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SUMMARY

In the recent Critical Assessment of Structure Prediction (CASP) competition, AlphaFold2 performed

outstandingly. Its worst predictions were for nuclear magnetic resonance (NMR) structures, which has two

alternative explanations: either the NMR structures were poor, implying that Alpha-Fold may be more accu-

rate than NMR, or there is a genuine difference between crystal and solution structures. Here, we use the pro-

gram Accuracy of NMR Structures Using RCI and Rigidity (ANSURR), which measures the accuracy of

solution structures, and show that one of the NMR structures was indeed poor. We then compare Alpha-

Fold predictions to NMR structures and show that Alpha-Fold tends to be more accurate than NMR ensem-

bles. There are, however, some cases where the NMR ensembles are more accurate. These tend to be

dynamic structures, where Alpha-Fold had low confidence. We suggest that Alpha-Fold could be used as

the model for NMR-structure refinements and that Alpha-Fold structures validated by ANSURR may require

no further refinement.

INTRODUCTION

In November 2020, the results of the 14th Critical Assessment

of Structure Prediction (CASP14) competition revealed that

AlphaFold2 (AF2), an artificial intelligence (AI) developed by

DeepMind (Jumper et al., 2021), performed significantly better

than all other methods (Alexander et al., 2021; Pereira et al.,

2021). Impressively, the majority of predictions obtained a Global

Distance Test Total Score (GDT_TS) score above 80, with a me-

dian value of 92.4, where perfect agreement would be 100. Only

5 of the 93 AF2 predictions had a GDT_TS score below 70. Three

of these were chains from complexes, and two were solved using

nuclearmagnetic resonance (NMR).Reducedperformance for the

former was to be expected, as AF2 was not designed to predict

structural changes that occur from complex formation. Why AF2

did less well for the NMR structures is less obvious. Most NMR

structures are small single-chain proteins—a type of structure

that should be relatively easy to predict. A possible explanation

is that NMR structures are generally of poor quality, implying

that AF2 predictions may be more reliable than NMR structures.

However, a diametrically opposite explanation is that AF2 is less

reliable for predicting NMR structures because it was trained us-

ing crystal structures, with the assumption being that NMR struc-

tures are different from crystal structures because they are ob-

tained in solution at close to body temperature and not in a

crystal and (usually) at low temperature (Huang et al., 2021).

This raises several important questions: howgood isAF2 at pre-

dicting solution structures? Is it worth trying to determineNMRso-

lution structures if AF2 structures are as good or better? Are solu-

tion structures genuinely different from crystal or AF2 structures?

Are NMR structures of good enough quality and reliability to be

used as models for the ‘‘true’’ solution structure, and, if so,

how? This work aims to provide answers to these questions.

A fundamental problem dating back to the first NMR protein

structure (Williamson et al., 1985) is that there is no reliable

way to tell if an NMR structure is correct, i.e., close to the true so-

lution average. The de factomethod for validating an NMR struc-

ture is to compare it to a crystal structure. Surveys carried out

based on such comparisons have shown that NMR structures

are similar to crystal structures but are in general less well

defined (less precise) and also less accurate (Andrec et al.,

2007; Billeter, 1992). However, if there are genuine differences

between crystal structures and solution structures (for example,

due to increased flexibility in solution and at higher tempera-

tures), then such comparisons will be misleading. We recently

developed a method called Accuracy of NMR Structures Using

RCI and Rigidity (ANSURR) that calculates the local rigidity of a

protein structure (Jacobs et al., 2001) and compares it with the

local rigidity as measured using a version of the random coil in-

dex (Berjanskii and Wishart, 2008) based on backbone NMR

chemical shifts (Fowler et al., 2020, 2021). The method has

been tested on a wide range of structures and provides a reliable

guide to accuracy. We have therefore applied ANSURR to

answer the questions posed above.

The paper is structured as follows. Firstly, we compare the ac-

curacy of three NMR targets and the corresponding predicted

structures from the CASP14 competition, with consideration of

both global and local aspects of accuracy. Next, we expand

Structure 30, 925–933, July 7, 2022 ª 2022 The Author(s). Published by Elsevier Ltd. 925
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our study to compare 904 structures of human proteins from the

Alpha-Fold Protein Structure Database (Varadi et al., 2022) with

NMR structures from the Protein Data Bank (PDB), highlighting

instances where NMR structures are significantly more accurate

than AF2 models and vice versa. Finally, we investigate the rela-

tionship between the estimated accuracy of AF2 models (as

predicted by AF2 alongside a structure) with the accuracy deter-

mined by ANSURR. We show that in most cases, AF2 produces

structures that are more accurate than NMR. However, there is a

minority of cases (often ones flagged by AF2 as less confident)

where NMR does better. Many of these involve dynamic aver-

aging. In these instances, the additional information from NMR

is useful for improving the structure further.

