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A B S T R A C T

This article explores the potential of vibro-acoustics to detect physical ageing of plastic pipes.
For this purpose, two different topics are combined: the ability of vibro-acoustics to estimate
the storage modulus of a plastic pipe, and the sensitivity of the estimated storage modulus
to changes due to ageing. Concerning the first topic, a vibro-acoustic method was applied
to two water-filled HDPE pipes, one surrounded by air and another by sand. The excitation
was achieved via an impact hammer and the propagating signal was recorded with the
aid of hydrophones. Signal analysis led to the estimation of the axial wavenumber of the
propagating axisymmetric fluid-borne wave. This value was used in the dispersion equation
for the propagating mode to evaluate the storage modulus of the pipe material for a given
experimental setup. Results revealed that the vibro-acoustic method gives consistent and reliable
estimations of the storage modulus. Concerning the second topic, samples from two PVC pipes
with an age difference of 41 years were subjected to dynamic mechanical analysis to study
the behaviour of the storage modulus as a function of frequency. Results showed that it is
feasible to distinguish discrepancies in the magnitude of the storage modulus due to ageing,
provided that the measurement uncertainty is small. The uncertainty analysis highlighted the
parameters that need to be more accurately known in order to lower the overall uncertainty of
the estimated storage modulus when the proposed vibro-acoustic method is used. Irrespectively
of the medium surrounding the pipe (air or soil), the distance between the points of the
recording signals should be sufficiently long to measure the signal phase accurately. It was
found that the accurate knowledge of the pipe’s geometry, i.e. the wall thickness and internal
radius, was more or equally important for controlling the overall uncertainty than that of the
parameters of surrounding soil.

1. Introduction

Physical ageing is considered as one of the profound degradation mechanisms of plastic pipes used in water [1] and gas [2]
distribution systems, and in urban drainage systems [3]. Tensile testing indicates that ageing imposes an increase in the ultimate
stress, followed by a decrease in the strain at break. Ageing is also well correlated with an increase in the elastic modulus. Plastic
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(i.e. PVC) pipes that have been in service for approximately 4 decades have demonstrated an increase in elastic modulus up to
37% [3]. This transition towards more brittle material behaviour due to ageing is also reflected on the lower impact resistance [4,5].
Consequently, potential issues should be considered regarding the stability of the pipe during inspection, activities in the close
vicinity and the installation of new household connections.

Besides conventional tensile testing [1,3] and impact tests [4,5], other methods have also been utilized in order to study
physical ageing in thermoplastic materials. Most existing methods are destructive, such as differential scanning calorimetry [5],
dynamic mechanical analysis [5,6], and tensile/ torsional creep compliance measurements [4,7]. However, the development of
non-destructive single-sided (from the pipe’s interior) techniques is essential to inspect pipes in operation to ensure lower inspection
costs and minimal disruption of the system. Relevant studies explore the capabilities of micro-indentation [1] and non-collinear
ultrasonics in ageing detection [8,9]. Nonetheless, significant limitations exist in both methods, since micro-indentation focuses only
on the surface of the material, while non-collinear ultrasonics require continuous precise alignment and known acoustic properties
of the inspected medium. A common way to estimate the linear properties of materials in the lower strain non-destructive regime
is ultrasound [10,11]. However, the capability of detecting ageing at high ultrasonic frequencies has proved to be challenging [7].
As a result, the measured sound velocity of the material, and relatedly the storage modulus, is insensitive to ageing for frequency
values within the ultrasonic domain with the conventional pulse-echo method [8].

So far, there is no recorded attempt to track a pipe’s storage modulus with low frequency acoustics. The term ‘‘low frequency’’
in acoustics denotes frequencies at which the compressional wavelength in the pipe wall is larger than the inner circumference
of the pipe [12]. Apart from higher sensitivity to ageing, a shift to lower frequencies would also limit the number of propagating
acoustic modes mainly to the axisymmetric. These are the longitudinal L(0,1) and torsional T(0,1) modes. For fluid-filled pipes, an
additional mode, the fluid-borne wave, can also be detected at low frequencies. In the literature, the fluid-borne mode has received
much attention since it attenuates significantly less compared to the other modes when the pipe is buried and it is less affected by
the presence of joints and fittings [13]. Application of the fluid-borne wave has been studied mainly in order to locate the position
of a leakage in water distribution systems via correlation of the received signals from the leakage at two known locations and
corresponding time delay [14,15]. Other applications of axisymmetric waves include the estimation of soil parameters around the
pipe [16] and locating buried pipes via ground surface vibration [17]. These waves can be excited in-situ with a relatively complex
experimental set-up [18,19].

In this article, a new method to track the ageing levels of plastic pipes is proposed based on low frequency vibro-acoustics. An
impact hammer was used to excite low frequency waves in water-filled high-density polyethylene (HDPE) pipes installed above and
below ground. The propagated wave signal was received on the hydrophones inserted in the pipe. The raw signals were processed to
estimate the real part of the axial wavenumber of the propagating fluid-borne wave. Subsequently, the complete dispersion equation
for axisymmetric waves (Appendix A) was applied to the experimental data to estimate the storage modulus of the pipe material.
Dynamic mechanical analysis (DMA) was carried out on samples from the HDPE pipes to verify the magnitude of the estimated
storage modulus. DMA was also conducted on samples taken from PVC pipes with extrusion age difference of 41 years to study how
the storage modulus behaves with respect to frequency and pipe age. This enables us to suggest that the axisymmetric fluid-borne
wave can be used to detect ageing of buried plastic pipes.

2. Methodology

2.1. Experimental setup

Two different setups were used to examine the propagation of the fluid-borne wave in a water-filled HDPE pipe surrounded by
air (‘‘Set-up A’’) and water-filled HDPE pipe surrounded by sand (‘‘Set-up B’’). These pipes had an external diameter of 110 mm
and wall thickness of 11 mm and were installed in a 40 m long, 3 m wide and 5 m deep sandpit in the The Integrated Civil and
Infrastructure Research Centre at the University of Sheffield. The excitation of waves in the system was achieved via an impact
hammer (PCB 086C03, 0.16 kg). The rubber tip of the hammer was carefully selected to generate low frequency modes of interest.
A built-in load cell connected to the tip of hammer was capable of recording the force applied to the pipe at every hit. The acoustic
signal was captured with hydrophones (B&K 8103) connected to a condition amplifier (B&K Nexus 2693-0S4). Fig. 1 shows the
two experimental setups including the hydrophone arrangements in the pipes. Set-up A was a straight pipe (see Fig. 1(a)). In this
set-up, just one hydrophone was used as the distance between the excitation point and hydrophone could be directly measured
5.3 m. Set-up B was a combination of a straight section and elbow section tilted at an angle (see Fig. 1(c)). In this set-up a second
hydrophone was added 0.3 m away from the first one to help to resolve the uncertainty in the measurement of the effective distance
between the impact and receiver points. The detected vibration and acoustic signals were recorded with a data acquisition module
(NI USB-4431) at the sampling rate of 12 kHz.

