
This is a repository copy of Using the European Language Grid as a consumer.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/193003/

Version: Published Version

Book Section:

Roberts, I. orcid.org/0000-0002-7296-5851, Labropoulou, P., Galanis, D. et al. (5 more
authors) (2022) Using the European Language Grid as a consumer. In: Rehm, G., (ed.)
European Language Grid: A Language Technology Platform for Multilingual Europe.
Cognitive Technologies . Springer Cham , Cham , pp. 37-66. ISBN 978-3-031-17257-1

https://doi.org/10.1007/978-3-031-17258-8_3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Chapter 3
Using the European Language Grid
as a Consumer

Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano, Athanasia
Kolovou, Dimitris Gkoumas, Andis Lagzdiņš, and Stelios Piperidis

Abstract This chapter describes the European Language Grid cloud platform from
the point of view of a consumerwhowishes to access language resources ormake use
of language technology tools and services. Three aspects are discussed: 1. the web-
based user interface (UI) for casual and non-technical users, 2. the underlying REST
APIs that drive the UI but can also be called directly by third parties to integrate ELG
functionality in their own tools, and 3. the Python Software Development Kit (SDK)
that we have developed to simplify access to these APIs from Python code. The
chapter concludes with a preview of the upcoming payment module that will enable
the sale of commercial LT services and resources through ELG, and a discussion of
how ELG compares and relates to other similar platforms and initiatives.

1 Introduction

The European Language Grid (ELG) platform (Rehm et al. 2021) provides access
to Language Technology (LT) tools and services, both basic Natural Language Pro-
cessing (NLP) tools and end-to-end applications, as well as data resources, such as
structured and unstructured datasets and corpora, Machine Learning models, lexica,
ontologies, terminologies, etc. Chapters 7 (p. 131 ff.) and 8 (p. 151 ff.) present the
current state of LT services as well as datasets and language resources included in
the ELG platform respectively.

Ian Roberts
University of Sheffield, UK, i.roberts@sheffield.ac.uk

Penny Labropoulou · Dimitris Galanis · Athanasia Kolovou · Dimitris Gkoumas · Stelios Piperidis
Institute for Language and Speech Processing, R. C. “Athena”, Greece, penny@athenarc.gr,
galanisd@athenarc.gr, akolovou@athenarc.gr, dgkoumas@athenarc.gr, spip@athenarc.gr

Rémi Calizzano
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Germany,
remi.calizzano@dfki.de

Andis Lagzdiņš
Tilde, Latvia, andis.lagzdins@tilde.lv

37© The Author(s) 2023

G. Rehm (ed.), European Language Grid, Cognitive Technologies,

https://doi.org/10.1007/978-3-031-17258-8_3

mailto:i.roberts@sheffield.ac.uk
mailto:penny@athenarc.gr
mailto:galanisd@athenarc.gr
mailto:akolovou@athenarc.gr
mailto:dgkoumas@athenarc.gr
mailto:spip@athenarc.gr
mailto:remi.calizzano@dfki.de
mailto:andis.lagzdins@tilde.lv
https://doi.org/10.1007/978-3-031-17258-8_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17258-8_3&domain=pdf

38 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

ELG enables consumers of Language Technology to browse through the ELG cat-
alogue and have an overview of its contents, search for specific resources and select
as well as view the features of a resource through its formal description (metadata
record). Users can download resources hosted in the ELG cloud infrastructure in
accordance with their licensing conditions, or, in the case of external resources, be
re-directed to the location where they can be downloaded from or accessed. They can
also try out services in order to assess whether they comply with their needs; for this
to happen, the services must comply with the ELG technical interoperability speci-
fications, which are outlined in Chapter 4. Furthermore, ELG includes a catalogue
of commercial companies and academic and research organisations that are active
in the LT domain and of EU and national projects that have funded the development
and maintenance of LRTs (see Chapter 9); LRTs, actors and projects are interlinked
offering a comprehensive image of the LT landscape in Europe.

Different types of users have different requirements and different levels of techni-
cal expertise, and the ELG platform provides a variety of access methods to address
these; all the principal functionality of the ELG is offered through both web-based
user interfaces (UIs, see Section 2) for interactive use and Application Programming
Interfaces (APIs, see Section 3) for programmatic access. In addition, the ELG team
supports the advanced needs of LT integrators with dedicated tools and helpers; most
notably a Software Development Kit (SDK) for Python (see Section 4), which is cur-
rently the most widely used programming language in the LT community.

Supporting consumers to easily discover resources is of utmost importance, espe-
cially when a catalogue contains many entries, as in the case of ELG (over 13,000
metadata records for LRTs and 1,800 related entities at the time of writing and con-
stantly increasing). Best practices and recommendations (Wu et al. 2019; Wilkinson
et al. 2016) have been taken into account in the design and implementation of the
ELG catalogue pages and interaction mechanisms with the consumers.

At present all functionality of the ELG platform is offered free of charge. All
users can view the catalogue and metadata descriptions as well as download open
access resources. In order to download resources with restrictive licences and try
out ELG-compatible services, users must register in the platform, as described in
Section 5. It should be noted that while the ELG platform does not currently charge
fees for access to any resources or services, restrictions may apply with regard to
the intended use(s) of the resource (e. g., available only for non-commercial use),
request for explicit consent to licensing conditions, etc. Resources available with
commercial licences are described in the ELG catalogue but for now re-directed
to the providers for further information. A prototype billing module, described in
Section 6, has been implemented and will be fully launched following the setup
of the ELG legal entity (see Chapter 13). Finally, in Section 7 we compare the ELG
platform to other similar services and initiatives, from the point of view of the service
or resource consumer. A similar comparison from the point of view of the provider
can be found in Chapter 4.

3 Using the European Language Grid as a Consumer 39

2 Web-based Interface

The ELG platform targets a diverse set of user types with different needs and levels
of technical expertise. The primary access route for non-technical users is via the
web user interface (UI), which prioritises user-friendliness and ease of use alongside
raw performance considerations. The catalogue UI includes two main pages: the
catalogue page, which offers access to the catalogue contents, and the view pages
for each metadata record or resource (LT, LR, organisation, project).

2.1 Viewing the Catalogue

After ELG’s homepage, the dedicated catalogue page (Figure 1) is the primary entry
point through which users have access to the ELG platform contents and functions.
Users can browse through the entire catalogue to find entries that might interest them.
They can also look for specific entries, using the free text search bar, filtering the
catalogue with one or more facets, or combining these two modes.

AbuseEval

version: 1.0

Extension of OLID/OffensEval data set with distinction of explicit vs implicit

offensive messages.Annotation of Abusive Language, distinguishing also

between explicit vs implicit offensive messages.

Keyword: Corpus Creation/Annotation

Language: English

Licence: Creative Commons Attribution Non Commercial Share Alike 4.0 International

41 views

Academic Written Catalan in Catalonia [CesCa: El Català

Escolar Escrit a Catalunya]

version: 1.0.0 (automatically assigned)

It is a reference corpus of the written scholar Catalan in Catalonia. It con-

tains 2.426 processed texts that have been produced by children between

the last year of childhood education (P5) and the last year of obligator

Keywords: schoolar · written · obligatory education period

Language: Catalan

Language resources &

technologies

Service functions

Languages

Media types

Licences

Conditions of use

Related entities

ELG integrated services

and data

for information

Search for services, tools, datasets, organizations... Search

RELEASE 3

Catalogue AboutDocumentation & Media

Fig. 1 Browse/Search page of the ELG catalogue

The main section of the catalogue page shows all published entries sorted by
name in alphabetical order. Users can also sort the entries according to the update
date of the metadata record, so that they can view the most recently added entries

40 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

first. The catalogue shows only the most recent version of each entry if multiple
versions are registered. The snippet informs the users of additional older entries,
which can be viewed and accessed through the view page of the newest version
(see Section 2.3). This allows users to always keep up to date with the most recent
version of a service, but also access older versions when needed, for instance, when
reproducing previously published experiments.

Each entry is shown with an informative snippet, designed to serve as a preview
of the full metadata record and to help users decide whether they want to explore
the entry further. Following well-established practices in catalogues, each entry is
represented by its name, an excerpt of its description, a set of metadata tags, and
popularity indicators. The set of metadata tags has been carefully selected to accom-
modate consumer requirements, as identified in a user survey conducted during the
ELG design and specification phase (Melnika et al. 2019) and subsequently enriched
based on user feedback. All types of entries include their free-text keywords. Entries
representing LRTs additionally include the resource type (represented with an icon),
language(s), and licence(s). The popularity indicators, displayed at the right hand
side of the snippet, consist of counts of visits of the view page of all versions of
an entry, counts of downloads (for ELG-hosted resources only) and number of calls
(for ELG-compatible services only; again for all versions of the entry). Finally, ded-
icated badges are shown for resources hosted in ELG and ELG-compatible services,
as well as for a subset of the metadata records that have been imported from other
catalogues with minimal metadata (see Chapter 6).

