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Abstract: Cardiovascular disease (CVD) is the world’s leading cause of mortality. There is significant

interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables

to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health

technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial

morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent

developments in the application of digital health for CVD, focusing on AI approaches for CVD

detection, diagnosis, and prediction through AI models driven by data collected from wearables. We

summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed

by a detailed description of the dominant AI approaches applied for modelling and prediction

using data acquired from sensors such as wearables. We discuss the AI algorithms and models

and clinical applications and find that AI and machine-learning-based approaches are superior to

traditional or conventional statistical methods for predicting cardiovascular events. However, further

studies evaluating the applicability of such algorithms in the real world are needed. In addition,

improvements in wearable device data accuracy and better management of their application are

required. Lastly, we discuss the challenges that the introduction of such technologies into routine

healthcare may face.

Keywords: cardiovascular disease; wearable sensor devices; artificial intelligence (AI); machine

learning (ML); deep learning (DL)

1. Introduction

Cardiovascular disease (CVD) is the commonest cause of mortality worldwide [1–5].
Digital healthcare encompasses personalised health and medical information, devices,
systems, and platforms, and the integration of comprehensive medical services [6,7]. This
has the potential to improve the prevention, diagnosis, treatment, and management of
diseases by linking healthcare with information and communication technologies [7,8]. The
early identification and prediction of CVD is critical for improving healthcare outcomes,
but this remains challenging. The development of a variety of sensors, communication
networks, and wearable and portable devices has enabled the acquisition of multiple forms
of data that have the potential to improve the diagnosis of CVD [7–12]. The manual analysis
of often complex time-series data is difficult, requiring the development of algorithms that
analyse such data to potentially enhance diagnosis.

Artificial Intelligence (AI) is a powerful technology that can be used to address chal-
lenging tasks in a wide range of real-world domains. Computer systems can be developed
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to perform advanced tasks such as modelling non-linear and extremely complex systems in
the fields of visual and speech recognition, translation between languages, fault detection in
industrial manufacture, construction industry innovations that are helpful for challenging
urban sustainability [13–16], medical diagnostics for cost-savings and decision-making,
etc. Recently, a chemical engineering problem was solved by predicting levulinic acid
synthesis from sugarcane bagasse, which provides a prospective commercialization in
market segments by replacing petroleum-based chemicals [13].

The application of Artificial Intelligence (AI) in the deployment of wearable sensors is
an indispensable part of the revolution of the Internet of Things (IoTs) [14]. Consequently,
the rapid development of AI techniques has provided health professionals with a greater
capacity to deal with the huge amounts of data collected through wearable devices that
have been deployed in monitoring patients’ health conditions. AI improves the ability
to explore the relationships between the information acquired from the sensor signals’
output and the health status of individuals through the establishment of various types
of diagnostic and predictive models. Understanding AI applications in wearable sensor
data manipulation is, therefore, of paramount importance in optimising the diagnosis and
prediction of CVD.

This review summarises the literature on the application of AI to wearable sensor data
to predict and diagnose CVD. In the following sections, the methodology applied to search
the literature is described. Thereafter a detailed depiction of the dominant AI approaches
presently applied for modelling and prediction using data acquired from wearables is
presented. We describe the types of sensor data used, the AI algorithms applied and the
diseases that AI have dealt with. The technical capabilities of wearable devices, the clinical
indications and the challenges, limitations and future opportunities of this technology are
then discussed.

We conclude that AI and machine-learning-based approaches are superior to tradi-
tional statistical methods for predicting cardiovascular events. However, further studies
evaluating the applicability of such approaches in the real world, and improvements in
wearable device data accuracy and better management of their application, are necessary
for these technologies to fulfil their promise to enhance cardiovascular healthcare.

2. Methodology

Through the research, we sought to identify:

(a) Current scientific advances in wearable device applications in CVD diagnosis and
prediction with AI in the digital healthcare domain;

(b) AI tools used in diagnostic practice; and
(c) Current challenges and future developments of AI in cardiac disease management.

The search considered the PRSMA protocol [17–19] and procedures, with details
described as follows.

Search Strategy

Five digital sources were used for the identification of relevant studies. Web of Science
and Scopus were selected to retrieve studies, as these are the leading digital literature
databases of peer-reviewed research, including extensive scientific and interdisciplinary
work. PubMed and Cochrane Library were also searched due to their medicine background.
As the newest research outcomes often appear quickly in Google Scholar with a broad
range of disciplinary coverage, this was also selected as one of the literature sources.

(1) Inclusion criteria

(1.1) The key words group: the selection of studies aimed to cover four aspects;
wearable devices, clinic diagnosis, cardiac diseases, AI techniques such as machine learning
and deep learning, and modelling (with a consideration of including prediction related
studies). Specifically, with the use of parentheses and Boolean operators to restrict the range
of the output, these were a). “clinic* AND diagnos* AND (cardio* OR (heart disease) OR (heart
failure) OR valve OR (atrial fibrillation) OR angina OR (myocardial infarction))”, (2). “smartphone
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OR wearable OR sensor OR monitoring OR remote”,(3). “(Artificial Intelligence) OR (Machine
learning) OR (Deep learning) OR (Neural Network)”, and (4). “Model*”. Finally, combination
of these fields using AND operators was applied.

(1.2) Year coverage: as we sought to investigate most recent developments in the area,
and the sharp increase in the number of the relevant publications from 2020 to 2022, the
selection criterium covered a period from January 2018 to April 2022. Some exceptionally
relevant studies outside this period, which were deemed important to include and were
cited in publications identified within the specified date range, were also included.

(1.3) Language: the searched literatures were all published in English.
(2) Exclusion criteria

(2.1) Duplicated papers: results extracted from different databases can be duplicated,
and any such occurrences were excluded.

(2.2) Papers with content beyond the scope of the planned collection domain: some
results of the search were out of the needed range. For example, a paper appeared that met
all the keywords and syntax for the search but was found to not be relevant. This type of
occasional occurrence was dealt with manually rather than using a NOT operator, so that
as wide as possible a range of studies was considered for inclusion.

(2.3) Google Scholar searches do not guarantee full matches with all the keyword
combinations in all its outputs. The results usually matched better in front output pages
than in later pages. Those studies with less relevance were excluded, i.e., we adopted those
that contained the majority of the key words and discarded those that only contained one
or a few key words.

(3) Output of the searches

The above search strategy identified more than 300 papers. Further screening was
performed to consider the relevance of the work, journal impact factor and the number
of citations of the paper. This resulted in about 135 papers being selected for inclusion in
this review.

3. Results

3.1. Types of Sensor Data

Many different types of data relevant to CVD can be obtained from a wide range
of sensors. These include smartphones, wrist-worn wearables or adhesive vests, socks,
shirts and accessories such as smartwatches, patches, wristbands, rings and glasses. A
mainstay of clinical cardiology is the electrocardiogram (ECG), which collects and records
the electrical signals generated during the cardiac cycle via electrodes placed on the limbs
and chest. Wearable ECG monitors are now present in many devices and can obtain
both single-lead and multi-lead ECGs, either continuously or by being user-activated at
specific times.

Photoplethysmography (PPG) uses optical sensors to measure pulsatility in skin blood
vessels, allowing for the measurement of heart rate (HR), blood oxygen saturation (SaO2)
and other cardiac parameters. Accelerometry and GPS-based sensors can provide data
on activity, including sedentary time, step count, speed, impact force, exercise, etc. Many
commercially available devices now provide these types of data simultaneously [8,11].

3.2. Artificial Intelligence Tools used for Cardiovascular Disease Diagnosis/Prediction, Especially
for ECG

Artificial intelligence (AI) is a technology and computer system capability that can
mimic the intelligence of human learning and problem-solving for complex tasks. Both
classical machine learning and deep learning are branches of AI. Machine learning (ML)
is the process of using mathematical models to allow a computer to automatically learn
from data without direct instruction and improve learning based on experience. Machine
learning works on algorithms and uses a large amount of data to make decisions and the
generated model can produce proper results or give predictions. A neural network (NN)
is one way to train a computer to mimic the human brain, which enables the computer
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system to achieve AI through deep learning (DL). In recent years, there has been a surge in
research publications where AI has been used in medicine and healthcare [20–98].

Existing approaches to machine learning normally consist of three main phases: pre-
processing; feature extraction/feature selection, and classification/prediction using artifi-
cial intelligence techniques; see Figure 1. In the following subsection, a description of each
phase is added for clarification.