The measured or assumed values and their standard deviations in the properties of the pipe material, water and soil are given in
Table 1. The density of the pipe material was measured from extracted samples according to ISO 1183-1 [20] (immersion method)
and was found to be 957.6 kg/m3. The geometry of the pipe shell (wall thickness and internal radius) was determined in-situ with a
measuring tape, accepting an uncertainty of 0.5 mm. Regarding the properties of water, reported values were used [21] with suitable
uncertainties to compensate for temperature changes within a certain temperature range (10−20 °C). The values of the remaining
properties were retrieved from literature. The magnitude of their uncertainties was based on the variability of the values observed
in different scientific sources [17,22–24] and expected variability in practice, rather than the prevailed laboratory conditions in the
current study.
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Fig. 1. An illustration of the experimental set-ups: Set-up A (a); hydrophone installation method (b); and Set-up B (c).

Table 1
Measured or assumed pipe, water and soil properties and their standard uncertainties used in the following analyses.

Medium Property Symbol (Units) Value Uncertainty

Pipe shell Density 𝜌 (kg/m3) 957.6 1.4
Poisson ratio 𝑣 (-) 0.4 0.05
Loss factor 𝜂𝑠 (-) 0.05 0.01
Internal radius 𝑅𝑖 (mm) 44 0.5
Wall thickness ℎ (mm) 11 0.5

Fluid Density 𝜌𝑓 (kg/m3) 998 2
Compressional wave velocity 𝑐𝑓 (m/s) 1481.4 35

Soil Density (bulk) 𝜌𝑠 (kg/m
3) 1500 600

Compressional wave velocity 𝑐𝑑 (m/s) 200 150
Shear wave velocity 𝑐𝑡 (m/s) 100 28

The soil in the below-ground section was washed silica sand and assumed properties were retrieved from Gao et al. [17]. The
uncertainties of the soil parameters were considered higher compared to these of other media, since soil is expected to be the medium
with the highest parameter variability. These uncertainties can be high enough for the density and sound speeds to be comparable
with the values reported by Long et al. [25] (𝜌𝑠 = 2100 kg∕m3, 𝑐𝑑 = 350 m∕s and 𝑐𝑡 = 70 m∕s) for typical sandy soil.

2.2. Signal analysis

Fig. 2 presents the process that was followed to estimate the real part of the axial wavenumber 𝑘𝑟𝑒𝑧 of the fluid-borne mode
from the raw signals. Depending on the set-up, raw signals could refer to signals from the impact hammer and single hydrophone
(Set-up A) or exclusively to signals from the two hydrophones (Set-up B). A Hanning time window was applied to the signals in
order to isolate the desired mode (i.e. the fluid-borne wave) from other present modes or signals reflected from various artefacts.
The Hanning window was selected as it ensures the smoothing of abrupt ends and reduction of the spectral leakage. The application
of a 6th order bandpass Butterworth frequency filter allowed for the analysis in a specific frequency range. The selected order of
the filter proved to provide a numerically stable output signal with a flat magnitude response between the cut-off frequencies. The
choice of the cut-off frequencies (𝑓𝑏 and 𝑓𝑒) was informed by the coherence analysis of the raw signals to help identify the frequency
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range in which the two recorded signals were linearly related. As a result, the cut-off frequencies for the analysis of each set-up were
determined by observing the consistent tendency of the coherence function to approach unity. The coherence is defined as [26]:

𝛾(𝜔) =
|𝐺12(𝜔)|2

|𝐺11(𝜔)||𝐺22(𝜔)| (1)

where 𝐺12 is the mean cross-spectral density between the two signals, 𝐺11 and 𝐺22 are their mean autospectral densities, and 𝜔 is
the angular frequency.

The transition to the frequency domain was achieved by applying the Discrete Fourier Transform (DFT) to each signal and then
extracting the phase. The real axial wavenumber was estimated on the basis of the difference in the phase between the two signals
and distance between the points of their reception. In total, the experiments were repeated 10 times for each experimental set-up
and recorded spectra were averaged for the analysis.

2.3. Pipe storage modulus estimation

The storage moduli of the pipes in the described experimental setups were estimated by solving the complete dispersion equation
for sound propagation in a water-filled visco-elastic pipe in vacuum (used for Set-up A) or buried in soil (used for Set-up B).
Appendix A presents the derivation of the general solution (Eq. (A.23)) and solution specific for the axisymmetric modes (Eq. (A.24)).
Rearranging Eq. (A.24) with respect to the pipe’s storage modulus 𝐸 leads to the function 𝑓 of various properties:

𝐸 = 𝑓 (𝑣, 𝜌, 𝜂𝑠, 𝑅𝑖, ℎ, 𝜌𝑓 , 𝑐𝑓 , 𝜌𝑠, 𝑐𝑑 , 𝑐𝑡, 𝑘
𝑟𝑒
𝑧 , 𝑘

𝑖𝑚
𝑧 ) (2)

where 𝑘𝑟𝑒𝑧 and 𝑘𝑖𝑚𝑧 are the real and imaginary part of the axial wavenumber, respectively, and the rest of the symbols are defined
in Table 1. In the case of Set-up A, the soil related parameters were ignored in this analysis.

When putting this methodology into practice, the use of the Law of Propagation of Uncertainties (LPU) is essential in order
to define the uncertainty levels of the estimated storage modulus. Assuming that all the parameters in Eq. (2) are considered
independent and therefore all the covariances are zero, the combined effect of the individual standard uncertainties can be expressed
via the LPU [27]:

𝑢(𝐸)2 =

𝑁∑
𝑛=1

𝑢(𝑥𝑖)
2

(
𝜕𝑓

𝜕𝑥𝑖

)2

(3)

where 𝑢(𝑥𝑖) is the standard uncertainty of each individual parameter 𝑥𝑖 and 𝑁 is the total number of parameters in the function 𝑓

in Eq. (2).
The individual uncertainties in Eq. (3) are known for all the parameters (Table 1) except for the components of the axial

wavenumber (𝑘𝑟𝑒𝑧 and 𝑘𝑖𝑚𝑧 ). The application of the LPU to the formula for the real part of the axial wavenumber 𝑘𝑟𝑒𝑧 (Fig. 2) allows
for the estimation of its standard uncertainty 𝑢(𝑘𝑟𝑒𝑧 ) (assuming independent measurements) [27]:

𝑢(𝑘𝑟𝑒𝑧 ) =

√
1

𝑑𝑧2
𝑢2(𝑑𝜙) +

𝑑𝜙2

𝑑𝑧4
𝑢2(𝑑𝑧) (4)

where 𝑑𝑧 is the distance between the two considered sensors (impact hammer and/or hydrophone(s)), 𝑢(𝑑𝑧) is the uncertainty of the
distance 𝑑𝑧, 𝑑𝜙 is the phase difference between the received signals, and 𝑢(𝑑𝜙) is the uncertainty of the phase difference 𝑑𝜙. 𝑢(𝑑𝑧)
was assumed to be 0.5 mm and 𝑢(𝑑𝜙) was estimated as the standard deviation in the phase measured across all the experiments for
a given set-up.

