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The electronic structure of a cubic T -symmetric Weyl semimetal is analyzed in the presence of atomic-sized

vacancy defects. Isolated vacancies are shown to generate nodal bound states with r−2 asymptotic tails, even

when immersed in a weakly disordered environment. These states show up as a significantly enhanced nodal

density of states which, as the concentration of defects is increased, reshapes into a nodal peak that is broadened

by intervacancy hybridization into a comb of satellite resonances at finite energies. Our results establish point

defects as a crucial source of elastic scattering that leads to nontrivial modifications in the electronic structure of

Weyl semimetals.

DOI: 10.1103/PhysRevB.106.184201

I. INTRODUCTION

With the advent of three-dimensional (3D) topological

insulators [1,2], the search for topological semimetals emerg-

ing at the transition between gapped phases of matter has

flourished. Rather than being a fine-tuned situation, it was

envisaged by Murakami [3] that, without inversion symme-

try, topological phase transitions can proceed through an

intermediate stage, in which a pair of twofold-degenerate

band-crossing points moves around the first Brillouin zone

until it finally merges together and gives rise to a new

gapped phase. Such a stable gapless state was dubbed a

Weyl semimetal (WSM) [4,5] because low-energy excitations

around these band crossings are described by a decoupled

pair of (3 + 1)-dimensional Weyl equations of opposite chi-

rality [6]. Later on, such a topological gapless phase was

also shown to be possible in centrosymmetric crystals, so

long as time-reversal symmetry is broken [7–10] (magnetic

WSM). Crucially, in all cases, the band crossings form pairs of

pointlike sources (or sinks) of Berry flux in momentum space,

analogous to the well-known “diabolical points” described by

Berry [11] in a generic two-level quantum system. Therefore,

isolated Weyl nodes are topologically protected degeneracies

in the electronic band structure that are robust to parametric

changes of the Hamiltonian.

The topological character of WSMs yields important phys-

ical consequences, from the existence of surface Fermi arcs
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[7,12–15] that connect Weyl nodes in the surface-projected

first Brillouin zone (FBZ), to the remarkable condensed

matter realization of QED’s chiral anomaly [16,17]. The lat-

ter drives distinctive unconventional transport effects, such

as a negative longitudinal magnetoresistance [18,19], a giant

in-plane Hall effect [20,21], and the chiral magnetic effect

[22]. Nonetheless, perhaps the most remarkable property of

a WSM is its resilience to the effects of unavoidable pertur-

bations, such as disorder or crystal defects. From a theoretical

standpoint, the disorder effects in both spectral [23–28] and

transport properties [29–33] of WSMs have been the subject

of intense research. A big focus was placed on the effects of

random potentials that can yield non-Anderson quantum crit-

icality at a finite disorder strength [29,34,35]. As the system

is driven through this critical point, the semimetallic character

of the nodal single-electron states gets destroyed long before

they become exponentially localized at the Anderson transi-

tion [24].

In contrast to conventional Anderson transitions [36,37],

the disorder-averaged nodal density of states (NDOS) in dis-

ordered WSMs is deemed an appropriate order parameter

by field-theoretical calculations [30,38–40], as well as the

numerical observation of its sharp power-law growth above

some critical disorder strength [24,25,41]. However, recent

studies of nonperturbative instantonic effects have revealed

that rare disorder configurations lift the NDOS and round

out its critical behavior [28,42,43], thus challenging the con-

ventional scenario. A physical picture was then put forward

by Nandkishore et al. [42], who associated the NDOS lift to

smooth rare regions of a random potential landscape that can

sporadically bound eigenstates at the nodal energy, giving way

to an exponentially small but nonzero NDOS. Despite being a

controversial proposal [25–27,44–46], the avoided quantum

criticality due to rare events was eventually confirmed in

2469-9950/2022/106(18)/184201(11) 184201-1 ©2022 American Physical Society



J. P. SANTOS PIRES et al. PHYSICAL REVIEW B 106, 184201 (2022)

subsequent numerical studies [25–27] and it is now believed

to be the most general scenario [28].

In spite of these numerous theoretical studies regarding the

effects of random potential disorder, very little is known about

the role played by point defects and other common disorder

sources. Currently, time-reversal-symmetric Weyl fermions

can be realized as low-energy quasiparticles in a myriad of

materials, most notably within the TaAs cubic family (also

including NbAs, TaP, and NbP) [47], which can be grown

as single crystals using chemical vapor transport techniques

[48]. In the growth process, lattice defects are likely to

form [49,50] and, as demonstrated in previous experimental

studies based on transmission electron microscopy [51] and

Raman scattering [52], even high-quality samples generally

host a considerable density of defects, mostly vacancies and

stacking faults. Adding to their natural occurrence, vacancy

defects can also be artificially induced by means of particle

irradiation [53,54], a well-tested technique previously used

to generate defects in graphene [55] and two-dimensional

semiconductors [56,57]. Since point defects can significantly

change the electronic structure of materials, a study of their

impact as a source of disorder in WSMs opens up interesting

possibilities. Promising results were reported by Xing et al.