–

 

Figure 1. Deep learning-based methods that could extract features automatically, while classical

machine learning needs human experts to extract features from the raw data, identify cardiac

structural or functional abnormalities or make proactive predictions.

(1) Preprocessing

Given raw input signals such as ECG waveforms, a pre-processing procedure is
normally required to clean up the data. Subsequently, ECG windows per lead might need
to be sampled.

Data cleansing: Data cleansing usually involves removing duplicate records, spelling
errors and unreal data. For example, ECG readings in each lead are filtered to remove
artefact or noise.

Missing value imputation: In practice, there are many reasons for missing values in
the collected signals, such as inconsistent device use, charging time, etc. Missing readings
might also be caused when the electrodes are loosely mounted during the acquisition of
ECG readings. To obtain an evenly spaced time series, missing data need to be removed
or imputed.

Filtering: This aims to minimise and remove noise using approaches such as elec-
tromyogram (EMG) noise, baseline wandering (BLW) and power line interference (PLI).

A first-order low-pass filter and waveform transform can be used to accomplish
signal denoising and outlier correction. Noise or motion artefacts that have low- and high-
frequency characteristics are discarded using a band-pass filter. The wavelet function in the
wavelet transform is used to convolve with the signal and can maintain specific detailed
time-frequency components of medical signals such as ECG [99]. In addition, wavelet
coefficients can be extracted, and signals can be reconstructed to eliminate the baseline [100].

(2) Feature extraction:

The pre-processed data are noise-free, clean and can be used for feature processing.
Feature extraction and feature selection transform raw data to features with or without
reduced dimensions. Classical machine learning approaches rely on hand-engineered
features (see Figure 2, which illustrates types and methods used to extract features). For
example, an approach has been proposed for the detection of AF rhythms in ECG record-
ings [20]. In this case, thirty multi-level features that include 20 morphology features, 4 AF
features, 2 RR interval features and 4 features relating to similarity index between beats
were extracted.

The peak point of the R wave is set as a reference point. The intra-beat interval is the
interval between the reference points of post-heartbeat and front heartbeat such as the PR
interval (see Figure 3, which illustrates an example of ECG beats), which is the interval
between the starting point of the P wave and QRS complex of a given heartbeat; the QRS
complex combines the R wave, Q wave and S wave, indicating ventricular depolarization;
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inter-beat interval relates to two consecutive heart beats, the relevant characteristics of the
RR interval.

 

Figure 2. Illustration of types and methods of extracting features.

Figure 3. An example of ECG signals.

It has been reported that local statistical information and signal amplitudes are suit-
able to extract using small-scale convolution filters [101]; for example, the amplitudes of
R, S, P and T waves in an ECG signal, where the interval characteristics among waves
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and morphological features are suitable for extraction using large-scale convolution fil-
ters embedded with bigger receptive fields, such as R-R interval, P-R interval and QRS
duration. As noise and artifacts can dampen atrial signal, and can even make the signal
not exist, atrial-activity-related features are more challenging to extract. In [45], a novel
and simple way to extract features was proposed by utilizing tenable quality factor (Q-
factor) wavelet transform (TQWT), phase space reconstruction (PSR) and variational mode
decomposition (VMD).

To improve the performance of the trained model, unrelated features in the dataset
were discarded. However, it is challenging to reduce the number of features and achieve
accurate disease prediction with reduced features. Therefore, feature selection techniques
were applied to select the most relevant features to diseases. Different feature selection
techniques exist in the literature such as a sequential forward selection (SFS) technique
which relies on an extensive selection strategy to estimate the performance of each feature
separately [34], feature selection based on the Levy crow search algorithm after missing
data were imputed and data were normalized [47]. While in [22], feature selection was
based on the importance of 55 features, the decision tree (DT)-based model was created for
CAD diagnosis, with the five most important features used for classification.

One of the advantages of DL is that raw data are the inputs for the deep neural
networks. Feature extraction and feature selection can be automatically performed during
training, and the manual engineering of features, therefore, becomes less necessary. In
deep learning, convolutional neural networks are usually applied to extract time-invariant
features automatically, and the important segments of input signals are more emphasised
using an attention mechanism, which is most likely to contribute to raising an alarm. Long
short-term memory units are applied to capture the temporal information that exists in
the signal.

(3) Artificial intelligence, machine learning and deep learning

Wearable devices are rapidly developing in the health fields for telemedicine, patient
monitoring, and mobile health (mHealth) systems. The role of these devices has been
examined in the remote monitoring and diagnosis of common CVDs [10,11,102], and the
opportunity and obstacles of these devices have been explored [103,104]. Specific barriers
and knowledge gaps such as HR and activity tracking have been identified for the use of
wearables in clinical cardiovascular healthcare [105]. A Heart Health Monitoring Service
Platform (HHMSP) has been proposed by combining the Internet of Things (IoT), HR
measurements and advanced AI for multi-disease monitoring [106]. The strengths and
weaknesses of using new technologies such as cloud models, IoT sensors and AI in assisted-
living environments to improve medical services have been identified as helping to reduce
the dependence on traditional healthcare systems and services [24].

Many algorithms in the medical and health fields have been presented, which can be
categorized as classical machine learning and deep learning methods. Review papers from
different angles have been published [107–111].

The current state of AI in clinical applications has been described in several re-
views [112–114]. AI is a potential solution for precision medicine that can be tailored
to the needs of the individual patient. However, more efforts should be made to make
precision medicine closer to reality by combining electronic health records (EHR), patient-
level ambulatory sensor data, and genomics using ML analytics. The impact of AI and
recent advanced technologies have been explored in all aspects of arrhythmia care. There
are challenges regarding imbalanced ECGs and patient data in heart diseases [115]. The
mathematical background related to supervised AI algorithms have been described and
selected, and AI ECG cardiac screening algorithms discussed [116].

DL has been an exciting innovative research area over the years, and the challenges
and opportunities of this area in cardiovascular medicine have been overviewed [111].
A critical review of the strengths and potential limitations of DL approaches is included.
End-to-end DL can be used for the analysis of resting ECG signals to detect structural
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cardiac pathologies, which can be applied to the screening of asymptomatic populations
effectively [117].

Various kinds of anomalies using smartphone sensors in healthcare have been de-
tected. The main limitations and advantages of the use of smartphone sensors systems are
listed [118]. In relation to risk prediction models in CVD, the biomarkers can be used for
early detection of the disease as well as risk predictions [119], ML and AI provide a new
landscape of real-time stroke prevention in the digital health field [120].

A review of classical machine learning and deep learning methods is presented below.

a. Classical machine learning algorithms

Classical machine learning methods have been widely used in the detection and pre-
diction of heart diseases by combining feature extraction based on prior physiological
knowledge. The methods include supervised ML such as support vector machine (SVM),
decision tree (DT), random forest (RF), k-nearest neighbours (KNN), unsupervised ML
such as hidden Markov model (HMM), principal component analysis (PCA), ensemble and
other rule-based or statistical approaches (see Figure 4).

Figure 4. Classification of classical machine learning methods.

Table 1 lists the relevant works of the identified studies and details in terms of the
authors and databases used, types of diseases and data, algorithms developed, areas of
application, and evaluation performance. Metrics such as accuracy (ACC), specificity (SPE),
sensitivity (SEN), true positive rate (TPR), true negative rate (TNR), receiver operating
characteristic curves (ROC), area under the ROC curves (AUCs) and F1 score, are used to
evaluate the performance. A wide range of heart-related diseases have been explored, for
example, atrial fibrillation (AF), coronary artery disease (CAD), hypertrophic cardiomy-
opathy (HCM), congestive heart failure (C-HF), heart failure with reduced ejection fraction
(HFrEF), left ventricular systolic dysfunction (LVSD), myocardial infarction (MI), acute ST-
elevation MI (STEMI), stable ischemic heart disease (SIHD), sinus rhythm (SR), ventricular
arrhythmias (VA), asymptomatic left ventricular dysfunction (ALVD), arterial blood pres-
sure (ABP), mitral regurgitation (MR), aortic stenosis (AS), paroxysmal supraventricular
tachycardia (PSVT), heart failure with preserved ejection fraction (HFpEF), and ventricular
ectopic beats (VEB).