Further, the presented signal analysis offers a process to extract only the real part of the axial wavenumber (𝑘𝑟𝑒𝑧 ). In this study,
the imaginary part 𝑘𝑖𝑚𝑧 was difficult to extract accurately from the experiments and it was considered to be zero irrespectively of
frequency. In order to evaluate the effect of this choice, the two setups were simulated in COMSOL Multiphysics®. Subsequently,
the uncertainty of the imaginary part of the axial wavenumber was considered to be equal to the value of the imaginary part itself
(𝑢(𝑘𝑖𝑚𝑧 ) = 𝑘𝑖𝑚𝑧 ). Details on the development of the models along with the solutions are given in Appendix B.

2.4. Dynamic mechanical analysis and ageing

Dynamic mechanical analysis (DMA) was performed in order to study the viscoelastic behaviour of samples taken from the HDPE
pipes used in the described experiments and from two PVC pipes extensively tested by Makris et al. [3]. The samples were milled
along the longitudinal pipes axis and through the whole pipe wall thickness. The sample dimensions were 20 mm 𝑥 10 mm 𝑥 11 mm
for the HDPE samples and 20 mm 𝑥 10 mm 𝑥 8 mm for the PVC samples. The desired parameter was the frequency-dependent storage
modulus of the pipe material. DMA was conducted with a Metravib (VA 2000) analyzer at frequencies between 1 and 50 Hz, within
a temperature range of −10 °C to 20 °C at 5 °C steps. Subsequently, time–temperature superposition was applied in order to estimate
the storage modulus at a wider range of frequencies and specific reference temperature (10 °C for the HDPE pipe in lab conditions
and 20 °C for the PVC samples).

In the case of the HDPE pipes, the storage modulus from DMA was compared to the storage modulus calculated from the
vibro-acoustic method. In the case of the PVC pipes, the storage modulus from DMA was used to explore the capability of the
fluid-borne axisymmetric wave to detect physical ageing at low frequencies while considering the uncertainty levels measured from
the actual vibro-acoustic experiments. The measured uncertainty of the storage modulus for the two different setups was expressed
as a percentage which was thereafter applied to the modulus values obtained from the DMA results. The PVC pipes were a 44 years
old pipe (‘‘P-1’’) that had served as a foul sewer and a 3 years old unused pipe (‘‘P-2’’).
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Fig. 2. The flowchart of the process used to estimate the real wavenumber 𝑘𝑟𝑒
𝑧
from the raw signals. The subscripts ‘‘b’’ and ‘‘e’’ denote the upper and lower

limits in time windowing and frequency filtering. 𝜙𝑗 is the extracted phase of a signal, 𝑑𝑗 is the distance between the excitation point and the point of signal

reception, 𝑑𝜙 and 𝑑𝑧 are the phase difference and distance between two receiving signals respectively, and 𝑖 =
√
−1.
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Fig. 3. An example of raw signals, 𝑠1 and 𝑠2, received on the two hydrophones in Set-up B.

Fig. 4. The coherence as a function of frequency between the hammer and the single hydrophone signal in Set-up A (a) and between the two hydrophone signals
Set-up B (b). In each case, the coherence is estimated from Eq. (1). The red dashed lines show the frequencies 𝑓𝑏 and 𝑓𝑒 used in the Butterworth frequency
filter.

3. Results

3.1. Estimation of the pipe storage modulus using vibro-acoustics

An example of the received raw signals from the two hydrophones in Set-up B is given in Fig. 3. With such raw signals, the
coherence for a wide range of frequencies (up to 6 kHz) was determined for both setups (Fig. 4). The presented coherence values were
evaluated based on the average cross-spectral and auto-spectral densities of the signals received during ten repeated independent
measurements.

A Hanning time window was applied to the raw signal. The shape and extent of the time window is presented in Fig. 5(a).
Fig. 5(b) presents an example of its application on the raw signals. The frequency limits used for the Butterworth frequency filtering
of the signals were determined at the points in which the coherence function deviated consistently from unity as illustrated in Fig. 4.
Following the notation given in Fig. 2, 𝑓𝑏 and 𝑓𝑒 were set to 50 and 750 Hz, respectively, for Set-up A, and 50 and 650 Hz for Set-up
B.

Fig. 6 presents the real part of the wavenumber of the axisymmetric fluid-borne mode for Set-up A and Set-up B. The mean value
represents the average of 10 experiments and the 95% confidence interval is twice the uncertainty calculated via Eq. (4). Set-up B
demonstrates a lower mean wavenumber (or higher mean phase velocity) within the examined frequency range, which indicates
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Fig. 5. (a) The Hanning window used in the processing of raw signals according to the procedure described in Fig. 2. (b) Example of windowed signals 𝑠𝑤,1,
𝑠𝑤,2 after applying the Hanning window to raw signals 𝑠1, 𝑠2.

Fig. 6. The real part of the axial wavenumber 𝑘𝑟𝑒
𝑧
as a function of frequency for Set-up A (a) and Set-up B (b). 𝑘𝑧 here represents the wavenumber of the

axisymmetric fluid-borne wave. The results were obtained by processing the raw signals according to the procedure described in Fig. 2.

the added stiffness from the surrounding soil. Further, the results for Set-up B show relatively wider confidence intervals, which
imply higher uncertainty levels compared to Set-up A.

The values of the storage modulus estimated from the vibro-acoustic data and respective uncertainty levels (95% confidence
interval) are depicted in Fig. 7. Irrespectively of the used set-up, the mean value of the storage modulus lies around 2.2 GPa
within the considered frequency range. The results from the pipe section buried in sand show a relatively high uncertainty which
is frequency dependent with the maximum between 200 and 400 Hz.

3.2. Estimation of the pipe storage modulus based on DMA

Fig. 8 presents the storage modulus for the HDPE sample measured with the DMA method. Fig. 8(a) shows the dependence of the
modulus as a function of temperature for the range of frequencies used in DMA. Fig. 8(b) shows the frequency-dependent storage
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Fig. 7. The estimated pipe storage modulus as a function of frequency for Set-up A (a) and Set-up B (b). The error bars denote the 95% confidence interval.
The results are based on the parameters given in Table 1 and Eq. (A.24) derived for the axisymmetric fluid-borne wave.

Fig. 8. (a) The storage modulus of a HDPE pipe sample as a function of frequency for various temperatures obtained with dynamic mechanical analysis. (b)
The storage modulus of a HDPE pipe sample as a function of frequency after the application of time–temperature superposition for the reference temperature of
10 °C.

modulus predicted via the time–temperature superposition for the reference temperature of 10 °C. The storage modulus rises rapidly
from its DC value to stabilize between 1.7 and 1.8 GPa at frequencies higher than 50 Hz. Compared to the values estimated via the
vibro-acoustic method (see Fig. 7), the DMA results predict the storage modulus that is 0.4–0.5 GPa lower than that obtained via
the vibro-acoustic method.

DMA was also applied on two PVC samples, sample P-1 (44 years old) and sample P-2 (3 years old). Fig. 9 depicts the DMA
data after the application of time–temperature superposition. The deviation between the data of the PVC samples decreases as the
frequency increases, from 22.2% at 10 Hz to 19% at 500 Hz. Additionally, if the uncertainty levels of the storage modulus of Set-up
A are applied (Fig. 9(a)), there is a clear distinction between the estimated moduli. On the contrary, application of the uncertainty
levels of Set-up B on the DMA data demonstrates that the overlap of the confidence intervals is so wide that they include both
datasets (Fig. 9(b)).
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Fig. 9. The storage modulus of two pipe samples, sample P-1 (44 years old) and sample P-2 (3 years old), as a function of frequency after the application of
time–temperature superposition on data obtained by dynamic mechanical analysis. The confidence intervals are the uncertainties in the acoustically estimated
storage modulus for Set-up A (a) and Set-up B (b).

