Gray dots are 8 days of 
relocated aftershock sequence (W. Wang, Fang, et al., 2021). Magenta lines depict the traces of surface rupture delineated from the SAR range offsets and are used to 
constrain the strike and location of the fault for slip inversion. Dashed-line polygons delimit the spatial extents of Sentinel-1 InSAR data used for coseismic deformation 
analysis in this study. (c) Block boundaries from W. Wang et al. (2017) shown as thick dark red lines. Black lines depict active faults compiled by Taylor and 
Yin (2009). Beach ball marks the epicenter of the 2021 Maduo earthquake and magenta lines show the surface rupture traces. ATF = Altyn Tagh Fault, HF = Haiyuan 
Fault, KF = Kunlun Fault, LF = Longmenshan Fault, XF = Ganzi-Yushu-Xianshuihe Fault, LRBF = Longriba Fault, BHB = Bayan Har Block. Beach ball 1 = 1997 
MW 7.5 Manyi earthquake, 2 = 2001 MW 7.8 Kokoxili earthquake, 3 = 2008 MW 7.9 Wenchuan earthquake, 4 = 2010 MW 6.9 Yushu earthquake, 5 = 2013 MW 6.6 
Lushan earthquake, 6 = 2017 MW 6.5 Jiuzhaigou earthquake.
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uniform downsampling method; we used around 3,000 points for both ascending and descending InSAR viewing 
geometries for the inversion of fault slip (Figure S4 in Supporting Information S1).

2.2.  InSAR Time Series Analysis

Morishita et al. (2020) presented an open-source InSAR time series analysis package, referred to as LiCSBAS, 
which integrates with LiCSAR products, facilitating large scale processing (Morishita, 2021; Weiss et al., 2020). 
We inverted for displacement time series using LiCSBAS software. We processed each frame at a resolution of 
∼100 m. We performed the GACOS correction (Yu et al., 2018) to reduce atmospheric noise contributions to the 
time series. The range of coherence is converted to 0–1 in LiCSBAS processing. Low coherent pixels (average 
coherence ≤0.1) were masked before time series inversion, as in Morishita (2021). This is a safe mask as we do 
not intend to exclude too many pixels. Cumulative postseismic displacements were derived from spatiotemporal 
filtered time series, with a temporal filter width of 0.05 years and a spatial filter width of 1 km. The LiCSBAS 
parameter settings used in this study were listed in Table S1 in Supporting Information S1.

F. Liu, Elliott, et al.  (2021) presented a time series approach to extract a linear interseismic rate, a coseismic 
offset, and a postseismic relaxation function. However, this assumes the postseismic deformation of each pixel 
follows a logarithmic function with a constant decay parameter (τ) to represent the postseismic relaxation for the 
region. This is not optimal for studies in which postseismic afterslip can be linear and logarithmic through time 
at different spatial locations (e.g., Floyd et al., 2016).

2.3.  Teleseismic Waveform Data

To analyze the rupture evolution during the 2021 Maduo earthquake, we use vertical-component teleseismic 
P waveforms from 53 globally distributed stations. The data are selected to ensure good azimuthal coverage 
of high-quality records, with high signal-to-noise ratios that are sufficient for reliable picks of the P-wave first 

Figure 2.  Observed (a, d), model (b, e), and residual (c, f) interferograms (2021/05/20–2021/05/26) for the Maduo earthquake. Each color cycle equals 6 cm of ground 
displacement toward the satellite. Black lines are surface rupture traces.
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motions (Okuwaki et al., 2016). The first motions are manually determined. The data are then deconvolved from 
instrument responses into velocity time series at a sampling interval of 0.8 s.

2.4.  Von Karman Regularized Geodetic Bayesian Slip Inversion

2.4.1.  Fault Geometry Set Up

Before the inversion, the strike angles of the fault were fixed based on the trace of fault rupture delineated from 
the SAR range offsets which indicate a 156 km long surface rupture with a single major trace along most of length 
except in the east where there is a secondary sub-parallel splay (Figure S5 in Supporting Information S1). The dip 
angles for different segments were determined based on the relocated aftershocks, which suggest a near-vertical 
but complex geometry, dipping to north or south in different strands (W. Wang, Fang, et al., 2021). The relocated 
aftershocks are of ∼0.3 km average accuracy in horizontal and of ∼0.5 km in depth. Our resultant 3-D fault 
geometry has 13 planar segments with different strike and dip angles (Table S2 in Supporting Information S1). 
Each segment is fully connected at surface. To compensate for the poorer fault resolution at depth (e.g., Lohman 
& Simons, 2005), we use a variable patch size, increasing from ∼1 km at the top, ∼3 km at 1–4 km depth, ∼6 km 
at 4–10 km depth, to ∼10 km at the bottom (Figure 3). We make the slip patches square as possible, within the 
constraints of the lengths of the planar segments.

2.4.2.  Coseismic Slip Inversion

We applied a Bayesian method incorporating von Karman regularization to solve for slip distribution at depth and 
associated standard deviation (Amey et al., 2018). Von Karman smoothing is arguably more physically mean-
ingful than Laplacian smoothing, as it accounts for fractal (self-similar) properties of fault slip as evidenced by 
Aviles et al. (1987), Robertson et al. (1995), Mai and Beroza (2002), Ben-Zion (2008), Powers and Jordan (2010), 
and Passelègue et al.  (2016). Practically, the von Karman solution outperforms the Laplacian solution in that 
the former gives tighter confidence bounds on slip, as shown in Amey et al. (2018). Once the fault geometry 
has been determined (Section 2.4.1), we solve for slip and rake angle for each patch using the slipBERI code 
(Amey et al., 2018), as well as a hyperparameter α 2 controlling the slip variance for each separate fault. Thus, 
we can explore the full range of solutions for a range of variances, instead of assuming the variance of slip in 
advance. The initial slip value for each patch was assigned 0.4 m and the maximum slip allowed was 10 m. 
During the inversion, rake angles were allowed to vary from −60° to 60°, reflecting the predominant left-lateral 
strike-slip motion but also allowing for a variable dip-slip component of slip. The initial probability target (i.e., 
the expected ratio of the posterior probability after perturbation of a single model parameter, to the current poste-
rior probability) was 10 −4, which was used to adjust step sizes in the initial part of the inversion. We applied von 
Karman smoothing including patches in connected fault segments. Details about this approach are given in Amey 
et al. (2018).

2.4.3.  Postseismic Afterslip Inversion

We apply the same scheme as coseismic slip inversion to obtain early afterslip models over 6 time intervals (∼1, 
∼2, ∼3, ∼4, ∼5, and ∼6 months after the mainshock), using the cumulative postseismic displacements from the 
filtered postseismic time series as input, sampled at the same locations as the coseismic inversion. To mitigate the 
long-wavelength disturbance, we remove a best-fit ramp before inversion. We then investigate the time-dependent 
afterslip behavior in the first ∼6 months following the Maduo earthquake.

Jin and Fialko (2021a) suggest that the viscoelastic relaxation in the first 6 months following the Maduo earth-
quake might be limited. Calculating a specific viscosity is difficult without a comprehensive viscoelastic 
modeling study, which is beyond the scope of this study. The viscosity depends on the geometry of the region 
responding, the type of viscoelasticity (e.g., linear Maxwell or power-law), and whether viscoelastic relaxation is 
the only process occurring. Also, we note that it is difficult to distinguish between deep afterslip and viscoelastic 
processes based on geodetic measurements, because deep aseismic slip in an elastic half-space can produce the 
equivalent surface deformation as that produced by viscoelastic relaxation (Savage, 1990). We note, however, that 
any deep postseismic afterslip may in reality be accommodated by viscoelastic processes.
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2.5.  Teleseismic Finite-Fault Inversion

2.5.1.  Fault Geometry Configuration

Guided by the SAR range offsets of the surface deformation, we design a non-planar model domain for the tele-
seismic finite-fault inversion. The model domain is defined with variable strike and fixed dip angles (90°). The 
model space covers ∼165 km in length and 25 km in width. During our teleseismic finite-fault inversion, we omit 
the branching fault elongated toward southeast, closely co-located with the eastern part of the model domain, 

Figure 3.  (a) Coseismic slip model (containing 5-day postseismic afterslip) for the Maduo earthquake. Magenta lines represent the traces of surface rupture. For 
a better visualization, the splay at the eastern end was shifted by an arbitrary amount to the south-west. Yellowish circles show the left-lateral offsets from field 
surveys (Z. Li et al., 2021; Pan et al., 2021), which share the same color scale with slip patches. Green star marks the hypocenter and gray dots are 8 days of relocated 
aftershocks (W. Wang, Fang, et al., 2021). (b) Afterslip distribution occurring in the first ∼6 months (2021/05/26–2021/11/28). (c) Temporal evolution of average 
afterslip for each depth range. Lines show linear fitting and logarithmic fitting with a functional form of “y = a * log (1 + b*t) + c.” (d) Same as (c), but for shallow 
patches delimited by polygons A, B, C, and D shown in (b).
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because the spatial gap between the main fault strand and the branch is too close to be resolved by the limited 
spatial resolution of the teleseismic data. Each patch is defined to be 5 × 5 km 2 along the strike and dip directions. 
Given the observed surface ruptures, the model edges are constrained to taper to zero except for the upper surface.