2.2 Searching the Catalogue

Search of the catalogue is supported in two different modes, which can be combined
in order to refine search queries and support users in easily finding entries of interest:
free text search (Section 2.2.1) and faceted search (Section 2.2.2).

2.2.1 Free Text Search

Users enter a word or phrase in the search box at the top of the catalogue page (see
Figure 1) and click the “Search” button to submit the query. By default, the search
functionality matches whole words using the OR operator. Advanced queries, util-
ising the Lucene query syntax1, are supported, allowing users to search for partial
or exact matches, words or phrases, etc. Only certain metadata elements have been
indexed to make them searchable; these include a resource’s name(s), short name(s),
keywords and a subset of technical elements appropriate for each entry type and
deemed important as a search criterion. For example, for all LRTs, additional in-

1 https://www.lucenetutorial.com/lucene-query-syntax.html

https://www.lucenetutorial.com/lucene-query-syntax.html

3 Using the European Language Grid as a Consumer 41

dexed elements are the “resource type”, “language” and “licence”; for LT tools/ser-
vices, “service function” is also added to the search elements.

In addition, to improve recall of search results, for those metadata elements that
take values from controlled vocabularies, i. e., “service function”,“intended LT appli-
cation”, and “language”, the query is expanded with the use of synonyms. Synonyms
for the first two elements are derived from a taxonomy of LT activities2, which pro-
vides the values. For alternative names of languages, besides the official ones in-
cluded in the ISO 639-3 standard for language codes3 (International Organization
for Standardization 2007), we exploit open access vocabularies published as linked
data, i. e., the Glottolog list of languoids (families, languages, dialects)4, the lexvo
ontology of languages5, and the WALS list of languages6; all these vocabularies are
offered through Glottolog.

2.2.2 Faceted Search

Users can filter the catalogue or previous search results by selecting values from the
list of facets (Figure 2) on the left side of the catalogue page (Figure 1). For facets
with a long list of values, such as languages and licences, the facet values are broken
down into subsections or a search bar is included to refine the list.

Fig. 2 Faceted search in the ELG catalogue

2 Part of the OMTD-SHARE ontology, see http://w3id.org/meta-share/omtd-share.
3 https://iso639-3.sil.org/code_tables/639/data
4 https://glottolog.org
5 http://lexvo.org/ontology
6 https://wals.info/languoid

Language resources &

technologies

Service functions

Bulgarian (634)

Croatian (512)

Czech (790)

Danish (576)

Dutch (793)

Languages

Type to narrow down Official EU

languages

Official EU languages

Show more

http://w3id.org/meta-share/omtd-share
https://iso639-3.sil.org/code_tables/639/data
https://glottolog.org
http://lexvo.org/ontology
https://wals.info/languoid

42 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

The facets were selected in the initial phase of the ELG development based on
user preferences collected through a survey conducted for the technical platform
specifications (Melnika et al. 2019). Important criteria for users searching for are
language coverage (62%), licence and access conditions (59%) and availability of
open source code (56%). Later on, more facets have been added to reflect updates
in the metadata schema and improve search capabilities (Wu et al. 2019).

There are two facets, based on the resource type and entity type elements, that cre-
ate dedicated subsets of the catalogue contents. The values are taken from the respec-
tive elements of the ELG metadata schema, but are tuned to current LT approaches.
Thus, with regard to LRTs, users can view specific catalogues of tools and services,
corpora, lexical/conceptual resources, models, grammars and other language descrip-
tions. In the ELG schema the last three are subclasses of the language description
type, but we opted to treat them as separate resource types primarily to improve the
visibility of models; these are what define the state of the art for many NLP tasks
and are likely to be particularly popular, so need to be easily discoverable. The two
catalogues of organisations and projects are a valuable asset for boosting and acti-
vating interactions within and across the LT community (including match-making in
the ELG marketplace) and eventually also for monitoring funding outcomes.

LRTs can be further filtered using the facet ELG integrated services and data to
restrict the catalogue view to the ELG-compatible services and resources hosted in
ELG, for users who wish to take advantage of the “try out” functionality offered by
ELG for services or of the direct download of resources uploaded in ELG.

The facet languages shows the language coverage of the LRTs in the ELG cata-
logue, i. e., the languages of the contents of data resources and the ones that tools/ser-
vices cater for. Given the scope of ELG, the official EU languages are presented in
a separate group shown at the top of the facet. The encoding of language values in
the catalogue follows the BCP 47 recommendations (Phillips and Davis 2009), i. e.,
it allows for users adding a tag consisting of subtags for language, region, script and
language variants, but for simplicity of the UI the facet browser includes only the val-
ues of the language subtag. Moreover, it includes only one of the known names of a
language; e. g., for “Catalan; Valencian”, only the first name is shown. For languages
and language varieties without an ISO 639 code, we show the name associated with
the respective Glottocode7 if it has one.

The facets intended LT application and service function are used for classifying
LRTs and related entities with concepts specific to the LT community; consumers
can search for services that perform specific functions (e. g., dependency parsers,
Machine Translation tools), but also for corpora or models that have been created
or can be used for a a specific application (e. g., bilingual or multilingual corpora to
be used for building machine translation models), as well as for organisations and
projects active in an LT area; the values of these two elements are both taken from
the taxonomy of LT areas8, and free text values that have been added by users.

7 https://glottolog.org/meta/glossary
8 http://w3id.org/meta-share/omtd-share/

https://glottolog.org/meta/glossary
http://w3id.org/meta-share/omtd-share/

3 Using the European Language Grid as a Consumer 43

Licensing and access conditions are among the search criteria most requested
by users: licences gives the detailed list of licences used for LRTs in the catalogue.9
Themore coarse-grained facetConditions of use groups licences by the general types
of conditions they impose (e. g., “no commercial use”, “share-alike”), intended for
users with little knowledge of legal terms. Users are still advised to carefully read
the licence specified on the view page of each LRT for all terms and conditions.

The media types facet was introduced at a later stage when the number of mul-
timodal resources included in the catalogue increased. As for languages, this refers
to the media type of the contents of resources or the media type of the input/output
of tools, and can be used to quickly search not only for text-related applications and
resources, but also for audio, video and image ones.

The ELG catalogue includes both entries added by individuals and entries ag-
gregated from other catalogues.10 Thus, the facet source refers to the source of the
metadata record. It includes the name of the catalogue from which the record has
been imported or the value “ELG/ELE” for records originating in ELG or added by
the collaborating project European Language Equality (ELE)11 through processes
described in Chapter 6.

2.3 Viewing Metadata Records and Resources

By clicking the title of an entry on the catalogue page, users can view its full descrip-
tion. Figures 3 and 4 show the view page of a tool/service and a corpus respectively.
Specific view pages have been implemented for all LRT types published in ELG.
Their design takes into account user preferences and requirements, design and ac-
cessibility considerations and the ELGmetadata schema. They allow users to access
detailed information about an item, test it, if it is a service integrated in the platform,
and, finally, obtain and use it for their purposes.

Even though the types of information shown on the view pages differ for each
category, we apply a consistent visual look and feel for all of them. The information
on the view page of each item comes from the respective metadata record. Taking
into consideration the specificities and richness of the metadata schema, but also
user-friendliness, the information is layered along specific sections of the page. Thus,
view pages share a common layout that consists of a header, a right-hand sidebar, a
main content area and a bottom content region; the positioning of the elements on
the page and the formatting of the text is carefully thought through to draw users’
attention to the most important information.

The header shows the name and version of the resource, its resource type and op-
tionally important flags (e. g., to indicate that a certain service is deployed in ELG).

