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GROWTH OF STATIONARY HASTINGS-LEVITOV

NOAM BERGER, EVIATAR B. PROCACCIA, AND AMANDA TURNER

Abstract. We construct and study a stationary version of the Hastings-Levitov(0)
model. We prove that, unlike in the classical HL(0) model, in the stationary case the
size of particles attaching to the aggregate is tight, and therefore SHL(0) is proposed
as a potential candidate for a stationary off-lattice variant of Diffusion Limited Aggre-
gation (DLA). The stationary setting, together with a geometric interpretation of the
harmonic measure, yields new geometric results such as stabilization, finiteness of arms
and arm size distribution. We show that, under appropriate scaling, arms in SHL(0)
converge to the graph of Brownian motion which has fractal dimension 3/2. Moreover

we show that trees with n particles reach a height of order n2/3, corresponding to a
numerical prediction of Meakin from 1983 for the gyration radius of DLA growing on
a long line segment.
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1. Introduction

In 1998 Hastings and Levitov [6] proposed a family of processes defined via a compo-
sition of conformal slit functions with slit angles sampled from the harmonic measure.
This family was introduced to provide off-lattice variants of DLA (Diffusion Limited
Aggregation), the Eden model and other aggregation processes.

The family of processes HL(α), α ∈ [0, 2], is defined as follows. Set D0 = {x ∈ C :
|x| ≤ 1}. Consider the conformal map φδ mapping C \ D0 to C \ (D0 ∪ [1, 1 + δ]),
normalized so that φδ(z) = ecz+ a+ b

z + · · · , for some c > 0, as |z| → ∞ (existence and
1
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Figure 1. HL geometric interpretation of the harmonic measure

uniqueness are due to the Riemann mapping theorem). Now for a random i.i.d. sequence
θk uniformly distributed on ∂D0 and a sequence δk > 0, define φk(z) = eiθkφδk(e−iθkz)
(so φk corresponds to adding a slit of size δk at angle θk), and

Φn = φ1 ◦ φ2 ◦ · · · ◦ φn.
The conformal maps Φn define a growing sequence of compact sets Dn such that Φn :
C \D0 7→ C \Dn. Thus at |z| → ∞ we can write

(1.1) Φn(z) = ecnz +O(1),

where cn is the logarithmic capacity of Dn, and is monotonically increasing. The nor-
malization is chosen in a way that preserves the harmonic measure from infinity, i.e.
choosing a point on ∂Dn with respect to the harmonic measure is equivalent to choosing
x = Φn(un), where un is sampled uniformly on ∂D0. The size of the particles we add
is determined by the conformal radius, thus is of order δn|Φ′

n(un)|. The one parameter
family HL(α), α ∈ [0, 2], is defined by choosing the size of the nth particle to be

δn = δ|Φ′
n(un)|−

α
2 ,

for some fixed δ > 0. For α = 2 the size of the particles stays approximately constant
(though the shape does not) and thus physicists consider HL(2) as an off-lattice version
of DLA [3, 6].

The case α = 0 is the easiest to study, since it is a composition of i.i.d. rotations
of the same conformal slit function, but the process is non-physical in the following
sense: the size of added particles grows exponentially (of order ecn), and in fact Rohde
and Zinsmeister showed in 2005 [21] that as n tends to infinity the scaled process has
Hausdorff dimension 1. The HL(0) process has one especially beautiful feature. Given
any interval J on ∂D0, let In be the elements of Dn \ (D0 \ J) in the connected set of J
i.e. the subset of Dn emanating from J . Denote by Hn(J) the harmonic measure of In.
This quantity has an elegant geometric representation since Hn(J) = |Φ−1

n (In)| i.e. the
length of the pre-image of the set In (see Figure 1). Moreover, for α = 0 the attached
particle sizes are not a function of the location of attachment, and the harmonic measure
of In is a martingale (see [14]).

In the 1980’s, Physicists studied DLA growing from a long line segment [10, 11, 20, 23,
24], a process they called Diffusion-controlled deposition on fibers. In [11, 24] Meakin,
and independently Voss and Tomkiewicz, predicted based on numerical simulations that
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the gyration radius i.e. the height of a tree with n particles is n2/3 and correspondingly
the fractal dimension of DLA on a long fiber is 3/2. This prediction was recently verified
on much larger simulations by Procaccia and Procaccia [15]. In order to mathematically
model random aggregation process growing from the real line, Itai Benjamini suggested
considering infinite translation invariant growth processes in the upper half-plane. The
IDLA and Eden models were considered by Berger, Kagan and Procaccia [2], and An-
tunović and Procaccia [1] respectively. Lopez and Pimentel studied a stationary process
created by geodesics in Last Passage Percolation [9], and obtained very precise geomet-
ric results. A stationary version of DLA on the lattice was introduced and studied by
Procaccia et al [16, 17, 19, 18]. Recently [12], it was shown that DLA growing on a
long line segment running up to time proportional to the length of the line, converges
to stationary DLA. This justifies studying an infinite model in order to understand the
phenomena of deposition on fibers considered by Meakin.

In this paper we prove existence and uniqueness of a Stationary Hastings Levitov
process, SHL(0). Moreover, we prove tightness of particle sizes and that, scaled appro-
priately, the arms of the aggregate have Hausdorff dimension 3/2, corresponding to the
numerical predictions of Meakin [11].

Roughly speaking, SHL(0) can be thought of as a translation-invariant growth process
in the upper half-plane (set H = {z ∈ C : Im(z) > 0}) in which a growing cluster is
represented as a composition of i.i.d. conformal mappings. Since there is no uniform
measure over R, we will use a Poisson point process to determine the location of new
slits. Unlike the standard HL model, where particles are added one after the other,
in the SHL(0) the arrival times of the particles form a dense set of times which, as
in many particle systems, makes well-definedness of the process non-trivial. Indeed, a
significant part of this paper is dedicated to the proof of existence (and uniqueness) of
the SHL(0) process. This stationary process is very special since the harmonic measure
of an interval is constant in expectation and thus the leading order of the conformal
map is z + O(1) as z → ∞. This suggests that even for α = 0, average particle sizes
will be approximately constant thus yielding a stationary off-lattice variant of DLA.
One obtains all the advantages of α = 0 (e.g. harmonic measure of an interval is a
martingale) without the undesirable exponential increase of particle size. See Figure 2
for a visualization. In this simulation one can see that to leading order the interface is
flat (in the bulk), corresponding to the leading order behaviour of the conformal map.
Furthermore, the sizes of the individual particles do not depend on when they arrived
in time, in contrast to the exponential increase in size which can be seen in simulations
of HL(0) (see [14]).

1.1. Overview of results. The paper is structured as follows. In Section 2 we define
the stationary Hastings-Levitov process SHL(0). We denote by Ft(z) the conformal map
from H := {z ∈ C : Im z > 0} to subsets of H satisfying the definition of SHL(0) given
in Section 2. We prove the uniqueness of such a process in Section 3. In Section 4 we
provide a construction of a process with these properties, thus proving existence, and
use the construction to prove ergodicity of the process.

In the remainder of the paper we establish several interesting geometric properties
of SHL(0). In Section 5 we prove tightness for the diameter of the particle sizes Υt :=
Ft(R) \ Ft−(R). Here, the diameter of a subset of C is defined as the radius of the
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Figure 2. SHL(0) computer simulation.

smallest Euclidean ball containing the set. This result motivates the use of SHL(0) to
model DLA on fibers. We also present aggregate growth bounds. In Section 6 we show
that the process contains only finite trees with probability 1 (we give a precise definition
of a tree later, but for the purpose of this overview the intuitive notion suffices). This
property of SHL(0) can be seen in Figure 2 where trees are blocked from growing any
further by larger trees on either side. In Section 7 we discuss the scaling limit of the
process and obtain the conjectured fractal dimension 3/2 of DLA on a fiber in the case
of SHL(0). The Hausdorff dimension on its own is not sufficient for obtaining temporal
growth bounds as SHL(0) is not self similar. The additional results needed to obtain
the growth bounds corresponding to the numerical prediction of Meakin, namely that a
tree of height t contains an order of t3/2 particles, are established in Section 8.

1.2. Open problems and questions. We finish this section with some natural direc-
tions for further research.

Question 1. One can try to define the SHL(α) process for α 6= 0 by normalizing the slit
sizes according to the conformal radius. For what values of α is the process well defined?
We conjecture that the process is well defined for α ∈ (0, 1) and not well defined for
α > 2. We have no firm conjecture for α ∈ [1, 2].

Question 2. Universality of limit under different particle geometries: In [13], Norris,
Silvestri and Turner show universality of the scaling limit for another planar aggregation
model generated by composing conformal maps. We expect that the limit proved in The-
orem 7.7 for SHL(0) holds for a wider class of particle geometries such as a disk. The
most interesting case would be the classical off lattice DLA, where one attaches disks of
equal radii according to the harmonic measure from infinity.

Question 3. In this paper we show that the stationary Hastings Levitov process is local
in the sense of strong spatial correlation decay. Show that the classical HL(0) model
in the small particle limit δ → 0 (see [14]) grown up to time tδ−1 appropriately scaled
around a point on H and normalized such that particles are of size 1 locally converges
to SHL(0). In [14], local scaling limits are obtained by growing the HL(0) process up to
time tδ−2, so this question provides insight into the early-time behaviour of the HL(0)
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process. Note that this would allow one to borrow the Brownian Web scaling proved for
HL(0) in [14] for the SHL(0) model, rescaled as in Section 7.

Question 4. Gaussian fluctuations of the interface: We expect from Lemma 5.1 and
the result of Silvestri [22] to get Gaussian fluctuations of

Ft(z)− (z + iπt/2)√
t

,

as t→ ∞.

2. Definition of the process

Let P be the space of discrete measures on [0,∞) × R, equipped with the Borel σ-
algebra corresponding to the weak∗ topology w.r.t. continuous, compactly supported
functions on [0,∞)× R. Let Z be the space of conformal maps from H onto subsets of
H, equipped with the topology of uniform convergence on compact subsets. Let X be
the space of cadlag functions from [0,∞) to Z, with the Borel σ-algebra induced by the
Skorohod topology (take some metric which admits the topology in Z). For F in X we
write Ft for the function at time t, and Ft(z) for the value that this function takes at z.
Occasionally we will talk about t 7→ Ft(z); this is the trajectory of the point z as time
progresses.