[58], where atomic vacancies hosted by the (magnetic) WSM

Co3Sn2S2 were linked to the presence of exotic localized

spin-orbit polaron states on its surface. In this paper, we

push this line forward by theoretically analyzing the elec-

tronic properties of Weyl fermions in the presence of point

defects. More specifically, we characterize the electronic wave

functions and corresponding density of states (DOS) of a

lattice T -symmetric Weyl semimetal with finite concentra-

tions of randomly distributed atomic-sized vacancies with one

(half-vacancy) or two (full-vacancy) orbitals missing from the

defect sites.

The remainder of this paper is organized as follows. In

Sec. II, we introduce our working model and a projected

Green’s function formalism (PGF) that is used to calculate

the vacancy-induced DOS deformation and show that alge-

braically decaying nodal bound states appear for isolated

half and full vacancies. In Sec. III, the existence of nodal

bound states is further verified by Lanczos diagonalization

(LD) [59–61] of lattices containing an isolated vacancy. The

robustness of these states to an additional weakly disordered

environment is also discussed. In Sec. IV, we analyze the

averaged DOS of a WSM with a finite concentration of va-

cancies, employing a combination of LD and spectral methods

[62–64]. While confirming that localized eigenstates still ap-

pear and enhance the value of the DOS around the Weyl

node, our results further show that intervacancy hybridization

quickly broadens the nodal peak in the DOS, forming a comb

of symmetrically placed subsidiary sharp resonances for a

moderate concentration of defects. Finally, Sec. V summa-

rizes our key results and gives an outlook.

II. MODELING AN ISOLATED VACANCY

IN A WEYL SEMIMETAL

A lattice vacancy is a common crystalline defect [65].

When a crystal is formed some sites are not properly occupied

by the corresponding atoms, creating a proportion of vacant

FIG. 1. Band structure of the clean lattice WSM model along

the k-space path indicated in the inset. The locations of the eight

nonequivalent Weyl cones are represented as well.

sites [66,67] that act as a source of disorder. In the language of

tight-binding Hamiltonians, a vacancy can be modeled by re-

moving one or more Wannier orbitals from a randomly chosen

lattice site. We start by determining the effects of introducing

a single lattice half or full vacancy in a two-band model of

a WSM. We employ a particle-hole-symmetric model that

lives in a simple cubic lattice (L) and features a low-energy

dispersion relation with eight isotropic Weyl nodes pinned to

the time-reversal-invariant momenta of the cubic FBZ (see

Fig. 1). The lattice Hamiltonian [28] may be written as

H0 =
h̄v

2ia

∑

R∈L

∑

j=x,y,z

[�†
R · σ j · �R+ax̂ j

− H.c.], (1)

where a is the lattice parameter, v is the Fermi velocity,

x̂ j = (x̂, ŷ, ẑ) are Cartesian unit vectors, σ is the vector of

2 × 2 Pauli matrices, and �
†
R = [c†

R,1, c
†
R,2] is a local two-

orbital fermionic creation operator. Equipped with this lattice

description, the vacancy defects are implemented in two dis-

tinct ways. In our PGF calculations below, lattice vacancies

are created by canceling all hoppings at the defect site, which

leaves behind uncoupled zero-energy Wannier states. In con-

trast, when the system is analyzed using spectral methods

or LD (Secs. III and IV), the Hilbert space’s dimension is

effectively reduced by iterating with vectors orthogonal to the

removed orbitals.

A. Clean lattice Green’s function and nodal point symmetries

Before diving into the analysis of the electronic structure

of WSMs with vacancy defects, we first establish some basic

results. The Bloch Hamiltonian of the clean system admits the

simple representation

H0(k) = h̄vσ · sin ak, (2)

with sin ak ≡ (sin akx, sin aky, sin akz ), and which yields the

dispersion relation represented in Fig. 1. The clean re-

tarded lattice Green’s function (LGF), defined formally as

G0(E , R j − Ri ) = [E + i0+ − H0]−1

R j ,Ri
, can be written, in

terms of dimensionless quantities, as

G0(ε,�R) =
∫

[−π,π]3

d (3)k

8π3

ε + σ · sin k

ε2 − |sin k|2
e−ik·�R, (3)

where ε = Ea/h̄v + iη is the dimensionless energy (shifted

by an imaginary amount η), k is the crystal momentum (in

184201-2
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units of a−1), �R = (nx, ny, nz ), and ni ∈ Z are indices that

label particular sites. Equation (3) can be expressed in terms

of four basic integrals over the domain [−π, π ]3, i.e.,

G0(ε,�R) = I
0
ε (�R) +

∑

j=x,y,z

σ j
I

j
ε (�R), (4)

where the complex-valued integrals are

I
0
ε (�R) =

∫

[−π,π]3

d (3)k
ε eikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
, (5a)