9 Chapter 6 discusses why this element was made mandatory.
10 See Chapters 4 and 6 for more information on the respective modes of population.
11 https://european-language-equality.eu

https://european-language-equality.eu

44 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

Fig. 3 View page of an ELG-compatible service

At the top of the right-hand sidebar, the button “Claim” may appear for some of
the metadata records; these are records with minimal metadata that have been im-
ported through automatic harvesting and bulk collection procedures (see Chapter 6).
The claiming process enables interested users, i. e., the rightful owners of these LRTs,
to ask to curate and enrich them. The same area provides for all records information
on how they can be cited, according to data and software citation principles (Smith

3 Using the European Language Grid as a Consumer 45

Fig. 4 View page of a corpus

46 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

et al. 2016; Data Citation Synthesis Group 2014) and DataCite guidelines12. They
also have the option to share the URL link of the page by email or through social
media and export the metadata record as an XML file in the ELG-compliant schema.
Statistics of resource usage are shown both for the particular resource version and
for all versions (if there are multiple versions). Links to other versions of the same
resource are also displayed here.

In the content area, tabs split information into smaller views and enable users to
navigate to offered functionalities of the platform. The first tab provides an overview
of the main features of the entry that help users decide if the resource fits their needs.
In terms of layout it is similar across resource types, but the information types (meta-
data elements) differ. Compare, for instance, Figures 3 and 4 that show the overview
tab for a service and a corpus. The top shows a free text description for all record
types, followed by a section for classification information (keywords, domain, ser-
vice function, etc.) and an area for technical metadata, e. g., the media type(s) and
language(s) of a corpus, the input and output data formats for a service, etc. The
bottom section contains hyperlinks to useful documents, creation details, etc. and is
again specific to resource types.

Depending on the resource type, the “Download” or “Download/Run” tab presents
information related to the distribution of the resource, such as the licence under
which it can be accessed, a technical description of its content files (e. g., size and
format for data resources), and access to the resource itself – a direct download link
if the resource is uploaded into ELG (see Section 3.2), otherwise a redirect to the
resource on its provider’s site. Figure 5 shows the tab for a corpus hosted in ELG.

A third tab appears if the item is related to other items, e. g., a project with the
LRTs this project has funded, an organisation with the LRTs it has created and the
projects it is involved in.

Finally, ELG-compatible services have two more tabs that enable users to try out
the service (see Section 2.5) and inform them how to use it via the command line or
Python SDK (see Section 4).

2.4 Consumer’s Grid

Individuals can browse the catalogue, view detailed metadata cards and download
open access resources without any registration. To access restricted resources and
run ELG-compatible services, they must be registered with an ELG account and
also logged in. For registered users, ELG offers a dashboard (“grid”) for managing
and performing actions on catalogue items depending on their rights (see Chapter 2
for more information on user roles and rights). As for view pages, the grid follows
a similar layout which is customised for each user type.

The consumer’s grid (Figure 6) allows registered users to monitor their usage of
daily quotas, view details on downloads of LRTs they performed and of the services

12 https://datacite.org/cite-your-data.html

https://datacite.org/cite-your-data.html

3 Using the European Language Grid as a Consumer 47

Fig. 5 Download tab for a corpus

48 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

Fig. 6 Consumer’s grid (see Figure 4 in Chapter 4, p. 73, for the Provider’s grid)

they have deployed. Additional elements of the “My grid” section that are relevant
only to provider users are discussed in Chapter 4.

2.5 Try out UIs for Language Technology Services

One of the key benefits of having an LT service fully integrated in ELG is that users
have access to a “try out” UI from which they can test the service directly using their
web browser. ELG provides standard trial UIs13 covering all principal service types:

• Information Extraction (IE) & text analysis services take text input and produce
standoff annotations over that text.
In addition to this generic text analysis UI there is also a specific one for depen-
dency parsers that renders CoNLL-U style annotations as a tree structure.14

• Text-to-text services (most notablyMachine Translation, but also summarisation,
anonymisation, etc.) take text and return new text that is derived from the input.

• Text classification services take text input and classify it somehow (e. g., lan-
guage identification, “fake news” detection, etc.)

• Speech recognition services accept audio and return a text transcription.

13 Service providers whose tools do not fit one of the above UIs are free to provide their own.
14 https://universaldependencies.org/format.html

https://universaldependencies.org/format.html

3 Using the European Language Grid as a Consumer 49

Fig. 7 An example “try out” UI for a named entity service

• Audio annotation services take audio and return standoff annotations over par-
ticular time segments of the audio stream.

• Text-to-speech services take text and return audio.
• Image OCR (optical character recognition) services take image data and return
text extracted from the image.

The trial UIs for services are available to any user who has logged in to the ELG
portal. The UI appears in the “Try out” tab when viewing a service in the catalogue;
Figure 7 shows an example for a simple service that only requires plain text. How-
ever, some services can be much more complex, requiring additional parameters or
providing snippets of sample data that users can test the service with – if a service
declares these kinds of items in its metadata record, then the try out UI will automat-
ically adapt, as shown in Figure 8. This service – also see Chapter 18 – declares two
optional parameters and offers a selection of samples in different languages.

The UIs have been designed to render all of the main service response types in a
user-friendly way, for example, annotations over text are shown as colour highlights
(Figure 9), translated text is displayed alongside the original, audio can be played
directly in the browser, etc.

50 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

Fig. 8 A more complex “try out” UI for the Text2TCS service

Text to Terminological Concept System
Text2TCS
Version: 1.1.2 (15/09/2021)

Cite resource
Gromann, Dagmar (2021, September 15). Text to
Terminological Concept System. Version 1.1.2.
[Software (Tool/Service)]. Source: European
Language Grid. https://live.european-language-
grid.eu/catalogue/tool-service/8122

What is coronavirus?
There are many different kinds of coronavirus (CoV). Known types of coronavirus include:

SARS coronavirus (SARS-CoV), which was first detected in 2003;
MERS coronavirus (MERS-CoV), which first occurred in humans in 2012.
In humans, certain types of coronavirus can cause illnesses ranging from a common cold to severe pneumonia. Other types
of coronavirus can cause a variety of infectious diseases in animals. Some types of coronavirus can be transmitted from
animals to humans.

The coronavirus identified in China in late 2019 was never before detected in humans.

On 11 February 2020, WHO assigned the official name COVID-19 (coronavirus disease 2019) to this disease. The designation
for the pathogen (germ) was changed from 2019-nCoV to SARS–CoV-2.

How dangerous is coronavirus SARS-CoV-2?
Similar to seasonal influenza, it affects in particular elderly persons and persons with a weakened immune system.
In more severe cases, infection with coronavirus SARS–CoV-2 can, for example, cause pneumonia or severe breathing
difficulties.

How does coronavirus SARS-CoV-2 spread?
Person-to-person spreading is the most frequent path of infection with coronavirus SARS–CoV-2. Contagion can be caused
by:

Mucus and saliva
Urine and faeces
Body fluids like for example blood

Features
Name Value

Graph Link https://live.european-language-grid.eu/temp-storage/retrieve/01h5dwxa-cn5gqz6vmgra6f4t9adkut4gfs0ef

TBX Link https://live.european-language-grid.eu/temp-storage/retrieve/01h5dwxa-jfkfprgapwsz9i4uea8pxchf6iu5f

Annotations
 c01: coronavirus

 c02: types

 c03: SARS coronavirus; MERS
coronavirus; coronavirus SARS-CoV-2

 c04: detected; identified

 c05: humans

 c06: illnesses; disease

 c07: common cold

 c08: severe pneumonia

 c09: infectious diseases

 c10: animals

 c11: transmitted

 c12: China

 c13: WHO

 c14: COVID-19

 c15: designation

 c16: pathogen

 c17: 2019-nCoV

 c18: SARS–CoV-2

 c19: dangerous

 c20: seasonal influenza

 c21: elderly persons; persons

 c22: immune system

 c23: infection with coronavirus
SARS–CoV-2

 c24: pneumonia

 c25: severe breathing difficulties

 c26: spread

 c27: Contagion

 c28: Mucus

 c29: saliva

 c30: Urine

 c31: faeces

 c32: Body fluids

 c33: blood

BACK

c23: infection with coronavirus SARS–CoV-2
Name Value
id c23
term infection with coronavirus SARS–CoV-2
relations […]

ELG-compatible service

Overview Download/Run Try out Code samples

The European Language Grid has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement
№ 825627 (ELG)

Home Technologies Resources Events Documentation About ELG Contact us

© 2022 ELG Consortium Terms of Use

RELEASE 2

Ian RobertsMy grid

Technologies Resources Community Events Documentation About ELG

Go to catalogue

Fig. 9 Example result for the Text2TCS service showing rendered text annotations

3 Public REST APIs

The web user interfaces described above are built on top of a set of REST APIs, and
the sameAPIs can also be called directly by third parties, allowing ELG functionality
to be accessed programmatically and embedded into other tools. The current public
APIs break down into three principal groups: 1. accessing/using the catalogue (Sec-
tion 3.1), 2. accessing and downloading ELG-hosted data resources (Section 3.2),
3. calling ELG-hosted LT services (Section 3.3).