2.5.2.  Green's Functions Calculation

We use the ak135 model (Kennett et al., 1995) to calculate relative travel times, ray parameter, and geometric 
spreading factors. Green's functions are calculated based on the ray-theory approach (Kikuchi & Kanamori, 1991). 
The CRUST1.0 model (Laske et al., 2013) is used to extract a one-dimensional layered velocity model near the 
source region to calculate Haskel propagator in Green's functions. We do not apply a low-pass filter to both the 
observed waveforms and Green's functions, which is intended to retrieve the detailed rupture process recorded in 
higher frequency components, following the procedure adopted in previous studies (e.g., Okuwaki et al., 2021; 
Shimizu et al., 2020).

2.5.3.  Finite-Fault Rupture Evolution Inversion

We use a finite-fault inversion method based on the potency-density tensor approach (Shimizu et al., 2020; Yagi 
& Fukahata, 2011). This method considers the uncertainty of the Green's functions by adopting the formulation 
of Yagi and Fukahata (2011), which explicitly introduces the error term of the Green's functions into the data 
covariance matrix. The method also accounts for the uncertainty of fault geometry by representing the fault defor-
mation by a superposition of five basis double-couple components (Kikuchi & Kanamori, 1991), which solves a 
spatiotemporal distribution of potency density (Ampuero & Dahlen, 2005).

During the inversion, the slip-rate function for each source grid is represented by linear B-splines at a temporal 
interval of 0.8 s. The duration of slip-rate function is set as 20 s. The maximum rupture velocity is set as 5 km/s 
so that we can flexibly determine a slip evolution including a possible supershear rupture. We set the hypocenter 
at 34.618°N, 98.387°E, and 12.5 km at depth for the initial rupture point, which is slightly shifted from the 
relocated earthquake origin (W. Wang, Fang, et al., 2021) so that the initial rupture point is located within the 
determined fault “plane” (Section 2.5.1). In order to evaluate the sensitivity of our teleseismic finite-fault inver-
sion against the assumption of the initial rupture point, we testify different scenarios of the initial rupture point 
near the USGS and W. Wang, Fang, et al. (2021)'s reported hypocenters, and in between. We find the variance 
between the observed and synthetic waveforms is similar (within ∼1% difference) among the solutions (Figure 
S6 in Supporting Information S1).

The model parameters are objectively determined by minimizing Akaike's Bayesian Information Criterion 
(ABIC) (Akaike, 1980; Yabuki & Matsu'ura, 1992), and we do not adopt non-negative constraints for slip 
vectors. Such a procedure can effectively prevent over- or under-smoothing of the source model as theo-
retically shown in Fukuda and Johnson (2008). Thus, our method is data-driven and designated to retrieve 
the information of slip direction and rupture evolution recorded in the teleseismic data, instead of biasing 
the solution by the prescribed fault geometry and slip vectors. The potency-density tensor approach of the 
finite-fault inversion (Shimizu et al., 2020) adopted in this study has been proven efficient to flexibly model 
complex rupture evolution of large earthquakes (Hicks et al., 2020; Okuwaki et al., 2020, 2021; Tadapansawut 
et al., 2021; Yamashita et al., 2021), which is suitable for estimating the non-smooth rupture propagation in 
geometrically complex fault systems.

2.6.  Interseismic LOS Velocity Mosaicking and Strain Rate Calculation

2.6.1.  LiCSAR Frame Mosaicking

To mosaic the independently referenced frames of line-of-sight (LOS) velocities along track, we used a method 
developed by Ou et al. (2022) where a planar ramp per frame is jointly inverted from both the differences between 
InSAR LOS and GNSS LOS velocities and the differences between InSAR LOS velocities in the overlapping 
bursts between consecutive frames. GNSS velocities are from Liang et al. (2013) and M. Wang and Shen (2020). 
The vertical velocities in Liang et al. (2013) were measured before the start of our InSAR time series and could 
be impacted by fluctuations coming from hydrological processes. However, since Liang et al. (2013) is so far 
the only source of vertical GNSS velocities published for the region, and knowing that treating GNSS vertical 
velocities as zero could equally bias the results, we incorporated the vertical velocities from Liang et al. (2013) 
and weighted the inversion by the combined uncertainties from those of the InSAR and GNSS LOS velocities. 
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This weighting strategy produces better fits at GNSS stations with more stable vertical velocities. The average 
residuals of −0.2 ± 1.7 mm/yr between InSAR and GNSS LOS (Figure S7 in Supporting Information S1) and 
−0.8 ± 2.3 mm/yr between InSAR frame overlaps (Figure S8 in Supporting Information S1) suggest that the 
stitched LOS tracks are of ∼1–2 mm/yr uncertainty level. This procedure places the InSAR LOS velocities into a 
common reference frame provided by the GNSS velocities (Figure S9 in Supporting Information S1).

2.6.2.  LOS Velocity Decomposition

To extract regional east and vertical velocity fields from the 3 ascending and 3 descending LOS velocity tracks, 
we first remove the contributions of the GNSS estimated north velocities from the LOS, and then decompose the 
remaining LOS velocities into east and vertical components (Hussain et al., 2018; Weiss et al., 2020). The veloc-
ity decomposition is weighted by LOS uncertainties corrected for the effect of frame reference. This is done by 
scaling the LOS uncertainties by a factor determined by a spherical model fitted to an uncertainty profile against 
the distance away from the median location of pixels with the lowest 3% uncertainties (Figure S10 in Supporting 
Information S1, Ou et al., 2022). The north velocity field was interpolated from GNSS north velocities using a 
universal kriging algorithm provided by version 1.6.1 of the PyKrige Python Package (Murphy et al., 2021). The 
kriging algorithm generates the best linear unbiased predictions at unsampled locations as weighted means of 
neighboring GNSS velocities. The weights are distance-dependent and derived from a variogram model fitted to 
the semi-variogram of the deviations of the data from a polynomial trend. We chose to fit a spherical instead of 
an exponential or Gaussian variogram model to balance smoothness and feature retention (Ou et al., 2022). To 
avoid artifacts due to closely-spaced contrasting velocities of mixed quality, we interpolated only GNSS north 
velocities with uncertainties below 0.7 mm/yr. The kriging algorithm also uses the same variogram model to 
produce interpolated uncertainties that increase away from the GNSS control points. We propagate the uncer-
tainties of the interpolated GNSS north velocities through the LOS velocity decomposition by compounding the 
VN uncertainties with the LOS uncertainties as described in the Supporting Information S1 of Ou et al. (2022). 
The two velocity fields we obtained are of ∼100 m resolution, 1–2 mm/yr uncertainty, and spans an area of 
205,000 km 2 (Figures S11 and S12 in Supporting Information S1). The correlations between InSAR and GNSS 
VE and VU have slopes of 0.94 and 0.76, and R 2 values of 0.98 and 0.93, respectively (Figures S11g and S11h in 
Supporting Information S1).

2.6.3.  Strain Rate Calculation

We further investigate the degree to which the earthquake here is spatially associated with the recent prior accu-
mulation of strain in the immediate region and the degree to which this strain is concentrated on the fault. 
We generate strain rate fields at 1 km sampling spacing using average velocities derived from ∼6.5 years of 
Sentinel-1 InSAR time series (between October 2014 and May 2021, see Figure S2 in Supporting Information S1 
for the interferogram networks). We follow the method of Ou et al. (2022) to derive strain rate fields by combin-
ing horizontal velocity gradients of the filtered InSAR east velocities and the interpolated GNSS north velocities 
(Section 2.6.2, Figure S13 in Supporting Information S1).