We let Ω = P ×X , with the product σ-algebra F . We denote an element ω of Ω as a
pair (P, F ) where P ∈ P and F : [0,∞) → Z. A measure µ on (Ω,F) is called a SHL(0)
process if it satisfies a number of requirements. Before stating those requirements, we
need to define the particle map by which particles are added to the cluster.

Definition 2.1. The slit map ϕ : H → H \ [0, i] is defined as ϕ(z) =
√
z2 − 1. For

x ∈ R, the slit map at x, denoted ϕx, is the conjugation of ϕ by the shift in x, namely
ϕx(z) = x+ ϕ(z − x).

Definition 2.2. A measure µ on (Ω,F) is called a SHL(0) process if it satisfies the
following requirements.

(1) (Poisson arrivals) The µ marginal distribution of P is that of an intensity 1
Poisson process.

(2) (Initial condition) µ-almost surely F0 is the identity.
(3) (Adapted) For every 0 ≤ s < t, F−1

s ◦ Ft is Fs,t-measurable, where Fs,t =
σ(P |(s,t]×R).

(4) (Growth condition) Let A be the set of Poisson points, i.e. the atoms of P , and
let At = A ∩ {(s, x) : s ≤ t} and At,n = A ∩ {(s, x) : |x| ≤ n ; s ≤ t}. Then
µ-almost surely, for every t ∈ [0,∞) and z ∈ H,

(2.1) Ft(z) = z + lim
n→∞

∑

(s,x)∈At,n

[Fs−(ϕx(z))− Fs−(z)] .

Requirement (4) roughly states that F only changes due to jumps, where slit maps
are being composed with the function. Lack of absolute summability of the differences
forces us to choose a specific summation order, as in (2.1). Different summation orders
may lead to different processes (it is easy to produce such examples e.g. choosing in (2.1)
(s, x) ∈ A ∩ {(s, x) : −n < x ≤ 2n ; s ≤ t}, will add a drift to the process). We believe
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that the summation order in (2.1) is the most natural one. In particular, it preserves
mirror symmetry in distribution.

2.1. Time reversal. We define here an auxiliary process, which is equal in distribution
to SHL(0) at any fixed time, but is more amenable to analysis.

Definition 2.3. A measure µ̃ on (Ω,F), corresponding to pair (P̃ , F̃ ), is called a back-
ward SHL(0) process if it satisfies the following requirements.

(1) (Poisson arrivals) The µ̃ marginal distribution of P̃ is that of an intensity 1
Poisson process.

(2) (Initial condition) µ̃-almost surely F̃0 is the identity.

(3) (Adapted) For every 0 ≤ s < t, F̃t ◦ F̃−1
s is F̃s,t-measurable, where F̃s,t =

σ(P̃ |(s,t]×R).

(4) (Growth condition) Let Ã be the set of Poisson points, i.e. the atoms of P̃ , and

let Ãt = Ã ∩ {(s, x) : s ≤ t} and Ãt,n = Ã ∩ {(s, x) : |x| ≤ n ; s ≤ t}. Then
µ̃-almost surely, for every t ∈ [0,∞) and z ∈ H,

(2.2) F̃t(z) = z + lim
n→∞

∑

(s,x)∈Ãt,n

[

ϕx(F̃s−(z))− F̃s−(z)
]

.

The SHL(0) and backward SHL(0) processes are related as follows. Suppose that
(P, F ) is a realization of a SHL(0) process. Fix T > 0 and define the discrete-measure

P̃ on [0, T ]× R by P̃ ({(t, x)}) = P ({(T − t, x)}) and the function F̃ : [0, T ] → Z by

F̃t =

[

lim
sցt

FT−s

]−1

◦ FT .

Then (P̃ , F̃ ) is a realization of a backward SHL(0) process (restricted to [0, T ]).

Note that the mapping that takes (P, F ) (with time restricted to [0, T ]) to (P̃ , F̃ ) is
a bijection since

Ft = F̃T ◦
[

lim
sցt

F̃T−s

]−1

.

It follows that in order to prove uniqueness and existence of the SHL(0) process, it is
sufficient to prove uniqueness and existence of the backward SHL(0) process.

3. Uniqueness

We now show that, assuming existence, there is a unique measure µ̃ satisfying the
requirements above. The existence of such a measure is proved in Section 4.

Theorem 3.1. Let µ̃1 and µ̃2 be two probability measures satisfying Definition 2.3. Then
µ̃1 = µ̃2.

Proposition 3.2. Let g : H → H be a holomorphic function satisfying the following
property.
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For every ξ > 0 there exists C(ξ) <∞ such that for all y ≥ ξ

(3.1) lim
n→∞

∣

∣

∣

∣

∫ n

−n
g(x+ iy)dx

∣

∣

∣

∣

≤ C(ξ),

(3.2)

∫ ∞

−∞
|g(x+ iy)|2dx ≤ C(ξ),

and

(3.3)

∫ ∞

−∞
|g′(x+ iy)|2dx ≤ C(ξ).

Fix z ∈ H. Let G(1), G(2) : [0,∞) → H be two cadlag solutions to

(3.4) G(t) = z + lim
n→∞

∑

(s,x)∈At,n

g(G(s−)− x)

which are adapted to the filtration Ft = F0,t, where At,n and Fs,t are as in Definition
2.2.

Then P - a.s. G(1) = G(2).

Proof. Fix T > 0 and suppose that t ∈ [0, T ]. Using (3.4) and the fact that g maps into
H, it follows that

(3.5) Im G(i)(t) ≥ Im z

for all t ≥ 0, for i = 1, 2.
We begin by showing that G(i)(t) has bounded second moment. To this end, note

that

G(i)(t)− z = lim
n→∞

∑

(s,x)∈At,n

g
(

G(i)(s−)− x
)

= M
(i)
t + lim

n→∞

∫ t

0

∫ n

−n
g
(

G(i)(s)− x
)

dxds,

where
(

M
(i)
t

)

is a martingale by the adaptedness of G(i). Furthermore, using Doob’s
inequality, (3.2) and (3.5)

E

[

sup
s≤t

|M (i)
s |2

]

≤ 4E
[

|M (i)
t |2

]

= 4E

[
∫ t

0

∫ ∞

−∞

∣

∣

∣
g
(

G(i)(s)− x
)

∣

∣

∣

2
dxds

]

≤ 4C(Im z)T,

where expectation is with respect to the Poisson random measure P . Set

D
(i)
t = lim

n→∞

∫ t

0

∫ n

−n
g
(

G(i)(s)− x
)

dxds.
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Then, by (3.1),

E

[

sup
s≤t

|D(i)
s |2

]

≤ E

[

(
∫ t

0
lim
n→∞

∣

∣

∣

∣

∫ n

−n
g(G(i)(s)− x)dx

∣

∣

∣

∣

ds

)2
]

≤ (C(Im z)t)2

and hence

E

[

sup
s≤t

|G(i)
s |2

]

≤ 8C(Im z)T + 2 (C(Im z)T )2 <∞.

Now write H(t) := G(1)(t)−G(2)(t). Then

H(t) =Mt +Dt

where Mt =M
(1)
t −M

(2)
t and Dt = D

(1)
t −D

(2)
t .

We now estimate the second moment of S(t) := sups≤t |H(s)|. In what follows we

show that the expectation of S(t)2 w.r.t. to the Poisson measure of P is zero from which
it will follow that S(t) = 0 a.s. for all t ≤ T . Since T > 0 is arbitrary, the result will
follow.

As before

S(t)2 ≤ 2

[

sup
s≤t

|Ms|2 + sup
s≤t

|Ds|2
]

.

Using Doob’s inequality,

E

[

sup
s≤t

|Ms|2
]

≤ 4E
[

|Mt|2
]

= 4E

[
∫ t

0

∫ ∞

−∞

∣

∣

∣
g(G(1)(s)− x)− g(G(2)(s)− x)

∣

∣

∣

2
dxds

]

.(3.6)

We now estimate the integrand in (3.6).

For given s, let γs : [0, 1] → C be the curve which linearly interpolates from G(1)(s)−x
to G(2)(s)− x. Then

g(G(1)(s)− x)− g(G(2)(s)− x) =
[

G(1)(s)−G(2)(s)
]

∫ 1

0
g′
(

γs(u)− x
)

du

= H(s)

∫ 1

0
g′
(

γs(u)− x
)

du.

By (3.5) for all u ∈ [0, 1], we have that Im γs(u) ≥ Im z. Therefore, by Jensen, Fubini,
and (3.3), we get that

E

[

sup
s≤t

|Ms|2
]

≤ 4E

[
∫ t

0

∫ ∞

−∞

∫ 1

0

∣

∣H(s)g′
(

γs(u)− x
)∣

∣

2
dudxds

]

= 4E

[
∫ t

0

∣

∣H(s)
∣

∣

2
∫ 1

0

[
∫ ∞

−∞

∣

∣g′
(

γs(u) + x
)∣

∣

2
dx

]

duds

]

≤ 4C(Im z)

∫ t

0
E
[

∣

∣S(s)
∣

∣

2
]

ds.
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By an almost identical argument we get

E

[

sup
s≤t

|Ds|2
]

≤ C(Im z)2T

∫ t

0
E
[

∣

∣S(s)
∣

∣

2
]

ds.(3.7)

Combining (3.7) and (3.7), we get the bound

E
[

|S(t)|2
]

≤
(

8C(Im z) + 2C(Im z)2T
)

∫ t

0
E
[

∣

∣S(s)
∣

∣

2
]

ds.(3.8)

We are now done, noting that the only non-negative solution for (3.8) is the zero function.
�

Theorem 3.1 follows from Proposition 3.2, once we have established the appropriate
basic estimates on the slit map defined in Definition 2.1. These are given in the lemma
below, together with some additional estimates which will be of use later. The compu-
tation of the integral in (3.12) shows that this integral is convergent, but not absolutely
convergent. This lack of absolute convergence introduces some technicalities into the
proof of existence and was the reason that condition (2.2) needed to specify the order of
summation.