All APIs are HTTPS-based and use JSON as the primary data representation for-
mat. Where authentication is required, this is performed using OAuth2 access tokens
issued by the ELG user management layer (see Section 5).

3 Using the European Language Grid as a Consumer 51

3.1 Accessing and Using the Catalogue

The ELG catalogue is a Python web application based on the Django REST Frame-
work.15 It offers a number of services as REST APIs, including the following ones
which are useful for consumers: 1. searching the catalogue, 2. authorising the down-
load of a resource or access of any resource or page, 3. retrieving the metadata de-
scription of a resource.

3.2 Downloading a Resource

ELG allows providers to upload and store the actual contents of their LRTs within
the platform (data files for corpora, source code for software, etc.), and the catalogue
offers an API to allow consumers to download this data subject to licensing terms.

LRT data is stored in a storage service compatible with the API of Amazon S3.
Access by consumers is mediated by a Storage Proxy.16 The proxy defers to a data
management module within the catalogue application (see Section 6) to determine,
based on authentication information provided by the user who attempts the down-
load, whether that user has the permission to download the requested resource. Fac-
tors considered in making a decision include whether the resource is open access to
all requesters (authenticated or not), if it requires authentication, or if the user must
explicitly accept the terms of the licence prior to download.

3.3 Language Technology Service Public API

One of the great strengths of ELG is its use of a single harmonised set of APIs for
all ELG-compatible LT services regardless of provider. This differs from other API
aggregator platforms such as RapidAPI17, where each service provider defines their
own API and the caller must adapt their code for each different service.

For each LT service the platform provides two endpoints at which the service
can be called, which implement synchronous and asynchronous modes of operation.
These endpoints are implemented in the LT Service Execution Server. The endpoint
URLs can be found in the service_info section of the metadata record JSON
structure returned by the catalogue API.

The synchronous mode simply consists of a single API call in which the caller
will POST the data to be processed and receive the results via the response to the
same request. The asynchronous mode accepts the same type of request but instead
of blocking the caller until the results are ready it returns a polling URL, which the

15 https://www.django-rest-framework.org
16 https://gitlab.com/european-language-grid/platform/s3proxy
17 https://rapidapi.com

https://www.django-rest-framework.org
https://gitlab.com/european-language-grid/platform/s3proxy
https://rapidapi.com

52 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

caller must repeatedly poll for status updates. This requires more HTTP requests but
for long-running services (or those that take some time to scale up from idle) the
asynchronous mode is more resilient to connection failures or intermediary proxy
timeouts between the client and the ELG platform.

Any query parameters appended to the URL will be passed through to the service
and may affect its behaviour – each service declares the parameters that it supports
in its metadata. All available versions of a given service are exposed at the same
endpoint, the ?version=... parameter is used to select between them, with the
latest version used by default if no parameter is given.

The POST data must have an appropriate Content-Type header for the service
in question; services that take text (such as text analysis or MT services) expect
“text/plain”18, services that take audio (such as speech recognition) expect “audio/x-
wav” or “audio/mpeg”, and services that take images expect the “image/png”, “im-
age/jpeg”, etc. A few services expect their input to be “structured text” that has been
pre-segmented by the caller, for these the request must be presented in an ELG-
defined JSON format. The response will be in JSON, in one of a variety of formats
depending on the data type:

• Standoff annotations are represented in a style inspired by the format used by
Twitter, each type of annotation mapping to a JSON array of objects referenc-
ing the start and end locations of the annotation (characters for text, fractional
seconds for audio), and an optional set of features.

• Classifications of the whole input have their own format giving an ordered list
of classes, each with an optional score.

• New texts such as translations of text or transcriptions of audio are returned in a
structured format referred to as a “texts” response (note texts is plural). This is
described in more detail below.

• Audio responses such as text-to-speech are still represented in JSON. Short snip-
pets of audio can be returned inline in base 64 encoding, longer audio will typi-
cally be stored at a short-lived temporary URL for the caller to download via a
separate HTTPS request.

The full specification of these response types can be found in the ELG documen-
tation.19 The “texts” response type is the most complex one as it is able to encode a
nested tree structure of texts, where each node in the tree can be either a leaf node
containing a single string of content, or a branch node containing another level of
texts. The vast majority of services currently using this response format produce one
of the three basic forms shown in Listing 1: a single text, a flat list of segments or
alternatives, or a two-level list where each segment has a set of alternatives.

The property role is used to distinguish the cases. Not all services populate this
property but it is encouraged; conventionally a role of “sentence”, “paragraph” or
“segment” denotes segments of text that are all part of the same transcript or trans-
lation, and “alternative” denotes different translations or transcriptions of the same

18 UTF-8 encoding is the default but can be overridden by adding the charset=... parameter.
19 https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTPublicAPI.html

https://european-language-grid.readthedocs.io/en/stable/all/A3_API/LTPublicAPI.html

3 Using the European Language Grid as a Consumer 53

1 // A single text
2 {
3 "response":{
4 "type":"texts",
5 "texts":[
6 {"content":"This is some text"}
7]
8 }
9 }
10

11 // A flat list of segments or alternatives
12 {
13 "response":{
14 "type":"texts",
15 "texts":[
16 {"content":"First sentence", "role":"sentence"},
17 {"content":"Second sentence", "role":"sentence"},
18]
19 }
20 }
21

22 // A two level list of segments that each have a number of alternatives
23 {
24 "response":{
25 "type":"texts",
26 "texts":[
27 {
28 "role":"sentence",
29 "texts":[
30 {"content":"Translation one", "role":"alternative"},
31 {"content":"First translation", "role":"alternative"}
32]
33 },
34 ...
35]
36 }
37 }

Listing 1 The three most common types of “texts” response

input segment. In the case of alternatives, each entry may also have a “score” repre-
senting the relative quality of the different options.

For errors (and also for warning messages), ELG, being a multilingual platform,
uses a format designed to be amenable to internationalisation (i18n). Each message
is represented as a JSON object with three properties “code”, “text” and “params”
(see Listing 2). The property “code” is the primary identifier for the error; there is
a list of standard message codes provided in the ELG documentation but providers
are free to create their own codes if the standard messages do not adequately cover
their needs. The property “text” is a string for the message text in English, and it
may include numbered placeholders {0}, {1}, etc. If the message has placeholders,

54 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

1 {
2 "code":"elg.request.type.unsupported",
3 "text":"Request type {0} not supported by this service",
4 "params":["audio"]
5 }
Listing 2 An example “status message” object from the ELG API, designed to be easily translated
into many languages.

1 POST https://live.european -language -grid.eu/i18n/resolve?lang=fr
2 Content -Type: application/json
3

4 [
5 {
6 "code":"elg.request.type.unsupported",
7 "text":"Request type {0} not supported by this service",
8 "params":["audio"]
9 }
10]
11

12 // response
13 Content -Type: application/json
14

15 ["La demande du type audio n'est pas supportée par ce service"]
Listing 3 Resolving a status message to a translated string

the corresponding values are given in the “params” array (as a zero-based index, so
0 refers to the first item, 1 to the second, etc.). The error message may also include
an optional “detail” object providing more technical details about the error.

The standard ELG message codes have translations into a number of different
languages (twelve at the time of writing, with more in the pipeline), and ELG pro-
vides a special API endpoint that accepts an array of errors and an ISO 639 language
code, and returns an array of message strings in the requested language (if available)
with all placeholders filled in. If the requested message code is not available in that
language the endpoint falls back to English, and if the message code is not known
at all then the “text” fallback from the original error is used instead.

Listing 3 shows an example of calling the “resolver” API; the ?lang=... param-
eter specifies the desired language. If it is not provided then the resolver will respect
any Accept-Language HTTP header on the request.20 If no language is requested
by the parameter or the header then messages will be returned in English by default.

Some long running services will return more meaningful progress updates as they
work through their various stages of processing, and these updates will be passed
back to the caller if they use the asynchronous API mode – requests to the polling

20 For browser-based clients this will typically result in the messages being returned in the user’s
preferred browsing language.

3 Using the European Language Grid as a Consumer 55

URL for a given job will return the latest progress update if the process is not yet
complete. These updates are represented as i18n message objects in the same way as
the errors and warnings described above, and they can be resolved to strings using
the same resolver API endpoint.