I
x
ε (�R) = −

∫

[−π,π]3

d (3)k
sin kxeikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
, (5b)

with I
y,z
ε (�R) being obtained from Ix

ε (�R) by a cyclic

permutation of the set (nx, ny, nz ). These integrals can be

numerically evaluated with high precision (see Appendix A)

and display useful symmetry properties. First, the parity of

the integrand dictates that G0(E ,�R) = 0 whenever the set

(nx, ny, nz ) contains more than one odd integer. This small-

scale property of the LGF can be traced back to the existence

of eight nonequivalent valleys which are specific to this lattice

model. Additionally, there are nonspatial symmetries which

can be deduced from Eqs. (5a) and (5b), most notably

I
0
ε (�R) =

[

I
0
ε∗ (�R)

]∗
, (6a)

I
j
ε (�R) = −

[

I
j
ε∗ (�R)

]∗
, (6b)

and also

Re
[

I
0
i0+ (�R)

]

= lim
η→0+

∫

[−π,π]3

d (3)k
η sin (k · �R)

8π3(η2 + |sin k|2)
= 0,

(7)

by employing the cubic symmetry of the FBZ. Together, these

three properties imply that the LGF at E = 0 can be repre-

sented in the simple form

G0(0,�R) = i
∑

j=x,y,z

σ jIm
[

I
j

i0+ (�R)
]

, (8)

which is nonzero if and only if �R = (nx, ny, nz ) features a

single odd integer.

B. Projected Green’s function for a lattice vacancy

Within a lattice description, a vacancy can be modeled by

removing hoppings connecting one (or several) orbitals within

a unit cell to its neighbors. With no loss of generality, let us

consider a vacancy at the origin, R = 0. The Hamiltonian is

then H = H0 + V with

V = −
h̄v

2ia

∑

j=x,y,z

[�†
0 · σ j · �0+ax̂ j

− �
†
0 · σ j · �0−ax̂ j

− H.c.].

(9)

This operator has the advantage of having a finite support;

i.e., it acts only on sites � = {0,±ax̂1,±ax̂2,±ax̂3} that form

the octahedron shown in Fig. 2. Such local perturbations to a

lattice model can be conveniently studied by using the PGF

method. Treating V as a perturbation, we obtain a set of

�

H0

�

H0 + V

FIG. 2. Scheme of the local perturbation defined in Eq. (9).

Dyson’s equations for the system’s Green’s function, G(ε),

in the presence of the vacancy, i.e.,

G(ε) = G0(ε) + G(ε) · V · G0(ε), (10a)

G(ε) = G0(ε) + G0(ε) · V · G(ε), (10b)

where · denotes the matrix product defined in the full Hilbert

space. To solve these equations, we proceed in two steps:

(i) By projecting them into �, we can solve for those

entries of the full G(ε), i.e.,

G(ε) = [I − G0(ε) · V]−1 · G0(ε), (11)

where G0(ε) is the clean lattice Green’s function restricted to

�, with I − G0(ε) · V defined within the (finite-dimensional)

Hilbert subspace of �.

(ii) The continuation of G(ε) to the exterior of � is ob-

tained via

G(ε) = G0(ε) + G0(ε) · Tε · G0(ε), (12)

where

Tε = V + V · G(ε) · V

= V · [I − G0(ε) · V]−1 (13)

is the projected T matrix of the vacancy.

The PGF method provides access to the electronic structure

of an isolated impurity or defect embedded in an otherwise

perfect infinite crystal [45,68]. In the present section, we are

interested in (i) the DOS change induced by a vacancy and

(ii) the possibility that a WSM can host nodal bound states

around the vacancy. The emergence of zero-energy modes

due to disorder is not obvious given the absence of nonspatial

symmetries in our model; note that H0 belongs to the orthog-

onal Wigner-Dyson class (class AI in the Altland-Zirnbauer

tenfold classification [28]). This is to be contrasted to the

well-studied case of graphene (chiral orthogonal BDI class

[69,70]), which supports zero-energy states localized around

point defects whose peculiar spectral and transport properties

have been linked to the underlying chiral symmetry of that

model [63,71].

One of the most readily available observables from the

PGF formalism is the change in the (extensive) DOS due to

the vacancy, δν(ε). This can be evaluated by means of the

184201-3
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equation

δν(ε) =
1

πnb

Im(Tr[G0(ε) − G(ε)])

= −
1

πnb

Im(Tr[V · [I − G0(ε) · V]−1 · (G0(ε))2])

=
1

πnb

Im

(

tr

[

Tε ·
d

dε
G0(ε)

])

, (14)

where Tε is the projected T matrix, Tr[· · · ] is the trace op-

eration over all degrees of freedom, tr[· · · ] is a trace over

the support of V , �, and nb is the number of orbitals per

unit cell (nb = 2 in the WSM model). In the last step to

obtain Eq. (14), we have used Eq. (13) as well as the identity

dG0(ε)/dε = −(G0(ε))2.