RESULTS

The accuracy of target NMR structures and predicted

structures from CASP14

ANSURR works by computing two measures of protein flexi-

bility: one obtained from backbone chemical shifts and the other

from a structure using the mathematical theory of rigidity. The

two measures are compared by computing the rank Spearman

correlation coefficient and root-mean-squared deviation

(RMSD) between them. The percentile of each value relative to

those for all NMR structures in the PDB is used to obtain two

scores, termed correlation and RMSD scores, respectively.

These scores can be visualized on a single plot so that the

best-scoring structures (with good correlation and RMSD

scores) appear in the top right-hand corner of the plot and the

worst-scoring (with poor correlation and RMSD scores) appear

in the lower left-hand corner. CASP14 had three NMRensembles

that were used as targets. These are shown in Figure 1, using

either all structures in the predicted or experimental ensemble

(Figure 1A) or the scores averaged across all members of the

ensemble (Figure 1B). ANSURR scores for all NMR and AF2

models are provided in supplemental information (Data S1–S2).

One of these (T1055) had AF2 CASP14 predictions that were

close to the NMR target structures. However, the other AF2 pre-

dictions were very different, with one being worse than the NMR

target (T1027), and one being significantly better (T1029). These

two structures are now examined in more detail.

Target T1027

For target T1027, the target NMR ensemble ismore accurate than

all predicted structures. However, the AF2 models are the best

scoring of the predicted structures, with one model approaching

A

B

Figure 1. ANSURR scores for the three CASP14 NMR targets

(A and B) Results for (A) all models and (B) ensemble averages are shown. NMR structures are in orange, AF2models in blue, and all other predictions in gray. The

green points shown for T1029 are scores for anNMR ensemble that was re-calculated after the CASP14 results were released and are discussed below. TheNMR

structure for T1055 (PDB: 6ZYC) has 20models, and the NMR structure for T1027 (PDB: 7D2O) has 19models. The original NMR structure for T1029 (PDB: 6UF2)

has 10 models, and the recalculated structure (PDB: 7N82) has 20 models. Each group competing in CASP14 could provide up to five predictions.

See also Figures S2–S4.
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the accuracy of the NMR ensemble. Thus far, it is a fairly unre-

markable result. However, interesting lessons can be learned by

a more detailed analysis, particularly of the ill-defined regions.

The CASP14 assessment for T1027 was limited to residues

with well-defined atomic positions across all 19 models in the

NMR ensemble. In total, four regions were considered ill-defined

and were therefore excluded (Figure 2). This is also standard

practice for many NMR protein structure-validation programs,

which typically only consider well-defined regions identified by

the program CYRANGE (Kirchner and G€untert, 2011). ANSURR

validation is different in that it requires consideration of the entire

protein structure, as excluding residues will lead to nearby re-

gions becoming artificially too flexible.

The second ill-defined region (Figure 2, residues 20–33) is

particularly interesting. The authors of the NMR structure used
15N relaxation dispersion and 1H-15N heteronuclear nuclear Over-

hauser effect (NOE) data to show that this region is dynamic and

suggested that it is intrinsically disordered. However, ANSURR

shows that it is much less flexible than the other three ill-defined

regions, and therefore, although it is dynamic, it is not intrinsically

disordered. There is also a noticeable reduction in flexibility in the

center of this region. Both of these features are reflected in the

computed flexibility of the NMR structure but not in the AF2 struc-

ture. The NMR structure has a short a-helix in this region that acts

to reduce the flexibility of the surrounding area, whereas this re-

gion is completely disordered in the AF2 structure (Figures S1A

and S1B). Our ANSURR analysis suggests that this region is flex-

ible, in agreement with dynamic NMR measurements, but is not

intrinsically disordered. ANSURR thus suggests that the helical

structure is present in solution for the majority of the time.