4. Discussion

An impact hammer and one or two hydrophones, depending on the set-up, proved to be sufficient in order to determine accurately
the phase of the propagating fluid-borne wave and to use it subsequently to estimate the storage modulus. The use of an impact
hammer facilitated accurate synchronization and guaranteed the excitation of a signal which includes only the impact response of
the direct fluid-borne wave filtered out through the time windowing function (see Fig. 5). Other types of excitation (a shaker or a
loudspeaker) would require to generate deterministic noise in a relatively broad frequency range and over a relatively long time
span [28]. These signals can be more difficult to analyse in a pipe of a finite length because of the presence of multiple reflections
from the pipe ends. It can be more difficult to estimate the optimal distance between the excitation source and receivers or distance
between the receivers when these types of signals are adopted. The impact is rather difficult to estimate. Furthermore, successful
application of vibro-acoustics to detect physical ageing of plastic pipes relies on two assumptions: (i) vibro-acoustics can be used
to estimate the storage modulus of a plastic pipe, and (ii) the frequency-dependent storage modulus is sensitive to pipe ageing.
Applications of this method are also affected by the measurement uncertainty. In this section the uncertainty is discussed based on
the findings from the conducted experiments and analyses.

A comparison between the results from the DMA and vibro-acoustic experiments shows a systematic difference in the storage
modulus of up to 0.5 GPa. This discrepancy could be attributed to a series of causes. Initially, the theory of acoustic waves was
developed based on the conditions that all the elements of the system were isotropic and homogeneous, while the contact at the
interface pipe–soil was assumed to be full and continuous. The above assumptions were necessary in order to produce a simpler and
solvable system of equations. Nonetheless, it has to be realized that meeting these assumptions in practice would be very unlikely
even in controlled laboratory conditions. Furthermore, depending on the method of measurement different estimates of the storage
modulus can be obtained. For instance, when sample P-1 was subjected to conventional tensile tests, flexural tests and DMA, the
value of elastic modulus was 3.09, 3.33 and 2.3–2.45 GPa (within 50–500 Hz), respectively [3]. Consequently, it is crucial that the
same technique is applied consistently in order to draw consistent conclusions concerning changes in the pipe condition (e.g. ageing
and stiffness). For the tested HDPE pipe samples, the value of the storage modulus estimated via vibro-acoustics (∼2.2 GPa) was
close to that quoted for HDPE pipes by Gao et al. (2 GPa) [29].

The DMA results for the two PVC pipe samples with an age difference of 41 years demonstrated a clear deviation in terms
of measured storage modulus. The older sample showed a higher value of the storage modulus due to a lower ductility [1,3].
The observed deviation in the storage modulus decreased with increased frequency, a pattern that follows the findings in literature
concerning the difficulty of ageing detection at higher frequencies [7,8]. However, estimating the storage modulus vibro-acoustically
via the fluid-borne mode involves a higher uncertainty originating from individual uncertainties in the parameters in each medium
of which the system consists. This affects the capability of the method to track ageing accurately. Results in this study showed that
it is challenging to distinguish between different storage modulus values for the configuration when the pipe was surrounded by
sand (Fig. 9(b)). Nonetheless, the considered uncertainty is not affected only by the addition of new parameters due to the presence
of soil and their respective uncertainties. There is also a difference in the distance 𝑑𝑧 between the points at which the signals were
recorded (5.3 m between the hammer and the single hydrophone in the above-ground section (Set-up A) and 0.3 m between the
two hydrophones in the below-ground section (Set-up B)).

In order to analyse how the combined uncertainty in the storage modulus is formed, Eq. (3) was applied to estimate the individual
parameter uncertainties. A normalization was applied with respect to the maximum uncertainty contribution at each considered
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Fig. 10. The relative contribution of each parameter’s uncertainty to the overall uncertainty of the pipe storage modulus 𝑢(𝐸) estimated via the axisymmetric
fluid-borne wave for: Set-up A (a) and Set-up B (b). 𝑢(𝐸) is normalized according to Eq. (5). (𝑣: pipe’s Poisson ratio, 𝜌: pipe density, 𝜂𝑠: pipe loss factor, 𝑅𝑖: pipe
internal radius, ℎ: pipe wall thickness, 𝜌𝑓 : fluid density, 𝑐𝑓 : fluid sound velocity, 𝜌𝑠: soil density, 𝑐𝑑 : soil compressional velocity, 𝑐𝑡: soil shear velocity, 𝑘

𝑟𝑒
𝑧
: real

axial wavenumber, 𝑘𝑖𝑚
𝑧
: imaginary axial wavenumber).
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frequency. The normalized uncertainty of the storage modulus 𝑢(𝐸)𝑛𝑜𝑟𝑚 for every parameter 𝑥𝑖 was defined as:

𝑢(𝐸)𝑛𝑜𝑟𝑚 =
𝑢(𝐸)𝑥𝑖

𝑚𝑎𝑥(𝑢(𝐸)𝑥𝑖 , ... , 𝑢(𝐸)𝑥𝑁 )
(5)

where 𝑢(𝐸)𝑥𝑖 is the uncertainty in the storage modulus caused by the individual uncertainty of parameter 𝑥𝑖 at a given frequency.
Fig. 10 presents the normalized relative contribution of each parameter’s uncertainty to the overall uncertainty of the storage

modulus estimation for Set-up A (Fig. 10(a)) and Set-up B (Fig. 10(b)). In the case of Set-up A the derived uncertainty in the storage
modulus (Fig. 7(a)) originates mostly from a lack of accurate data on the pipe geometry, especially the pipe wall thickness. In the
considered frequency range (50–750 Hz), the relative contribution of the uncertainty in the pipe wall thickness and internal radius
to the overall uncertainty is ∼90% and 6%–8%, respectively. It should be noted that if the uncertainty in the wall thickness and
internal radius decreases from 0.5 to 0.1 mm, then the overall uncertainty in the estimation of the pipe’s storage modulus drops from
∼0.2 to ∼0.04 GPa, a characteristic that would allow the proposed method to become significantly more sensitive to the modulus
changes due to ageing. The rest of the parameters have a minor effect.