(a.1) Supervised learning
There are more ML techniques that belong to the category of supervised learning. SVM

is a supervised method that has been widely used in medical and health data analysis, and
is an efficient approach to classify data in a hyperplane. The decision tree has the structure
of a tree, and can be learned automatically from data according to a certain parameter.
The random forest approach enables higher resolution, since more and smaller regions are
formed in the feature space. Diversity among the trees is created by learning on a random
sample and random features for splitting at each node. Figure 5 presents an example for
each of the mentioned ML techniques.
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Table 1. Performance comparison of classical machine learning algorithms for wearable de-

vice datasets.

Author(s)/Database
Types of
Diseases/Data

CML-Algorithms Application Evaluation

Shao et al. (2018) [20]/
2017 PhysioNet
CinC Challenge (CinC:
Computing in Cardiology)

AF/ECG
DT,
AdaBoosted DT
ensemble

Classification
(4 classes)

F1-score: 0.82

Fallet et al. (2019) [21]/
17 patients (catheter ablation of
cardiac arrhythmia)

AF and Ventricular
arrhythmia/PPG, ECG,
ACC-signals (ACC
signals: three-axis
accelerometer signals)

DT
Classification
(2 classes)

ACC: 95.0%
SPE: 92.8%
SEN: 96.2%

Ghiasi et al. (2020) [22]/
Z-Alizadeh Sani CAD dataset:
303 patients

CAD/Databank: 55
independent
parameters

DT-based CART
(classification and
regression tree)

Classification
(2 classes)

ACC: 92.41%,
TNR: 77.01%,
TPR: 98.61%

Tozlu et al. (2021) [23]/
33 MI patients,
22 CAD patients, 26 normal.

MI and CAD/
Electronic noses
(19 gas sensors)

SVM
Classification
(2 classes)

ACC:
MI: 97.19%,
CAD: 81.48%

Qureshi et al. (2020) [24]/
~250 patients,
Extracted CVD dataset

CVD/Physiological
signals and clinical data

SVM and DT
Classification
(2 categories)

ACC: 86.72%,
SEN: 67.0%,
SPE: 89.0%

Mei et al. (2018) [25]/
CinC 2017,
(MIT-BIH AF) database

AF/ECG
SVM and
Bagging trees

Classification
(2 classes,
3 classes)

ACC: 92.0%-96.6%
(Varies noise levels),
82.0% (3 classes)

Iftikhar et al. (2018) [26]/
23 healthy people,
40 AF, 21 CAD, 21 MI patients

AF/SCG and GCG
(seismo- and gyro-
cardiogram-signals)

RF and SVM
Multiclass model
(SR, AF, CAD,
STEMI)

ACC: 75.24%
F1: 74% (RF)

Sengupta et al. (2018) [27]/
188 subjects

Abnormal Myocardial
Relaxation
(AMR)/spECG (spECG:
Signal Processed
Surface ECG)

RF/Monte Carlo
cross-validation

Prediction
AUC: 91%,
SEN: 80%,
SPE: 84%

Sopic et al. (2018) [28]/
Physionet (PTB Diagnostic ECG
database)

MI/ECG RF
Classification and
prediction

ACC: 83.26%,
SEN: 87.95%,
SPE: 78.82%

Meng et al. (2019) [29]/
Activity tracker data

SIHD/Tracker
data

HMM
Output health
status over time

AUC: 0.79

Akbulut & Akan (2018) [30]/
30 participants

CVD/ECG
Decision Forest (DF),
Logistic Regression
(LR), NNs

Risk assessment ACC: 96.0%

Dunn et al. (2021) [31]/
54 integrative
personal omics profiling (iPOP)
participants

CVD/PPG, wVS
HR, Electrodermal
activity (EDA),
physical activities

RF and Lasso models,
canonical correlation
analysis (CCA)

Prediction

wVS (wearable vital
sigh) models
outperform cVS
(clinical vital sigh)
models

Han et al. (2019) [32]/
9530 controls,
306 cases

AF/AF burden
signatures

Convolutional NN
(CNN), RF and L1
regularized LR
(LASSO)

Prediction of
short-term stroke in
30-day window

AUC:
RF: 0.662,
Ensemble: 0.634
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Table 1. Cont.

Author(s)/Database
Types of
Diseases/Data

CML-Algorithms Application Evaluation

Hill et al. (2019) [33]/
CPRD (CPRD: UK Clinical
Practice Research Datalink)
2,994,837 individuals (3.2% AF)

AF/ECG

Statistical/Models
(NNs, LASSO, RF,
SVM and Cox
Regression)

Prediction
AUROC: 0.827
SEN: 75%

Jabeen et al. (2019) [34]/
UCI repository,
100 cardiac patients

CVD/Medical
records

SVM, Naïve Bayes
(NB), RF, Multilayer
Perceptron (MLP)

Classification
(8 classes)

ACC: 98% for
Community-based
heuristic approach

Kantoch E. (2018) [35]/
5 participants,
SPPB (SPPB: Short Physical
Performance Battery task) test
task

Sedentary Behavior
(CVD
risk)/Ambulatory and
Daily activities

Linear Discriminant
Analysis (LDA), DT,
KNN, SVM, NB,
Artificial NNs
(ANNs)

Classification
(6 activities)

ACC:
95.00% ± 2.11%

Kwan et al. (2021) [36]/
50 participants

AF/PPG
XGBoost, RF, SVM
and Gradient
Boosting DT

Prediction
AF predicted 4 h in
advance

Li, B. et al. (2019) [37]/
Hypertension patients,
3 datasets (stroke, HF, renal
failure)

CVD/Medical
records

Spark MLlib library
(LR, SVM, NB)

A risk early
warning model

LR(HF):
AUC: 0.9269,
ACC:0.8529,
F1: 0.8456

Yang et al. (2018) [38]/
MIT-BIH arrhythmia
Database

Arrhythmia/ECG

PCANet andand
L-SVM, Back
Propagation (BP)-NN,
KNN

Identification
(5 types)

ACC: 97.77%
(skewed)
97.08% (noised)

Yang et al. (2020) [39]/
20 AS patients,
20 health persons

AS/SCG and GCG DT, RF and ANNs
Classification
(2-classes,
multi-classes)

ACC:
(2/multi-classes):
RF 97.43%/92.99%

Yang and Wei, (2020) [40]/
MIT-BIH AF database

Cardiac
Arrhythmias/ECG

KNN, SVM and NNs
Classification
(6 main types)

Best ACC: 97.70%
(KNN)

Bumgarner et al. (2018) [41]/
100 patients

AF/ECG

Kardia Band (KB)
algorithm supported
by
Physician

Classification
(2 classes)

SEN: 99%,
SPE: 83%,
K coefficient: 0.83

Dörr et al. (2019) [42]/
672 participants

AF/PPG, iECG
Heartbeats PPG
algorithm

Classification
(2 classes)

ACC: 96.1%,
SEN: 93.7%,
SPE: 98.2%

Fan et al. (2019) [43]/
112 participants

AF/Waveform
recording from PPG

PRO AF PPG
algorithm

Classification
(2 classes)

Smart bands: ACC:
97.72%, SEN:
95.36%, SPE: 99.70%

Green et al. (2019) [44]/
19 patients and
64 healthy volunteers

oHCM (with left
ventricular outflow
tract
obstruction)/PPG

Multiple-instance ML
model

Classification
(2 classes)

SEN: 95%,
SPE: 98%,
C-statistic: 0.99

Guo et al. (2019) [45]/
187,912 used smart devices

AF/PPG
Discrimination rule
PPG algorithm

Prediction

Positive predictive
value: 91.6%
(95% CI: 91.5%
to91.8%)

Karwath et al. (2021) [46]/
18,637 patients (LVEF < 50)

HFrEF/ECG
Hierarchical
clustering

Statistical
analysis

Mean Jaccard score:
0·571 (SD 0·073;
p < 0·0001)
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Table 1. Cont.

Author(s)/Database
Types of
Diseases/Data

CML-Algorithms Application Evaluation

Khan and Algarni, (2020) [47]/
UCI dataset
https:
//www.kaggle.com/datasets,
accessed on 15 April 2020.