4 Python SDK for Users

ELGprovidesmanyAPIs to access the catalogue and search for specific resources, to
download corpora hosted in ELG, to call services or many other uses (see Section 3).
This provides ELG users with a lot of flexibility in the way they want to interact with
the platform, however, the basic APIs are rather low level. For example, the search
endpoint is paginated and returns only 20 results per call, which means that multiple
API calls are needed to obtain more than 20 results. Similarly, calling a service via
the public LT service API in the asynchronous mode requires multiple API calls to
be made at the correct times and in the correct sequence to perform what is, from
the user’s perspective, a single action.

In order to simplify interactions with the platform, we developed a Python SDK
that operates on top of the various ELG APIs and provides simple methods to easily
interact with ELG and consume the resources in Python. We chose Python as the
language for this first ELG SDK as it is probably the most widely-used programming
language within the LT community.

The SDK is included in the ELG Pypi package which can be installed using the
pip command familiar to any Python programmer. The basic SDK for consumer
use is installed using pip install elg. The SDK provides access to most ELG
functions through Python. It provides access to the cataloguewithmethods that allow
users to search the catalogue and look for corpora, services, and organisations. The
SDK enables users to call ELG-compatible services, and even to combine them using
a simple pipeline mechanism.

4.1 Browsing the Catalogue

The SDK enables access to the ELG catalogue. It uses the same filters as the
UI, i. e., we can filter for the type of resource or LT service, languages and licence;
free text search can also be used. Listing 4 shows how to search for an English
to French machine translation service. The SDK handles issues such as pagination
automatically and returns the result as a list of entities, where each entity is a Python
object that encapsulates the information about the respective ELG resource.

56 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

1 from elg import Catalog
2

3 catalog = Catalog()
4

5 # Search and get the result as a list of Python objects
6 results = catalog.search(
7 resource = "Tool/Service", # "Corpus", "Lexical/Conceptual
8 # resource" or "Language
9 # description"
10 function = "Machine Translation", # only for "Tool/Service"
11 languages = ["en", "fr"], # string or list if multiple
12 # languages
13)

Listing 4 Example code to use the ELG catalogue

4.2 Downloading a Resource

The Python SDK has a Corpus class that corresponds to a corpus or data set. It can
be initialised using the identifier of the resource. If the resource is stored in ELG,
it can be downloaded using the download method of the Corpus class. Listing 5
shows the most simple usage and parameters are available to choose the distribution
or specify the download location for example.

1 from elg import Corpus
2

3 corpus = Corpus.from_id(913) # initialise the Corpus using its ID
4 corpus.download() # download corpus method
Listing 5 Example code to download an ELG corpus

4.3 Obtaining an Access Token

Some functions are restricted to authorised users of ELG (see Section 5). For the
restricted APIs, an access token must be retrieved to identify the user behind the
API call. It is possible to obtain a short-lived valid access token through the UI but
this is not convenient for programmatic use.

To address this limitation, the Python SDK includes the Authentication class
that interacts directly with the ELGOpenID Connect authentication service to obtain
tokens, i. e., the access token to authenticate the API call and the refresh token which
is used to refresh the access token when it expires.

3 Using the European Language Grid as a Consumer 57

1 from elg import Authentication
2

3 auth = Authentication.init()
4 # here the user is asked to authenticate in the browser
5

6 auth = Authentication.init(scope="offline_access")
7 # here we are requesting an ``offline'' token that remains valid until
8 # revoked, as opposed to the usual token that requires re-authentication
9 # after 6 hours
10

11 auth.to_json("tokens.json") # export the tokens to a json file
12

13 auth = Authentication.from_json("tokens.json")
14 # creation of an Authentication object from the tokens in the json file

Listing 6 Example of code to obtain, store, and retrieve authentication tokens

Listing 6 shows an example usage of the Authentication class. During the
process, the user has to authenticate using their browser and paste the resulting au-
thorisation code back to the Python program. Once the Authentication object is
initialised, it is possible to save the tokens in a json file and reuse them. Obtained
tokens are by default valid for only six hours. It is possible to get tokens that are
valid indefinitely by setting the scope parameter to offline_access.

4.4 Calling Language Technology Services

The Service class of the Python SDK corresponds to an ELG LT service, and can
be initialised using the identifier of the service. As users need to be authenticated to
use ELG services, a login step is necessary. Alternatively, it is possible to provide
an Authentication object or a json file containing the tokens during the initial-
isation of the service, which allows the login step to be skipped. Various ways of
authenticating during the service initialisation of a service are shown in Listing 7.

A service that is initialised in Python can be called easily (see Listing 8). The
Python SDK handles the creation of the input message, any necessary refreshing of
the access token, the communication with the REST API, etc.

When calling a service, the input request can be provided in various formats: a
plain text, a path to a text or an audio file, or a Request object.21 The result is a
Python object that corresponds to one of the response messages (see Section 3.3).

21 https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/notebooks/Service
.html#Usage

https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/notebooks/Service.html#Usage
https://european-language-grid.readthedocs.io/en/stable/all/A1_PythonSDK/notebooks/Service.html#Usage

58 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

1 from elg import Service
2

3 lt = Service.from_id(474) # login step necessary (unless tokens
are cached) and the tokens will expire after 6 hours

4 lt = Service.from_id(474, scope="offline_access") # login step
necessary (unless tokens are cached) and the tokens will
never expire

5 lt = Service.from_id(474, auth_object=auth) # 'auth' is an
Authentication object. No login step and the expiration of
the tokens depends on the `auth` object

6 lt = Service.from_id(474, auth_file="tokens.json") # file
containing existing tokens. No login step and the expiration
of the tokens depends on the scope used to create them

Listing 7 Different ways of providing authentication during Service initialisation

1 from elg import Service
2

3 lt = Service.from_id(474) # initialise LT service using its ID
4 result = lt("Nikola Tesla did not live in Berlin.") # run service
5 print(result)
Listing 8 Example code for calling an ELG service

5 User Authentication

While general exploration and search in the ELG catalogue is open to all, various
other operations in ELG are restricted to certain users. For example, access to the LT
service public API (via the Python SDK, curl or the “try out” UIs) requires the caller
to be logged in so that the platform can enforce API call quotas to limit how much
data can be processed by each user per day, following the ELG licensing strategy
(see Section 6). Similarly, the submission of new resources and metadata records is
limited to users who are registered as providers; administrative tasks are restricted
to the technical ELG team.

Registering a regular user account is a simple self-service procedure. The regis-
tration form is available through the sign up/sign in icon in the top right corner of the
catalogue page. All registered users are assigned the consumer role by default. To
get provider status, users can submit a request through their profile page. All other
roles are assigned internally by the ELG administrators.

ELGusesKeycloak22, a usermanagement, authentication and authorisation server
based on the OAuth2 and OpenID Connect23 standards. Keycloak supports both in-
teractive authentication of users through the web UI, and programmatic access to
the REST APIs using JSON Web Tokens. Users sign in to Keycloak, then they (or

22 https://www.keycloak.org
23 https://openid.net/connect/

https://www.keycloak.org
https://openid.net/connect/

3 Using the European Language Grid as a Consumer 59

the client tool they are using, such as the ELG Python SDK) can acquire an access
token, which is a cryptographically signed “permit” that encodes their identity and
permissions. API endpoints can verify the validity of the token by checking its sig-
nature, and then make access decisions based on the “claims” encoded in the token
without needing to check every request directly with the authentication server.

The adoption of OpenID Connect opens up the possibility for third party applica-
tions to allow their own users to authenticate using ELG accounts, in the same way
as many existing websites and applications support “sign in with Google” or “sign
in with Facebook”. The OpenID Connect specification allows this without compro-
mising the protection of users’ personal information. When a given user attempts to
“log in with ELG” to a particular third party application for the first time, Keycloak
requires the user to grant explicit consent before any of their data is shared with the
provider, and that consent can be revoked at any time. At the time of writing the first
proof of this concept is under development with one of the ELG pilot projects.

6 Licensing and Billing

ELG includes mechanisms that support the consumption of services and resources
that are available without any restrictions in terms of commercial aspects. It sup-
ports the download of resources under the condition that they are offered free of
charge with open access licences or with restrictive licences that require only user
authentication and, optionally, accepting the licensing terms. Technical safeguards
have been implemented to ensure that access to LRTs is granted in accordance with
the above terms, for example, access to LRTs distributed with restricted licences is
made available only to those users that fulfil the criteria specified in the licences.
With regard to LT services, only the “try out” functionality is available and only for
registered users. Each user has two independent daily quotas for the quantity of data
processed, one for plain text and the other for binary (audio or image) data, to reflect
the fact that binary formats generally require much more data than plain text.