In the case of Set-up B, most of the overall uncertainty (∼90%) is attributed to the uncertainty in the real part of the axial
wavenumber (𝑢(𝑘𝑟𝑒𝑧 )). Eq. (4) reveals the factors that contribute to an increase in the uncertainty of 𝑘

𝑟𝑒
𝑧 . The distance between the

hydrophones is an influencing parameter as it is in both denominators while being raised in the power of 2 and 4. Therefore, values
of 𝑑𝑧 lower than unity are expected to increase 𝑢(𝑘𝑟𝑒𝑧 ), whereas values larger than unity would have the opposite effect. It should
be stressed that Eq. (4) applies irrespectively of the surrounding conditions (in vacuum or soil), and the type of excitation or signal
reception sensors. The effect of distance is reflected in the width of confidence intervals of 𝑘𝑟𝑒𝑧 in Fig. 6 for the considered values of
5.3 in Set-up A and 0.3 m in Set-up B (Figs. 6(a) and 6(b), respectively). Additionally, in the case of Set-up B a higher uncertainty
in the phase difference 𝑑𝜙 was predicted, although there is not a clear proof regarding the origin of it. Possible reasons can include
inconsistent coupling at the pipe–sand interface, elastomeric joint and/or transition from a fully covered by soil pipe section to a
section surrounded only by air required to provide easy access to the two hydrophones (see Fig. 1(c)).

This study assumed considerably higher uncertainties in the soil parameters compared to those quoted for the pipe material
and water (Table 1). However, the results presented in Fig. 10(b) suggest that the contribution to the overall uncertainty from the
uncertainties in the soil parameters is similar to or less than that from the uncertainty in the pipe wall thickness (∼5%). Therefore, a
lack of accurate knowledge of the parameters of surrounding soil is unlikely to hinder the applicability of the presented vibro-acoustic
method, although a lower uncertainty of the soil’s shear wave velocity and density at specific frequencies would be beneficial. The
effect of the soil’s shear velocity on the fluid-borne mode is also shown in the literature [28,30]. Finally, the assumption that the
imaginary part of the axial wavenumber (𝑘𝑟𝑒𝑧 ) was zero proved to have minimal effect on the overall uncertainty in the estimated
storage modulus. It should be stressed that applying such a condition requires that the values of 𝑢(𝑘𝑖𝑚𝑧 ) are similar to the magnitude
of the expected true values of 𝑘𝑖𝑚𝑧 at each considered frequency.

5. Conclusions

This study explored the use of the vibro-acoustic axisymmetric fluid-borne mode to estimate the storage modulus of two high-
density polyethylene pipes and to relate it to ageing. This was based on the measurement of the real part of the modal wavenumber
in a pipe surrounded by air and a pipe buried in sand. The both experimental configurations (above and below ground) proved
to be capable of identifying similar values for the pipe’s storage modulus (∼ 2.2 GPa). A 0.4–0.5 GPa higher value of the storage
modulus was obtained via acoustic data compared to the results from dynamic mechanical analysis (DMA).

DMA on samples from two PVC pipes with 41 years extrusion age difference revealed that ageing can be detected via the storage
modulus estimated from vibro-acoustic data at low frequencies (<500 Hz). The proposed vibro-acoustic method yields results with
an overall uncertainty that depends on a combination of uncertainties in the parameters of the embedded media (pipe, water, soil).
A larger distance between the locations of the two receiving signals results in a lower overall uncertainty in the real part of the
modal wavenumber. The accurate knowledge of the pipe’s geometry (wall thickness and internal radius) is paramount, as it is a key
parameter that contributes to the overall uncertainty. Especially the uncertainty in the pipe wall thickness affects significantly the
overall uncertainty. The presence or absence of soil around the pipe has a relatively small effect in comparison with the uncertainty
in the wall thickness. However, a better knowledge of the true shear wave velocity in soil and soil density would be beneficial to
reduce the overall uncertainty. The uncertainty analysis suggests that the knowledge of the imaginary part of the axial wavenumber
is unimportant to estimate the pipe’s storage modulus and associated uncertainties.
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Appendix A. Derivation of the dispersion equations

This section includes the derivation of the dispersion equation for a fluid-filled pipe surrounded by soil, hereafter called ‘‘fluid–
pipe–soil’’ system. The general equation is reduced for the case of axisymmetric modes and for a fluid-filled pipe in vacuum, hereafter
called ‘‘fluid–pipe–vacuum’’ system. The solution of the ‘‘fluid–pipe–vacuum’’ system can be used for pipes surrounded by air under
the assumption that the effect of air on wave propagation is negligible. Fig. A.1 presents the applied coordinate system and the
notation of the displacement fields used for this analysis.

A.1. Pipe shell domain

The equations of motion for the pipe shell can be written in the matrix form [31]:

[𝑄][𝑢𝑗 ] = 0 (A.1)

where [𝑄] is a matrix differential operator, and 𝑢𝑗 is the displacement (j=𝑧, 𝜃, 𝑟).
Eq. (A.1) could be reformed with respect to the displacement amplitudes (𝑈𝑗), if general wave solutions are assumed for the

pipe displacement components:

[𝑢𝑗 ] = [𝑈𝑗 ]𝑒
𝑖𝑛𝜃𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (A.2)

where 𝑈𝑗 is the shell displacement amplitude for 𝑗 = 𝑧, 𝜃 and 𝑟, 𝑛 is the circumferential order (=0 for axisymmetric modes), 𝜔 is

the angular frequency, 𝑘𝑧 is the axial wavenumber, and 𝑖 =
√
−1.

Various theories describing the motion of thin cylindrical shells have been established. Depending on the adopted shell theory,
a different operator [𝑄] has been proposed. According to the Donnel–Mushtari theory, the operator 𝑄 used for this analysis, after
considering Eq. (A.2), is [31]:

𝑄 =

⎡
⎢⎢⎢⎣

𝛺2 − 𝑘2𝑧 𝑅
2 − 𝑛2

(1−𝑣)

2
𝑘𝑧 𝑅 𝑛

(1+𝑣)

2
−𝑘𝑧 𝑅 𝑣 𝑖

𝑘𝑧 𝑅 𝑛
(1+𝑣)

2
𝛺2 − 𝑘2𝑧 𝑅

2 (1−𝑣)

2
− 𝑛2 𝑛 𝑖

−𝑘𝑧 𝑅 𝑣 𝑖 𝑛 𝑖 −𝛺2 + 1 + 𝛽2 (𝑛2 + 𝑘2𝑧 𝑅
2)2

⎤
⎥⎥⎥⎦

(A.3)

where 𝑣 is the Poisson ratio, 𝑅 is the mean radius, 𝛽2 = ℎ2∕12𝑅2 (ℎ being the wall thickness), and 𝛺 = 𝜔𝑅
√
𝜌(1 − 𝑣2)∕𝐸, 𝜌 is the

density of the pipe material, 𝐸 is the complex modulus (𝐸 = 𝐸′(1 + 𝜂𝑠𝑖), 𝐸
′ being the storage modulus and 𝜂𝑠 the loss factor).