Heart disease/LoMT
(LoMT: Internet of
Medical Things) Sensor
data and medical
records

MSSO-ANFIS Prediction
ACC: 99.45%,
PRE: 96.54%

Zeng et al. (2020) [48]/
PTB database:290 subjects, in
which 148 patients with MI and
52 controls

MI/ECG
TQWT-VMD-
Radial Basis
Function (RBF)

Classification
(2 classes)

ACC:97.98%

Perez et al. (2019) [49]/
419,297 participants

AF/PPG,
ECG patch

Irregular pulse
notification
algorithm

Identification
Positive predictive
value: 84% (95% CI,
76 to 92)

Shao et al. (2020) [50]/
AFDB-2017, MIT-BIH AF
(MITBIH-AFDB)

AF/ECG patch
CatBoost-based
method

Classification
(4 classes)

F1: 0.92

Spaccarotella et al. (2020) [51]/
100 participants, 54 STEMI, 27
non-STEMI, 19 normal

Acute coronary
syndromes/ECG

Cohen κ coefficient
and Bland–Altman
analysis

Earlier diagnosis
For STEMI:
SEN: 93%,
SPE: 95%

Stehlik et al. (2020) [52]/
100 subjects

HF/PPG Similarity-based Prediction
SEN: 88%,
SPE: 85%

Steinhubl et al. (2018) [53]/
2659 participants

AF/ECG Statistical analysis Assessment

3.0% difference
(immediate vs.
delayed
monitoring)

Samuel et al. (2020) [54]/
UCI repository Cleveland HF
disease dataset: 303 patients

HF/Medical
records

HNCL (HNCL:
Hierarchical
Neighborhood
Component-based-
Learning)/adaptive
multi-layer networks
(AMLN)

Prediction
ACC: 97.8%,
SEN: 95.45%,
SPE: 100%

 

Figure 5. Supervised Machine Learning methods [20,28,38].
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(a.2) Unsupervised learning
In unsupervised learning, there may not be an output for every input; thus, the desired

outputs are unknown. The goal is to try to identify hidden patterns in such unlabeled
inputs. Unsupervised learning algorithms are usually applied to solve tasks related to
dimensionality reduction, clustering, and outlier/anomaly detection. They have been used
for detection purposes on health care datasets. HMM is a class of a probabilistic graphical
model that is frequently utilised for modelling biological sequences data. It allows for
the prediction of a sequence of hidden metrics from a set of observed metrics. In [29], an
ML model was presented to classify patients’ self-reported physical health using activity
tracker data with stable ischemic heart disease (SIHD). An HMM model was constructed
by utilising correlations between successive weeks; the proposed model achieved an AUC
of 0.79 for classifying health status over time, and activity trackers can be used to monitor
patient outcomes in real time.

(a.3) Ensemble approaches
The ensemble approach combines multiple base models to obtain optimal predictive

performance. A reliable and high-performance system for heart arrhythmia classification
has been developed with physiological meaning and low cost [40], with a novel visual
pattern and a combined parametric feature of ECG morphology, a combination of KNN,
SVM, and a neural network framework presented for evaluation. A novel approach [39]
has been developed for the diagnosis of aortic stenosis (AS, narrowing of a major valve
in the heart) using the time-frequency features extracted from cardio-mechanical chest
signals (SCG and GCG). The analysis of variance test was used to select the features, and
the DT, RF, and ANN methods were used to evaluate different combinations of features.
A wearable ECG telemonitoring system [50] was proposed for atrial fibrillation (AF, the
commonest heart rhythm disorder) detection, in which a smartphone and cloud computing
were used. ECG signals were obtained using a designed wearable ECG patch, with the
signals sent to an Android smartphone via Bluetooth. The ECG waveforms were illustrated
in a developed Android APP in real time, and every 30s ECG data were transferred to a
remote cloud server. The CatBoost-based machine learning method has been proposed
for the detection of AF in the cloud server and classification results and the ECG data are
pushed back to the clinician’s web browser. Finally, the clinician’s diagnosis for the ECG
signals is displayed on the Android APP. In addition, valuable editorial comments [36]
have been provided [45], in which AF events can be predicted four hours before the attack
of the arrhythmia using PPG data collected from the Huawei Heart Study, XGBoost was
used to develop the ML-based model for future AF prediction and provided an opportunity
for more effective approaches that could provide the early detection, and treatment and
prevention of cardiac diseases.

(a.4) Other approaches
Hypertrophic cardiomyopathy (HCM) is a genetic disease causing thickening of the

heart muscle, heart failure and life-threatening rhythm disoders. An approach used to
detect HCM via PPG signals is the automated multiple-instance ML model via an embedded
instance selection model [44]. Features that relate to hemodynamic abnormalities in HCM,
such as systolic ejection time and the rate of systolic pressure rises, combined with extracted
morphological features are used for detection. In [30], a smart wearable system named
Cardiovascular Disease Monitoring (CVDiMo) was developed for cardiovascular risk
assessment in the short-term, with emotional dynamics. Six different bio-signals from two
different test groups with 30 participants were tested and analysed. In addition, stress
levels deduced from the emotional state analysis integrated with the physical activity
results achieved a higher performance in risk estimation.

However, in traditional machine learning fields, morphological features, such as the
QRS complex, which are extracted from ECG or PPG signals, popular signal processing
techniques such as wavelet transform and Fourier transform, are used in most of the
classical algorithms for training and validation of algorithms. The features vary significantly
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under different conditions and among individuals and are not enough for arrhythmia
detection and improved accuracy.

b. Deep learning (DL)

In recent years, AI approaches with DL algorithms (see Figure 6) such as deep neural
networks (DNNs), convolutional neural networks (CNNs), spike neural networks, recurrent
neural networks (RNNs) and its popular extension, long short-term memory (LSTMs)
networks, have all been widely used to interpret ECG signals. DL models aim to extract
the features from the raw data and perform the classification in a single framework.

Figure 6. Classification of Deep learning methods.

Deep learning has also been successfully used in time series processing. DNNs can
build computational models that include multiple hidden layers; data are learned with
various kinds of abstraction. DNNs are more powerful with deeper networks, which
can be trained more effectively with much faster hardware, and their performance is
greatly improved as a large number of context-dependent output units are used. DNNs
are capable of approximating nonlinear functions and solving tasks by using classical
linear methods. However, it is well known that the DNNs are computationally intense and
consume large amounts of power; in addition, parameters such as the number of neurons
in each layer, the number of hidden layers, the optimizer, the activation function, the ways
to prevent overfitting, etc., need to be optimised in the DNNs approach. This imposes
certain challenges for efficient learning in real-time stream processing with embedded
multiprocessors with low power. In recent years, many solutions in AI and DL fields have
been proposed.

Table 2 lists the performance comparison of relevant works that involve AI and deep
learning systems for the detection and diagnosis of cardiovascular disease, which are listed
in the order of ANNs, RNNs, LSTMs, SNNs, CNNs and hybrid approaches.

Table 2. Deep-learning-based solutions for cardiovascular diagnosis.

Author(s)/Database
Types of
Diseases/Data

DL-Algorithms Application Evaluation

Mohammad et al. (2022) [55]/
139,288 patients

MI/Medical
records

ANN

Prediction
1-year-all-cause-
mortality after
MI

AUC: 0.87, ACC:
77.1%, SPE: 76.3%,
SEN: 84.6%

Kwon et al. (2021) [56]/
32,671 ECGs of 20,169 patients

HFpEF/12-lead ECG Ensemble NN Detect HFpEF AUC: [0.866 0.869]
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Table 2. Cont.

Author(s)/Database
Types of
Diseases/Data

DL-Algorithms Application Evaluation

Chocron et al. (2020) [57]/
2891 patients,
PhysioNet LTAF test database.