The InSAR east velocities are filtered with a sliding median filter of 60 km diameter, as in Ou et al. (2022). In 
areas of high pixel densities, the filtered east velocity represents the median value of up to >250,000 VE measure-
ments in a circular window, effectively reducing the bias from extreme values typically found near decorrelated 
regions. Besides, a median filter preserves the shapes of the velocity profile and hence the width of the strain 
rate peak. If the pixels are unevenly distributed within a circle, the median value can be more representative of 
the velocity from a side with higher pixel density. As a result, the filter may smear velocities from two sides of 
a decorrelated patch toward its geometric center where potentially different velocities meet in a sharp velocity 
step. This may give rise to a strain rate peak that is too narrow and spiky because the velocity gradient is poorly 
constrained. If the pixel distribution is asymmetrical about a fault, the filter may cause a spatial drift of the strain 
rate peak away from the fault toward the side of lower pixel density. However, the spatial drift or shape change 
of the strain rate peak does not affect the total strain rate integrated along a profile or across a region, and any 
strain rate peak highlighted is indicative of a real velocity contrast that is worth interpreting with reference to the 
unfiltered VE. Such limitations could be mitigated using a Bayesian approach (e.g., Pagani et al., 2021), although 
the number of InSAR measurements could make such a method computationally expensive to implement.
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3.  Results
3.1.  Coseismic Slip Model

The 2021 Maduo earthquake is a predominantly left-lateral strike-slip event. Figure  3 shows our preferred 
self-similar slip model through the implementation of a von Karman regularization. The rupture propagated bilat-
erally with a total length of ∼160 km, resulting in two major individual slipping areas distributed separately to the 
west and east of the hypocenter; the central part produced relatively minor slip (30% below average), consistent 
with the results of Jin and Fialko (2021b), K. He, Wen, et al. (2021), and J. Liu et al. (2022). The maximum 
slip is ∼7 m, located at depth of 1–4 km to the east of the hypocenter. Geometric barriers have been proposed 
to hinder or terminate the rupture propagation during small-to-moderate-sized earthquakes and fail only during 
large-magnitude earthquakes on mature faults (e.g., Manighetti et al., 2007). Our slip model shows multi-peak 
slips occur at fault segment junctions (i.e., gray arrows denoting slip maxima in Figure 3a), which appear to be 
associated with geometric barriers. This echoes the finding of M. Wang, Wang, et al. (2021). A similar rupture 
scenario was proposed for the 2008 MW 7.9 Wenchuan earthquake with rupture of geometric barriers in a cascad-
ing manner (Shen et al., 2009). In addition, Ren et al. (2022) and Yao et al. (2022) reported that the rupture length 
of the Maduo earthquake (∼160 km), as well as that of some other strong earthquakes which have occurred 
around the BHB, such as the 1997 MW 7.5 Manyi earthquake (185 km), the 2001 MW 7.8 Kokoxili earthquake 
(420 km), and the 2010 MW 6.9 Yushu earthquake (50–70 km), are all greater than the expected values for their 
magnitudes based on the commonly-used empirical relationships (Wells & Coppersmith, 1994).

The majority of moment release during the 2021 Maduo earthquake occurred above 10 km depth. Significant 
slip occurred in the central depth range of the seismogenic layer (1–10 km), which is similar to rupture patterns 
of a number of shallow strike-slip events, as demonstrated in Jin and Fialko (2021b). Besides, the spatial pattern 
of our slip distribution is generally complementary to aftershocks. Most of aftershocks were located in the depth 
range of 8–15 km (W. Wang, Fang, et al., 2021); dense aftershocks clustered below the hypocenter (Slip Void I 
in Figure 3a). Aftershocks were sparsely distributed to the west of the secondary splay (Slip Void II) where large 
coseismic slip occurred at shallow depths. The low aftershock densities may give a hint of a supershear rupture 
segment (e.g., Yue et al., 2022).

The relatively low values for shallow strike-slip movement estimated from our model are also in agreement 
with those measured from fieldwork (Z. Li et al., 2021; Pan et al., 2021; Ren et al., 2022) (Figure 4a), which 
favor a shallow slip deficit (SSD) (H. Chen et al., 2021; Hong et al., 2022; Jin & Fialko, 2021b; S. Wang, Song, 
et al., 2022; Yue et al., 2022; Zhao et al., 2021) (Figure 4b and Table 1). However, there are some noticeable 
differences in the magnitude of shallow slip and the amount of SSD among published studies. The general offsets 
from field mapping are 1–2 m and the maximum is ∼3 m (Z. Li et al., 2021; Pan et al., 2021; Ren et al., 2022) 
(Figure 4a). Some studies (e.g., Hong et al., 2022; M. Wang, Wang, et al., 2021; Yue et al., 2022) resolved shal-
low slips systematically larger than field measurements. One possible explanation is that the slips in previous 
models were averaged over a relatively large patch size (3 km or larger). A smaller subfault size (e.g., 1 km) at 
shallow depth allows to resolve a finer-scale SSD. A moderate (50%) SSD was observed in our model. Jin and 
Fialko (2021b) reported a relatively lower level (30%) of SSD using a similar-scale patch size at the shallowest 
part, which is likely due to their application of a layered elastic half-space and a different regularization constraint 
(i.e., the first-order Tikhonov regularization). In addition, we note that precise comparison between predicted 
surface slip and the fieldwork result can be difficult. The soft sedimentary layer and abundant water sources make 
it challenging to measure offsets through geomorphological markers in the field. Field surveys only measured the 
near-field offsets while slip models depicted integrated dislocations over a subfault zone. The surface rupture can 
be more diffuse and complicated, for example, inelastic deformation which cannot be modeled using the elastic 
dislocation theory. This may also explain the discrepancies between inverted slips and field measurements, and 
the near-field residuals from geodetic inversion.

The geodetic moment of our model is 1.77 × 10 20 Nm (1.59–1.95 × 10 20 Nm within the 2-sigma uncertainty), 
corresponding to an MW ∼ 7.43 event. This is consistent with other geodetically derived moments but higher than 
the seismic moments reported by GCMT and USGS, which are in the range of 1.31–1.66 × 10 20 Nm (Table 1). 
Part of this difference (∼0.3 × 10 20 Nm) is likely due to the effect of 5-day postseismic deformation included in 
the InSAR data.
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Our resolution map (Figure S14 in Supporting Information S1) suggests that slip on most patches is robustly 
resolved, except in some shallow parts where InSAR observations experienced decorrelation in the near field. 
Our model recovers the InSAR data very well, with the root mean square (RMS) of residuals of ∼4.5 cm (Figure 2 
and Figure S4 in Supporting Information S1). The remaining residuals occur near the fault traces, which is likely 
due to complex (inelastic) deformation in the near field (Z. Li et al., 2021; Pan et al., 2021; Ren et al., 2022) that 
cannot be modeled based on elastic dislocation theory (Okada, 1985).

Existing modeled fault geometries and slip distributions are notably different among the published results (Table 1 
and Figure 4). These dissimilarities are primarily attributable to the ill-posed nature of the slip inversion problem 
and different smoothing or regularization constraints applied (e.g., Gombert et al., 2018). One of the advances 
of our model is that we build a more realistic fault geometry designed from the combined tighter constraints 
from the SAR range offsets of the surface trace and the distribution of relocated aftershocks at depth (W. Wang, 
Fang, et al., 2021). To test whether the dips estimated by relocated aftershocks are reasonable constraints for 
geodetic inversion, we shifted the aftershock-derived dips by 5° systematically northward and southward. The 
slip distributions remained similar while the RMS of residuals increased by 8% and 13%, respectively (Figures 
S15 and S16 in Supporting Information S1). We note that the aftershock sequence relocation (W. Wang, Fang, 
et al., 2021) implies that there might be a secondary branch in the western end. However, this cannot be inferred 
from the InSAR data, although L. He, Feng, et al. (2021) suggest a blind segment which features relatively minor 
slip and no surface rupture. Therefore, we omit a secondary splay in the west and focus on the primary rupture. 
Another advantage of our slip model is that we apply von Karman regularization. As different fault geometries 
and regularization techniques could have important implications for interpreting slip distribution and modeling 
stress changes, our fault geometry configuration and regularization constraint allow us to better assess fault slip 
behavior and hence seismic hazard. Our model sheds light on the geometry- and lithology-related slip behavior 
(Section 4.2). Besides, we account for standard deviation of the slip model (Figure S17 in Supporting Informa-
tion S1) in a Bayesian framework. The maximum standard deviation is ∼0.3 m. Major uncertainties correlate with 
larger slip. The shallowest patches feature relatively smaller standard deviation.