A.2. Soil domain

Assuming a homogeneous, isotropic and linear elastic soil medium, the equation of motion in the soil domain can be expressed
via the Navier’s governing wave equation [32]:

(𝜇𝑠 + 𝜆𝑠)∇(∇ ⋅
⃖⃖⃗𝑉 ) + 𝜇𝑠∇

2 ⃖⃖⃗𝑉 = 𝜌𝑠
𝜕2 ⃖⃖⃗𝑉

𝜕𝑡2
(A.4)

where ⃖⃖⃗𝑉 is the soil displacement vector, 𝜇𝑠 and 𝜆𝑠 are the Lamé constants, 𝜌𝑠 is the soil density, ∇ ⋅
⃖⃖⃗𝑉 is the divergence of ⃖⃖⃗𝑉 , ∇ is

the gradient, and ∇2 is the Laplace operator.
Moreover, the soil displacement components can be expressed by means of three potential functions 𝛷, 𝑋, 𝛹 [33]:

𝑣𝑧 =
𝜕𝛷

𝜕𝑧
−

1

𝑟

𝜕(𝑟
𝜕𝑋

𝜕𝑟
)

𝜕𝑟
−

1

𝑟2
𝜕2𝑋

𝜕𝜃2
(A.5a)

𝑣𝜃 =
1

𝑟

𝜕𝛷

𝜕𝜃
−

𝜕𝛹

𝜕𝑟
+

1

𝑟

𝜕2𝑋

𝜕𝑧𝜕𝜃
(A.5b)

𝑣𝑟 =
𝜕𝛷

𝜕𝑟
+

1

𝑟

𝜕𝛹

𝜕𝜃
+

𝜕2𝑋

𝜕𝑧𝜕𝑟
(A.5c)

http://www.icair.ac.uk
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Fig. A.1. A sketch of a water–pipe–soil coupled system and cylindrical system of coordinates. The vectors 𝑢, 𝑣 and 𝑤 correspond to the displacements in the
pipe, soil and fluid propagation media respectively, and the subscripts (𝑧, 𝜃, 𝑟) correspond to the respective directions.

The equation of motion (Eq. (A.4)) is satisfied if the potential functions satisfy the following three uncoupled equations for wave
propagation:

∇2𝛷 =
1

𝑐2
𝑑

𝜕2𝛷

𝜕𝑡2
(A.6a)

∇2𝑋 =
1

𝑐2𝜏

𝜕2𝑋

𝜕𝑡2
(A.6b)

∇2𝛹 =
1

𝑐2𝜏

𝜕2𝛹

𝜕𝑡2
(A.6c)

where 𝑐𝑑 and 𝑐𝑡 are the soil compressional and shear wave propagation velocities, respectively:

𝑐𝑑 =

√
2𝜇𝑠 + 𝜆𝑠

𝜌𝑠
(A.7a)

𝑐𝜏 =

√
𝜇𝑠

𝜌𝑠
(A.7b)

Furthermore, the solutions of Eq. (A.6) can be expressed via the Hankel functions of the second kind so that the potential functions
approach 0 as 𝑟 → ∞ [34]:

𝛷 = 𝐴 𝐻𝑛(𝑘𝑑,𝑟𝑟) 𝑒
(𝑖𝑛𝜃) 𝑒(𝑖(𝜔𝑡−𝑘𝑧𝑧)) (A.8a)

𝛹 = 𝐵 𝐻𝑛(𝑘𝜏,𝑟𝑟) 𝑒
(𝑖𝑛𝜃) 𝑒(𝑖(𝜔𝑡−𝑘𝑧𝑧)) (A.8b)

𝑋 = 𝐶 𝐻𝑛(𝑘𝜏,𝑟𝑟) 𝑒
(𝑖𝑛𝜃) 𝑒(𝑖(𝜔𝑡−𝑘𝑧𝑧)) (A.8c)

where 𝐴, 𝐵 and 𝐶 are constant coefficients, and 𝐻𝑛 is the Hankel function of the second kind of order 𝑛. The terms 𝑘𝑑,𝑟 and 𝑘𝜏,𝑟 are

radial wavenumbers related to the compressional (𝑘𝑑) and shear (𝑘𝜏 ) wavenumbers via the relationships:

𝑘𝑑,𝑟 =

√
𝑘2
𝑑
− 𝑘2𝑧 (A.9a)

𝑘𝜏,𝑟 =

√
𝑘2𝜏 − 𝑘2𝑧 (A.9b)

Substitution of Eq. (A.8) into Eq. (A.5) leads to functions of the soil displacement components with respect to the coefficients 𝐴, 𝐵

and 𝐶:

⎡⎢⎢⎣

𝑣𝑧
𝑣𝜃
𝑣𝑟

⎤⎥⎥⎦
=

⎡⎢⎢⎣

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

⎤⎥⎥⎦

⎡⎢⎢⎣

𝐴

𝐵

𝐶

⎤⎥⎥⎦
𝑒𝑖𝑛𝜃 𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (A.10)



Journal of Sound and Vibration 544 (2023) 117393

14

K.F. Makris et al.

where
𝐾11 = −𝑘𝑧 𝐻𝑛(𝑘

𝑟
𝑑
𝑟) 𝑖

𝐾12 = 0

𝐾13 = −
1

𝑟
𝑘𝑟𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟) − (𝑘𝑟𝜏 )

2 𝐻 ′′
𝑛 (𝑘

𝑟
𝜏 𝑟) +

1

𝑟2
𝑛2 𝐻𝑛(𝑘

𝑟
𝜏 𝑟)

𝐾21 =
1

𝑟
𝑛 𝐻𝑛(𝑘

𝑟
𝑑
𝑟) 𝑖

𝐾22 = −𝑘𝑟𝜏 𝐻
′
𝑛(𝑘

𝑟
𝜏 𝑟)

𝐾23 =
1

𝑟
𝑘𝑧 𝑛 𝐻𝑛(𝑘

𝑟
𝜏 𝑟)

𝐾31 = 𝑘𝑟
𝑑
𝐻 ′

𝑛(𝑘
𝑟
𝑑
𝑟)

𝐾32 =
1

𝑟
𝑛 𝐻𝑛(𝑘

𝑟
𝜏 𝑟) 𝑖

𝐾33 = −𝑘𝑧 𝑘
𝑟
𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟) 𝑖

Furthermore, the stress–strain relationships based on the Hooke’s law for an isotropic medium are given by:

𝜎𝑟𝑟 = (𝜆𝑠 + 2𝜇𝑠) 𝜖𝑟𝑟 + 𝜆𝑠 𝜖𝜃𝜃 + 𝜆𝑠 𝜖𝑧𝑧 = 𝜆𝑠 ∇
2𝛷 + 2𝜇𝑠 𝜖𝑟𝑟

𝜎𝑟𝜃 = 𝜇𝑠 𝛾𝑟𝜃

𝜎𝑟𝑧 = 𝜇𝑠 𝛾𝑟𝑧

(A.11)

where the strains are expressed via the soil displacement components through the relationships:

𝜖𝑟𝑟 =
𝜕𝑣𝑟
𝜕𝑟

𝜖𝑧𝑧 =
𝜕𝑣𝑧
𝜕𝑧

𝜖𝜃𝜃 =
𝑣𝑟
𝑟
+

1

𝑟

𝜕𝑣𝜃
𝜕𝜃

𝛾𝑟𝜃 =
𝜕𝑣𝜃
𝜕𝑟

+
1

𝑟

𝜕𝑣𝑟
𝜕𝜃

−
𝑣𝜃
𝑟

𝛾𝑟𝑧 =
𝜕𝑣𝑧
𝜕𝑟

+
𝜕𝑣𝑟
𝜕𝑧

(A.12)

Consequently, the stresses can be expressed via the coefficients 𝐴, 𝐵 and 𝐶:

⎡⎢⎢⎣

𝜎𝑟𝑧
𝜎𝑟𝜃
𝜎𝑟𝑟

⎤⎥⎥⎦
=

⎡⎢⎢⎣

𝐿11 𝐿12 𝐿13

𝐿21 𝐿22 𝐿23

𝐿31 𝐿32 𝐿33

⎤⎥⎥⎦

⎡⎢⎢⎣

𝐴

𝐵

𝐶

⎤⎥⎥⎦
𝑒𝑖𝑛𝜃 𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (A.13)

where
𝐿11 = −2𝜇𝑠 𝑘𝑧 𝑘

𝑟
𝑑
𝐻 ′

𝑛(𝑘
𝑟
𝑑
𝑟) 𝑖

𝐿12 = 𝜇𝑠
1

𝑟
𝑘𝑧 𝑛 𝐻𝑛(𝑘

𝑟
𝜏 𝑟)

𝐿13 = −𝜇𝑠 (𝑘
2
𝑧 𝑘

𝑟
𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟) +

1

𝑟
(𝑘𝑟𝜏 )

2 𝐻 ′′
𝑛 (𝑘

𝑟
𝜏 𝑟) −

1

𝑟2
𝑘𝑟𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟)+

+(𝑘𝑟𝜏 )
3 𝐻 ′′′

𝑛 (𝑘𝑟𝜏 𝑟) −
1

𝑟2
𝑛2 𝑘𝑟𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟) +

2

𝑟3
𝑛2 𝐻𝑛(𝑘

𝑟
𝜏 𝑟))

𝐿21 = 𝜇𝑠 (
2

𝑟
𝑛 𝑘𝑟

𝑑
𝐻 ′

𝑛(𝑘
𝑟
𝑑
𝑟) −

2

𝑟2
𝑛 𝐻𝑛(𝑘

𝑟
𝑑
𝑟)) 𝑖

𝐿22 = 𝜇𝑠 (
1

𝑟
𝑘𝑟𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟) −

1

𝑟2
𝑛2 𝐻𝑛(𝑘

𝑟
𝜏 𝑟) − (𝑘𝑟𝜏 )

2 𝐻 ′′
𝑛 (𝑘

𝑟
𝜏 𝑟)) 𝑖

𝐿23 = 𝜇𝑠 (
2

𝑟
𝑘𝑧 𝑛 𝑘

𝑟
𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟) −

2

𝑟2
𝑘𝑧 𝑛 𝐻𝑛(𝑘

𝑟
𝜏 𝑟)) 𝑖

𝐿31 = (𝜆𝑠 + 2𝜇𝑠) ((𝑘
𝑟
𝑑
)2 𝐻 ′′

𝑛 (𝑘
𝑟
𝑑
𝑟)) + 𝜆𝑠 (

1

𝑟
𝑘𝑟
𝑑
𝐻 ′

𝑛(𝑘
𝑟
𝑑
𝑟) −

1

𝑟2
𝑛2 𝐻𝑛(𝑘

𝑟
𝑑
𝑟)−

−𝑘2𝑧 𝐻𝑛(𝑘
𝑟
𝑑
𝑟))

𝐿32 = 2𝜇𝑠 (
1

𝑟
𝑛 𝑘𝑟𝜏 𝐻

′
𝑛(𝑘

𝑟
𝜏 𝑟) −

1

𝑟2
𝑛 𝐻𝑛(𝑘

𝑟
𝜏 𝑟)) 𝑖

𝐿33 = −2𝜇𝑠 𝑘𝑧 (𝑘
𝑟
𝜏 )

2 𝐻 ′′
𝑛 (𝑘

𝑟
𝜏 𝑟) 𝑖

A.3. Fluid domain

Fig. A.2 illustrates a fluid element excited by the sound pressure wave. By applying the Newton’s second law with respect to the
𝑟 direction, the following relationship between the pressure and displacement is obtained [34]:

(𝑃𝑠 + 𝑝) 𝑆 − (𝑃𝑠 + 𝑝 +
𝜕𝑝

𝜕𝑟
𝑑𝑟) 𝑆 = 𝜌𝑓

𝜕2𝑤𝑟

𝜕𝑡2
𝑆 𝑑𝑟

𝜕𝑝

𝜕𝑟
= −𝜌𝑓

𝜕2𝑤𝑟

𝜕𝑡2
(A.14)

where 𝑆 is the cross-section of the fluid element perpendicular to the 𝑟 direction and 𝜌𝑓 is the fluid density, 𝑃𝑠 is the static pressure,
𝑝 is the acoustic pressure, and 𝑤𝑟 is the displacement of the fluid in the 𝑟 direction.

Further, the pressure field is expected to be in the form of modal series with a radial configuration expressed via Bessel functions
of the first kind [34,35]. Assuming axial travelling waves, the pressure field in the fluid can be represented as:

𝑝𝑖𝑛 = 𝑃𝑖𝑛 𝐽𝑛(𝐾𝑓,𝑟 𝑟) 𝑒
𝑖𝑛𝜃 𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (A.15)
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Fig. A.2. Pressure components acting on a fluid element in the 𝑟 direction.

where 𝑃𝑖𝑛 is the pressure amplitude, 𝐽𝑛 is the Bessel function of the first kind and order 𝑛, and 𝑘𝑓,𝑟 is the fluid radial wavenumber

given by 𝑘𝑓,𝑟 =
√

𝑘2
𝑓
− 𝑘2𝑧.

A.4. Coupling at the pipe–soil interface

The coupling between the pipe and soil is performed under the assumption of absolute contact, which implies that the following

boundary conditions are applied at the pipe–soil interface:

𝑢𝑖 = 𝑣𝑖, 𝑖 = 𝑧, 𝜃, 𝑟 (A.16)

Substituting Eq. (A.2) and Eq. (A.10) into Eq. (A.16), and rearranging terms leads to:

⎡⎢⎢⎣

𝐴

𝐵

𝐶

⎤⎥⎥⎦
=

⎡⎢⎢⎣

𝑈𝑧

𝑈𝜃

𝑈𝑟

⎤⎥⎥⎦

⎡⎢⎢⎣

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

⎤⎥⎥⎦

−1

(A.17)

Hence, the pressure exerted from the pipe shell towards soil can be written with the aid of Eq. (A.13) in the following form:

⎡⎢⎢⎣

𝜎𝑟𝑧
𝜎𝑟𝜃
𝜎𝑟𝑟

⎤⎥⎥⎦
=

⎡⎢⎢⎣

𝐿11 𝐿12 𝐿13

𝐿21 𝐿22 𝐿23

𝐿31 𝐿32 𝐿33

⎤⎥⎥⎦

⎡⎢⎢⎣

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

⎤⎥⎥⎦

−1 ⎡⎢⎢⎣

𝑈𝑧

𝑈𝜃

𝑈𝑟

⎤⎥⎥⎦
𝑒𝑖𝑛𝜃 𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (A.18)

A.5. Coupling at the fluid–pipe interface

Similar conditions are assumed to apply at the pipe–fluid interface (i.e. perfect contact):

𝑢𝑖 = 𝑤𝑖, 𝑖 = 𝑧, 𝜃, 𝑟 (A.19)