Lemma 3.3. There exists some absolute constant C > 0 such that the following hold
for all z ∈ H.

(i)

(3.9)

∫ ∞

−∞
|ϕx(z)− z|2dx < C

1 + Im z
,

(3.10)

∫ ∞

−∞
|ϕ′

x(z)− 1|dx < C

Im z
,

and

(3.11)

∫ ∞

−∞
|ϕ′

x(z)− 1|2dx <
C
(

1 + log((Im z)−1)✶{Im z<1}

)

(1 + (Im z)3)
.

(ii)

(3.12) lim
n→∞

∫ n

−n
(ϕx(z)− z)dx = iπ/2.

(iii)

(3.13)

∣

∣

∣

∣

∫ n

−n
[ϕx(z)− z] dx

∣

∣

∣

∣

< C log n.

If n ≥ 4 ∨ 2|Re z|, then

(3.14)

∣

∣

∣

∣

∫ n

−n
[ϕx(z)− z] dx

∣

∣

∣

∣

< C

and

(3.15)

∫

|x|>n
|ϕx(z)− z|2dx < C

n
.
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Proof of Lemma 3.3 appears in Appendix A as it is mostly composed of elementary
calculations.

Proof of Theorem 3.1. Let (P̃ (1), F̃ (1)) ∼ µ̃1 and (P̃ (2), F̃ (2)) ∼ µ̃2 be two realizations on

the same probability space, coupled s.t. P̃ (1) = P̃ (2) = P̃ . Our purpose is to show that
a.s. F̃ (1) = F̃ (2).

To see this, note that for every z ∈ H, G(i)(t) = F̃
(i)
t (z) satisfies the assumption of

Proposition 3.2 with respect to the Poisson process P̃ and taking g(w) = ϕ(w) − w.

Therefore, a.s F̃
(1)
t (z) = F̃

(2)
t (z). Thus, if K ⊆ H is a countable dense subset, then a.s.

for all t ∈ [0, T ] and all z ∈ K

F̃
(1)
t (z) = F̃

(2)
t (z).

The fact that, for all t ≥ 0, the functions F̃
(1)
t and F̃

(2)
t are continuous in z implies that

a.s. F̃ (1) = F̃ (2) as required. �

4. Construction of the stationary Hastings-Levitov process

Consider an intensity 1 Poisson process P̃ in the half plane {(t, x) : t > 0}, and let

Ã be the set of Poisson points. In this section, we prove the existence of a cadlag map
F̃ : [0,∞) → Z which satisfies conditions (2) , (3) and (4) in Definition 2.3.

Almost surely, P̃ has only finitely many atoms in any compact set and P̃ |{t}×R has
at most one atom. So without loss of generality we restrict to the event on which this
holds. For each n ∈ N, there exists some cadlag G(n) : [0,∞) → Z such that

G
(n)
t (z) = z +

∑

(s,x)∈Ãt,n

[

ϕx(G
(n)
s− (z))−G

(n)
s− (z)

]

.

Indeed, if Ã ∩ {(t, x) : |x| ≤ n} = {(t1, x1), (t2, x2), . . . } where 0 < t1 < t2 < · · · , then

(4.1) G
(n)
t (z) =

{

z for 0 ≤ t < t1;

ϕxk
◦ · · · ◦ ϕx1

(z) for tk ≤ t < tk+1,

satisfies the required conditions.

Lemma 4.1. For each t ∈ [0,∞), there exists some 0 < C(t) < ∞ such that, for each
n ∈ N and z ∈ H,

E

[

sup
s≤t

∣

∣

∣
G(n)

s (z)− z
∣

∣

∣

2
]

≤ C(t).

Proof. Fix z ∈ H and set

Tn = inf

{

t ≥ 0 : |G(n)
t (z)| > n1/2

4

}

.

Now

G
(n)
t (z)− z =M

(n)
t (z) +D

(n)
t (z)
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where
(

M
(n)
t (z)

)

is a zero-mean martingale and

D
(n)
t (z) =

∫ t

0

∫ n

−n

[

ϕx(G
(n)
s (z))−G(n)

s (z)
]

dxds.

Hence

E

[

sup
s≤t

∣

∣

∣
G(n)

s (z)− z
∣

∣

∣

2
]

≤ 2E

[

sup
s≤t

∣

∣

∣
M (n)

s (z)
∣

∣

∣

2
]

+ 2E

[

sup
s≤t

∣

∣

∣
D(n)

s (z)
∣

∣

∣

2
]

.

Observe that

E
[

|M (n)
t (z)|2

]

= E

[
∫ t

0

∫ n

−n

∣

∣

∣
ϕx(G

(n)
s (z))−G(n)

s (z)
∣

∣

∣

2
dxds

]

≤ E

[

∫ t

0

C

1 + Im G
(n)
s (z)

ds

]

≤ Ct

1 + Im z
,

where C is the absolute constant in (3.9).
By (3.13),

∣

∣

∣

∣

∫ t

0

∫ n

−n

[

ϕx(G
(n)
s (z))−G(n)

s (z)
]

dx

∣

∣

∣

∣

≤ Ct log n,

and if n ≥ 4 and s < Tn then by (3.14)
∣

∣

∣

∣

∫ n

−n

[

ϕx(G
(n)
s (z))−G(n)

s (z)
]

dx

∣

∣

∣

∣

≤ C.

Therefore

E

[

sup
s≤t

∣

∣

∣
D(n)

s (z)
∣

∣

∣

2
]

≤ Ct2
(

1 + (log n)2P(Tn < t)
)

.

Hence

(4.2) E

[

sup
s≤t

∣

∣

∣
G(n)

s (z)− z
∣

∣

∣

2
]

≤ Ct(1 + t)
(

1 + (log n)2P(Tn < t)
)

for some (different) absolute constant C. By Chebychev’s inequality,

P(Tn < t) ≤ C
(

t(1 + t)(1 + (log n)2) + |z|2
)

n
.

The result holds by substituting this back into (4.2) and taking the supremum over
n. �

Lemma 4.2. For each z ∈ H and t ∈ [0,∞),

sup
m≥n

E

[

sup
s≤t

∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

2
]

→ 0

and

sup
m≥n

E

[

sup
s≤t

∣

∣

∣

∣

∂

∂z

(

G(m)
s (z)−G(n)

s (z)
)

∣

∣

∣

∣

2
]

→ 0

as n→ ∞.
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Proof. Suppose first that n ≤ m ≤ 2n. Define Tn as in the previous proof and set
T = Tn ∧ Tm, so that

(4.3) P(T < t) ≤ P(Tn < t) ≤
2E

[

sups≤t

∣

∣

∣
G

(n)
s (z)− z

∣

∣

∣

2
]

+ 2|z|2

n
≤ C0(t, z)

n
,

where C0(t, z) = 2(C(t) + |z|2), with C(t) from Lemma 4.1. Using the notation in the
previous proof,

G
(m)
t (z)−G

(n)
t (z) =M

(m)
t (z)−M

(n)
t (z) +D

(m)
t (z)−D

(n)
t (z),

so

E

[

sup
s≤t

∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

2
]

≤ 2E

[

sup
s≤t

∣

∣

∣
M (m)

s (z)−M (n)
s (z)

∣

∣

∣

2
]

+ 2E

[

sup
s≤t

∣

∣

∣
D(m)

s (z)−D(n)
s (z)

∣

∣

∣

2
]

.

Decompose and bound

E

[

sup
s≤t

∣

∣

∣
M (m)

s (z)−M (n)
s (z)

∣

∣

∣

2
]

≤ 8E

[
∫ t

0

∫ n

−n

∣

∣

∣
(ϕx − id)(G(m)

s (z))− (ϕx − id)(G(n)
s (z))

∣

∣

∣

2
dxds

]

+ 8E

[

∫ t

0

∫

n<|x|<m

∣

∣

∣
ϕx(G

(m)
s (z))−G(m)

s (z)
∣

∣

∣

2
dxds

]

.

Now, for s < t,

E

[

∫

n<|x|<m

∣

∣

∣
ϕx(G

(m)
s (z))−G(m)

s (z)
∣

∣

∣

2
dxds

]

≤ E

[

∫

|x|>n

∣

∣

∣
ϕx(G

(m)
s (z))−G(m)

s (z)
∣

∣

∣

2
dxds✶{T>t}

]

+E

[
∫ ∞

−∞

∣

∣

∣
ϕx(G

(m)
s (z))−G(m)

s (z)
∣

∣

∣

2
dxds✶{T<t}

]

≤ C1(t, z)

n
,

for some 0 < C1(t, z) <∞. Here, the last line used (3.15), (3.9) and (4.3). Also

∣

∣

∣
(ϕx − id)(G(m)

s (z))− (ϕx − id)(G(n)
s (z))

∣

∣

∣
≤
∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

∫ 1

0

∣

∣ϕ′
x(γ(u))− 1

∣

∣ du,

where γ(u) is the curve linearly interpolating between G
(n)
s (z) and G

(m)
s (z). Hence, using

Jensen, Fubini, (3.11), and setting

g(t) = E

[

sup
s≤t

∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

2
]

,
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we have

E

[

sup
s≤t

∣

∣

∣
M (m)

s (z)−M (n)
s (z)

∣

∣

∣

2
✶{t<T}

]

≤ C2(t, z)

(
∫ t

0
g(s)ds+

1

n

)

.

By the same argument as used in the proof of Lemma 3.3, if |Re G(m)
s (z)| < √

n then
∣

∣

∣

∣

∣

∫

n<|x|<m

[

ϕx(G
(m)
s (z))−G(m)

s (z)
]

dx

∣

∣

∣

∣

∣

2

<
C

n
.

Hence, a similar argument to that above gives

E

[

sup
s≤t

∣

∣

∣
D(m)

s (z)−D(n)
s (z)

∣

∣

∣

2
✶{t<T}

]

≤ C3(t, z)

(
∫ t

0
g(s)ds+

(log n)2

n

)

.

Therefore

g(t) ≤ C4(t, z)

(
∫ t

0
g(s)ds+

(log n)2

n

)

and so by Gronwall’s Lemma, setting C(t, z) = sups≤tC4(s, z) exp(tC4(s, z)),

g(t) ≤ C(t, z)(log n)2

n
.