Next, we discuss briefly how to extract information on

bound states within the PGF framework. We start by writing

the Lippmann-Schwinger equation for a scattering state |�ε〉,

|�ε〉 =
∣

∣�0
ε

〉

+ G0(ε) · V|�ε〉, (15)

where |�0
ε 〉 is an eigenstate of the unperturbed system, which

is the parent extended state of |�ε〉. In contrast, a bound state

can exist without any parent eigenstate of the clean Hamilto-

nian. Thus, an eigenstate bound by V at an energy εb must be

a solution of

|�εb
〉 = G0(εb) · V|�εb

〉. (16)

Since the perturbation V has a finite support, one can once

again consider the projected version of Eq. (15),

|ξε〉 = G0(ε) · V|ξε〉, (17)

where |ξεb
〉 is the restriction of |�εb

〉 to the support �.

Thereby, any bound state must obey the condition

[I − G0(εb) · V]
∣

∣ξ b
εb

〉

= 0, (18)

which means that its projected wave function must belong to

the kernel of the operator, I − G0(εb) · V . Outside the support

of V the wave function may be reconstructed using

�b
α (R) =

〈

R, α | �b
εb

〉

= 〈R, α|G0(εb) · V
∣

∣ξ b
εb

〉

, (19)

which may or may not amount to a normalizable state, de-

pending on the asymptotic behavior of the clean LGF. In this

context, since we are looking for zero-energy modes (εb = 0),

any state obeying Eq. (18) is guaranteed to be square normal-

izable in 3D space with an algebraic tail ∝ r−2. The latter is

the long-distance behavior of G0(0,�R), as obtained in the

continuum limit.

1. Full vacancies in a Weyl semimetal

We now apply the general formalism described above

to the case of a full vacancy where both orbitals are

removed from a particular lattice cell. To perform the cal-

culation, it comes in handy to order the sites of � as

{0, ax̂, aŷ, aẑ,−ax̂,−aŷ,−aẑ}. With this ordering, one ob-

tains V as the matrix

V =
h̄v

2ia

⎡

⎣

O2×2 −σ σ

σ
T

O6×6 O6×6

−σ
T

O6×6 O6×6

⎤

⎦, (20)

within the projected subspace, while, by exploiting the sym-

metries of G0 [Eqs. (6a) and (6b)], we are able to further

express the PGF as

G0(0) =
a

h̄v

⎡

⎣

O2×2 g0σ −g0σ

−g0σ
T

O6×6 O6×6

g0σ
T

O6×6 O6×6

⎤

⎦, (21)

where g0 = Ix
i0+ (1, 0, 0). These simple matrices can then be

used to build the operator I − G0(0) · V , whose determinant

takes the remarkably simple form,

det(I − G0(0) · V ) = (i − 3g0)4. (22)

Equation (22) has a clear physical interpretation: a fourfold-

degenerate root appears for g0 = i/3, corresponding to an

extra pair of nontrivial bound states extending into the lattice.

For consistency, det(I − G0(0) · V ) would have to display

a twofold-degenerate root, corresponding to the subspace of

both orbitals to be removed from the lattice. Surprisingly, the

degeneracy appears doubled here, which indicates that two

nodal bound states must exist as a mathematical property of a

full vacancy in our lattice model. In addition, a full diagonal-

ization of I − G0(0) · V yields the following projected wave

functions for these states:

∣

∣ξ b
1

〉

=
1

√
6

[|x̂, 1〉 − i|ŷ, 1〉 − |ẑ, 2〉

− |−x̂, 1〉 + i|−ŷ, 1〉 + |−ẑ, 2〉], (23a)

∣

∣ξ b
2

〉

=
1

√
6

[|x̂, 2〉 + i|ŷ, 2〉 + |ẑ, 1〉

− |−x̂, 2〉 − i|−ŷ, 2〉 − |−ẑ, 1〉], (23b)

where |R, α〉 are the local Wannier states (here, α indexes the

orbital). Upon a reconstruction, these states have the following

real-space wave function outside �:

�b
1 (R) =

it
√

6

2

[

G12
0 (0, R)

G22
0 (0, R)

]

, (24a)

�b
2 (R) =

it
√

6

2

[

G11
0 (0, R)

G21
0 (0, R)

]

, (24b)

where G
αβ

0 are spinor components of G0.

In a similar manner, we can determine the DOS change

caused by a vacancy defect. To do this, we require the clean

PGF at all energies, which has the following matrix structure,

G0(ε) =
a

h̄v

⎡

⎣

fεI2×2 gεσ −gεσ

−gεσ
T fεI6×6 hεI6×6

gεσ
T hεI6×6 fεI6×6

⎤

⎦, (25)

as imposed by the aforementioned symmetries of our WSM

model. In Eq. (25), fε = I0
ε (0, 0, 0), gε = Ix

ε (1, 0, 0), and

h(ε) = I0
ε (2, 0, 0) are dimensionless functions of the energy

variable. Having the PGF, we can now build the T matrix of

an isolated full vacancy and employ Eq. (14) to obtain

δν(ε) =
3a

π h̄v

Im

[

fε(h′
ε − 2 f ′

ε ) + f ′
εhε + 4g′

ε(i − 3gε )

3 f 2
ε − 3 fεhε + 2(i − 3gε )2

]

.