Figure 4.  (a) Slip (dark-blue and light-blue squares) and afterslip (gray triangles) variations at shallow depth (0–1 km) along strike of the fault. Navy blue and gray 
lines are the along-strike moving average weighted by the associated standard deviation. Dark blue squares represent slips on patches with resolution ≥0.7. Red dots 
denote the coseismic offsets measured from field observations (Z. Li et al., 2021; Pan et al., 2021; Ren et al., 2022). Surface slip profiles from published models are 
shown in colored lines. (b) Along-strike averaged normalized coseismic slip as a function of depth for this study (InSAR and teleseismic) and published models.
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3.2.  Rupture Evolution

Our finite-fault rupture evolution model obtained from the teleseismic waveforms (Figure 5) reveals a bilateral 
rupture history, with a dominant eastward rupture, composed of three notable rupture episodes (Figure 6). For 
the first 11 s, the rupture initiated at the hypocenter, and then expanded to both east and west directions from the 
hypocenter at a speed of 3–5 km/s. The initial slip pulse ruptured mostly the shallow part of the model domain 
(<12.5 km depth). From 12 to 20 s, a second rupture pulse migrated primarily toward east from the hypocenter, 
rupturing from shallow to deep depth. During this rupture episode, the rupture appeared to be back-propagating 
(between 14 and 20 s), which is similar to what have been observed in some other earthquakes, such as the 2016 
MW 7.1 Romanche earthquake (Hicks et al., 2020), the 2019 MW 8.0 Peru earthquake (Hu et al., 2021), and the 
2020 Caribbean earthquake (Tadapansawut et al., 2021). And then a third rupture episode started from ∼20 s, 
which ruptured the rest of the shallow part in a bilateral direction, at a speed of ∼3 km/s. From 30 s onwards, 
relatively minor moments were released without any notable rupture episodes. The rupture finally ceased at 40 s. 
Our preferred rupture model can explain the observed teleseismic waveforms very well, with a 67% variance 
reduction (VR) of waveform fitting (Figure 5).

The total seismic moment release is 2.5 × 10 20 Nm (MW ∼ 7.5) during the 2021 Maduo earthquake, which is 
larger than the reported seismic moment, for example, 1.7  ×  10 20  Nm for the GCMT solution (Dziewonski 

Data constraint Dip (°)
Fault 

segments
Patch size 

(km 2)
Peak slip 

(m)
Depth 
(km) a SSD (%) b

Moment 
(×10 20 Nm) MW Source

Seismology 87 – – – – – 1.66 7.4 GCMT

Seismology/Sentinel-1 InSAR 76 1 3.5 × 3.5 ∼4 10 – 1.31 7.4 USGS

Seismology/Sentinel-1 InSAR 84 7 6 × 4 6.82 10 – 2.27 7.51 W. Wang, He, et al. (2022)

Seismology/Sentinel-1 InSAR 70/79/81 c 3 5 × 3 ∼6 3–6 – 1.7 7.4 X. Zhang, Feng, et al. (2022)

Sentinel-1 InSAR Variable 5 2 × 2 ∼6 5 Significant – 7.38 Zhao et al. (2021)

Sentinel-1 InSAR Variable Non-planar Triangular ∼4.2 6–8 – 1.80 7.4 K. He, Wen, et al. (2021)

Sentinel-1 InSAR 83 2 2 × 2 ∼7.2 7 64 1.71 7.4 S. Wang, Song, et al. (2022)

Sentinel-1 InSAR 80 7 Variable ∼6 3.2 30 – 7.46 Jin and Fialko (2021b)

Sentinel-1 InSAR Variable 5 2 × 2 ∼5 4–7 Moderate 1.45 7.41 H. Chen et al. (2021)

Sentinel-1 InSAR Variable 6 Triangular 5 6 – 1.58 7.43 L. He, Feng, et al. (2021)

Sentinel-1 InSAR Variable Non-planar 2 × 2 4.87 <10 – – 7.5 Q. Zhang, Wu, et al. (2022)

Sentinel-1/ALOS-2 InSAR 90 Non-planar Triangular 6 4–5 – 1.8 7.44 J. Liu et al. (2022)

GNSS 87 4 3 × 3 ∼3.6 1.5 – 1.82 7.4 M. Wang, Wang, et al. (2021)

GNSS/Sentinel-1 InSAR Variable 6 2 × 2 ∼9.3 7 – ∼1.5 7.39 Guo et al. (2021)

Sentinel-1/ALOS-2 InSAR/

GNSS 78/64 d Non-planar 3 × 3 4.07 4.4 10 1.65 7.42 Hong et al. (2022)

Sentinel-1/ALOS-2 InSAR/

GNSS 89/86/89 e 3 Variable 4.1 <5 – 1.78 7.43 Q. Li, Wan, et al. (2022)

Sentinel-1 InSAR/Seismology/

high-rate GNSS 80 4 5 × 5 4.2 7.4 – 1.65 7.4 K. Chen et al. (2022)

Sentinel-1/ALOS-2 InSAR/

Seismology/GNSS 83 Non-planar 3.9 × 2.9 5 1.4 10 f 1.43 7.37 Yue et al. (2022)

Sentinel-1 InSAR Variable 13 Variable ∼7 2.5 50 1.77 7.43 This study

Seismology 90 Non-planar 5 × 5 ∼5 2.5 – 2.5 7.5 This study

 aDepth at which peak slip occurred.  bShallow slip deficit.  cDip of the western, central, and eastern segments, respectively.  dDip of the main and secondary rupture, 
respectively.  eDip of the western and central-eastern segments of the main fault, and dip of the secondary splay.  f10% of Shallow slip deficit above the second row of 
asperity 2 in Yue et al. (2022).

Table 1 
Compilation of Key Findings From Published Source Parameters (Bolded Results From This Study)
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et al., 1981; Ekström et al., 2012). This discrepancy is likely partly due to our selection of a wide enough model 
domain to capture all the possible rupture evolution (e.g., Tadapansawut et  al.,  2021). Also, our teleseismic 
modeling scheme allows fault geometry to change during the rupture propagation. In other words, we solve for 
variable moment-rate tensors for each sub-fault at each time step during the rupture. Thus, our inversion proce-
dure can flexibly represent the moment release history, rather than assuming a fixed simplified (e.g., triangular) 
moment-rate function based on the point-source assumption adopted in other CMT solutions. If such a simple 
representation of moment release history may miss possible extra contributions from the source complexity, the 
resultant seismic moment from other CMT solutions would have been underestimated. In this study, we use seis-
mology to focus on the rupture evolution of the 2021 Maduo earthquake, but not the absolute moment at a given 
fault location. Discrepancy of seismic moment with other means (e.g., CMT solutions, InSAR model) remains to 
be further studied by joint use of geodetic data, so that we may evaluate or match the final moment distribution 
to the one derived from geodetic data.

K. Chen et  al.  (2022) show a bilateral slip-pulse rupture at a sub-Rayleigh speed of 2.6–2.8 km/s from joint 
inversion of Sentinel-1 InSAR, high-rate GNSS and teleseismic waveforms. However, they assume in advance 
the allowed maximum rupture speed to be sub-Rayleigh (<3.6 km/s), precluding the possibility of supershear 
rupture. Their 4-segment fault geometry might be oversimplified and their fit to teleseismic waveforms is rela-
tively poor (with 45% VR). In terms of our teleseismic finite-fault inversion, we select a wide enough model 

Figure 5.  The observed (black) and synthetic (red) teleseismic waveforms for the finite-fault solution. The station code is shown in each panel. The bottom-right panel 
shows the station distribution.
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Figure 6.  Rupture evolution derived from teleseismic waveforms. (a) Cumulative slip distribution. The star shows the 
hypocenter. (b) The cross sections of the spatial-temporal distribution of slip rate given in 1 s long windows. The black circles 
show the reference rupture speeds. Major slipping areas (>50% of the maximum slip rate) are outlined by the black cell 
boarders. (c) The moment-rate function.
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domain to consider all possible solutions. The apparent relatively fast rupture speed at an initial stage may be 
reflecting fast triggering of the initial rupture episode or supershear rupture propagation (e.g., Yue et al., 2022).