AF/ECG
ArNet
(a deep RNNs)

Estimation of the AF
burden (AFB)

Estimation error:
EAF: 1.2%
(0.1–6.7)%

Feng et al. (2019) [58]/
Physikalisch–Technische
Bundesanstalt (PTB) database

MI/I-lead ECG CNNs/RNN
Classification
(2 classes)

ACC: 95.4%,
SEN: 98.2%,
SPE: 86.5%,

Saadatnejad et al. (2019) [59]/
MIT-BIH arrhythmia database

AF/ECG
Wavelet
transform (WT)/
LSTM-RNNs

Classification
(7 types)

ACC: 99.2%,
SEN: 93.0%,
SPE: 99.8%

Chang et al. (2021) [60]/
35,981 patients

12 heart rhythms and
STEMI/ECG

Deep BiLSTM STEMI detection
ACC: 98.7%, AUC:
0.997, F1: 0.909

Dami and Yahaghizadeh
(2021) [61]/
Four publicly
available datasets

(Super)-ventricular
ectopic beats/ECG

Deep Belief
Network
(DBN)/LSTM

Prediction
in advance of a few
weeks or months

ACC: DB1:88.74%,
DB2: 93.24%,
DB3-4: 80.41%

Faust et al. (2018) [62]/
MIT-BIH AF database

AF/ECG,
HR signals

Deep LSTMs
Classification
(2 classes)

ACC: 98.51%, SEN:
98.32%,
SPE: 98.67%

Tadesse et al. (2021) [63]/
17,000 patients
Evaluation: PTB

MI/ECG
End-to-end deep
learning
(Dense-LSTM)

Classification
(4 classes)

AUC: 94.0%

Lui et al. (2018) [64]/
Physionet PTB dataset,
AF-Challenge 2017

MI/I-lead ECG
CNN/LSTM
stacking

Classification
(MI, healthy, other
CVD, noisy)

SEN: 92.4%,
SPE: 97.7%,
PPV: 97.2%

Tan et al. (2018) [65]/
PhysioNet, 7 CAD and
40 normal subjects

CAD/ECG CNN/LSTM
Classification
(2 classes)

ACC: 99.85%
PRE: 0.9985
F1: 0.9952

Amirshahi and Hashemi
(2019) [66]/
MIT-BIH arrhythmia database

Arrhythmia
Patterns/ECG

Deep SNNs
Classification
(4 types)

ACC: 97.9%, SEN:
80.2%, SPE: 99.8%

Yan et al. (2021) [67]/
MIT-BIH arrhythmia database

Arrhythmia
Patterns/ECG

CNNS/SNNs
Classification
(2 to 4 classes)

ACC: 90.0%

Attia et al. (2019) [68]/
44,959 subjects,
tested on 52,870 patients

ALVD/Paired 12-lead
ECG and
transthoracic
echocardiogram
(TTE)

AI-ECG
algorithm
(CNNs-based)

Prediction
(EF ≤ 35%)

AUC: 0.93, SEN:
86.3%, SPE: 85.7%,
ACC: 85.7%

Attia et al. (2019) [69]/
16,056 patients

LVSD/12-lead ECG Deep-CNNs
Prediction
(EF ≤ 35%)

AUC: 0.918, SEN:
82.5%, SPE: 86.8%,
ACC: 86.5%

Attia et al. (2021) [70]/
4277 subjects

LVSD/12-lead ECG
AI-ECG
algorithm
(CNNs-based)

Validation in an
external population
Prediction
(EF ≤ 35%)

AUC: 0.82, SEN:
96.9%, SPE: 97.4%,
ACC:97.0%

Bachtiger et al. (2022) [71]/
1050 patients

HF (LVEF)/
1-lead ECG

AI-ECG
algorithm
(CNNs-based)

Prediction
AUC:0.91
SEN: 91.9%
SPE: 80.2%

Betancur et al. (2018) [72]/
1638 patients

Obstructive
CAD/MPI

DNN
Prediction

AUC: 0.80/0.76
SPE: 82.3/69.8
per patient/vessel
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Table 2. Cont.

Author(s)/Database
Types of
Diseases/Data

DL-Algorithms Application Evaluation

Cai and Hu (2020) [73]/
Four open-access ECG
databases

AF/ECG
SENet,
CRNN

Predict QRS
locations

ACC: 99.0%
F1: 99.0%

Cho et al. (2021) [74]/
Internal validation (IV):
2908 patients.
External (EV): 4176 patients

HFrEF
(EF < 40%)/12-lead
ECG

CNNs Detection

AUC: (IV/EV)
0.913/0.961
ACC:
77.5%/91.1%

Christopoulos et al.
(2020) [75]/
1936 participants

AF/ECG
CNNs/Statistical
analysis

prediction
C statistics: 0.69 (95%
CI, 0.66–0.72)

Han et al. (2021) [76]/
97,742 patients

MI/ECG
Residual
networks

Detection cardiac
disorders

AUC:
12-lead: 0.880
1-lead: 0.768

Hannun et al. (2019) [77]/
91,232 single-lead ECGs from
53,549 patients

Arrhythmias/ECG End-to-end DNNs
Classification
rhythm diagnoses

ROC: 0.97,
F1:0.837 > 0.780
(Cardiologists)

Jo et al. (2021) [78]/
12,955 patients with normal
sinus rhythm

PSVT/ECG Deep residual NNs
Identify patients with
PSVT

ACC: 97%, SEN:
86.8%, SPE: 97.2%

Kiyasseh et al. (2021) [79]/
Four publicly available
datasets

Cardiac
Arrhythmias/
1-lead ECG

CLOPS
(Deep CNNs)

Diagnose in various
continual learning
(CL) scenarios

AUC: 0.796
(SD 0.013)

Ko et al. (2020) [80]/Train/Test
HCM: 2,448/612
Control: 51,153/12,788

HCM/
12-lead ECG

Deep CNNs
Classification
(2 classes: HCM and
control)

AUC: 0.96
SEN: 87%
SPE: 90%

Kwon et al. (2020) [81]/
38,393 patients

MR/ECG Deep CNNs Prediction
AUC:
0.816 (Internal)
0.877 (External)

Lai et al. (2020) [82]/
55 consecutive AF patients

AF/ECG CNNs
Classification
(2 classes)

ACC: 93.1%,
SEN: 93.1%,
SPE: 93.4%

Li, G.Y. et al. (2019) [83]/
412 Subjects
Data1: medical records
Data2: physiological
parameters

CVD/
Medical records,
disease’s metrics

Deep CNNs
Pulse-wave
Classification
(5 diseases)

ACC:
Data1: 95.0%
Data2: 88.0%

Panganiban et al. (2021) [84]/
4 datasets from PhysioNet

Arrhythmia/ECG
Spectrograms
Image 2D-CNNs

Classification
(2, 5 classes)

ACC: 98.73%
binary & 97.33% for
quinary

Ribeiro et al. (2020) [85]/
2,322,513 ECG records
from 1,676,384 patients

AF/ECG
DNN
Residual
network

Classification
(6-abnormality)

SPE: 1.000,
SEN: 0.769,
F1: 0.870

Tison et al. (2018) [86]/
9750 (347) participants
(with AF)

AF/HR
(PPG)

DNN
Classification
(2 classes)

C statistic: 0.97 (95%
CI, 0.94–1.00;
p < 0.001)

Torres-Soto and Ashley
(2020) [87]/
Tr:(Synapse ID: syn21985690),
Ambulatory dataset

AF/PPG
DeepBeat
(transfer learning
with autoencoder)

Classification
(2 classes: AF and
Sinus Rhythm)

SEN: 98.0%,
SPE:99.0%
F1 score: 0.93



Sensors 2022, 22, 8002 15 of 28

Table 2. Cont.

Author(s)/Database
Types of
Diseases/Data

DL-Algorithms Application Evaluation

Wasserlauf et al. (2019) [88]/
7500 AliveCor users,
26 patients for validation

AF/ECG,
HR, activity

DCNN
Classification
(2 classes: AF and
Sinus Rhythm)

SEN: 74.8%,
SPE: 90.0%

Yao et al. (2020) [89]/
~400 clinicians and
20,000 patients

Low ejection fraction
(EF)/12-lead ECG
from EHR

DL Statistical analysis
To prospectively
evaluate a novel AI
screening tool

Zhao, Y. et al. (2020) [90]/
667 STEMI ECGs,
7571 control ECGs

STEMI/ECG Deep AI CNNs
Classification
(2 classes)

AUC: 0.9954,
SEN: 96.75%,
SPE: 99.20%,
ACC: 99.01%

Zhu et al. (2020) [91]/
70,692 patients
(aged ≥18 years)

AF/ECG Deep CNN Real-time analysis
F1 score: 0·887
AUC: 0·983, SEN:
0·867, SPE: 0·995

Chen et al. (2021) [92]/
MIT-BIH database

AF/ECG
multi-feature
extraction/
CNNs

Classification
(2 classes)

ACC: 98.92%,
SPE: 97.04%,
SEN: 97.19%

Cho et al. (2020) [93]/
9536, 1301, 1768 ECGs of
adult patients

MI/ECG
(6, 12-lead)

DL/variational
autoencoder (VAE)

Detection
AUROC:
0.880 (internal)
0.854 (external)

Jahmunah et al. (2021) [94]/
92 healthy controls, 7 CAD,
148 MI
and 15 CHF patients

CAD, MI,
C-HF/ECG

CNN and GaborCNN
Classification
(4 classes)