In addition, we also designed and implemented the prototype of a billing module
that will enable ELG to offer resources and services distributed with commercial
licences. The module is based on the commercial platform Chargebee, which was
selected because it fulfilled our requirements: it ensures security and includes vari-
ous services, such as handling subscriptions, payments, pricing, taxes, emails, ensur-
ing customer satisfaction and conformance to all EU and national laws, and offers
several functionalities, such as checkout pages, self-service after the payment, can-
cellation, creating and managing subscription plans, subscription changes, etc. The
integration of the external billing module is based on the interaction between the
two platforms, ELG and Chargebee. Information about the pricing of a resource or
service is formally encoded in the metadata record in ELG; administrative and ex-
ecution costs may also be added and calculated on the ELG side. In the Chargebee
catalogue we maintain a set of all monetised products and plans, and their prices.

60 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

The relationship between the ELG catalogue products and the Chargebee cata-
logue is not necessarily one-to-one; Chargebee can contain paid plans that allow the
use of multiple products from the ELG catalogue, or the download of multiple re-
sources. The relation between the two catalogues depends on the ELG business strat-
egy. All transactions, subscription changes, logs, billing information, subscription
data and similar information are stored on the Chargebee side, i. e., a database that
is external to ELG. Any information needed from Chargebee can be synchronised
through a webhook mechanism. For the ELG platform, this information includes the
identity of the user who has performed an action through a subscription plan and/or
a purchase, the action performed, the billing plan to which the user subscribed, etc.
Chargebee sends this information via HTTPS POST to the ELG back end so that it
can register changes in the ELG platform. The ELG back end monitors the user’s
quota usage and, taking into account the user’s subscription plans from the Charge-
bee platform, decides whether to allow or block a request for running a service. A
similar procedure is used for the download of a purchased resource.

7 Consumer-Related Functionalities in ELG and other Platforms

In this section we present platforms and catalogue-based systems that share features
with ELG, with a special focus on functionalities for consumers.

7.1 Catalogue and Repository Functionalities

With regard to the presentation and organisation of the contents of such a digital
catalogue of artefacts, the users of ELG can see all types of entities on the same
page or go through quick links from the top menu to the subset that interests them.
Offering such resource type-specific filtering functionalities is an approach adopted
by many catalogues, for example, Hugging Face24 has separate pages for models
and datasets, Papers with Code25 for datasets and benchmarks, some CLARIN cen-
tres distinguish between data resources and services (e. g., CLARIN-PL26, etc.), the
European AI on demand platform27 maintains separate catalogues for AI assets, or-
ganisations, projects and educational resources. This approach is particularly useful
for expert users with clear search objectives. In addition, distinguishing between
separate resource types allows for the selection of different metadata elements and
subgroupings of entries along the parameters most suitable to each type (e. g., group-
ing together services based on the tasks they perform or the degree of complexity

24 https://huggingface.co
25 https://paperswithcode.com
26 https://clarin-pl.eu
27 https://www.ai4europe.eu

https://huggingface.co
https://paperswithcode.com
https://clarin-pl.eu
https://www.ai4europe.eu

3 Using the European Language Grid as a Consumer 61

of use, and datasets based on modality or language). On the other hand, the one-
size-fits-all page has the benefit of allowing users to have an overview of resources
and activities using the same set of filters. ELG combines the two approaches by
providing quick links in the top menu and filters for the targeted pages.

With regard to search functionalities, free text search is the most popular one. In
some cases, an autocomplete function (e. g., Hugging Face) is used while advanced
queries are less used. Faceted search is also common, but in most cases with limited
facets (e. g., European AI on Demand platform, Hugging Face, etc.). Search with
programmatic modes through REST APIs is offered by many platforms on a limited
set of metadata elements in the same way that ELG does.

With regard to the functionalities offered for hosted data resources, direct down-
load of open access resources is common. A download link that can be used from
outside the platform (e. g., through a command line mode, or as a URL link) is pro-
vided in most cases. The deployment of integrated services on hosted resources is
a feature offered in only a few platforms (e. g., OpenMinTeD, clarin:el28). Machine
Learning platforms, like Hugging Face, can feed hosted datasets into applications,
but this is not among the objectives of the ELG platform.

7.2 Language Technology Service Execution

ELG’s LT service execution functionality has been designed and implemented from
scratch. Below, we compare this functionality with similar related infrastructures or
frameworks and highlight the similarities and differences in various aspects, e. g.,
interchange format, trial/visualisation UIs and support of workflows.

The DKPro29 family of tools and resources (Gurevych et al. 2007) consists of a
growing number of projects addressing different NLP tasks and aspects, such as
pre-processing, machine learning, and lexical resources. It offers a collection of
tools wrapped as UIMA components (Unstructured Information Management Ar-
chitecture)30, i. e., the components implement the interfaces and specifications of
the UIMA framework. AUIMA reader component should extend the ResourceCol-
lectionReaderBase class and also implement the getNext(CAS aJCas)method.
A processor must extend JCasAnnotator_ImplBase and, furthermore, implement
process(JCas aJCas) and awriter extends JCasFileWriter_ImplBase and im-
plements process(JCas aJCas). A UIMA reader loads data from a text file and
creates a Common Analysis System (CAS) object. A processor gets a CAS object,
runs the wrapped NLP tool and adds the results to the CAS object. A writer gets a
CAS object and serialises its content to a file in a specific format. UIMA is Java-
based but it can be used to wrap non-Java tools as well. UIMA allows to program-
matically define pipelines (workflows), i. e., chain a reader, various processors, a

28 https://inventory.clarin.gr
29 https://dkpro.github.io
30 https://uima.apache.org

https://inventory.clarin.gr
https://dkpro.github.io
https://uima.apache.org

62 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

writer and run the pipeline locally; it does not run remote services as in the case of
ELG. The DKPro components are interoperable because they all follow the DKPro
typesystem31, which defines which annotations can be added to a CAS object, which
features an annotation can contain, how these are serialised etc. The typesystem is
actually an ontology for annotations, how they are organised etc. The ELG JSON
format does not follow a typesystem. Another difference with ELG is that a CAS
object is serialised (by default) in XML Metadata Interchange (XMI) format32, a
standard for exchanging metadata information via XML; other formats are also sup-
ported. If the results of a DKPro pipeline are exported in an appropriate format (e. g.,
XMI) they can be loaded, visualised and even edited with the annotation tool IN-
CEpTION33 (Klie et al. 2018), which is not possible in the ELG trial UIs.

GATE34 (Cunningham et al. 2013) is an open source toolkit capable of solving
numerous text processing problem. The GATE framework is written in Java and
similar to DKPro/UIMA. As with UIMA there are additional modules to support
integration with non-Java tools. It allows creating, either via a UI builder or progra-
matically, a pipeline of NLP tools for specific tasks. The completed pipeline can be
saved in the XML “recipe” format XGAPP, which can, in turn, be loaded into the
developer UI to process small numbers of documents and visualise the resulting an-
notations, run using a batch processing tool for larger scale processing, or packaged
as a service on either the ELG or GATE’s own GATE Cloud platform (see Chap-
ter 7, Section 4.2, 140 ff.). Each GATE processing component gets as input a GATE
Document which is enriched with annotations. Again, as in DKPro, GATE readers
and writers load the data and write the processing results. A GATE Document is by
default serialised to GATE XML, however, other formats are also supported. The
annotations that are added in GATE Document do not follow a specific typesystem
but follow some generic rules – each document has one or more sets of annotations,
each set can contain annotations of many types, each annotation can have zero or
more features, and while there is no enforced typesystem, all standard GATE com-
ponents share a set of informal conventions for the types and features they use. This
logic is very similar to the one adopted in ELG’s JSON-based format. Contrary to
ELG, the DKPro/UIMA and GATE tools are not dockerized (by default) and run as
command line tools locally. Furthermore, the ELG services always process raw text
while DKPro and UIMA components can also handle other formats such as PDF,
and documents that have already been partially annotated.