It follows that

sup
n≤m≤2n

E

[

sup
s≤t

∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

2
]

≤ C(t, z)(log n)2

n
.

Now drop the upper bound restriction on m and let m ≥ n be arbitrary. Then there
exists k ∈ N such that 2kn ≤ m < 2k+1n. By the triangle inequality

E

[

sup
s≤t

∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

2
]1/2

≤
k
∑

j=1

E

[

sup
s≤t

∣

∣

∣
G(2jn)

s (z)−G(2j−1n)
s (z)

∣

∣

∣

2
]1/2

+E

[

sup
s≤t

∣

∣

∣
G(m)

s (z)−G(2kn)
s (z)

∣

∣

∣

2
]1/2

≤ C(t, z)1/2n−1/2 log n
∞
∑

j=0

j2−j/2.

The series on the right converges, and the result now follows.
Very similar arguments give the result for the derivative.

�

The following theorem shows the existence of the SHL(0) process.

Theorem 4.3. For any compact t ∈ [0,∞) and K ⊂ H

sup
m≥n

E

[

sup
s≤t

sup
z∈K

∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

2
]

→ 0

as n → ∞ and hence the maps G(n) form a Cauchy sequence in the topology of mean-
squared convergence on compact subsets of H and compact time intervals.
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The limit is a cadlag map F̃ : [0,∞) → Z which satisfies conditions (2) , (3) and (4)
in Definition 2.3.

Remark 4.4. Note that one can construct SHL(0) also via composition of solutions of
the Loewner equation, growing countably many slits at a time. A partial proof of this
construction by the authors and Jacob Kagan appears in the Ph.D Thesis of Jacob
Kagan [8].

Proof. Given the existence of the limit, it is straightforward to check that it satisfies
the required conditions. Suppose f : H → C is any conformal mapping. Then for any
z0 ∈ H, define g : {|z| < 1} → C by

g(z) =
f(z0 + rz)

rf ′(z0)

where r ≤ Im z0. Then g is a conformal mapping with g′(0) = 1 and hence, by standard
distortion estimates [5, Theorem 4.5]

|g′(z)| ≤ 1 + |z|
(1− |z|)3 .

It follows that if w ∈ B(z0, r/2) then

|f ′(w)| ≤ 16|f ′(z0)|.
For any compact set K ⊂ H, there exist N ∈ N, z1, . . . , zN ∈ K and 0 < ri < Im zi/2∧1
for i = 1, . . . , N such that

K ⊆
N
⋃

i=1

B(zi, ri).

Then if z ∈ K, there exists i s.t. z ∈ B(zi, ri). Then

|G(m)
t (z)−G

(n)
t (z)| ≤ |G(m)

t (zi)−G
(n)
t (zi)|+ |z − zi| sup

w∈B(zi,ri)

∣

∣

∣

∣

d

dz
(G

(m)
t −G

(n)
t )(w)

∣

∣

∣

∣

≤ |G(m)
t (zi)−G

(n)
t (zi)|+ 16

∣

∣

∣

∣

∂

∂z
(G

(m)
t −G

(n)
t )(zi)

∣

∣

∣

∣

.

Hence

E

[

sup
s≤t

sup
z∈K

∣

∣

∣
G(m)

s (z)−G(n)
s (z)

∣

∣

∣

2
]

≤ 2
N
∑

i=1

E

[

sup
s≤t

∣

∣

∣
G(m)

s (zi)−G(n)
s (zi)

∣

∣

∣

2
]

+ 32

N
∑

i=1

E

[

sup
s≤t

∣

∣

∣

∣

∂

∂z
(G(m)

s −G(n)
s )(zi)

∣

∣

∣

∣

2
]

.

The result then follows from Lemma 4.2.
�

Next we discuss two basic properties, mainly Markovity and ergodicity, of SHL(0)
which we prove as corollaries from the construction in this section.

Proposition 4.5. Let F̃t and F̂t be two independent backwards SHL(0). Then for every

t, s > 0, F̃t+s = F̂s ◦ F̃t, where the equality is in distribution.
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Proof. For any t > 0 and the set of points occurring after time t, Ã ∩ {(s, x) : |x| ≤
n, s > t} = {(s1, x1), (s2, x2), . . .}, set

Ĝ
(n)
t,s (z) =

{

z for 0 ≤ s+ t < s1;

ϕxk
◦ · · · ◦ ϕx1

(z) for sk ≤ s+ t < sk+1.

It is immediate from the definition that

(4.4) G
(n)
t+s(z) = Ĝ

(n)
t,s ◦G(n)

t (z).

Moreover by the properties of Ã, Ĝ
(n)
t,s (z) and G

(n)
t (z) are independent for every n ∈

Z. By using Theorem 4.3 three times on each of the functions in (4.4) we obtain the
statement. �

Next we prove that the process is ergodic. First we show that composition of slit
functions commutes with real translations.

Lemma 4.6. For all x1, . . . , xn ∈ R, and any y ∈ R

ϕxk
◦ · · · ◦ ϕx1

(z − y) + y = ϕxk+y ◦ · · · ◦ ϕx1+y(z).

Proof. For all z ∈ H we get

ϕxk
◦ ϕxk−1

(z) + y = xk + y + ϕ0(ϕxk−1
(z)− xk − y + y) = ϕxk+y(ϕxk−1

(z) + y).

The statement now follows by substituting ϕxk−2
◦ · · · ◦ϕx1

(z−y) in place of z and using
induction. �

Proposition 4.7. SHL(0) is ergodic with respect to horizontal shifts.

Proof. We prove the statement by showing that the backward SHL(0) is a factor of the
ergodic space of intensity 1 Poisson point process on [0,∞)×R. We need to show that a
real translation commutes with the map that takes a Poisson point process and returns
a backward SHL(0). Let y ∈ R and define two sequences of processes. The first is a

shift of G
(n)
t (z) defined in (4.1), S

(n)
t (z) = G

(n)
t (z − y) + y. The second R

(n)
t (z) is the

same as in (4.1) but using the shifted set of points {Ã + y} ∩ {(t, x) : |x| ≤ n}. By

Lemma 4.6 S
(n)
t can be represented as a composition of slit functions (as in (4.1)) for

the set {Ã+ y}∩{(t, x) : −n+ y ≤ x ≤ n+ y}. These two sets of points are equal inside
the centered interval [−|n + y|, |n + y|] ∩ [−|y − n|, |y − n|]. By the same calculations

that lead to the proof of Theorem 4.3 we get that S
(n)
t (z) and R

(n)
t (z) converge a.s. to

the same limit and that the limit is a backward SHL(0) with respect to Ã + y. Since

S
(n)
t (z) converges to a shift of a backward SHL(0) with respect to Ã by the translation
y, we obtain that the translation commutes with the mapping from Poisson process to
backward SHL(0). �
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5. Typical height and particle size

In this section we establish the geometric property of the SHL(0) cluster which mo-
tivates the assertion that SHL(0) is a potential candidate for a stationary off-lattice
variant of DLA grown from a line, namely that particles sizes are tight.

The first lemma states that a typical point on the SHL(0) interface at time t is at
height πt/2 i.e. on average the interface grows at a linear speed, and that other than
this linear shift the map does not distort the upper half plane too much away from the
boundary.

Lemma 5.1. Suppose µ̃ is a backward SHL(0) process. Then

E
[

F̃t(z)
]

= z + iπt/2

and

E
[

F̃ ′
t(z)

]

= 1.

Furthermore, There exists some absolute constant C > 0 such that, for each z ∈ H

and t ∈ [0,∞),

(5.1) E

[

sup
s≤t

∣

∣

∣
F̃s(z)− (z + iπs/2)

∣

∣

∣

2
]

≤ Ct

1 + Im z
,

and

(5.2) E

[

sup
s≤t

∣

∣

∣
F̃ ′
s(z)− 1

∣

∣

∣

2
]

≤ C(1 + | log(Im z)|)t
1 + (Im z)3

exp

(

C(1 + | log(Im z)|)t
1 + (Im z)3

)

<∞,

where expectation is with respect to µ̃.

Proof. Fix z ∈ H. Then, using Lemma 3.3,

F̃t(z) = z +Mt(z) + lim
n→∞

∫ t

0

∫ n

−n

[

ϕx(F̃s(z))− F̃s(z)
]

dxds

= z +Mt(z) + iπt/2

where (Mt(z)) is a zero-mean martingale with

E
[

|Mt(z)|2
]

= E

[
∫ t

0

∫ ∞

−∞

∣

∣

∣
ϕx(F̃s(z))− F̃s(z)

∣

∣

∣

2
dxds

]

≤ E

[
∫ t

0

C

1 + Im F̃s(z)
ds

]

≤ Ct

1 + Im z
.

Here C is the absolute constant from Lemma 3.3. The result follows by Doob’s inequality.
Similarly

F̃ ′
t(z) = 1 +M ′

t(z)
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where E [M ′
t(z)] = 0 and

E
[

|M ′
t(z)|2

]

= E

[
∫ t

0
|F̃ ′

s(z)|2
∫ ∞

−∞

∣

∣

∣
ϕ′
x(F̃s(z))− 1

∣

∣

∣

2
dxds

]

≤ E





∫ t

0

C|F̃ ′
s(z)|2

(

1 + | log(Im F̃s(z))|✶(Im F̃s(z)<1)

)

1 + (Im F̃s(z))3
ds





≤ 2C(1 + | log(Im z)|)t
1 + (Im z)3

+
2C(1 + | log(Im z)|)

1 + (Im z)3

∫ t

0
E

[

sup
r≤s

∣

∣

∣
F̃ ′
r(z)− 1

∣

∣

∣

2
]

ds.

The result follows by Doob’s inequality and Gronwall’s Lemma. �

Corollary 5.2. If Z is independent of F̃1(z) and satisfies Im Z > h > 0, then

E[|F̃ ′
1(Z)|] ≤ 1 +

C log h

1 + h3
.

The second corollary that we will need is a law of large numbers behaviour for
Im F̃t(0). Define the event GT = {Im F̃t(0) > t/2 for all t > T}.
Corollary 5.3. For every ǫ > 0 there is a t0 > 0 such that P(Gt0) > 1− ǫ.