(26)

The functions fε, gε, and hε and their derivatives were calcu-

lated numerically (see Appendix A) and the resulting DOS is
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FIG. 3. DOS correction due to a single (full) vacancy in an in-

finite lattice (calculated with numerical differentiation of the LGF).

The unperturbed bandwidth of the model is marked by the outermost

vertical dashed lines and, unlike the conventional case, integrating

δν(E ) over the entire band yields −2 instead of zero.

shown in Fig. 3. As expected, a single (full) vacancy causes a

negative correction to the DOS across the entire band, which

is consistent with an overall transfer of spectral weight to the

emergent bound states around the vacant site. The integral of

this curve is exactly −2, as the number of continuum states is

not conserved, i.e., two states (per orbital) appear as vacancy

bound states and other two are removed from the Hilbert

space.

2. Half vacancies in Weyl semimetals

We now consider the effects of an isolated half vacancy in

which only one orbital is removed from each cell. If orbital 1

is vacant, the perturbation reads

V1 = −
h̄v

2ia

[(

ψ1
0

)†
ψ2

ax̂ − i
(

ψ1
0

)†
ψ2

aŷ +
(

ψ1
0

)†
ψ1

aẑ

−
(

ψ1
0

)†
ψ2

−ax̂ + i
(

ψ1
0

)†
ψ2

−aŷ −
(

ψ1
0

)†
ψ1

−aẑ − H.c.
]

,

(27)

while in the opposite case, it reads

V2 = −
h̄v

2ia

[(

ψ2
0

)†
ψ1

ax̂ + i
(

ψ2
0

)†
ψ1

aŷ −
(

ψ2
0

)†
ψ2

aẑ

−
(

ψ2
0

)†
ψ1

−ax̂ − i
(

ψ2
0

)†
ψ1

−aŷ +
(

ψ2
0

)†
ψ2

−aẑ − H.c.
]

.

(28)

In either situation, the presence of bound states and DOS de-

formations can be investigated along the same lines as the full

vacancy, the only difference being the projected perturbation

matrix. More specifically, we write

V1/2 =
h̄v

2ia

⎡

⎣

O2×2 −�1/2 �1/2

�
T
1/2 O6×6 O6×6

−�
T
1/2 O6×6 O6×6

⎤

⎦, (29)

where the (2 × 6)-dimensional � matrices are

�u =
[

0 1 0 −i 1 0

0 0 0 0 0 0

]

, (30a)

�l =
[

0 0 0 0 0 0

1 0 i 0 0 −1

]

. (30b)

The clean PGF is exactly the same as in Eq. (25), and therefore

det(I − G0(0) · V1/2) = −(i − 3g0)2, (31)

which has a double root for g0 = i/3. The diagonalization of

this operator confirms that its null space is a two-dimensional

subspace generated by the removed orbital, plus a nontriv-

ial bound state that surrounds the vacant site. Similarly, the

correction to the DOS is exactly the same as Eq. (26) but

with an added factor of 1/2. The similar behavior between half

and full vacancies could have been anticipated by looking

at a full vacancy as a pair of half vacancies placed within

the same unit cell. In the PGF formalism, these correspond

to local perturbations (V1 and V2) that act in disjoint Hilbert

subspaces not connected by the clean lattice propagator. This

prevents the two half vacancies from hybridizing and their

resulting effects in the spectrum will be simply cumulative.

For this reason, we focus exclusively on full vacancies in the

remainder of this paper.

III. MICROSCOPIC ROBUSTNESS OF THE VACANCY

BOUND STATES

After establishing the existence of vacancy-induced nodal

bound states, we move on to assess their robustness against

additional disorder sources. For that, we model the additional

disordered landscape as an uncorrelated scalar potential,

Vd (R). The Hamiltonian now reads

Hd = H0 + V +
∑

R∈L

Vd (R)�†
R · �R. (32)

To tackle this problem, we numerically diagonalize Hd

around E = 0 using the SCIPY implementation of the im-

plicitly restarted Lanczos method [59–61]. Since the method

converges better to non-clustered eigenpairs in the borders of

the spectrum, we apply it to H2
d instead and restrict the anal-

ysis to low-lying eigenstates. Additionally, we consider cubic

samples of side L, with a single (full) vacancy at the center of

each sample, supplemented by fixed phase-twisted boundaries

that open a finite-size gap (� f ∝ L−1) in the spectrum of

extended states. The nodal bound states will lie inside this

finite-size gap, as they are weakly affected by the boundary

conditions.

In Fig. 4(a), we represent the radial distribution of the

vacancy bound states for different simulation sizes, in the

absence of any additional disorder. The results confirm the

predicted zero-energy states with tails decaying as r−2. We

note that the degeneracy of these states gets slightly lifted

by the boundary conditions but the corresponding eigenvalues

still tend to zero as L− 3
2 , i.e., faster than � f . Furthermore,

the vacancy defect perturbs slightly the extended states (now

scattering states), which further expands the finite-size gap

[72].