ACC: 98.5%

Lih et al. (2020) [95]/
92 normal, 7 CAD, 148 MI,
and 15 C-HF patients

CAD, MI,
C-HF/ECG

Deep CNNs/LSTMs
Classification
(4 classes)

ACC: 98.5%

Ma et al. (2020) [96]/
MIT-BIH AF (train),
PhysioNet/CinC 2017,
CPSC 2018 databases

AF/ECG CNNs/SVM
Classification
(2 classes)

(ACC for 30s ECG
episodes)
98.48%/99.21%

Mousavi et al. (2020) [97]/
PhysioNet/CinC 2015

Arrhythmia/ABP,
PPG, ECG

DL
(CNNs+RNNs)

Suppress the false
alarm, classification

SEN: 93.88%,
SPE: 92.05%

Zhao, Z. et al. (2019) [98]/
Collected 1000
10s ECG segments

CVDs/
Smart ECG vest

MFSWT (MFSWT:
Modified frequency
slice wavelet
transforms)/Deep-
CNNs

Identify the noisy
ECG segments
(3 classes)

ACC: 86.3%, Kappa
coefficient: [0.61 0.80]

In the following subsections, we briefly review each of these learning approaches.
(b.1) Recurrent neural networks and long short-term memory neural networks
RNNs have the advantages of dealing with sequence dependence between consecutive

windows and can perform better with short-term forecasting when modelling time series
data. However, it is not easy for RNNs to effectively train long sequences as it causes
more difficulties in transferring information from the previous steps to later ones, and may
encounter vanishing and exploding gradients when procedures such as backpropagation-
through-time (BPTT) are trained iteratively on long sequences [121]. LSTM networks using
LSTM cells can better find long-term dependencies. RNNs LSTM architecture is suitable
for exploiting ECG signals that have time-series-based sequential data structures [122]. The
ECG waveform can be classified from one timepoint to the next for each heartbeat using an
LSTM network with ECG signal delineation. However, due to the lack of feature extraction
in LSTM, the obtained results are less optimal.
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Over a long enough monitoring period, the atrial fibrillation burden (AFB) is related
to the ratio of time in AF. It has been suggested that using the AFB can add prognostic
value compared to a binary diagnosis. A deep RNN learning model, ArNet [57] outper-
formed a gradient boosting (XGB) model and could feasibly estimate AFB from a one-day
beat-to-beat interval time series. Robust remote diagnosis and phenotyping of AF are
possible. A model [59] that employed a novel structure consisting of wavelet transform
and multiple LSTM-RNNs networks has been proposed for continuous cardiac monitoring
on wearable devices. Experimental evaluation shows a superior performance compared to
existing works and the proposed model is lightweight compared to compute-intensive deep
learning-based approaches. A Deep Belief Network (DBN)-LSTM approach [61] for predict-
ing cardiovascular events in advance of a few weeks or months using 5-min ECG recording
has also been proposed. DBN can improve training speed and avoid being stuck at local
minima. As a feature selection and representation method, DBN can extract high-level
features and has the power to discriminate among different classes using unlabeled data.
The evaluation results demonstrate that the DBN-LSTM approach can identify patients
at high risk of developing heart diseases in the future, by combining heartrate variability
measurements analysis.

(b.2) Spiking Neural Networks
SNNs represent the third generation of neural networks, while the building blocks

in artificial neural networks (ANNs) are based on an abstraction of real biological neu-
rons, lacking a real basis in the biological function of neurons. SNNs mimic the human
brain, and, as such, information is transferred using spike signals as well as the timing of
the spikes throughout a parallel network. Every neuron consumes energy only when it
sends or receives spikes. A novel SNN for real-time ECG cardiac monitoring systems has
been proposed for ultra-low-power wearable devices [66]. An unsupervised Spike timing-
dependent plasticity (STDP)-based procedure layer with support from two other layers, i.e.,
the Gaussian and the inhibitory layers, is used to automatically extract features, and the su-
pervised reward-modulated STDP (R-STDP) layer is used to classify the extracted features.
Inhibitory neurons in the network prevent the same or similar patterns from having the
attention of all neurons in the STDP layer. The learning rules are adjusted to adapt to the
ECG classification domain. SNNs provide an opportunity for ultra-low power operation
and are suitable for cardiovascular monitoring in real-time in an embedded device.

While most existing works employ complex pre-processing to improve accuracy such
as heartbeat R–R intervals [123], higher-order statistics (HOS) [124], and wavelets [125], the
raw signals are used to further reduce the energy cost while a comparable performance can
be achieved.

(b.3) Convolutional neural networks
Convolutional neural networks (CNNs) can extract local features that are used to

model the correlation between the spatial and temporal signal and reduce spectral variance;
thus, they have strong feature extraction abilities, where features are learned by models
trained through backpropagation. Due to the high discriminatory power of CNNs, more
tasks employ CNNs as their dominant choice. The experiments reported in [63,93,95]
have had successful ECG signal classification using CNNs. However, controlled hospital
settings are required in the existing approaches. In [87], a multi-task deep learning method
(DeepBeat) was developed for AF detection in real time and signal quality assessment
in wearable PPG devices, using convolutional denoising autoencoders in unsupervised
transfer learning. Both the encoder and decoder employ a deep CNNs structure. The unique
noise artifact problem that exists in AF detection is combated by utilising the multitask
deep CNN architecture and transfer learning. DeepBeat improves the performance of AF
detection from 0.54 to 0.96 in terms of F1 score in comparison with a single-task model.
The unbalanced data problem that is common to biomedical applications can also be
addressed. A novel framework [98] was proposed to identify noise segments based on
modified frequency slice wavelet transform (MFSWT) representation and CNN classifier.
MFSWT was used to transform each 1-D ECG segment into 2D time frequency (T-F)
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image; then, the image was fed into a 13-layer CNN model. The MFSWT method has the
ability to better capture small changes in the frequency domain and provide quality image
input for the CNN model. This model outperformed three other combination types from
continuous wavelet transform (CWT) and ANN. In addition, an ECG diagnostic support
system (EDSS) [84] was developed to detect ECG arrhythmia utilising deep 2D-CNN with
images based on spectrograms. The advantages of using spectrogram images as input
are that the visual examination such as identification of R-peak or P-peak is not needed,
and is reliable. As the noise data are ignored, it is suitable for ECG devices that have
various amplitudes and sampling rates. In [73], two novel DL models were developed for
performing accurate, noise resistant and robust QRS complex detection. One model mainly
consists of convolutional blocks and Squeeze-and-Excitation networks (SENet). The other
model (CRNN) is composed of a hybrid convolutional and LSTMs network. However, the
models can only predict QRS locations that are approximate to the R-peak, and cannot
recognise ventricular flutter. A deep residual NN was developed for identifying patients
with paroxysmal supraventricular tachycardia (PSVT) during normal sinus rhythm. The
DL model demonstrates that the delta wave and QT interval are critical to identify the
PSVT. Further studies are needed to evaluate continuous long-term ECG monitoring [78].

(b.4) Hybrid approaches
Hybrid methods provide a chance to make use of each individual approach. A stacked

CNNs-BiLSTM-based approach [126] has been developed for investigating AF screening
of ECG waveforms. CNNs enable automatic extraction of the features from data, and are
naturally more adaptable to variations among different ECG waveforms. They use ECG
or PPG signal as inputs while BiLSTM is used as a classifier. ECG morphologies such
as the P-wave, QRS complex, T-wave, along with a signal recording, can be recognised;
thus, the rhythm abnormality of AF is identified. Compared to unidirectional (Uni-LSTM)
and BiLSTM architectures without CNNs, the performance of the proposed approach is
improved. A deep model that combined CNNs and SNNs was developed to classify ECG
beats for detecting ECG diseases [67]. Raw heartbeat data are used directly as input into
a two-stage CNNs workflow that can save power, as most wearable devices are not able
to carry out much complex pre-processing computing in daily real-time activities. First a
CNN with two convolutional layers is used to detect if the beat is normal. If the beat is
normal, the classification process is stopped; if not, a CNN with three convolutional layers
is used to further classify the detailed beat types. The early stopping reduces the time and
energy cost when dealing with normal ECG beats. Further, an energy efficient SNN model
was proposed to further reduce energy consumption. In comparison to [66], not only VEB
beat type but another main class of abnormal beat type are distinguished from the normal
beat with similar accuracy. A DL model that is based on an ensemble NN was proposed to
detect HFpEF using ECG signals of patients [56]. The results demonstrated its performance
when predicting the development of HFpEF.