GATE Cloud35 (Tablan et al. 2013) is a platform very similar in spirit to ELG, but
specifically built around the requirements of GATE-based text analysis tools. It was
developed by the same team at the University of Sheffield that was responsible for
the initial design of the ELG LT service execution layer and thus shares many of the
same API design decisions. GATE Cloud offers a REST API accepting documents

31 http://dkpro.github.io/dkpro-core/releases/1.8.0/docs/typesystem-reference.html
32 https://www.omg.org/spec/XMI/2.5.1/About-XMI/
33 https://inception-project.github.io
34 https://gate.ac.uk
35 https://cloud.gate.ac.uk

http://dkpro.github.io/dkpro-core/releases/1.8.0/docs/typesystem-reference.html
https://www.omg.org/spec/XMI/2.5.1/About-XMI/
https://inception-project.github.io
https://gate.ac.uk
https://cloud.gate.ac.uk

3 Using the European Language Grid as a Consumer 63

via HTTP post and returning annotations in the native JSON or XML formats of the
GATE framework. GATE Cloud services process only text (not audio or other media
types), but can accept formats such as XML, PDF (with machine-readable text) or
Word documents as well as plain text. As well as the single document API, GATE
Cloud also supports batch processing of larger amounts of data using on-demand
processing capacity from Amazon Web Services. GATE Cloud services are defined
as XGAPP “recipes” in the native GATE format, which are wrapped as Docker con-
tainers for the REST API or executed as-is by the batch processing engine. GATE
Cloud has recently added support for other types of APIs such as image OCR (a
service which has itself been integrated into the ELG platform).

The LAPPS Grid platform, as DKPro, is based on a typesystem, the LAPPSWeb
Service Exchange Vocabulary (Ide et al. 2016), “an ontology of terms for a core of
linguistic objects and features exchanged among NLP tools that consume and pro-
duce linguistically annotated data. It is intended to be used for module description
and input/output interchange to support service discovery, composition, and reuse
in the natural language processing domain.” In LAPPS Grid, as in ELG, tools are
wrapped as web services, packaged as Docker images and exchange JSONmessages.
However, LAPPS Grid also offers workflows by using Galaxy, a workflow manage-
ment system. Galaxy includes a visual editor for creating and parameterising work-
flows and an engine for executing these workflows. LAPPS Grid does not have a
catalogue and each service is described with a limited set of metadata elements that
are required for adding it to the Galaxy tool inventory. ELG was not designed to
offer workflows, i. e., it does not include a workflow editor or a workflow execution
engine. In addition, all services get as input raw text and they were not designed for
playing the role of components in a workflow. However, some pipelines can be cre-
ated by using external tools, e. g., the Python SDK and some code/adapters (Rehm et
al. 2020; Moreno-Schneider et al. 2022). For example, using the ELG Python SDK,
a Machine Translation service can be called, the result can extracted from the output
JSON message and fed to an ELG NER service.

The OpenMinTeD execution service (Labropoulou et al. 2018) is also built on
top of Galaxy. A large number of tools from the DKPro and GATE collections were
ingested to OpenMinTeD. Several tools from other providers were also added. All
tools were dockerized and are executed inside the container as command line tools,
i. e., not as web services. An OpenMinTeD workflow is executed by running a series
of Docker images (one after the other) in a cluster managed byMesos36, a framework
similar to Kubernetes37. The workflow itself is created using the Galaxy editor. In
OpenMinTeDno specific interchange format was enforced, the recommendationwas
to use the DKPro typesystem and XMI serialization. However, the GATE tools were
using GATE XML format and several others were using their own custom format
(e. g., based on JSON). In order to create a “mixed” workflow the creator had to com-
bine the respective components with corresponding format adapters. If the results of

36 https://mesos.apache.org
37 https://kubernetes.io

https://mesos.apache.org
https://kubernetes.io

64 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

the workflow were in XMI format, they could be visualised using WebAnno38, a
predecessor of INCEpTION.

The EuropeanAI onDemand platform39 covers the whole EuropeanAI landscape
rather than being restricted to LT or NLP. For example, computer vision is also in-
cluded. The services are gRPC-based (not REST-based as in ELG) and are packaged
as Docker images. The messages that they consume and produce are based on the
ProtoBuf serialisation format40 and no specific typesystem is used. The platform
does not offer an execution environment. However, the worfklows that are created
with the AI4EU Experiments editor41, an editor similar to the one offered by Galaxy,
are exported to a format that allows their execution in a Kubernetes cluster.

Hugging Face offers a large collection of Transformer-basedmodels for computer
vision, language processing, audio processing etc. Transformers are a specific type
of neural networks (Vaswani et al. 2017) that have revolutionised machine learning
since they achieve state of the art results in many tasks. Hugging Face allows training
of Transformer-based models via the AutoNLP API42, which is not free of charge.
While we have performed initial experiments, ELG does not offer integrated model
training. In Hugging Face, training as well model deployment is based on Amazon
SageMaker, which is built on top of Docker. Hugging Face users can call a model via
the trial UIs/widgets that are embedded in the respective page (as in ELG). For doing
the same in a programmatic way, Hugging Face offers an inference REST API along
with a Python client API43. Similar inference functionalities are offered through the
ELGRESTAPIs and the Python SDK. Upon request, Hugging Face also offers an in-
ference solution delivered as a container with the Transformer model for on-premise
usage.44 It can be used via a HTTPAPI (as in ELG). Finally, Hugging Face has devel-
oped a Python-based library (called “transformer”) that allows to download a model
and either fine-tune it in a specific task or use it for inference. Such functionality is
not offered by the ELG Python SDK.

8 Conclusions

The ELG platform has fully achieved all objectives it had set for serving consumers.
It allows consumers to browse through the whole ELG catalogue, already populated
with more than 13,000 metadata records, apply faceted filtering and exploration,
search for specific resources and services, download them (if hosted in ELG) and
try out more than 800 functional services, both basic processing NLP services and

38 https://webanno.github.io/webanno/
39 https://www.ai4europe.eu
40 https://developers.google.com/protocol-buffers
41 https://aiexp.ai4europe.eu
42 https://huggingface.co/autotrain
43 https://api-inference.HuggingFace.co/docs/python/html/quicktour.html
44 https://HuggingFace.co/infinity

https://webanno.github.io/webanno/
https://www.ai4europe.eu
https://developers.google.com/protocol-buffers
https://aiexp.ai4europe.eu
https://huggingface.co/autotrain
https://api-inference.HuggingFace.co/docs/python/html/quicktour.html
https://HuggingFace.co/infinity

3 Using the European Language Grid as a Consumer 65

end-to-end applications. Users can also access the directory of LT-developing com-
panies and academic organisations, find organisations active in a specific LT area,
and initiate collaborations with them. The links between LRTs, organisations and
projects allows users to navigate between them and have an overview of the over-
all European LT landscape. Consumers can access all these functionalities through
user-friendly web user interfaces, or in programmatic ways, using the public REST
APIs and Python SDK.

References

Cunningham, Hamish, Valentin Tablan, Angus Roberts, and Kalina Bontcheva (2013). “Getting
More Out of Biomedical Documents with GATE’s Full Lifecycle Open Source Text Analytics”.
In: PLOS Computational Biology 9.2, pp. 1–16. DOI: 10.1371/journal.pcbi.1002854.

Data Citation Synthesis Group (2014). Joint Declaration of Data Citation Principles – FORCE11.
Ed. by M. Martone. DOI: 10.25490/a97f-egyk. URL: https://doi.org/10.25490/a97f-egyk.

Gurevych, Iryna, Max Mühlhäuser, Christof Müller, Jürgen Steimle, Markus Weimer, and Torsten
Zesch (2007). “Darmstadt Knowledge Processing Repository based on UIMA”. In: Proc. of
the First Workshop on Unstructured Information Management Architecture (co-located with
GLDV 2007). Tübingen, Germany, p. 89.

Ide, Nancy, Keith Suderman, Marc Verhagen, and James Pustejovsky (2016). “The Language Ap-
plication GridWeb Service Exchange Vocabulary”. In:Worldwide Language Service Infrastruc-
ture. Lecture Notes in Computer Science. Springer, pp. 18–32.

International Organization for Standardization (2007). Codes for the representation of names of
languages – Part 3: Alpha-3 code for comprehensive coverage of languages. URL: https://ww
w.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/95/39534.html.

Klie, Jan-Christoph, Michael Bugert, Beto Boullosa, Richard Eckart de Castilho, and Iryna Gure-
vych (2018). “The INCEpTION Platform: Machine-Assisted and Knowledge-Oriented Inter-
active Annotation”. In: Proceedings of the 27th International Conference on Computational
Linguistics (COLING 2018): System Demonstrations. Santa Fe, USA: ACL, pp. 5–9. URL: htt
p://tubiblio.ulb.tu-darmstadt.de/106270/.