Next, we present an identical analysis with the vacancy’s

surroundings endowed with an uncorrelated random scalar

potential uniformly drawn from [−W
2
, W

2
]. In principle, this

alteration dresses the LGF of the clean model, thus destroying

most model-specific symmetries. In Fig. 4(b), we present the

radial wave functions of the two eigenstates closest to zero

energy obtained from the diagonalization of three randomly

generated disorder configurations. In all three cases, the states
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(a)

(b)

FIG. 4. Probability density, |�(R)|2 = |�1(R)|2 + |�2(R)|2, of

the eigenstate closest to zero averaged over spherical shells of width

a centered on the vacancy. (a) Single central vacancy with no ad-

ditional disorder. Inset: The eigenvalues obtained near E = 0 for

finite samples come in two flavors: those which scale to zero energy

as L−1 (orange), akin to the predicted mean-level spacing scaling

around a clean Weyl node, and eigenvalues which scale faster (as

∝ L−3/2) due to the more localized character of the corresponding

eigenstate (magenta). (b) Vacancy within three random disordered

environments.

feature the same normalizable power-law tail found in the

clean case, indicating that the vacancy bound states are indeed

robust.

To further understand the effects of an uncorrelated dis-

order landscape, we diagonalized 104 systems with randomly

generated disorder samples around a single central vacancy,

focusing on determining the four eigenpairs whose energies

are the closest to the node. In addition to the eigenenergies, we

used the eigenfunctions to determine the inverse participation

ratio (IPR),

IPR� =
∑

R

(∣

∣�1
R

∣

∣

2 +
∣

∣�2
R

∣

∣

2)2

∑

R

∣

∣�1
R

∣

∣

2 +
∣

∣�2
R

∣

∣

2
, (33)

a simple quantity that allows one to distinguish well-

localized, IPR ∼ O(1), from delocalized states, for which

IPR ∼ O(L−3). In Figs. 5(a) and 5(b), we show histograms

of the eigenenergies for three system sizes and two disorder

strengths, using twisted boundary conditions with a fixed

twist angle of π
3

in all directions. These histograms bore

out two well-separated clusters formed by (a) the two eigen-

states closest to zero energy which are broadened by disorder

around E = 0, but remain firmly inside the finite-size gap,

and (b) the ones corresponding to the largest eigenvalues,

being Bloch states that get perturbatively shifted towards the

node and broadened by disorder [28]. As confirmed by the

corresponding IPRs, the (a)-class states are strongly localized

states which are still bound to the central vacancy, while the

(b)-class states are disorder-dressed extended Weyl states.

IV. QUANTUM INTERFERENCE AND FINITE

CONCENTRATION EFFECTS

The previous results established that a single (full) vacancy

defect gives rise to a pair of zero-energy bound states with

power-law-localized wave functions. We now discuss the ef-

fect of coherent multiple scattering events in realistic systems

[51] which have a finite (nonzero) concentration of point de-

fects. The main question we ask here is whether the essential

IPR features of zero-energy states survive the unavoidable

intervacancy hybridization effects.

Our starting approach to this problem is based upon the

exact diagonalization of small systems. We consider WSM

lattices with linear sizes up to L = 35 and a concentration (n)

of randomly placed full vacancies. By means of the twisted

boundary conditions, we open a finite-size gap that separates

nodal bound states from extended ones. The 2nL3 + 4 eigen-

pairs [73] closest to E = 0 are then extracted using LD. In

Fig. 5(c) we represent a scatterplot of the energies and corre-

sponding IPRs of every eigenpair determined for 2500 random

arrangements of vacancies with concentrations ranging from

0.1% to 1% (per unit cell). The results clearly demonstrate

that, in spite of the proximity between vacancies, the system

still features a large number of high-IPR eigenstates which

are flanked by a region of extended states. Such a physical

interpretation is clear from Fig. 5(d), where a 3D bubble chart

of |�(R)|2 is depicted for two eigenstates randomly chosen

from each of the regions.

Average density of states

The LD study gives a qualitative picture of the structure of

the eigenstates surrounding a Weyl node, but its utility can be

severely limited by loss of spectral resolution, the finite num-

ber of eigenstates that are accessible, and, last, the attainable

system sizes. Therefore, we now complement the LD analysis

with full-spectral simulations of the DOS of large systems by

means of the kernel polynomial method (KPM) [62]. As a first

step, we present results on the ensemble-averaged DOS for

a large system with a linear size L = 512. This observable

gives us information on how the spectrum is modified by

intervacancy hybridization effects, yielding a numerically ex-

act picture of the vacancy-induced resonances [27,45] around

the node. The KPM calculations are carried out with domain

decomposition and stochastic trace evaluation techniques as

implemented in KITE [64]. The calculation employs M = 216

Chebyshev moments (corresponding to a spectral resolution

η = 10−4h̄v/a), a Jackson kernel, and a sufficiently large

number of random vectors to yield highly converged results.