3.3. Types of Cardiovascular Disease and AI Methods

There are a wide range of different forms of heart disease. Most are diagnosed using
a combination of multiple forms of data, including the patient’s reported symptoms,
ECG, imaging data (from ultrasound, X-ray, MRI, etc.) and blood tests. The manual
analysis of these data for the diagnosis of heart diseases is time-consuming. With the
development of wearables and miniature devices that can accurately record time, frequency
information such as RR interval, i.e., the time interval between two heartbeats, and the
quick development of machine learning and artificial intelligence techniques, automated
and timely detection of heart diseases has greatly improved. Figure 7 shows the efforts
made to address various types of heart disease in recent years. In the following subsection,
several main heart diseases are explored.
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of multiple forms of data, including the patient’s reported symptoms, ECG, 

– –
–

Figure 7. The numbers of types of disease in the 79 studies between January 2018 and April 2022 that

are related to detection/prediction from the identified studies.

(1) Cardiac arrhythmias and Atrial fibrillation (AF, A-fib)
The classification and prediction of cardiac arrhythmias are some of the most wide-

spread applications of ML and DL in cardiology. DL models have been developed to
effectively suppress the false alarms in intensive care units (ICUs), while five separate
alarm types can be recognised: the true alarms are identified using single and multimodal
biosignals [97] to diagnose arrhythmias using ECG data streaming in a sequential man-
ner [79]. The CNN-based DL classification method has been used to identify distinct types
of arrhythmias using direct analysis of images based on spectrograms, without requiring
visual examination by a clinician [84]. Another application is to use supervised learning to
identify five types of cardiac arrhythmias with different risks [38]. It should be stressed
that two research works have been published that used deep SNNs to identify arrhyth-
mias in a power-saving way [66,67]. Further, numerous studies have been developed to
address detection and predictive models for AF disorders due to their impact and clinical
significance [20,21,25,26,32,33,36,41–43,45,49,50,53,57,59,62,73,75,82,85–88,91,92].

Atrial fibrillation (AF) is the commonest significant rhythm disorder, affecting 2–3%
of adults. Although often AF causes no symptoms, it can cause disabling symptoms
of breathlessness and an awareness of abnormal heart rhythm and increases the risk of
stroke because of the mobilization of blood clots that form in the left atrium. A substantial
proportion of AF is undiagnosed, making automatic AF detection based on ECG monitoring
highly desirable. However, it is technically challenging to achieve accurate detection of AF
episodes-based ECG signals. Figure 8 summaries research studies seeking to identify AF
and the type of AI approach used.

Premature ventricular contraction (PVC), which is one of the most common ventricular
arrhythmias, and paroxysmal supraventricular tachycardia (PSVT) have received attention
in the medical field [78], and more research efforts are expected in the future.

(2) Myocardial Infarction (MI)
Myocardial infarction (MI), also called heart attack, is a major cause of death world-

wide. Chest pain and breathlessness are the main symptoms. The risk factors of acute
MI include family history, hypertension, smoking, obesity, cholesterol, diabetes, and low
physical activity. In recent years, AI-based diagnostic tools for MI have been developed. A
specialised deep Bidirectional Long Short-Term Memory (BiLSTM) architecture was pre-
sented to detect 12 heart rhythms based on 12-lead ECGs and acute ST-elevation myocardial
infarction (STEMI) [60]. The proposed BiLSTM model achieved an accuracy of 0.987 for
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detecting STEMI, superior to both healthcare professionals and a commercial algorithm.
An end-to-end deep MI framework was developed to classify MI and identify the time
occurrence of MI as “Acute”, “Recent” and “Old” using raw ECG records [63]. A transfer
learning technique that is used in existing computer vision networks was employed to
extract features to minimize the computational overhead. RNNs are used to encode the
time sequence information inherent in ECGs. Promising results were achieved (area under
the ROC curves can reach 0.94).

≤

Figure 8. The number of studies applying each type of AI models for detection of AF (there are 14 pa-

pers related to ML, 12 related to DL in the identified papers between January 2018 and April 2022).

(3) Heart Failure (HF)
Left ventricular systolic dysfunction (LVSD) can result in heart failure with reduced

ejection fraction (HFrEF), with high mortality, reduced quality of life and longevity, and
increased health care costs. A total of 3–6% of the adult population have LVSD. The
ejection fraction (EF) measured by ultrasound is the most important indicator for predicting
future complications. An AI-ECG CNNs system was developed to identify patients with
ventricular dysfunction (EF ≤ 35%) and was evaluated on an external population [68–70].
This could be a useful screening tool to identify LVSD in asymptomatic individuals. Heart
failure with preserved ejection fraction (HFpEF)is a major cause of mortality and health care
expenditure in people over 65 years of age. It is estimated that its prevalence will continue
to increase to 1.1–5.5% of the population [56]. ML- and DL-based AI medical diagnostic and
predictive systems could improve outcomes [127]. Although it is challenging to develop a
robust HF detection and risk prediction system, in recent years, several AI-based models
have been developed for HF detection and prediction using diverse metrics generated from
electronic health record (EHR) data that contain medical records, demographic, laboratory,
and image data. For example, using traditional hierarchical clustering [46], similarity [52],
ensemble-based [54] and deep learning approaches [56,71,74,89], comparable prediction
results have been achieved. In [74], a deep learning method based on an ensemble neural
network was developed, and validated in internal and external patients, respectively, with
high performance demonstrated for HFpEF detection. Neural network-based variational
autoencoders and hierarchical clustering have been applied to pooled individual patient
data and the results demonstrate that fusing robust AI -based approaches provides potential
clinical values to better identify responses to treatment for a fundamental therapy employed
in patients with HF [46].

(4) Hypertrophic Cardiomyopathy (HCM)
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About 30–40% of HCM patients experience left ventricular outflow tract obstruction
(oHCM) at rest. There is a need for an effective tool to detect blood volume changes outside
the clinical setting for real-time decision making. At the skin surface, photoplethysmogra-
phy (PPG) that uses a non-invasive optical sensor can integrate with smart devices to detect
blood volume changes. A multi-instance ML model was developed using PPG recordings
and ECG collected from 19 HCM and 64 healthy volunteers [44]. Each recording was as-
signed an oHCM score based on qualified beats (instances). A set of 42 morphometric pulse
wave features were extracted, and all beats in a recording were transformed into a single
vector; then, SVM was used to fit the resulting vectors. The authors claim this method could
act as a non-invasive and popular screening tool for obstructive HCM. While in [80], a CNN
was developed using 12-lead ECG from 2448 HCM patients and 51,153 non-HCM control
subjects. These results showed that the AI-based system could be used as a diagnostic tool
after external validation and further refinement.

(5) Coronary artery disease (CAD)
Coronary artery disease (CAD) is also called ischemic heart disease or coronary heart

disease. Plaque builds up in the coronary arteries and can cause angina and myocardial
infarction. Thus, the early diagnosis of CAD is vital for the initiation of treatment and
prevention of MI. An SVM-based ML model was developed to diagnose CAD and MI using
data gathered from breath with an electronic nose [23]. A classification and regression
tree (CART) model was developed in [22]; this DT-based algorithm is robust and achieved
accurate and fast predictions, and the technique can be used to develop a system for
decision-making regarding CAD diagnosis.

Several deep learning systems have been developed for the diagnosis of CAD. For
example, myocardial perfusion imaging (MPI) has been used to predict automatically
obstructive disease [72] and evaluated by comparison with total perfusion deficit (TPD).
In [94], CNN and unique GaborCNN models were used to classify four classes (i.e., normal,
CAD, myocardial infarction (MI) and congestive heart failure (CHF)). The imbalanced
dataset is balanced using weight balancing. Compared to the CNN model, GaborCNN
reduces computational complexity and is preferable. The authors claimed that the proposed
model could be helpful for clinicians to diagnose CVDs using ECG signals. In addition,
two other hybrid systems fusing CNN with LSTM have also been developed for CAD
identification [65,95].

(6) Valve disease
Mitral regurgitation (MR), which causes blood flow from the left ventricle into the left

atrium in a reverse direction, is the most common heart valve disorder, which gradually
progresses and can lead to HF and death. A total of 1.7% of the general population in
developed countries have significant MR, and approximately 10% of the population over
age 70 are significantly affected [128,129]. A deep CNNs model to detect MR using 12-lead
and single-lead ECGs obtained promising results [81].