Our seismology solution shows good consistency with the slip model derived from the InSAR data. However, 
relatively large shallow slip was resolved from teleseismic data, which is partly caused by larger patch size at 
shallow depth. The teleseismically-derived peak slip was less than that from InSAR data. This is likely attrib-
utable to different inversion schemes and regularization constraints. A slightly higher slip (∼2.8 m) around the 
hypocenter was found teleseismically, compared with the InSAR-derived result (∼2 m). Part of this difference is 
likely due to the temporal smoothing effects. The strength of smoothing is objectively determined on the basis 
of ABIC, which is primarily controlled by information included in the data (e.g., Fukahata & Wright, 2008). 
Because the teleseismic finite-fault inversion resolves the timing and location of the slip which are only relative 
to the presumed hypocenter (i.e., initial rupture point, Section 2.5.3), and the spatial resolution of the teleseismic 
data is limited compared to that of the InSAR data, a comparison of the absolute location of the slip between the 
teleseismic solution and the InSAR results cannot be rigorously made. In this study, we use teleseismic data as 
an independent measurement to get a sense of spatiotemporal evolution of rupture during the Maduo earthquake. 
Our teleseismic inversion algorithm is currently not designed to incorporate data other than teleseismic P wave-
forms. We leave the joint inversion of geodetic and seismic data for future work.

3.3.  Early Afterslip Models

The cumulative postseismic displacements over each time period and model fitting are shown in Figure 7 and 
Figures S18–S22. Our models of early afterslip over each time interval reveal several key features (Figures 3b, 
3c and 3d and Figure S23 in Supporting Information S1). Coseismic slip deficit is taken up by both shallow and 
deep afterslip occurring in the first ∼6 months following this earthquake (Figure 3). Around 0.1 m of afterslip 
occurred at shallow depths while 0.2–0.4 m of afterslip occurred below the seismogenic zone. Shallow (<4 km) 
and deep (>10 km) depths show different afterslip evolutions with time (Figures 3c and 3d); shallow afterslip 
grows linearly with time while deep afterslip grows logarithmically. This may reflect spatial variations in fric-
tional properties of the fault, as evidenced by lithological contrasts (Figure 8) (see Section 4.2). There is lack of 
afterslip in the depth range of 4–10 km, consistent with where we might expect velocity weakening material. We 
also note that relatively minor (30% below average) coseismic slip occurred around the epicenter where major 
shallow afterslip occurred linearly with time (Figure 3d).

Postseismic moment release during the first ∼6  months (2021/05/26–2021/11/28) is 2.54  ×  10 19  Nm 
(2.25–2.83  ×  10 19  Nm within the 2-sigma uncertainty), equivalent to an MW  ∼  6.91 event. We analyze the 

Figure 7.  ∼6-month (2021/05/26–2021/11/28) cumulative postseismic displacements (a, b), a best-fit ramp (c, d), removal of ramp (e, f), model fitting (g, h), and 
residuals (i, j). Positive value means displacement toward the satellite. (k–n) Postseismic displacement time series of selected pixels shown as black crosses in (a, b). 
Gray and red dots represent unfiltered and filtered results, respectively.
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temporal variations of postseismic moment release in the first ∼6 months and solve for the moment occurring 
in the first 5 days (2021/05/21–2021/05/26) postseismically by fitting a logarithmic model back to the date of 
the earthquake (Figure S24 in Supporting Information S1). The largest part of the postseismic moment has been 
released by the deep afterslip in the depth interval of 10–20 km over those ∼6 months. We estimate the moment 
release between the date of the earthquake and the first post-earthquake SAR acquisition to be 4.38 × 10 18 Nm 
(3.61–8.08  ×  10 18  Nm within the 95% confidence intervals). An exponential decay function is also used to 
represent the postseismic moment relaxation, which gives the first 5-day moment release of 1.27 × 10 18 Nm 
(0.89–1.49 × 10 18 Nm within 95% CI, Figure S24c in Supporting Information S1). Both logarithmic and expo-
nential relaxation forms provide a reasonable fit to the postseismic moment time series. However, regardless of 
the functional forms, the predicted moment released during the first 5 days postseismically can only partly explain 
the difference between the geodetically- and seismically-derived coseismic moments (i.e., ∼3 × 10 19 Nm); the 
difference between the moments likely arises from other systematic errors, such as those resulting from differ-
ences in elastic structure and fault geometry.

To test if the deep afterslip (i.e., within 10–20 km depth range) is required by the data, we invert for an afterslip 
model with the deep patches excluded. The result indicates the deep afterslip is necessary to explain the postseis-
mic observations, especially the mid-field (10–50 km) deformation (Figure S25 in Supporting Information S1). 
The RMS of residuals (∼1.5 cm) increased by 50% compared to that with the deep patches included (∼1 cm). We 
therefore suggest that deformation occurring at 10–20 km depth is required in the near-to-mid field of the rupture.

Figure 8.  Distribution of lithological units, complied by Pang et al. (2017a); Pang et al. (2017b) (available at http://dcc.ngac.
org.cn/cn//geologicalData/details/doi/10.23650/data.H.2017.NGA105570.T1.64.1). Red star marks the epicenter of the 2021 
Maduo earthquake. Black lines represent surface rupture traces. Magenta and green lines show the predominant coseismic 
slip (≥1 m) and major afterslip (≥0.1 m) segments at shallow depths, respectively. Bottom panel is a zoomed view around the 
rupture zone delimited by the dashed rectangle in the top panel.
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3.4.  Interseismic LOS Velocity and Strain Rate Fields

Figure 9 shows the east-west velocities and shear strain rate fields over a ∼700 km by ∼400 km region centered 
on the Jiangcuo Fault. No GNSS velocities were reported by M. Wang and Shen (2020) within the 20 km-wide 
400 km-long InSAR profile, but good agreement is observed between GNSS VE within a 200 km-wide profile 
and the InSAR VE, both filtered and unfiltered (Figures 9a and 9b). We observe shear strain localized not only on 
the KF, but also on the Bayan Har Shan Main Peak Fault, as confirmed by the steps in the unfiltered and filtered 
east-west velocity profiles, that is, ∼2 mm/yr contrast across the Bayan Har Shan Main Peak Fault and ∼5 mm/yr 
change across the KF (Figures 9a and 9b).

The strain rate we calculated is derived from four horizontal velocity gradients (Figure S13 in Supporting Infor-
mation S1, Ou et al., 2022). It is clear that the velocity gradients of interpolated GNSS velocities are of lower 
value and of longer wavelength than that derived from median-filtered InSAR as expected from the fewer GNSS 
stations and the resultant interpolation. The resolution of the InSAR-derived velocity gradients hence strain rate 
comes from the high-density measurements which, when coupled with the median filter that preserves the shape 
while quenching the noise, highlights strain localization much more effectively. The width of the strain feature 
on the map view may reflect the actual extent of the strain rate peak, which mathematically corresponds to 
the  distance over which the velocity change occurs. The peak value of 111 nanostrain/yr derived for this region 
agrees with another InSAR-derived result (Zhao et al., 2021); both are significantly larger than the GNSS strain 
rate (20–30 nonastrain/yr, M. Wang & Shen, 2020). This peak value corresponds to the point of the steepest 
velocity gradient, which is where the KF sits. Ou et al.  (2022) suggest that InSAR-derived strain rate field is 
consistent with the GNSS-based result (M. Wang & Shen, 2020) in the long wavelength, with an average second 
invariant misfit value of 10 nanostrain/yr. InSAR-based strain rates are better localized and more reflective of the 
actual distance over which velocity change occurs as compared to the lower-resolution GNSS-based strain rate 
values that we are used to seeing.

The velocity gradient across the Jiangcuo Fault is only 1–2 mm/yr over a distance of <100 km which gives 
rise to 20–40 nanostrain/yr of shear strain rate between 2014 and 2021. The surface rupture of the 2021 Maduo 
earthquake coincides with a small strain rate peak on the profile. However, due to the ∼10 nanostrain/yr of uncer-
tainties in the strain rate field (Ou et al., 2022), this strain rate peak is almost indistinguishable from other small 
peaks away from the fault (Figure 9c).

The apparent southward shift of the strain peak relative to the KF (Figure 9c) is likely the result of the low InSAR 
pixel density to the south of the KF relative to that to the north. The near north-south trending shear feature to 
the west of the profile is a result of the apparent east velocity difference on both sides of the area of decorrelated 
InSAR VE in Figure 9a. The location, shape and degree of localization of this strain feature is poorly constrained 
due to the low pixel density of the InSAR VE.