This method is developed by regarding water as the internal fluid medium, which is considered to be inviscid. Hence, it cannot

sustain shear stresses and substitution of Eq. (A.2) in the 𝑟 direction and Eq. (A.15) into Eq. (A.14) leads to a relationship between

the pressure amplitude 𝑃𝑖𝑛 and the displacement amplitude in water 𝑊𝑟:

𝑃𝑖𝑛 =
𝜌𝑓 𝜔2

𝑘𝑓,𝑟 𝐽
′
𝑛(𝑘𝑓,𝑟 𝑟)

𝑊𝑟 (A.20)

Therefore, Eq. (A.15) is expressed with respect to the shell amplitude 𝑈𝑟 based on Eq. (A.19):

𝑝𝑖𝑛 = 𝑈𝑟 𝑃 𝑒𝑖𝑛𝜃 𝑒𝑖(𝜔𝑡−𝑘𝑧𝑧) (A.21)

where

𝑃 =
𝜌𝑓𝜔

2𝐽𝑛(𝑘𝑓,𝑟𝑟)

𝑘𝑓,𝑟𝐽
′
𝑛(𝑘𝑓,𝑟𝑟)

. (A.22)
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Fig. B.1. Geometry of the COMSOL® model used for deriving the dispersion curves of a water-filled pipe surrounded by soil.

A.6. General solution

The complete equations of motion can be expressed via the displacement amplitudes 𝑈𝑧, 𝑈𝜃 and 𝑈𝑟, by considering Eqs. (A.18)
and (A.21):

⎧
⎪⎨⎪⎩

[
𝑄
]
+

(1−𝑣2) 𝑅2

𝐸 ℎ

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎣

𝐿11 𝐿12 𝐿13

𝐿21 𝐿22 𝐿23

−𝐿31 −𝐿32 −𝐿33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝐾11 𝐾12 𝐾13

𝐾21 𝐾22 𝐾23

𝐾31 𝐾32 𝐾33

⎤
⎥⎥⎦

−1

+ 𝑃

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 −1

⎤
⎥⎥⎦

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭

⎡⎢⎢⎣

𝑈𝑧

𝑈𝜃

𝑈𝑟

⎤⎥⎥⎦
= 0 (A.23)

Non-trivial solutions of Eq. (A.22) exist only if the determinant of the coefficients is equal to zero. These solutions define the
characteristic dispersion equation of the studied system. For measured axial wavenumbers, the solution for the storage modulus of
the pipe material can be found. Solutions can be obtained for the system ‘‘fluid–pipe–vacuum’’ by setting 𝐿𝑖𝑗 = 𝐾𝑖𝑗 = 0 (𝑖, 𝑗 = 1, 2, 3).

A.7. Axisymmetric wave propagation

In axisymmetric wave propagation, the displacement field is independent of the circumferential angle (𝑛=0). Eq. (A.22) can be
further simplified by neglecting the dependence of the displacements on the 𝜃 direction. Subsequently, the solutions can be traced
by setting:

𝑑𝑒𝑡

{[
𝑄
]
+

(1−𝑣2) 𝑅2

𝐸 ℎ

([
𝐿11 𝐿13

−𝐿31 −𝐿33

] [
𝐾11 𝐾13

𝐾31 𝐾33

]−1
+ 𝑃

[
0 0

0 −1

])}

𝑛=0

= 0 (A.24)

Appendix B. Dispersion curves from numerical analysis

B.1. Theoretical background

This section presents the theory behind the development of a 2D finite element model (FEM) in COMSOL Multiphysics® for
deriving dispersion curves of a fluid-filled pipe in vacuum or surrounded by soil (Fig. B.1). The 2D model represents a cross-section
of the system characterized by harmonic modes in space and uniform extension in the out-of-plane direction [36]. Solutions of the
out-of-plane wavenumber for a given frequency are obtained via the modal analysis with a built-in frequency domain eigensolver.
Therefore, all the given equations in this section are considered in the frequency domain.

Within the fluid domain, the solutions for the out-of-plane wavenumber 𝑘𝑧 are sought by solving the Helmholtz equation:

∇ (−
1

𝜌𝑓
∇𝑝) −

𝑘2
𝑓,𝑟

𝑝

𝜌𝑓
= 0 (B.1)

where 𝑘2
𝑓,𝑟

= (
𝜔

𝑐𝑓
)2 − 𝑘2𝑧, 𝑝 is the acoustic pressure, 𝜌𝑓 is the fluid density, and 𝑐𝑓 is the fluid sound velocity.
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Fig. B.2. Imaginary parts of the axial wavenumber solutions in COMSOL® for Set-up A (a) and Set-up B (b).

Within the pipe and soil domain, the solutions for 𝑘𝑧 are found by assuming linear elasticity and that 𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) 𝑒−𝑘𝑧𝑧,
where 𝑥, 𝑦, 𝑧 are the cartesian space coordinates:

−𝜌 𝜔2 ⃖⃗𝑢 = ∇ 𝑆 (B.2)

where 𝜌 is the density of the medium, ⃖⃗𝑢 is the solid displacement vector, 𝑆 = 𝐶𝑗𝑘 𝜖𝑗𝑘 (𝐶𝑗𝑘 being the elasticity tensor and 𝜖𝑗𝑘 the
elastic strain for 𝑗, 𝑘 = 𝑥, 𝑦, 𝑧).

The coupling at the acoustic–structure interface is implemented by applying the following conditions on the inner and outer
boundary of the interface [37]:

−⃖⃗𝑛(−
1

𝜌𝑓
∇𝑝) = −⃖⃗𝑛

𝜕2 ⃖⃗𝑢

𝜕𝑡2

⃖⃖⃖⃖⃗𝐹𝐴 = 𝑝 ⃖⃗𝑛

(B.3)

where ⃖⃗𝑛 is the surface normal, and ⃖⃖⃖⃖⃗𝐹𝐴 is the load applied on the pipe.
In case the pipe is surrounded by soil, a Perfectly Matched Layer (PML) is applied at the external edge of the soil domain in

order to model the infinite extents of the system. PML is used in order to dissipate the propagating waves with minimal reflections
back to the system. This is achieved by applying a polynomial stretching function within the PML [37]:

𝑓𝑝(𝜉) = 𝑠 𝜉𝑐 (1 − 𝑖) (B.4)

where 𝜉 is a dimensionless coordinate (from 0 to 1) which extents along the PML, 𝑠 is the scaling factor, 𝑐 is the curvature parameter,
and 𝑖 =

√
−1. In this study, the default values (= 1) were used for both scaling factor and curvature parameter without further tuning.

B.2. Input for uncertainty analysis

The imaginary part of the axial wavenumber could not be extracted from the conducted vibro-acoustic experiments. Conse-
quently, the imaginary part of the axial wavenumber was assumed to be zero at all frequencies and the respective uncertainty was
considered to be the expected value of imaginary wavenumber. The latter was given by solving a finite element COMSOL® model.
The pipe shell, water and soil properties are given in Table 1. Further, the storage modulus of the pipe shell used as input in both
models was obtained by the results of the dynamic mechanical analysis (Fig. 8b). Fig. B.2 demonstrates the imaginary parts of the
axial wavenumber for the fluid-borne mode concerning the two different set-ups utilized for this analysis (Set-up A and Set-up B).
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