Proof. By Lemma 5.1,

P

(

Im F̃n2(0) <
n2

1.9

)

≤ P

(

∣

∣

∣

∣

F̃n2(0)− iπn2

2

∣

∣

∣

∣

2

>
n4

4

)

<
C

n2
.(5.3)

By Borel-Cantelli with probability 1 there is some N ∈ N such that for all n > N ,

Im F̃n2(0) > n2

1.9 . Now for every (n− 1)2 < t < n2 with n > N , using the monotonicity
in time of the imaginary part of the process we obtain

Im F̃t(0) ≥ Im F̃(n−1)2(0) >
(n− 1)2

1.9
=
n2

1.9

(n− 1)2

n2
>
t

2
,

where the last inequality holds for large enough n. Finally the lemma follows since

lim
t→∞

P(Gt) = P
(

∃t0 s.t. Im F̃t(0) > t/2 for all t > t0

)

= 1.

�

Our next goal is to prove tightness for the particles size. To this end, we first need
to understand that the behaviour of the process is not too bad near the boundary. The
slit function ϕ is explicitly defined, and one can easily see that it is defined not only on
the half plane, but also on the real line. On the real line, ϕ is differentiable everywhere
except for three points. As the mapping Ft is constructed as (the limit of) repeated
application of slit functions, it is reasonable to expect that it, too, is everywhere well
defined and almost everywhere differentiable on the real line. The following Lemma
states that indeed, the mapping Ft is well behaved on the boundary.

Lemma 5.4. For every x ∈ R and t > 0, almost surely Ft(x) := limz→x Ft(z) exists,
and the mapping Ft is differentiable in x.

In fact, a stronger version of this lemma is also true.
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Lemma 5.5. A.s. Ft(x) := limz→x Ft(z) exists for every t > 0 and x ∈ R. Furthermore,
For every x ∈ R and t > 0, almost surely the mapping Ft is differentiable in x.

For the purposes of this paper we only need Lemma 5.4], and we thus do not provide
a proof for the stronger version (Lemma 5.5). We provide a proof of Lemma 5.4] in the
appendix. Here we give a rough sketch as to why this is true.

Sketch of the proof of Lemma 5.4. Since Ft and F̃t have the same distribution, it suffices
to prove the statement for F̃t. Then,

F̃t(x) = lim
n→∞

Gn(x)

where Gn(x) is the composition of Pois(tn) slit functions, distributed evenly in the
interval [−n, n]. It follows that Gn has roughly 3 ·Pois(tn) points of non-differentiability,
essentially distributed evenly in the interval [−n, n]. Thus in every interval [a, b], the
number of points of non-differentiability of Gn in [a, b] is tight in n, and therefore in the

limit we get finitely many points of non-differentiability of F̃t(x) in every finite interval.
Combined with shift invariance this implies a.s. differentiability at every given point. �

We now state and prove a theorem which governs the derivative of the mapping on
the boundary.

Theorem 5.6. For every ǫ > 0 there is an M > 0 such that for all t > 0

P
(

|F̃ ′
t(0)| > M

)

< ǫ.

Proof. Let ǫ > 0. By Corollary 5.3 there is a t0 > 0 such that P(Gt0) > 1 − ǫ. Define

a sequence of i.i.d functions {Gi(z)}i≥1 distributed like F̃1(z). Then by the Markov
property (Lemma 4.5) the following sequence of equalities holds in distribution for every
n > t0:

(5.4) F̃n(z) = Gn ◦Gn−1 ◦ · · · ◦G1(z) = Gn ◦Gn−1 ◦ · · · ◦Gt0+1 ◦ F̃t0(z).

Using the chain rule we can write:

(5.5)
F̃ ′
n(0) =G

′
n(Gn−1 ◦Gn−2 ◦ · · · ◦G1(0)) ·G′

n−1(Gn−2 ◦ · · · ◦G1(0)) · · ·
·G′

n−2(Gn−3 ◦ · · · ◦G1(0)) · · ·G′
t0+1(F̃t0(0)) · F̃ ′

t0(0)

We now show how to use induction on n to prove that for every n > t0,
(5.6)

E

[

∣

∣

∣
G′

n(Gn−1◦Gn−2◦· · ·◦G1(0))
∣

∣

∣
· · ·
∣

∣

∣
G′

t0+1(F̃t0(0))
∣

∣

∣

∣

∣

∣

∣

∣

Gt0

]

≤ P(Gt0)
−1

n
∏

m=t0

(

1 +
C logm

m3

)

.

Write G n
t0 = {Im F̃t(0) > t/2 for all t0 ≤ t ≤ n}. Also write αn = P(G n

t0 |G n−1
t0

) and
note that

∏

αn = P(Gt0).

Let Un = |G′
n(Gn−1 ◦ Gn−2 ◦ · · · ◦ G1(0))|. Then we want to control the conditional

expectation of Ut0 · . . . · Un. Remember that Gn is independent of G
n−1
t0

. Now, by
Lemma 5.1, a.s.

E
[

Un|G n−1
t0

, U1, . . . , Un−1

]

<

(

1 +
C log n

n3

)

,
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and therefore,

E
[

Ut0 · Ut0+1 · · ·Un|G n
t0

]

≤ α−1
n E

[

Ut0 · Ut0+1 · · ·Un|G n−1
t0

]

≤ α−1
n E

[

Ut0 · Ut0+1 · · ·Un−1|G n−1
t0

]

·
(

1 +
C log n

n3

)

.

Iterating the last inequality we get (5.6).
Note that P(Gt0) converges to 1 as t0 → ∞ and n ≥ t0. The last estimate we use

is that for every t0, ǫ > 0 there is a M̃ such that P(|F̃ ′
t0(0)| > M̃) < ǫ. This follows

immediately from Lemma 5.4. Since

(5.7) P(|F̃ ′
n(0)| < M) ≥ P(|F̃ ′

n(0)| < M |G̃t0)P(G̃t0),

given ǫ, we can choose and M, M̃ > 0 and t0 ∈ N such that both elements in the RHS
are larger than (1− ǫ) yielding P(|F̃ ′

n(0)| > M) < 2ǫ.
�

We now continue to implement Theorem 5.6 in order to control the actual size of the
particle. Fix t > 0 and let P̂ be the Poisson process P with an extra point at (t, 0).

Let F̂ be the SHL process driven by P̂ . We define the particle arriving at time t as the
difference between the ranges of F̂t and F̂t−, and denote it by Υt

Theorem 5.7. For every ǫ > 0 there exists M such that for every t,

P[diam(Υt) > M ] < ǫ.

Proof. Note that Υt = F̂t−

(

(0, i]
)

and therefore

diam(Υt) ≤
∫ 1

0
|F̂ ′

t−(ix)|dx ≤ sup
0≤x≤1

|F̂ ′
t−(ix)|.

Now from the well definability of the process we have that for all t0 > 0 and ǫ > 0, there
exists some M > 0 such that P(sup0≤x≤1 |F̂ ′

t0(ix)| > M) < ǫ. By the continuity of the
process on R ∪H we have that

lim
η→0

{

inf
0≤s≤η

Im F̂t(is) > t/2 for all t > t0

}

=
{

Im F̂t(0) > t/2 for all t > t0

}

= Gt0 ,

and thus for every ǫ > 0 there is an η > 0 small enough such that

P

(

inf
0≤s≤η

Im F̂t(is) > t/2 for all t > t0

∣

∣

∣
Gt0

)

> 1− ǫ.

The tightness of the integral
∫ η
0 |F̂ ′

t−(ix)|dx follows from Theorem 5.6 by noting that
for any m > t0

E

[

sup
0≤x≤η

|G′
m(Gm−1 ◦Gm−2 ◦ · · · ◦G1(ix))|

∣

∣

∣

∣

∣

inf
0≤s≤η

Im F̂t(is) > t/2 for all t > t0

]

≤ 1+
C logm

m3
,

by the law of total expectations together with the uniform bound in Corollary 5.3. For
the rest of the interval, we can repeat 1/η times the same distortion theorem argument
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explained in the proof of Theorem 4.3. We get that

sup
η≤s≤1

|F̂ ′
t−(is)| ≤ 161/η|F̂ ′

t−(iη)|,

proving the tightness of diam(Υt). �

6. SHL(0) trees are finite

We now turn to consider geometric properties of the SHL’s evolution in time. First we
consider the harmonic measure. By the conformal structure of the process, the rate at
which particles are attached to trees emanating from an interval on ∂H is proportional
to the interval’s length under the inverse map F−1

t (z). Define the harmonic measure at
time t > 0 of an interval I = (a, b) ⊂ ∂H to be

HI(t) := F−1
t (b)− F−1

t (a) = ‖F−1
t (I)‖,

where ‖ · ‖ denotes the length of an interval.
We start with a result interesting by itself holding only for the SHL(α), α = 0 case.

Theorem 6.1. Let I ⊂ ∂H be an interval. Then {HI(t)}t≥0 is a positive martingale.

Proof. By the adaptedness property (3) in the definition of the process and the Markov
property in Proposition 4.5, it is enough to show that the harmonic measure of an
interval does not change in expectation for some arbitrary time say t = 1. Denote by
Ii = [i, i + 1) the unit intervals and HIi(1) = HIi(0) + TIi = 1 + TIi . By the ergodicity
of Proposition 4.7 and Birkhoff’s point-wise ergodic theorem

lim
L→∞

1

2L

L
∑

i=−L

TIi = E[TI1 ], a.s.

Since the interval [−L,L] is sent to an interval under F−1
1 , we need only to bound the

shift under F−1
1 of the boundary points of the interval i.e.

L
∑

i=−L

TIi ≤ |F−1
1 (L)− L|+ |F−1

1 (−L) + L|.

By placing z = F−1
s (x) in Lemma 5.1, there is an M < ∞ such that for all x ∈ R,

E[|F−1
1 (x) − x|] = M . Thus we get that 1

2L

∑L
i=−L TIi converges in probability to 0

yielding E[TI1 ] = 0. �

The following theorem shows stabilization of SHL(0).

Theorem 6.2. For every interval I ⊂ ∂H, limt→∞HI(t) = 0 a.s.