The dilatation rate shows contraction near the fault bends along the KF and the Bayan Har Shan Main Peak Fault 
(Figure S13f in Supporting Information S1). Apparent dilatation occurs at the western tip of the Maduo rupture, 
corresponding to the transtensional fault bend (Zhao et al., 2021) and consistent with the east-west collapse of the 
high plateau suggested by previous studies (Coleman & Hodges, 1995; Molnar & Tapponnier, 1978).

4.  Discussion
4.1.  Low Slip Rate Faults in “Block” Interiors

Localized deformation around locked faults appears to be commonly observed and has been widely reported 
(Daout et al., 2018; Jolivet et al., 2015; H. Wang et al., 2009; Wright et al., 2013; Weiss et al., 2020). More 
tectonically active faults produce larger geodetic signals and attract more attention for research. Geodetic block 
models have tended to focus on only the fastest moving faults, while slow moving faults, where the geodetic 
signal-to-noise ratio can be low, are often neglected. Although major block boundaries are usually considered 
to be the major source of seismic hazard, there are many large earthquakes which have not occurred on the 
major pre-identified block boundaries. For example, even in well-mapped and understood regions like Califor-
nia, earthquakes such as the 1992 MW 7.3 Landers earthquake (Massonnet et al., 1993), the 1999 MW 7.1 Hector 
Mine earthquake (Gomberg et al., 2001), and the 2019 Ridgecrest earthquake sequence (Ross et al., 2019), have 
all occurred away from the major mapped structures of the San Andreas fault system. These earthquakes hit 
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Figure 9.  Map views and profile views of the 100 m-resolution east velocities (a), east velocities median filtered by a 60 km-diameter circular filter window and 
sampled at 1 km pixel spacing (b), and maximum shear strain rates with the same 1 km sampling spacing (c). GNSS VE from M. Wang and Shen (2020) are plotted as 
dots in (a); those within a 200 km-wide profile (dashed line) centered around the 20 km-wide InSAR profile (solid line) are plotted with error bars on top of the InSAR 
profiles. Transparent overlay on top of the strain rate map (c) represents the areas of low pixel density of VE (a). Thick and thin black lines within the profiles show 
medians and standard deviations within 5 km (a, b) and 1 km (c) distance bins. Magenta vertical lines on profiles and thick magenta lines on maps show the location 
of the seismogenic fault of the 2021 Maduo earthquake. Black vertical lines on profiles and thick black lines on maps show the locations of the KF and the Bayan 
Har Shan Main Peak Fault with observed interseismic shear strain accumulation. Gray lines show other faults mapped by Q. Deng et al. (2003). A topographic profile 
is shown in (b). Labels on the top-right corners of the profile panels show the difference between the mean values on both ends of the east velocity profiles, and the 
maximum mean value along the maximum shear strain rate profile which corresponds in space to the steepest gradient along the filtered VE profile in (b). Abbreviations 
of fault names: KZ = Kunzhong Fault, KF = Kunlun Fault, MDGD = Maduo-Gande Fault, JC = Jiangcuo Fault, DR = Dari Fault, BH = Bayan Har Shan Main Peak 
Fault, QSH = Qingshuihe Fault, JZ = Jiuzhi Fault, SRM = Sangrima Fault.
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the Eastern California Shear Zone, a broad zone of distributed shear which was pre-recognized based on fault 
mapping, structural analyses, and ground-based geodesy (Dokka & Travis, 1990a, 1990b).

Slow slip-rate faults tend to be characterized by long recurrence intervals. However, slow slip rates do not neces-
sarily imply limited earthquake potential (Anderson et al., 1996; Galli & Peronace, 2015; K. Li et  al., 2019; 
Shen et al., 2009; Radiguet et al., 2009; K. Wang, Zhu, et al., 2021). For instance, a low slip rate (0.08–2 mm/yr 
derived geologically) fault hosted the 1992 MW 7.3 Landers earthquake (Anderson et al., 1996). The Landers 
earthquake sequence showed a mechanism for transferring the plate boundary motion into the block interior (i.e., 
the Eastern California Shear Zone) (Hauksson et al., 1993). The Tanlu Fault, with a dextral slip rate of 0.7 mm/
yr since the late Pleistocene (K. Li et al., 2019), generated the 1668 M 8.5 Tancheng (eastern China) earthquake. 
Another typical example is the devastating 2008 MW 7.9 Wenchuan earthquake in China, despite low (<3 mm/
yr) deformation rate across the Longmen Shan fault zone (Z. Chen et al., 2000; Shen et al., 2005; P.-Z. Zhang, 
Shen, et al., 2004). Similarly, the Jiangcuo Fault features a low slip rate of 1.2 ± 0.8 mm/yr and a long earthquake 
recurrence interval of up to 1,100–5,500 years (Y. Zhu, Diao, et al., 2021). The occurrence of the 2021 MW 7.4 
Maduo earthquake further emphasizes that the seismic hazard posed by low interseismic strain accumulation 
along historically quiescent faults cannot be ignored.

Earthquakes may behave differently because of the maturity of the causative faults. Immature fault systems 
tend to be more geometrically complex and produce shorter, slower, yet more energetic ruptures (Manighetti 
et al., 2007, 2021; Perrin et al., 2016; Radiguet et al., 2009), for example, during the 1992 MW 7.3 Landers earth-
quake (Peyrat et al., 2001; Sieh et al., 1993), the 1999 MW 7.1 Hector Mine earthquake (Ji et al., 2002), the 2010 MW 
7.2 El Mayor-Cucapah earthquake (Wei et al., 2011), the 2016 MW 7.8 Kaikoura earthquake (Cesca et al., 2017; 
Hamling et al., 2017), and the 2019 Ridgecrest earthquake sequence (Goldberg et al., 2020). By contrast, earth-
quakes with high rupture velocities are typically related to well-developed faults (Perrin et al., 2016), such as 
the 2001 MW 7.8 Kokoxili earthquake and the 2002 MW 7.9 Denali earthquake (Ozacar & Beck, 2004; Walker & 
Shearer, 2009) as well as the 2018 MW 7.5 Palu earthquake (Bao et al., 2019; Socquet et al., 2019), all of which 
have occurred on major block boundaries. While mature faults appear to be geometrically simpler, shear zones 
in the initial stage of faulting have generally more complex geometries with fault segmentations and variable 
disorganized orientations (Crider & Peacock, 2004); as faults grow and develop through time, the fault segments 
tend to localize deformation and evolve from being hardly linked to fully linked; new step-overs may be created 
with the pre-existing ones smoothed out, leading to a more continuous and through-going fault trace with lower 
strength and lower fracture energy as the fault becomes more mature (Ben-Zion & Sammis, 2003; Manighetti 
et  al.,  2007,  2021; Wesnousky,  1988). These facilitate hosting strong earthquakes at fast speed (Manighetti 
et al., 2007; Perrin et al., 2016).

The maturity of the Jiangcuo Fault is still unclear. C. Li, Li, et al. (2022) and Zhao et al. (2022) suggest an imma-
ture seismogenic fault based on large off-fault deformation during the Maduo earthquake. Given the cumulative 
fault offset of 4–5 km (C. Li, Li, et al., 2022) and the geological rate of ∼0.55 mm/yr (Pan et al., 2022), we 
infer that the Jiangcuo Fault possibly initiated at 7.3–9.1 Ma. Besides, the overall geometric expression of the 
Jiangcuo Fault geologically mapped by Q. Deng et al. (2003) is rather simple and straight, despite some local 
bends revealed by the SAR imagery. The fault trace adopted in our model is fully connected constrained by the 
SAR range offsets. The 2021 Maduo earthquake ruptured the surface and major slip occurred at shallow depths 
above 10–15 km, implying a relatively thin velocity-weakening brittle layer. Its relatively old age of initiation 
and overall geometrical simplicity, combined with the presence of major earthquakes lead us to infer that the 
Jiangcuo Fault is probably a well-developed fault capable of hosting large-magnitude earthquakes, and that the 
associated seismic hazard was ignored due to its low slip rate. Observations of potential supershear rupture 
speeds, as reported by Q. Li, Wan, et al. (2022), W. Wang, He, et al. (2022), Yue et al. (2022), and X. Zhang, 
Feng, et al. (2022), would support the suggestion that this is indeed a well-developed, structurally-mature fault, 
with fairly low slip-to-length ratio of the rupture (α = 5–10 × 10 −5) (e.g., Manighetti et al., 2007).