Labropoulou, Penny, Dimitris Galanis, Antonis Lempesis, Mark Greenwood, Petr Knoth, Richard
Eckart de Castilho, Stavros Sachtouris, ByronGeorgantopoulos, StefaniaMartziou, Lucas Anas-
tasiou, Katerina Gkirtzou, Natalia Manola, and Stelios Piperidis (2018). “OpenMinTeD: A
Platform Facilitating Text Mining of Scholarly Content”. In: Proceedings of WOSP 2018 (co-
located with LREC 2018). Miyazaki, Japan: ELRA, pp. 7–12. URL: http://lrec-conf.org/works
hops/lrec2018/W24/pdf/13_W24.pdf.

Melnika, Julija, Andis Lagzdiņš, Uldis Siliņš, Raivis Skadins, and Andrejs Vasiļjevs (2019). De-
liverable D3.1 Requirements and Design Guidelines. Project deliverable; EU project European
Language Grid (ELG); Grant Agreement no. 825627 ELG. URL: https://www.european-langu
age-grid.eu/wp-content/uploads/2021/02/ELG-Deliverable-D3.1-final.pdf.

Moreno-Schneider, Julián, Rémi Calizzano, Florian Kintzel, Georg Rehm, Dimitris Galanis, and
Ian Roberts (2022). “Towards Practical Semantic Interoperability in NLP Platforms”. In: Pro-
ceedings of the 18th Joint ACL-ISOWorkshop on Interoperable Semantic Annotation (ISA 2022;
co-located with LREC 2022). Ed. by Harry Bunt. Marseille, France, pp. 118–126. URL: http:
//www.lrec-conf.org/proceedings/lrec2022/workshops/ISA-18/pdf/2022.isa18-1.16.pdf.

Phillips, Addison and Mark Davis (2009). Tags for Identifying Languages. Tech. rep. RFC 5646.
Internet Engineering Task Force. URL: https://datatracker.ietf.org/doc/rfc5646.

Rehm, Georg, Dimitrios Galanis, Penny Labropoulou, Stelios Piperidis, Martin Welß, Ricardo
Usbeck, Joachim Köhler, Miltos Deligiannis, Katerina Gkirtzou, Johannes Fischer, Christian
Chiarcos, Nils Feldhus, Julián Moreno-Schneider, Florian Kintzel, Elena Montiel, Víctor Ro-

https://doi.org/10.1371/journal.pcbi.1002854
https://doi.org/10.25490/a97f-egyk
https://doi.org/10.25490/a97f-egyk
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/95/39534.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/95/39534.html
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://lrec-conf.org/workshops/lrec2018/W24/pdf/13_W24.pdf
http://lrec-conf.org/workshops/lrec2018/W24/pdf/13_W24.pdf
https://www.european-language-grid.eu/wp-content/uploads/2021/02/ELG-Deliverable-D3.1-final.pdf
https://www.european-language-grid.eu/wp-content/uploads/2021/02/ELG-Deliverable-D3.1-final.pdf
http://www.lrec-conf.org/proceedings/lrec2022/workshops/ISA-18/pdf/2022.isa18-1.16.pdf
http://www.lrec-conf.org/proceedings/lrec2022/workshops/ISA-18/pdf/2022.isa18-1.16.pdf
https://datatracker.ietf.org/doc/rfc5646

66 Ian Roberts, Penny Labropoulou, Dimitris Galanis, Rémi Calizzano et al.

dríguez Doncel, John P. McCrae, David Laqua, Irina Patricia Theile, Christian Dittmar, Kalina
Bontcheva, Ian Roberts, Andrejs Vasiljevs, and Andis Lagzdiņš (2020). “Towards an Interop-
erable Ecosystem of AI and LT Platforms: A Roadmap for the Implementation of Different
Levels of Interoperability”. In: Proc. of the 1st Int. Workshop on Language Technology Plat-
forms (IWLTP 2020, co-located with LREC 2020). Ed. by Georg Rehm, Kalina Bontcheva,
Khalid Choukri, Jan Hajic, Stelios Piperidis, and Andrejs Vasiljevs. Marseille, France, pp. 96–
107. URL: https://www.aclweb.org/anthology/2020.iwltp-1.15.pdf.

Rehm, Georg, Stelios Piperidis, Kalina Bontcheva, Jan Hajic, Victoria Arranz, Andrejs Vasiļjevs,
Gerhard Backfried, José Manuel Gómez Pérez, Ulrich Germann, Rémi Calizzano, Nils Feldhus,
Stefanie Hegele, Florian Kintzel, Katrin Marheinecke, Julian Moreno-Schneider, Dimitris Gala-
nis, Penny Labropoulou, Miltos Deligiannis, Katerina Gkirtzou, Athanasia Kolovou, Dimitris
Gkoumas, Leon Voukoutis, Ian Roberts, Jana Hamrlová, Dusan Varis, Lukáš Kačena, Khalid
Choukri, Valérie Mapelli, Mickaël Rigault, Jūlija Meļņika, Miro Janosik, Katja Prinz, Andres
Garcia-Silva, Cristian Berrio, Ondrej Klejch, and Steve Renals (2021). “European Language
Grid: A Joint Platform for the European Language Technology Community”. In: Proceedings
of the 16th Conference of the European Chapter of the Association for Computational Linguis-
tics: System Demonstrations (EACL 2021). Kyiv, Ukraine: ACL, pp. 221–230. URL: https://w
ww.aclweb.org/anthology/2021.eacl-demos.26.pdf.

Smith, Arfon M., Daniel S. Katz, and Kyle E. Niemeyer (2016). “Software citation principles”. In:
PeerJ Computer Science 2. URL: https://peerj.com/articles/cs-86.

Tablan, Valentin, Ian Roberts, Hamish Cunningham, and Kalina Bontcheva (2013). “GATECloud-
.net: A Platform for large-scale, Open-Source Text Processing on the Cloud”. In: Philosophical
Transactions of the Royal Society A: Math., Phys. and Eng. Sciences 371.20120071.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need”. In: Proceedings of the
31st International Conference on Neural Information Processing Systems, pp. 6000–6010.

Wilkinson, Mark D., Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Ax-
ton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E.
Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier
Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alas-
dair J.G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A.C ’t Hoen,
Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert
Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik,
Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris
A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop, Andra Waag-
meester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons (2016). “The
FAIR Guiding Principles for Scientific Data Management and Stewardship”. In: Scientific Data
3. DOI: 10.1038/sdata.2016.18. URL: http://www.nature.com/articles/sdata201618.

Wu,Mingfang, Fotis Psomopoulos, Siri Jodha Khalsa, and Anita deWaard (2019). “Data Discovery
Paradigms: User Requirements and Recommendations for Data Repositories”. In:Data Science
Journal 18.1. URL: http://datascience.codata.org/articles/10.5334/dsj-2019-003/.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.aclweb.org/anthology/2020.iwltp-1.15.pdf
https://www.aclweb.org/anthology/2021.eacl-demos.26.pdf
https://www.aclweb.org/anthology/2021.eacl-demos.26.pdf
https://peerj.com/articles/cs-86
https://doi.org/10.1038/sdata.2016.18
http://www.nature.com/articles/sdata201618
http://datascience.codata.org/articles/10.5334/dsj-2019-003/
http://creativecommons.org/licenses/by/4.0/

	Chapter 3 Using the European Language Grid as a Consumer
	1 Introduction
	2 Web-based Interface
	2.1 Viewing the Catalogue
	2.2 Searching the Catalogue
	2.2.1 Free Text Search
	2.2.2 Faceted Search

	2.3 Viewing Metadata Records and Resources
	2.4 Consumer’s Grid
	2.5 Try out UIs for Language Technology Services

	3 Public REST APIs
	3.1 Accessing and Using the Catalogue
	3.2 Downloading a Resource
	3.3 Language Technology Service Public API

	4 Python SDK for Users
	4.1 Browsing the Catalogue
	4.2 Downloading a Resource
	4.3 Obtaining an Access Token
	4.4 Calling Language Technology Services

	5 User Authentication
	6 Licensing and Billing
	7 Consumer-Related Functionalities in ELG and other Platforms
	7.1 Catalogue and Repository Functionalities
	7.2 Language Technology Service Execution

	8 Conclusions
	References