Proof. Fix an interval I ⊂ H. By Theorem 6.1 HI(t) is a positive martingale, therefore
it converges a.s. Next we rule out the possibility that limt→∞HI(t) = C 6= 0. Assume
for the purpose of contradiction that limt→∞HI(t) = C 6= 0. Since HI converges a.s.,
for any ǫ > 0 there exists an a.s. finite tǫ > 0 such that for all t > tǫ, |HI(t)− C| < ǫ.
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Consider the next time t > tǫ in which a particle connects to I i.e. a point in the
Poisson point process (x, t) ∈ A with x ∈ F−1

t−
(I) and t > tǫ (it exists by the assumption

that C > 0). By simple calculation

inf
y∈[−2C,2C]

{ϕ−1
y (2C)− 2C} ≥

√

(2C)2 + 1− 2C =: δ(C) > 0.

Thus since for every ǫ > 0 small enough ‖F−1
t−

(I)‖ < 2C,

‖F−1
t (I)‖ − ‖F−1

t−
(I)‖ = ‖ϕ−1

x ◦ F−1
t−

(I)‖ − ‖F−1
t−

(I)‖ ≥ δ(C).

Now choose an 0 < ǫ < δ(C). We obtain that HI(t) > C + ǫ, which is a contradiction
to the assumption that C 6= 0.

�

The previous theorem yields that every tree has only finitely many particles ever
attaching to it. (In the simulation appearing in Figure 2 one can observe small trees
that seem to be blocked from growing any further). First we need to set some notation.
For any time t > 0 define Kt = Ft(∂H). We call the connected components of Kt \ ∂H
the trees at time t of the stationary HL. For an interval I ⊂ ∂H we call the connected
component of Kt \ (∂H \ I) the trees emanating from I at time t, and we denote them
by TI(t). From the proof of Theorem 6.2 we obtain the following corollary.

Corollary 6.3. For every interval I there exists a tI < ∞ such that for every t > tI ,
F−1
t (TI(t))× {t} ∩A = ∅ a.s. In other words after time tI the interval I will receive no

more particles a.s.

Remark 6.4. Note that the random time tI is not a stopping time.

The last statement of this section yields a geometric finiteness result for all trees in the
half plane HL and is trivial from the stabilization and the fact the SHL is a monotone
process. Let d(TI(t)) = supz∈TI(t) infy∈I |z − y| and d(TI) = supt≥0 d(TI(t)).
Corollary 6.5. d(TI) <∞ a.s.

Next we show that the finite trees are large in expectation.

Proposition 6.6. For every interval I, E[d(TI)] = ∞.

Proof. It is enough to prove the theorem for the interval I = [0, 1]. Assume that
E[d(I)] <∞.

E[d(TI)] =
∫ ∞

0
P[d(TI) > x]dx =

1

2

∫ ∞

−∞
P[d(TI) > |x|]dx(6.1)

≥ 1

2

∞
∑

n=−∞

P[d(TI+n) > (n+ 1)],(6.2)

where the last inequality follows from the translation invariance of the model. By the
Borel-Cantelli Lemma we get that almost surely there is some K ∈ N large enough such
that for all n ∈ Z such that |n| > K we have d(TI+n) < (n + 1). By Corollary 6.5,
d(T(−K,K)) < ∞ a.s. which means that there exists an a.s. finite constant M < ∞ such
that TR does not intersect the set {z ∈ H : Im (z) > M∨K}∩{z ∈ H : Im (z) > |Re (z)|}.
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This contradicts the average linear growth stated in Lemma 5.1 for any t > 0 large
enough.

�

The next proposition bounds the width of trees at any time t in a height λ. For any
λ > 0 let T λ

[0,1)(t) be the connected component of T[0,1)(t) ∩ (R× [0, λ]) intersecting ∂H

(there is exactly one since H \ T λ
[0,1)(t) is simply connected by properties of conformal

maps). Define

Widλ(T[0,1)(t)) = sup
{

|x− y| : (x, λ), (y, λ) ∈ T λ
[0,1)(t)

}

.

Note that by planarity if two points (x, λ), (y, λ) are in T λ
[0,1)(t), then for any i 6= 0 and

any x < ξ < y, (ξ, λ) /∈ T λ
[i,i+1)(t).

Proposition 6.7. For any λ > 0 and t > 0

E
[

Widλ(T[0,1)(t))
]

≤ 1.

Proof. Fix a constant λ > 0. Define a function ζ : Z× Z 7→ {0, 1} by

ζ(j, i) = max
{

|[x, y] ∩ [j, j + 1)| : (x, λ), (y, λ) ∈ T[i,i+1)(t) ∩ R× [0, λ)
}

,

where the max ∅ = 0. It is easy to see by the translation invariance of the Poisson process
A under P that ζ is diagonally invariant. By the mass transport principle we obtain

(6.3) E

[

∑

i

ζ(i, 0)

]

= E

[

∑

i

ζ(0, i)

]

.

The LHS of (6.3) is greater than E
[

Widλ(T[0,1)(t))
]

. The RHS of (6.3) is bounded by
the length of [0, 1)× {λ}, proving the result. �

7. Scaling limits

A natural variation on the SHL(0) model is to attach slit particles of length δ, corre-

sponding to the slit map ϕδ
x(z) =

√

(z − x)2 − δ2 + x = δϕx/δ(z/δ) at positions of the
rescaled Poisson process δP and then analyse the corresponding conformal mappings
in the limit as δ → 0. Due to scale invariance of the half-plane, this is equivalent to
analysing the original model with slit particles of length 1, under the rescaling of space
and time given by

(7.1) F δ
t (z) = δFδ−1t(δ

−1z)

as δ → 0.
The following result is an immediate consequence of Lemma 5.1, via the scaling re-

lationship (7.1) and the connection between the forward and backwards SHL processes.
It shows that the rescaled SHL(0) interface is approximately flat and grows linearly in
time. This result can be contrasted with the small-particle scaling limit for HL(0) estab-
lished in [14] in which it is shown that clusters have a disk-shaped scaling limit which
grows exponentially in time. Under the conjectured connection between SHL(0) and
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HL(0) posed in Question 3, we expect the scaling limit of SHL(0) to capture the local
behaviour of HL(0) over small time periods. As the boundary of a disk is locally flat,
this result is consistent with our conjecture.

Theorem 7.1. Suppose µ is a SHL(0) process. Then, for any T > 0 and z ∈ H:= H ∪ ∂H,

sup
t≤δ−1T

|F δ
t (z)− (z + iπt/2)| → 0

in probability as δ → 0.

Proof. From the proof of Lemma 5.1, if z ∈ H, then

F̃ δ
t (z) = δ

(

z/δ +Mδ−1t(z/δ) + iπδ−1t/2
)

= z + iπt/2 + δMδ−1t(z/δ)

and

E

[

sup
s≤t

∣

∣

∣
δMδ−1s(z/δ)

∣

∣

∣

2
]

≤ Cδt

1 + δ−1Im z
.

If Im z > 0, then the result follows immediately.
A little more care is needed if z ∈ R. By translation invariance, we may assume that

z = 0. Fix 0 < t < Tδ−1. By the result above,

E

[

sup
s≤t

|F δ
s (0)− iπs/2|2

]

≤ Cδt,

so, by Chebychev,

P
(

Im F δ
t (0) < πt/4

)

≤ Cδ

t
.

Then, returning to the proof of Lemma 5.1, we have

E

[

sup
s≤δ−1T

|F δ
s (0)− iπs/2|2

]

≤ δE

[

∫ δ−1T

0

C

1 + δ−1Im F̃ δ
s (0)

ds

]

≤ δ

∫ t

0
Cds+ δE

[

∫ δ−1T

t

C

1 + δ−1Im F̃ δ
t (0)

ds

]

≤ Cδt+ CTδ/t

−→
δ→0

0,

where the penultimate line follows from bounding the expectation separately on the
event {Im F δ

t (0) ≥ πt/2} and its complement. �

Harmonic measure at time t > 0 of an interval I = (a, b) ⊂ ∂H can be defined for the
rescaled process by

Hδ
I (t) := (F δ

t )
−1(b)− (F δ

t )
−1(a) = δHδ−1I(δ

−tt).

Exactly as in Theorem 6.1, Hδ
I (t) is a martingale. Furthermore, as δ → 0, it con-

verges to a continuous process, and hence (on an appropriate time-scale) converges to a
Brownian motion. The following result makes this precise.
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Theorem 7.2. As δ → 0, the process (F δ
δ−1t)

−1(a) → 2Bt(a)/
√
3 in distribution, where

Bt(a) is a Brownian motion starting from a.

Proof. First observe that

F−1
t (z) = z + lim

n→∞

∑

(s,x)∈At,n

[

ϕ−1
x (F−1

s− (z))− F−1
s− (z)

]

= z +Mt(z) + lim
n→∞

∫ t

0

∫ n

−n

[

ϕ−1
x (F̃−1

s (z))− F̃−1
s (z)

]

dxds

where (Mt(z)) is a zero-mean martingale with

E
[

|Mt(z)|2
]

= E

[
∫ t

0

∫ ∞

−∞

∣

∣

∣
ϕ−1
x (F̃−1

s (z))− F̃−1
s (z)

∣

∣

∣

2
dxds

]

.

Now

ϕ−1
x (z) =

√

(z − x)2 + 1− x.

In particular, ϕ−1
x (and hence F−1

t ) maps R into itself. Hence, if a ∈ R, then

lim
n→∞

∫ t

0

∫ n

−n

[

ϕ−1
x (F̃−1

s (a))− F̃−1
s (a)

]

dxds = 0

and

E

[
∫ t

0

∫ ∞

−∞

∣

∣

∣
ϕ−1
x (F̃−1

s (a))− F̃−1
s (a)

∣

∣

∣

2
dxds

]

= t

∫ ∞

−∞

∣

∣ϕ−1
x (0)

∣

∣

2
dx = 4t/3.

Hence

E
[

|(F δ
δ−1t)

−1(a)− a|2
]

= δ2 · 4(δ−2t)/3 = 4t/3.

The result follows from standard tightness computations together with Lévy’s charac-
terization of Brownian motion. �

Remark 7.3. We can furthermore observe that there exists some constant C such that
∫ ∞

−∞

∣

∣ϕ−1
x (a+ h)− ϕ−1

x (a)
∣

∣

2
dx ≤ Ch2.