4.2.  Lithological Controls on Slip and Afterslip

The mode of fault slip, ranging from aseismic slip, slow slip events, tremor, to earthquakes, has been linked 
with a fault's frictional properties (e.g., C. Marone,  1998; Scholz,  2019). Velocity-strengthening regions can 
arrest coseismic slip and host afterslip (e.g., Avouac,  2015; Boatwright & Cocco,  1996; Chlieh et  al.,  2007; 
Jolivet et  al.,  2013; Liu-Zeng et  al.,  2020; C. Marone,  1998; Scholz,  1998,  2019). We observed a moderate 
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SSD (50%) in the 2021 Maduo earthquake, which is likely governed by the frictional resistance of a shallow 
velocity-strengthening layer (C. Marone, 1998). In the first ∼6 months following the 2021 Maduo earthquake, 
coseismic slip deficit is partly taken up by afterslip. The different temporal evolution patterns of afterslip in shal-
low and deep regions are likely caused by heterogeneity in fault friction, which are at least in part governed by 
lithological strength contrasts (Figure 8) and depth-dependent differences in temperature, pressure, pore pressure, 
etc (e.g., M. Xu et al., 2011). The different temporal-varying behavior of afterslip at different locations on the 
fault is similar to what has been observed in the 2014 Napa earthquake (Floyd et al., 2016).

We note that there is a spatial correlation between the lithology and slip type during and following the Maduo 
earthquake (Figure  8). Besides the possible relationship between geometrical barriers and the multi-peak 
coseismic slip pattern as discussed in Section 3.1, along-strike variations in slip may also be associated with 
laterally-varying lithological units. The Triassic sandstone/shale unit is widely distributed within the Bayan Har 
terrane. The predominant coseismic slip (≥1 m) regions generally occurred adjacent to Holocene/late Quaternary 
fluvial sediments. The slip on the southern branch of the eastern horsetail splays was insignificant compared 
with that on the northern branch, in spite of similar distribution of deposits. The northern branch was marked by 
tensional cracks, whereas the southern branch involved prominent compressional pressure ridges (mole tracks), 
some of which were in permafrost (Pan et al., 2022). Surface rupture expressions became discontinuous or miss-
ing and were characterized by liquefaction of sandstone around the epicenter (Pan et al., 2021) where we found 
major shallow afterslip (≥0.1 m) was concentrated. Shallow afterslip evolves linearly with a slightly different 
linear rate over short distances; afterslip rate is ∼0.15  mm/day in late Triassic sandstone slate compared to 
∼0.27 mm/day in Triassic sandstone/shale (Figures 3d and 8). The correlation between lithology and spatiotem-
poral variability of slip modes suggests that lithology is exerting a control on the frictional properties of the fault, 
which may be related to heterogeneous mineral composition or pore/fluid pressure (Floyd et al., 2016; Thomas, 
Avouac, Gratier, & Lee, 2014; Weislogel, 2008). Sandstone is usually porous to allow the percolation of water 
and other fluids, which appears to be under high fluid pressure, impeding coseismic slip but hosting postseismic 
afterslip. Fluvial sediments are less permeable which we might expect velocity-weakening material facilitating 
earthquake slip. It is noted that there is an overlap between coseismic slip and postseismic afterslip (i.e., poly-
gons C and D in Figure 3). This phenomenon has also been observed during the 2010 MW 8.8 Maule earthquake 
(Bedford et al., 2013). This might be due to transient change of rate-and-state frictional properties from velocity 
weakening to velocity strengthening induced by shearing, similar to the frictional behavior of the Longitudinal 
Valley Fault (Thomas et al., 2017). On the other hand, as the 2021 Maduo earthquake occurred at the electrical 
boundary zone (Zhan et al., 2021), with resistivity contrasts likely reflecting different degrees of hydration above 
and below the hypocenter (at ∼10 km depth), this may also contribute to different temporal evolutions of after-
slip at shallow and deep depths. In addition, we note that unmodelled atmospheric delays in InSAR data might 
cause an apparent linear temporal evolution of afterslip/creep (e.g., Z. Li et al., 2009; MacQueen et al., 2020; Yu 
et al., 2020).

We have known for a long time that earthquakes result from frictional instability and many earthquake phenom-
ena (including seismogenic rupture as well as pre- and postseismic phenomena, stress transfer processes, earth-
quake triggering, slow-slip phenomena, etc.) appear to be well explained by the rate and state friction law (Peng 
& Gomberg, 2010; Scholz, 1998; Steacy et al., 2005; R. S. Stein et al., 1997). The observed heterogeneity in 
behavior of the coseismic slip and postseismic afterslip during and after the 2021 Maduo earthquake may indicate 
spatially-varying constitutive parameters of the rate-and-state friction law, comparable to the spatial variations 
of rate-and-state frictional properties of the Longitudinal Valley Fault (Thomas et al., 2017). We suggest that 
short-scale variability of frictional properties, which are possibly associated with local lithological contrasts, 
should affect mechanical/dynamic modeling, fault slip behavior assessment and associated seismic hazard 
analy ses (e.g., Pajang et al., 2021; Thomas et al., 2017).

4.3.  Implications for Seismic Hazard

The 2021 Maduo earthquake is another significant event that happened on a slowly-slipping fault, analogous 
to the 2008 MW 7.9 Wenchuan earthquake (P.-Z. Zhang, 2013a), highlighting the distributed nature of seismic 
hazard in tectonically active continental interior regions and the importance of slow-slipping faults in block inte-
riors for seismic hazard analysis. As earthquake recurrence intervals are much longer than observational periods, 
a question remains how to interpret decadal measurements of “interseismic” deformation in terms of long-term 
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hazard. Geodetically-derived slip rates of major faults show, in general, agreement with geologic rates (W. Wang, 
Qiao, & Ding, 2021; Zheng et al., 2017), indicating that strain rates are basically steady through most of the 
earthquake cycle (Elliott et al., 2016) and that short-term geodetic observations can directly make contributions 
to long-term earthquake hazard assessment (Hussain et al., 2018; Wright, 2016). However, it is challenging to 
directly determine slip rates geodetically for faults with 1–2 mm/yr of slip or less (e.g., Calais & Stein, 2009; 
Newman et al., 1999; Smalley et al., 2005; S. Stein, 2007; Watson et al., 2022).

To assess the seismic hazard after the Maduo earthquake, we use the PSGRN/PSCMP code (R. Wang et al., 2006) 
to calculate the Coulomb Failure Stress change (ΔCFS) in surrounding area and on neighboring faults based on 
our preferred coseismic slip model shown in Section 3.1. We use a friction coefficient of 0.4 as different friction 
coefficients have little effect on the spatial pattern of ΔCFS (Guo et al., 2021; L. He, Feng, et al., 2021; Hong 
et al., 2022; Xiong et al., 2010). The crustal rheological structure consists of three layers: a 25 km thick elastic 
upper crust, a viscous Burgers-body lower crust with a thickness of 33 km, and a viscous Maxwell-body upper 
mantle; the transient and steady-state viscosities of the Burgers body are 4.0 × 10 17 and 6.3 × 10 18 Pa s, respec-
tively; the viscosity of the Maxwell body is 1.0 × 10 20 Pa s (full details in Hong et al., 2022). Our ΔCFS shows a 
similar pattern as published results (Guo et al., 2021; K. He, Wen, et al., 2021; Hong et al., 2022). We note that 
the 2021 Maduo earthquake caused positive stress changes of larger than 0.01 MPa on 2 segments of the KF: east 
of the Tuosuo Lake segment, and the Maqin segment which has drawn extensive concern of high seismic risk due 
to few historical earthquakes in the past ∼1,000 years in this seismic gap (X. Wen et al., 2007; Xiong et al., 2010; 
L. Zhu, Ji, & Liu, 2021); besides, the western Jiuzhi Fault as well as part of the Dari Fault and the Bayan Har 
Shan Main Peak Fault in the west have experienced comparable increased ΔCFS (Figure 10). The Jiangcuo Fault 
could be considered as a southern splay of the KF and might be connected to the Kunlun Mountain Pass Fault in 
the west (Ha et al., 2022; Pan et al., 2021; M. Wang, Shen, et al., 2021), which ruptured during the 2001 MW 7.8 
Kokoxili earthquake (Ozacar & Beck, 2004; Walker & Shearer, 2009). The 2021 Maduo earthquake was likely 
brought closer to failure by the 2001 MW 7.8 Kokoxili earthquake (Dong et al., 2022). The unbroken segment 
between the 2001 Kokoxili and 2021 Maduo ruptures should be of concern for elevated seismic hazard (Ha 
et al., 2022), especially the westward extension of the Jiangcuo Fault where a positive stress change was caused 
by the Maduo earthquake (Figure 10).