4. Discussion

4.1. AI Algorithms and Models

There are a large amount of AI algorithms and models driven by data produced
from wearable sensor devices. Classical machine learning and deep learning methods
both play important roles in establishing diagnosis and prediction models using wearable
sensor data.

Classical machine learning methods (Figure 4, Table 1) including supervised, unsu-
pervised, ensemble and other rule-based or statistical approaches, have been deployed
in ECG data processing and modelling (Table 1) in the investigated literature, relying on
hand-engineered features. Domain knowledge is required for proper feature extraction
and whilst many features are generated, feature selection methods are mostly needed.
Among these, the RF and SVM are used in more studies (Table 1). Since these features vary
significantly under different conditions and among individuals, deep learning has made
great developments in recent years.
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In deep learning processing, the use of ECG data is dominant (Figure 6, Table 2),
including all types of lead ECGs. To obtain more information, the 12-lead ECG was mostly
used. For the applied algorithms, LSTM-related modelling has been used in the diagnosis
and prediction of CVD. Algorithms involving CNN form another focus of the application
of AI in these practices, as they are usually applied to automatically extract time-invariant
features, and the important segments of input signals are more emphasised. Long short-
term memory units (LSTM) are applied to capture the temporal information that exists
in the signal, and CNN and LSTM methods appear in the majority of the studies in the
literature, showing their significance in wearable sensor data-based algorithms and models
for the diagnosis and prediction of CVD. For different cardiovascular diseases, different
types of algorithms can be applied in terms of their accuracy performance and efficiency
(Tables 1 and 2). Suitable algorithms and models for specific types of CVD need to be
established, but, in general, the performance of deep learning algorithms is more appealing.

4.2. Functioning of Wearable Devices

Monitoring: wearable devices offer a way to continuously monitor health parameters
such as heart rate and heart rhythm, etc., in a user-friendly, non-invasive way. The continu-
ous monitoring of physiological parameters then offers a potential solution to more timely
access to CVD-based healthcare [9,10,14,47,50,52,53,59,66].

Diagnosis: Physicians in their routine practices may benefit from the AI-based di-
agnostic tool to achieve accurate diagnosis and inform the accuracy of their analyses.
Underpinned by AI models and the sensor data, timely diagnostics can be realised and can
help to reduce mortality among various CVD populations [8,20,25–28,41–44,50,53,56,62,69,
73,76,77,80,86–96,101–104,106,117,118,122].

Management: Wearables will assist in the transition of medical care and management
from the clinical setting to the home [10]. Clinical benefits that may be obtained from
the use of such devices include personalising AF management, refining stroke prevention
strategies, and optimizing the patient–physician relationship, etc.

Change: Wearable devices are changing the future of therapeutic care and cardiovas-
cular prevention as well as the way that clinicians perform their research. Diagnostic
capabilities of remote ECG devices are rapidly developing. With advancements in artificial
intelligence, the signal acquired from the devices will help realise the potential to accurately
detect episodes of atrial fibrillation and may replace conventional diagnostic and long-term
monitoring methods [130].

4.3. Challenges and Opportunities

Digital health technologies are being increasingly applied in the field of cardiology,
bringing enormous opportunities for CVD care. However, there are several areas where
wearable sensor technologies may have limitations [8,10,11,103–105,111,118].

Improvement needed in technical aspects: There has been a concern about device accuracy
that requires more validation to provide the grounds for the further application of wearable
devices. For example, although wearables may have been used in the initial detection of
cardiac arrhythmias, it is significant to note that they have a restricted role for characterising
such events. Technically, the ECG traces obtained from wearables do not directly correspond
to those from the conventional Holter and 12-lead ECG monitoring systems. This should
be investigated further. Researchers have pointed to the limitations of the PPG-based
measurement of heart rate in heart-failure patients [10,131]. There is vulnerability in the
PPG-based measurement of heart rates; thus, the measurement and monitoring need to
pay particular attention to resting heart rate, which shows the best correlation with the
ECG gold standard [10]. Accuracy differs among devices, and decreases significantly with
increasing activity levels; also, during exercise, PPG from smartwatch devices tends to be
more sensitive to motion artefacts than ECGs from chest straps [105].

Management issues: With the rapid development of sensor and computing technolo-
gies, wearables will become more versatile with more functions, and will become an
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integral part of devices employed in CVD practices. These devices need to be regulated
via comprehensive evaluation systems and proper regulatory policies to ensure safety
and efficacy [15,113,114,120].

In the absence of medical supervision, the quality of ECG traces may possibly be
reduced. In the application of wearable sensor devices, large amounts of ECG traces will
be generated and will require interpretation.

Another concern is in relation to patient privacy and cost [131]. Sensitive wearable
data are subject to breaches. Aside from the multiple technical solutions, blockchain has
been used to develop advanced interventions for the improvement of prevalent standards
of medical data and personal health records, and in the management and processing of
data [17]. This technique will be helpful to protect and safeguard personal information.

The CVD patient population place high demands on healthcare, with many being
elderly and there being a high prevalence of people with low incomes. Both of these
groups have the least access to digital technologies as they are unable to meet the cost of
wearable devices, and literacy/IT literacy issues are common. These fundamental barriers
need to be addressed to facilitate the deployment of wearables in these nonnegligible
populations [15,113,114,120].

There are several regulatory and technical challenges to introducing such technologies
to health care. Most commercially available wearable devices are marketed as “wellbeing”
technologies, rather than medical devices. This means that the data they generate are not
approved for medical decision making. There is little incentive for device companies to
fund expensive clinical studies and regulatory approval if they can market them directly to
users without such evidence.

Even if the use of such technologies can be shown to be beneficial in clinical studies,
there is a substantial difference between proof-of-principle and implementation in complex
healthcare IT infrastructures. The data and AI models will need to be made available to
clinicians within their individual healthcare IT ecosystems, which differ widely across
sectors and regions. The data and models will need to be updated regularly to be available
at the point of decision-making, while still protecting privacy and data security. Although
these challenges are significant, the investment required to overcome them will only be
justified once proof of clinical benefit can be obtained.

Application of the AI algorithms: one of the challenges is the large amount of CVD related
AI algorithms that have been developed using data from conventional 12-lead ECGs. Thus,
the performance of the algorithms may vary when single-lead ECG data are fed. This
instability could lead to distortions in applying AI algorithms to ECG data acquired from
wearable sensors. Retaining and tuning of the algorithms may be needed to solve this issue
of transportability of the algorithms. Other issues that need to be considered include how to
separate actionable data from noise to improve data collecting accuracy; the interpretability
of the AI algorithms may also raise challenges for physicians who are expected to diagnose
the results of the data from wearables, as well as the challenges of integrating data from
wearable devices with clinical data. Finally, the use of AI and wearable devices in the
detection diagnosis and prediction of CVD will require wider adoption by clinicians and
patients if they are to become more mainstream in the field [8,9,18,65,109,110,116].

5. Conclusions

Digital health-based healthcare solutions have been introduced in cardiology research
and on-site practice with the rapid development of computing and telecommunication
technologies. This enables dominant and recessive patients to take a more active role in
their own care and has the potential to improve contemporary clinical care. AI algorithms
and models for various type of cardiovascular-associated diseases are being developed,
particularly ones suitable for wearable and portable devices.

The integration of wearable and AI technologies in the diagnostic practices of CVD is
still in its infancy [11,105] and paves the way for future research. The potential of wearables
to monitor cardiovascular events has been demonstrated in many of the current studies
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identified in this paper, and their deployment as a diagnostic tool for cardiovascular prac-
tice is hindered by the rare availability of realistic datasets and proper systematic and
prospective evaluations. As demonstrated through the various studies, the deep learn-
ing algorithm provides a very good performance compared to the existing conversional
analytical methods that merely use human visualization for biosignals, e.g., ECG or PPG
signals [8], (Tables 1 and 2).

AI- and ML-based approaches are superior to conventional statistical methods for
predicting cardiovascular events, but the AI deep learning algorithms have been found
to perform better that ML algorithms in many cases (Section 3.2, Tables 1 and 2). Going
forward, it is still necessary to evaluate the applicability and performance of algorithms
in real-life cases. The future of cardiological medicine and early predictive treatment will
depend on the advancement and ‘perfection’ of algorithms [131–133].
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