Using this condition, one can show that if a 6= b then the the scaling limits of (F δ
δ−1t)

−1(a)

and (F δ
δ−1t)

−1(b) evolve as independent Brownian motions until they meet, at which
point they coalesce. As any pair of independent Brownian motions eventually meet, this
provides an alternative proof of Theorem 6.2, that the harmonic measure carried by any
interval must eventually be equal to zero. It is possible to prove the stronger result that
(F δ

δ−1t)
−1 converges to the Brownian web: it is straightforward to show that the inverse

map F−1
t , restricted to the real line, corresponds to the coalescing stochastic flow defined

in [4]. (Indeed, the motivation behind the construction of the coalescing stochastic flow
in [4] was a conjectured connection with an HL(0) cluster growing on the line). It is
shown there that the coalescing stochastic flow converges to the Brownian web under an
appropriate rescaling.
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7.1. Fingers. As the cluster at time t, Kt = Ft(∂H), is a forest, for any point z ∈ Kt

there is a unique path νtz : [0, 1] → Kt which connects z to ∂H.

Definition 7.4. For s < t, let Ks,t(z) denote the unique point on ν
t
z which is in Ks and

furthest from ∂H (with distance measured along the path by the order of [0, 1]). (This
path may consist of a single point if z ∈ ∂H). More precisely let

t̃ = inf{t ∈ [0, 1] : νtz(t) ∈ Ks},
and then

Ks,t(z) = νtz(t̃).

For each s < t, let FR
s,t : R → R be the solution to

FR
s,t(a) = a+ lim

n→∞

∑

(u,x)∈At,n\As,n

[

FR
s,u−(Re ϕx(a))− FR

s,u−(a)
]

.

Existence and uniqueness of this process follows in exactly the same way as Ft. This is
a real valued process, that as the following Lemma establishes, identifies the points on
∂H being sent to the roots of particles on a chosen tree.

Lemma 7.5. For any a ∈ R and s < t,

Ks,t(Ft(a)) = Fs(F
R
s,t(a)).

Proof. For each n ∈ N, let Kn
t = Fn

t (∂H) and define Kn
s,t analogously to Ks,t, but with

respect to Fn. Also, let

FR,n
s,t (a) = a+

∑

(u,x)∈At,n\As,n

[

FR,n
s,u−(Re ϕx(a))− FR,n

s,u−(a)
]

.

With probability 1, there is a finite number k such thatAt,n\As,n = {(t1, x1), . . . , (tk, sk)},
where s < t1 < · · · < tk ≤ t. The identity

Kn
s,t(F

n
t (a)) = Fn

s (F
R,n
s,t (a)).

follows by straightforward induction on k, using the fact that Fn
t (z) = Fn

tk−1
(ϕxk

(z)).
Letting n→ ∞ gives the required result. �

For δ > 0, define Kδ
s,t and F

R,δ
s,t (a) using the same scaling as in (7.1).

Lemma 7.6. As δ → 0, FR,δ
δ−1s,δ−1t

(a) → 2Bt−s(a)/
√
3 in distribution, where Bt(a) is a

Brownian motion starting from a.

Proof. The proof uses similar ideas to those in the rest of the paper, so only an outline
is provided. Define a time-reversed version of F̃R as was done for F . Then

F̃R
s,t(a) = a+ lim

n→∞

∑

(u,x)∈At,n\As,n

[

Re ϕx(F̃
R
s,u−(a))− F̃R

s,u−(a)
]

= a+Ms,t(a)

where (Ms,t(a)) is a zero-mean martingale with

E
[

Ms,t(a)
2
]

= (t− s)

∫ ∞

−∞
|Re ϕx(0)|2 dx = 4(t− s)/3.
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The remainder of the proof is similar to Theorem 7.2. �

Finally, we are in a position to prove that when appropriately scaled, the scaling
limit of SHL(0) has Hausdorff dimension 3/2. This is an immediate consequence of
the following result which shows that the finger connecting a typical point on Kt to ∂H
satisfies the same 2:1 scaling law as 1-dimensional Brownian motion. Here, the imaginary
part of the finger is identified with the time index, and the real part with spatial location
of the 1-dimensional Brownian motion.

Theorem 7.7. Fix t > 0, and let Bt be a standard Brownian motion starting from 0.
As δ → 0

δ2Im Kδ−2s,δ−2t(Fδ−2t(0)) → πs/2

δRe Kδ−2s,δ−2t(Fδ−2t(0)) → 2Bt−s/
√
3,

where convergence is in distribution in the Skorokhod topology.

Proof. By Lemma 7.5,

Kδ−2s,δ−2t(Fδ−2t(0)) = Fδ−2s(F
R

δ−2s,δ−2t(0))

= δ−1F δ
δ−1s(F

R,δ
δ−1s,δ−1t

(0))

= δ−1FR,δ
δ−1s,δ−1t

(0) + iδ−2πs/2

+ δ−1
(

F δ
δ−1s(F

R,δ
δ−1s,δ−1t

(0))− FR,δ
δ−1s,δ−1t

(0)− iδ−1πs/2
)

.

By Theorem 7.1 and the fact that

E

[

E
[

δM δ
δ−1s(F

R,δ
δ−1s,δ−1t

(0))
∣

∣

∣
FR,δ
δ−1s,δ−1t

(0))
]

]

≤ E

[

Cδs

1 + δ−1Im FR,δ
δ−1s,δ−1t

(0))

]

≤ Cδs,

we obtain that

lim
δ→0

(

F δ
δ−1s(F

R,δ
δ−1s,δ−1t

(0))− FR,δ
δ−1s,δ−1t

(0)− iδ−1πs/2
)

= 0,

in probability.
Then the result follows by taking real and imaginary parts of

δ−1FR,δ
δ−1s,δ−1t

(0) + iδ−2πs/2

and using Lemma 7.6. �

8. Number of particles in a tree

In this section we prove that a tree of height t contains an order of t3/2 particles.
Let a, b ∈ ∂H and define the interval It = [F−1

t (a), F−1
t (b)]. Now consider the process

Mt = −
∫ t

0
‖Is‖ds+ lim

n→∞

∑

(u,x)∈At,n

✶{
x∈[F−1

u (a),F−1
u (b)]

}.

Lemma 8.1. Mt is a mean zero martingale with respect to Ft.
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Proof. By the independence of At+∆t\At and At and since Ft is adapted,Mt is a Markov
chain. Thus it is enough to prove that

lim
∆t→0

1

∆t
E
[

Mt+∆t −Mt

∣

∣

∣
Ft

]

= 0.

Indeed

E [Mt+∆t −Mt|Ft] = −E

[
∫ t+∆t

t
‖Is‖ds

∣

∣

∣
Ft

]

+

E



 lim
n→∞

∑

(u,x)∈At+∆t,n\At,n

✶{
x∈[F−1

u (a),F−1
u (b)]

}

∣

∣

∣

∣

∣

Ft



 .

First by Theorem 6.1 we have that

lim
∆t→0

− 1

∆t
E

[
∫ t+∆t

t
‖Is‖ds

∣

∣

∣
Ft

]

= −‖It‖.

On the other hand for a small ∆t

E



 lim
n→∞

∑

(u,x)∈At+∆t,n\At,n

✶{
x∈[F−1

u (a),F−1
u (b)]

}

∣

∣

∣

∣

∣

Ft



 ,

converges to a Poisson random variable with mean ‖It‖∆t proving the statement. �

Define τ = inf{t ≥ 0 : ‖It‖ = 0}. Thus by the optional stopping theorem and the fact
that P(t ≤ τ) > 0, one can conclude:

Corollary 8.2. E[Mt|τ > t] = 0.

In conclusion we obtain from Lemma 8.1 that the expected number of particles hitting
the trees growing from an interval [a, b] ⊂ ∂H, conditioned on the harmonic measure of

[a, b] to not vanish up to time t, equals the expectation of
∫ t
0 ‖Is‖ds under the same

conditioning i.e. the area between the curves {F−1
s (a)}s≤t and {F−1

s (b)}s≤t.

Theorem 8.3. For any a < b, there are 0 < c < C <∞ such that

c <
1

t3/2
E



 lim
n→∞

∑

(u,x)∈At,n

✶{
x∈[F−1

u (a),F−1
u (b)]

}

∣

∣

∣

∣

∣

t < τ



 < C.

Proof. By Theorem 7.2 {‖Ist‖}s≤1/
√
t conditioned on {t < τ} converges in distribution

to (b − a) + 4Bs(0)/
√
3 conditioned to avoid the origin up to time 1. Thus for a large

enough t > 0, using the estimate for the area under the graph of conditioned Brownian
motion [7, Theorem 1.4], there are c < C such that

(8.1) c < P

(
∫ t

0
‖Is‖ds > x

∣

∣

∣
t < τ

)

· e3(xt−3/2)2 < C.

By integrating over x we obtain that

c <
1

t3/2
E

[
∫ t

0
‖Is‖ds

∣

∣

∣
t < τ

]

< C.

Using Lemma 8.1 we obtain the statement. �
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Lastly for ã =
√
ta, b̃ =

√
tb, we wish to show that with high probability at times

proportional to t there is a tree growing from
[

ã, b̃
]

of height proportional to t.

Proposition 8.4. Let ǫ(t) = o(
√
t) as t→ ∞. With probability tending to 1 as t→ ∞,

there is an s ∈ [t/ǫ(t), t] such that

sup
F−1
s (ã)≤x≤F−1

s (b̃)

Im Fs(x) >
πt

6ǫ(t)
.

Proof. Without loss of generality assume that a < 0 and b > 0. Partition the interval

[−t/2, t/2] to t3/4 subintervals of length t1/4. Call the end points {ζi}t3/4i=1 .

By Theorem 7.2, {F−1
s (ã)}s≤t/

√
t and {F−1

s (b̃)}s≤t/
√
t converge in distribution to

independent Brownian motions {Ba
s}s≤1 and {Bb

s}s≤1, starting from a and b respectively,
until they intersect and then they perform the same Brownian motion.

The proof follows by showing that with high probability the points {ζi}t3/4i=1 are sent
by the process sufficiently high. Since the points are spaced in a smaller order than the
Brownian fluctuations, the Brownian motions must hit at least one of the fixed points

ζi, thus guaranteeing the height of a tree growing out from
[

ã, b̃
]

.