From the shear strain rate field (Figure 9c), we observe strain concentration on the KF and the Bayan Har Shan 
Main Peak Fault. It is worth noting that the Bayan Har Shan Main Peak Fault is in the interior of the commonly 
referenced BHB; the BHB is deforming internally. This echoes a similar observation made by Ou et al. (2022) 
where an unmapped structure is accommodating shortening near the eastern termination of the Haiyuan Fault 

Figure 10.  Coulomb Failure Stress change (ΔCFS) caused by the 2021 Maduo earthquake, (a) in the epicentral region and (b) on neighboring faults, calculated at a 
depth of 10 km where most aftershocks clustered. Relocated aftershocks are shown as white dots in (a). Beach ball represents the Maduo earthquake.
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within the Longzhong Block, which was also thought to be rigid. As such, high-resolution strain rate fields 
derived from InSAR velocities are helping us better characterize the nature of continental deformation; as the 
observations get denser, it is clear that the deformation cannot be described by the motion of a few large blocks 
alone. Although significant strain is observed on many faults that bound larger blocks, additional deformation 
occurs within these larger blocks causing events such as the Maduo earthquake. One solution to capture this 
would be to build models with more, smaller blocks. However, if there are multiple faults with low strain rates, 
deformation may be better described as distributed strain within deformable blocks (e.g., Q. Chen et al., 2004; 
Loveless & Meade, 2011).

Distributed deformation within blocks is likely controlled in part by earthquakes with long recurrence intervals (Y. 
Zhu et al., 2020). The KF constitutes the northern boundary of the BHB and the Ganzi-Yushu-Xianshuihe Fault 
defines the southern boundary (Figure 1). Both play an important role in accommodating the eastward extrusion 
of the Plateau. The slip rate of the KF decreases gradually from the Tuosuo Lake segment toward the eastern end 
(Diao et al., 2019) while the shear motion increases along the Ganzi-Yushu-Xianshuihe Fault (Yue  et al., 2022), 
suggesting a possible tectonic role of the BHB in transmitting shear motion and strain partitioning through a 
series of sub-parallel secondary faults in the interior (e.g., the Jiangcuo Fault, the Jiuzhi Fault, the Dari Fault, the 
Bayan Har Shan Main Peak Fault, etc.). The deformation along the KF may represent a diffuse  tectonic block 
boundary, which accommodates differential motion between the BHB and the Qaidam Block in the north. The 
deformation in the BHB is characterized by east-west compression and north-south extension, accommodated by 
strike-slip faulting in the upper crust and distributed ductile shear and vertical thickening in the lower crust (M. 
Wang, Shen, et al., 2021). The diffuse deformation is indicated by the low-velocity zone in the mid-to-lower crust 
(H. Li, Shen, et al., 2014), high heat flow (Zhao et al., 2021), and high conductivity (Zhan et al., 2021), which 
may explain the relatively low strain localization along the Jiangcuo Fault.

Many seismic hazard models allow for background seismicity that can happen anywhere as well as seismicity 
associated with individual faults. Current probabilistic seismic hazard models are usually built on the basis of 
fault slip rates and dimensions (e.g., Rong et al., 2020). Some modelers separate on-fault and off-fault earth-
quakes before constructing seismicity models. Smaller (MW < 6.5) earthquakes are being distributed within a 
seismic source zone; larger earthquakes are put onto active faults and into the zone as background seismicity. 
However, the hazard of all structures (known and unknown) should be considered in a consistent way. The seis-
mogenic fault (i.e., the Jiangcuo Fault) of the 2021 Maduo earthquake was not included in hazard models due to 
its low slip rate. Our observations support the use of geodesy to improve hazard models, and the inclusion of large 
earthquakes on slow slipping faults. We have entered an era of geodetic big data as more and more SAR satellite 
data are being acquired with short revisit periods. The velocity and strain rate fields can be updated on a regular 
basis (e.g., annually or semi-annually) and therefore we will be able to investigate the temporal variations of strain 
accumulation rate. On the other hand, with data sets covering longer periods of observation and radar instruments 
using longer wavelengths for improved coherence (e.g., NISAR), illuminating low strain-rate shear away from 
major faults with InSAR is a foreseeable future.

5.  Conclusions
In this study, we combine Sentinel-1 interferograms, SAR range offset maps, and relocated aftershocks to refine 
the fault geometry and slip distribution for the 2021 Maduo earthquake. We also reveal the rupture history based 
on an independent inversion of teleseismic data. By analyzing time series of postseismic deformation occurring 
in the first ∼6 months following the Maduo earthquake, we explore the time-dependent afterslip behavior. We 
further assess the seismic hazard by characterizing the preceding interseismic strain accumulation and evaluating 
the stress loading caused by the Maduo rupture. We find that:

1.	 �The 2021 Maduo earthquake occurred on an intrablock slow-slipping fault with relatively low interseismic 
strain localization (20–40 nanostrain/yr).

2.	 �A bilateral rupture evolution which involved three notable episodes was resolved teleseismically.
3.	 �A moderate (50%) SSD was observed based on our preferred self-similar slip model; slip maxima coincides 

with fault bends.
4.	 �The coseismic slip deficit is taken up by both shallow and deep afterslip during the first ∼6 months following 

the earthquake. Afterslip evolves linearly with time in the upper 4 km depth but evolves logarithmically below 
the seismogenic zone. This may be driven by the fault friction related to lithological contrasts.
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5.	 �Special attention should be paid to the KF (particularly the Maqin segment and east of the Tuosuo Lake 
segment) and the central-western segment of the Bayan Har Shan Main Peak Fault for enhanced seismic 
hazard where we observed interseismic strain localization and positive stress loading (larger than 0.01 MPa) 
induced by the 2021 Maduo earthquake. The unruptured segment between the 2001 Kokoxili and 2021 Maduo 
events is also worth concern for elevated earthquake potential with comparable increased ΔCFS.

Data Availability Statement
The interferograms used in this study are downloadable from https://comet.nerc.ac.uk/comet-lics-portal/. The 
geodetic slip inversion code is publicly available at https://github.com/ruthamey/slipBERI. Coseismic slip 
models derived from InSAR and teleseismic data, interseismic eastward and vertical velocity and maximum 
shear strain rate fields are available at https://doi.org/10.5281/zenodo.7215161. The moment tensor solution of 
the 2021 Maduo earthquake comes from the Global Centroid Moment Tensor project (GCMT; https://www.
globalcmt.org/CMTsearch.html). The facilities of IRIS Data Services, and specifically the IRIS Data Manage-
ment Center, were used for access to waveforms, related metadata, and/or derived products used in this study. 
IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience (SAGE) 
Award of the National Science Foundation under Cooperative Support Agreement EAR-1851048. The seismic 
data were downloaded through the IRIS Wilber 3 system (https://ds.iris.edu/wilber3/find_event) or IRIS Web 
Services (https://service.iris.edu/), including the following seismic networks: the CN (Canadian National Seis-
mograph Network (CNSN); Natural Resources Canada (NRCAN Canada), 1975), the CZ (Czech Regional Seis-
mic Network (CZ); Charles University in Prague (Czech) et al., 1973), the G (GEOSCOPE; Institut De Physique 
Du Globe De Paris (IPGP) & Ecole Et Observatoire Des Sciences De La Terre De Strasbourg (EOST), 1982), 
the GE (GEOFON Seismic Network; GEOFON Data Centre, 1993), the II (IRIS/IDA Seismic Network; Scripps 
Institution Of Oceanography, 1986), the IM (International Miscellaneous Stations (IMS); International Miscel-
laneous Stations (IMS), 1965), the IU (Global Seismograph Network (GSN - IRIS/USGS); Albuquerque Seis-
mological Laboratory (ASL)/USGS, 1988), the MN (Mediterranean Very Broadband Seismographic Network 
(MedNet); MedNet Project Partner Institutions,  1988), the NL (Netherlands Seismic and Acoustic Network 
(KNMI/ORFEUS); KNMI, 1993), and the PS (Pacific21 (ERI/STA); University of Tokyo Earthquake Research 
Institute (Todai ERI Japan), 1989).
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