Finally, the results are averaged over random twisted bound-

ary conditions, which eliminates the finite-size mean-level

spacing.

The average DOS obtained through the KPM is shown

in Fig. 6. These high-resolution results disclose a prominent

spectral enhancement in and around the node which indi-

cates that, unlike what happens for ordinary on-site disorder
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FIG. 5. (a) Histograms of the four energies closest to the Weyl node for a vacancy surrounded by a random Anderson potential of strength

W = 0.01h̄v/a (right) and W = 0.04h̄v/a (left), represented for systems with different linear sizes [L = 15 (red), L = 25 (blue), and L = 35

(red)]. Black dashed lines indicate the clean energy levels and, thus, the corresponding finite-size gaps. (b) Scatterplot of the energies and IPRs

of the calculated eigenpairs. The two eigenstates closest to zero energy are very localized in real space, while the remaining pair is clearly

delocalized. (c) Energy-IPR scatterplot for the eigenstates closest to the node obtained for 25 000 samples of a WSM with four concentrations

of randomly placed full vacancies. Histograms of the IPRs are presented for each total number of vacancies along the vertical axis. Different

colors label different vacancy numbers (here, the simulated cell size is adjusted to guarantee that n is constant in all four cases presented).

(d) Bubble chart representation of the (squared) wave functions for two eigenstates picked at random from the indicated regions: a heavily

localized state around a few vacancies (left) and an extended state (right).

[23–28,42,44–46], the DOS at E = 0 gets quickly lifted to a

large value as n increases. This pronounced effect is consistent

with the presence of robust nodal bound states, and validates

the conclusions of Sec. IV. Moreover, as the central DOS peak

grows in height with increasing n, a much wider symmetrical

profile begins to emerge at its base. As shown in Appendix B,

the integral of this DOS correction is proportional to n, which

indicates that intervacancy hybridization is simply turning the

bound states of isolated (full) vacancies into scattering reso-

nances within the continuum. In Fig. 6(b), a close-up of this

structure is shown, revealing a finer comblike structure of sub-

sidiary peaks (sharp scattering resonances) around the node

for moderate defect concentrations (n � 1%). These peaks

are more visible in Fig. 6(c), where their displacement as a

function of n is also shown. The modulated structure in the

DOS reported in this work is a unique feature of 3D WSMs,

which is absent in the analogous two-dimensional problem

[63,69] [see inset to Fig. 6(a)]. The subsidiary peaks in the

DOS are robust to an additional weakly disordered potential,

as is discussed in Appendix B.

V. CONCLUSION AND OUTLOOK

A combination of exact diagonalization and large-scale

spectral methods allows us to resolve the impact of point

defects on the real-space electronic structure of 3D T -

symmetric Weyl semimetals. Our results for a lattice WSM

model show that dilute concentrations of vacancies, a com-

mon crystal imperfection, have a strong impact on the

electronic properties in stark contrast with uncorrelated on-

site disorder models [23–28,31,34,42,44–46,74], which have

been found to produce a minute effect on the low-energy

properties of Weyl systems. In fact, random vacancies were

shown to efficiently lift the nodal DOS, thereby destabilizing

the semimetallic phase even at very low concentrations. More-

over, we have also demonstrated that quantum-interference

effects between vacancies can yield a peculiar modulated

energy dependence of electronic observables which has no

analog in two-dimensional Dirac systems [29,63,70]. While

the average DOS displays a comb of subsidiary resonance

peaks at finite energies, we show in a companion paper [75]

that the bulk dc conductivity mirrors this behavior through

a series of sudden dips as the Fermi level is varied. There-

fore, upon tuning the carrier density in real samples [76] (or

even the defect concentration using H/He [53] or light-ion

irradiation [54]), we predict that bulk transport measurements

will allow the observation of interesting signatures of native

point defects. These are expected to assume chief importance

in WSMs of the TaAs family, whose concentration of point

defects in high-quality crystals grown by chemical vapor
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FIG. 6. DOS of a WSM lattice of linear size L = 512 for selected

defect concentrations. (a) Bird’s-eye view of the DOS. The inset

shows the two-dimensional case for comparison. (b) Close-up of

average DOS around ε = 0. (c) Subsidiary peaks in the DOS at low

vacancy concentration. Inset: Evolution of the the peak height (P1,

P2, and P3) with n.

transport is experimentally known to be large [51]. At last,

in Ref. [75] the authors present a thorough investigation of

physical consequences from these effects of vacancy disorder

in electronic structure of the Weyl nodes, with a particular

focus on experimentally accessible signatures from standard

transport and optical response measurements. The optical sig-

natures have a particular practical importance, as they do not

rely on an external control over the system’s Fermi energy.
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APPENDIX A: LATTICE GREEN’S FUNCTION