Define the events

A1
s =

t3/4
⋂

i=1

{

Im Fs(ζi) >
πt

6ǫ(t)

}

A2
s =

t3/4
⋃

i=1

{

ζi/
√
t ∈

[

Ba
s , B

b
s

]}

A3
s = {Ba

s 6= Bb
s}.

Thus as t→ ∞ the stated probability is greater than

lim
t→∞

P
(

A1
s ∩ A2

s ∩ A2
s holds for some s ∈ [t/ǫ(t), t]

)

.

This converges to 1 by Theoreom 7.1 and basic properties of Brownian motion. Note
that the ǫ(t) correction arises to guarantee the high probability of non intersection of
Ba

s and Bb
s before time s. �

Acknowledgements

The authors would like to thank Itai Benjamini, Jacob Kagan and Gady Kozma for
fruitful discussions at the beginning of this project. We would also like to thank the
anonymous referee for their thorough reading of this manuscript and helpful comments
which greatly improved the readability. Amanda Turner would like to thank the Uni-
versity of Geneva for a visiting position in 2019/20 during which time much of this work
was completed.

References
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Appendices

Appendix A. Proof of Lemma 3.3

Proof. (i) Without loss of generality we may suppose that z = iy for some y > 0.
First suppose that y > 2. Then

|ϕx(iy)− iy|2 =
∣

∣

∣

√

(iy − x)2 − 1− (iy − x)
∣

∣

∣

2

= (x2 + y2)
∣

∣

∣

√

1− (iy − x)−2 − 1
∣

∣

∣

2

≤ (x2 + y2)−1.

Hence
∫ ∞

−∞
|ϕx(z)− z|2dx ≤ π

y
.

Now suppose that y ≤ 2. Then if |x| ≤ 2, a very crude estimate yields

|ϕx(iy)− iy|2 ≤ 36,

whereas if |x| > 2, then the same argument as above gives

|ϕx(iy)− iy|2 ≤ (x2 + y2)−1 ≤ x−2.

Hence
∫ ∞

−∞
|ϕx(z)− z|2dx ≤

∫ 2

−2
36dx+ 2

∫ ∞

2
x−2dx ≤ 145.

The bound in (3.9) follows.
For the bounds (3.10) and (3.11), note that similarly if either |x| or y > 2,

|ϕ′
x(iy)− 1|2 =

∣

∣

∣

∣

∣

iy − x
√

(iy − x)2 − 1
− 1

∣

∣

∣

∣

∣

2

=
∣

∣

∣
(1− (iy − x)−2)−1/2 − 1

∣

∣

∣

2

≤ (x2 + y2)−2.

If |x|, y ≤ 2, then one may write x = sgn(x)+w where |w| ≤ 1. A straightforward
computation gives

|ϕ′
x(iy)− 1|2 ≤ 4

√
2

√

w2 + y2
+ 2.

Hence, if y > 2, then
∫ ∞

−∞
|ϕ′

x(z)− 1|dx ≤ π

y

and
∫ ∞

−∞
|ϕ′

x(z)− 1|2dx ≤ π

2y3
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and if y ≤ 2, then

∫ ∞

−∞
|ϕ′

x(z)− 1|dx ≤ 1 + 4
√

2 + 8y−1 ≤ 7

y

and
∫ ∞

−∞
|ϕ′

x(z)− 1|2dx ≤ 18
(

1 + log(y−1)✶{y<1}

)

,

where we have not attempted to optimise the absolute constants.
(ii) Fix z ∈ H and consider the contour defined by the four curves γi, i = 1, 2, 3, 4

where

γ1(t) = z − t for t ∈ [−n, n]
γ2(t) = z − n+ it for t ∈ [0, R]

γ3(t) = z + t+ iR for t ∈ [−n, n]
γ4(t) = z + n+ iR− it for t ∈ [0, R],

for some n1/2 ≪ R≪ n (see Figure 3).

zz − n

z − n+ iR

z + n

z + n+ iR

γ1

γ2 γ4

γ3

Figure 3. Illustration of the curves.

Since the function g(w) =
√
w2 − 1− w is analytic within the contour,

∫ n

−n
(ϕx(z)− z)dx =

∮

γ1

g(w)dw = −
(
∮

γ2

+

∮

γ3

+

∮

γ4

)

g(w)dw.

Exactly the same estimates as in the proof of (i) show that if n − |Re(z)| > 2,
then

∣

∣

∣

∣

∮

γi

g(w)dw

∣

∣

∣

∣

≤ π

n− |Re z| ,

otherwise
∣

∣

∣

∣

∮

γi

g(w)dw

∣

∣

∣

∣

≤ 12 + logR ≤ 12 + log n.
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Also

−
∮

γ3

g(w)dw =

∫ n

−n
(ϕx(z + iR)− (z + iR))dx

=

∫ n

−n

1

2(z + iR− x)
dx+O

( n

R3

)

=

∫ n

−n

z̄ − iR− x

2((Re z − x)2 + (Im z +R)2)
dx+O

( n

R3

)

=
1

2
log

(Re z + n)2 + (Im z +R)2

(Re z − n)2 + (Im z +R)2

+ i
1

2

(

tan−1

(

Re z + n

Im z +R

)

− tan−1

(

Re z − n

Im z +R

))

+O
( n

R3

)

.

Hence
∮

γi

g(w)dw → 0

as n→ ∞ for i = 2 and 4 and so

lim
n→∞

∫ n

−n
(ϕx(z)− z)dx =

iπ

2

as required.
(iii) Bounds (3.13) and (3.14) follow by exactly the same method as in (ii), but

without taking n→ ∞. Bound (3.15) is established similarly to (i).
�

Appendix B. Proof of Lemma 5.4

As mentioned before, it suffices to prove the statement for the function F̃t.
Fix t.
By Theorem 4.3, F̃t is the limit of the sequence

(

G
(n)
t

)

in the topology of mean-squared
convergence on compact subset.

For every n, G
(n)
t is a composition of finitely many slit functions of the type ϕx(z) =

x+
√

(z − x)2 − 1. Fix δ < 1/10 small. The mapping ϕx is conformal from the half plane
to (a subset of) itself. However, it is well defined and analytic (though not necessarily
injective) in the domain Hu,δ = H ∪ Bδ(u), provided that u ∈ R is such that {x, x −
1, x+ 1} ∩B100δ1/2(u) = ∅. We write ζ = 100δ1/2.

We now want to control the probability that the function G
(n)
t is analytic in H0,δ. We

remember that
G

(n)
t = ϕxN ◦ ϕxN−1

◦ · · · ◦ ϕx2
◦ ϕx1

where x1, . . . xN are the Poisson arrivals. Looking at the distribution of x1, . . . xN , we
get that N ∼ Pois(2nt) and (xk) are i.i.d. Unif[−n, n].

Write Vk = ϕxk
◦ ϕxk−1

◦ · · · ◦ ϕx2
◦ ϕx1

. Then G
(n)
t = VN , and we will recursively

estimate the probability that Vk is analytic in H0,δ.
Note that

1

n− (1 + ζ)

∫ n

1+ζ
|ϕ′(u)|du =

1

n− (1 + ζ)

∫ n

1+ζ
ϕ′(u)du =

ϕ(n)− ϕ(1 + ζ)

n− (1 + ζ)
<
n+ 1

n− 2
,
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which means that, for x ∼ Unif[−n, n], the average derivative of ϕx at zero, conditioned
on the event {|x| ≥ 1 + ζ} is bounded by n+1

n−2 .

Let u0 = 0 and let I0 = [−δ, δ]. Also let uk = Vk(0) = ϕxk
(uk−1) and Ik = Vk(I0) =

ϕxk
(Ik−1). Let T = inf{k : |xk − uk−1| < 1 + 2ζ}. Then,

E
(

|Ik|
∣

∣

∣
T > k

)

≤ 2δ

(

n+ 1

n− 2

)k

≤ 2δ exp(3k/n).

We now break into three events. Let

A1 =
{

T > N
}

,

A2 =
{

T ≤ N ; B2ζ+|IT−1|(uT−1) ∩ {xT , xT − 1, xT + 1} = ∅
}

,

A3 =
{

T ≤ N ; B2ζ+|IT−1|(uT−1) ∩ {xT , xT − 1, xT + 1} 6= ∅
}

.

On the event A1, the function G
(n)
t is analytic (though not injective) in the domain

Hu,δ. The same happens on the event A2, because under this event VT−1 is analytic
in Bδ(u), and then ϕxT analytically sends VT−1(Bδ(u)) into the upper half plane, and
then all further slit functions maintain analyticity. On the event A3 analyticity is not
guaranteed, thus we need to bound the probability of this event.

But

P(A3) =
∞
∑

k=1

P(T = k)P(A3|T = k)

=
∞
∑

k=1

P(T = k)P(N ≥ k)P
(

B2ζ+|Ik−1|(uk−1) ∩ {xk, xk − 1, xk + 1} 6= ∅
∣

∣

∣
T = k

)

≤
∞
∑

k=1

P(T = k)P(N ≥ k) · 3
(

2ζ +E
(

|Ik−1|
∣

∣

∣
T = k

)

)

≤ 6ζ + 2δ
∞
∑

k=1

P(k = T )P(N ≥ k) exp(3k/n)

≤ 6ζ + 2δ sup
{

P(N ≥ k) exp(3k/n) : k ≥ 1
}

≤ 6ζ + Cδ

for some constant C = C(t) where the last inequality follows from the fact that N is
a nt Poisson variable. Write ψ = 6ζ + Cδ and note that ψ goes to zero as δ does.

So we have established that for every n, the function G
(n)
t is analytic in H0,δ with

probability at least 1− ψ. Thus w.p. at least 1− ψ there exists a subsequence
(

G
(nk)
t

)

s.t. for all k, G
(nk)
t is analytic in H0,δ. Also, G

(nk)
t converges to F̃t in L2. Thus F̃t
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is differentiable at 0 w.p. at least 1 − ψ, and as, by the choice of δ, ψ can be made
arbitrarily small, we get that F̃t is a.s. differentiable at 0.
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