Here, we outline the semianalytical method employed to

obtain the LGF with arbitrary spectral resolution. As indicated

in the main text, Eqs. (3) and (4), the clean LGF is a 2 × 2

matrix that can be written as

G0(ε,�R) = I
0
ε (�R) +

∑

j=x,y,z

σ j
I

j
ε (�R), (A1)

with I
0,x,y,z
ε (nx, ny, nz ) being four position- and energy-

dependent integrals over the cubic FBZ. These integrals are

given by

I
0
ε (�R) =

∫

[−π,π]3

d (3)k
ε eikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
, (A2a)

I
x
ε (�R) = −

∫

[−π,π]3

d (3)k
sin kxeikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
. (A2b)

For a single-vacancy calculation in the lattice WSM, the finite

support of the perturbation dictates that only three of these

integrals are required, namely,

I
0
ε (0, 0, 0) =

∫

[−π,π]3

d (3)k
ε

8π3(ε2 − |sin k|2)
, (A3a)

I
x
ε (1, 0, 0) = −

∫

[−π,π]3

d (3)k
sin kxeikx

8π3(ε2 − |sin k|2)
, (A3b)

I
0
ε (2, 0, 0) =

∫

[−π,π]3

d (3)k
εe2ikx

8π3(ε2 − |sin k|2)
, (A3c)
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which define three complex-valued functions fε, gε, and hε,

respectively. In all previous integrals ε is to be taken as a

complex number with a positive infinitesimal imaginary part

(guaranteeing that the LGFs are retarded). In all three cases,

analytical progress can be made by first considering the one-

dimensional integral

I1(z) =
∫ π

−π

du
1

2π (z + sin2 u)
, (A4)

where z ∈ C. This integral can be solved by standard contour

integration in the complex variable w = exp(iu), yielding

I1(z) =
1

√
z
√

z − 1
. (A5)

Therefore,

I±
1 (x) = lim

η→0±
[I1(x + iη)] =

{

sgn(x)√
x(x−1)

x /∈ [0, 1]

∓ i√
x(1−x)

x ∈ [0, 1].
(A6)

From Eqs. (A6), it is easy to recognize that all three integrals

in Eqs. (A3a)–(A3c) can be written as two-dimensional k-

integrals involving I±
1 (x). Hence, they read

fE±i0+

= −
E

4π2

∫

[−π,π]2

d (2)k I±
1 (−E2 − sin2(kx ) − sin2(ky)),

(A7a)

gE±i0+

=
1

4π2

∫

[−π,π]2

d (2)k sin kxeikx I±
1 (−E2− sin2(kx ) − sin2(ky)),

(A7b)

hE±i0+

= −
E

4π2

∫

[0,π]2

d (2)ke2ikx I±
1 (−E2 − sin2(kx ) − sin2(ky)),

(A7c)

where now E is the (real-valued) energy parameter and the

± denotes the sign of η. These two-dimensional integrals can

be numerically evaluated for an arbitrarily fine mesh of E .

As η was formally taken to zero, the spectral resolution is

only limited by the spacing of this mesh. Moreover, using

the symmetries— f−E±i0+ = − f ∗
E±i0+ , g−E±i0+ = g∗

E±i0+ , and

h−E±i0+ = −h∗
E±i0+—it is enough to evaluate the said inte-

grals for E > 0. The results are shown in Fig. 7.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

Here, we complement the KPM results shown in Sec. IV A

for the mean DOS in the presence of a finite concentration

of vacancies. These results serve as a support for some of the

claims made in the main text.

First, we analyze the region of enhanced mean DOS around

the nodal energy (E = 0). For a very low vacancy concen-

FIG. 8. (a) Full integral of the correction to the mean DOS as

a function of the vacancy concentration. Inset: Integral of δν(ε) =
ν(ε) − ν0(ε) within the region represented plotted in the main panel.

(b) Mean DOS calculated for two concentrations of vacancies and an

additional potential disorder.

tration, the sole feature is a sharp peak at the node, which

amounts to a cumulative contribution of all single-vacancy

bound states to the intensive DOS. As the concentration in-

creases, one starts to see more structure, in the form of a

broadened base of this peak [as highlighted in the main panel

of Fig. 8(a)]. We attribute this to a progressive hybridization

of states bound to nearby vacancies that lifts the degeneracies

away from the node, thus turning these states into long-living

resonances. To corroborate this idea, we analyze the depen-

dence of the integrated change in the DOS within this central

region. Broadly speaking, this quantity represents the number

of states introduced near the node by the vacancies, per unit

volume. In the inset to Fig. 8(a), we show that the inte-

grated DOS change induced by the vacancies scales exactly

as n/(100 − n). This is consistent with the picture in which

each missing Wannier state introduces exactly one eigenstate

in the node and one eigenstate around the node.

Another point concerns the robustness of the features of the

DOS to microscopic details of the underlying lattice model.

As we have done for a single (full) vacancy, here also we

probe this robustness by introducing an additional Anderson

potential (of strength W ). The KPM results for the mean DOS

are shown in Fig. 8(b). Clearly, the main features of the DOS,

i.e., the central enhancement and the subsidiary peaks, remain

untouched for suitably small W . This supports the claim that

our results will hold for a wide range of WSM systems.
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