Chemical shifts suggest that the third ill-defined region (resi-

dues 82–94) is highly disordered. There is a small reduction in flex-

ibility between residues 86–89. This region is completely disor-

dered in the NMR ensemble. The slight reduction in computed

flexibility in this region formodel 11 (shown in Figure 2A) originates

from two weak hydrogen bonds but is not observed for any of the

other models from the ensemble. In contrast, the AF2 models

comprise a loose b-sheet-like structure linked by a moderately

rigid turn (Figures S1C and S1D). The position of the turn corre-

sponds to the reduction in flexibility between residues 86–89 ac-

cording to chemical shifts but is more rigid. The same b-sheet-

like structure is present in all five AF2 models but with variable

orientation relative to the rest of the protein, perhaps indicative

of dynamics. It is likely that the truth lies somewhere in between

the slightly too-flexible NMR structure and the slightly too-rigid

AF2 structure. That is to say that this region in solution is dynamic

and likely transitions between disorder (the NMR structure) and a

loose b-sheet-like conformation (the AF2 model).

In the fourth ill-defined region (residues 144–168), the AF2

model contains an a-helix that is not present in the NMR struc-

ture. ANSURR shows that this region is highly flexible and so

does not support the existence of the helix. However, 15N relax-

ation dispersion and 1H-15N heteronuclear NOE data suggest

that this region could potentially transiently adopt a secondary

structure (Wu et al., 2020). Given that chemical shifts represent

a population-weighted average, it seems that an a-helix in this

position would not comprise the dominant conformation in solu-

tion, as suggested previously (Huang et al., 2021).

Overall, our analysis suggests that for T1027, the experimental

NMR structure is globally more accurate than the AF2 structure.

However, the picture is less clear looking at the local detail. One

reason for this could be that this protein is particularly dynamic

and not well described by a single structure. Our ANSURR anal-

ysis also highlights the importance of validating ill-defined re-

gions in NMR structures. Such regions can adopt a wide range

of partially ordered structures.

Target T1029

The highest-scoring CASP14 prediction for T1029 had a GDT_TS

ofonly45, suggesting that it andall otherpredictedstructureswere

highly inaccurate. However, our ANSURR analysis reveals that the

target NMR structure is actually much less accurate than many of

the predicted structures. In fact, 51% of the predicted structures

have better ANSURR scores than the best-scoring NMR model.

During the preparation of this paper, it was confirmed that the

NMR structure is inaccurate (Huang et al., 2021). The NOESY

peak list used to generate the original NMR structure was found

to be missing many peaks present in the NOESY spectra. The

NOESY peaks were carefully re-picked and used to re-calculate

the structure. The AF2 predictions were then used to guide refine-

ment—referred to as ‘‘inverse structure determination’’ by the au-

thors. The resulting NMR structure is very similar to the AF2 struc-

ture and has much-improved ANSURR scores (green points in

Figure 1). Even so, the re-calculated NMR structure remained

slightly less accurate than the AF2 structure. More details are pre-

sented in the supplemental information (Figures S2–S4).

Comparison of all available human AF2 and NMR

structures

Our analysis of three examples fromCASP14 suggests that struc-

tures predicted by AF2 can rival or even exceed the accuracy of

NMR structures. To investigate this more broadly, we extended

A

B

Figure 2. ANSURR analysis of T1027

(A and B) Blue lines show the rigidity as measured by RCI based on backbone

chemical shifts (BMRB: 36288); orange lines show the rigidity (A) of the best-

scoring NMR structure (model 11 from the ensemble) and (B) of the best-

scoring AF2 model (model 3). Red bars at the top of each figure denote

a-helical structure as assessed from the structure using DSSP, and blue bars

denote b-sheet. Regions characterized as ill-defined by CYRANGE are indi-

cated in gray.

See also Figure S1.
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our study to compare 904 human protein structures from the

recently published Alpha-Fold Protein Structure Database (Varadi

et al., 2022) with their NMR structure counterparts from the PDB.

ANSURR was used to validate each AF2 structure and each

model in the corresponding NMRensembles. To simplify the anal-

ysis of a large number of structures, correlation and RMSD scores

generated by ANSURRwere summed to obtain a single accuracy

score, termed ANSURR score, as described previously (Fowler

et al., 2021). Individual correlation and RMSD scores are provided

in the supplemental information (Data S3–S5).

Figure 3A shows the difference in ANSURR scores between

the AF2 models and the models from the corresponding NMR

ensembles. AF2 structures tend to be more accurate than

NMR structures, with a mean difference in ANSURR score of

28. The ANSURR score is a ranked centile score on a range

from 0 to 200; this difference therefore represents a significantly

better performance for AF2 compared with NMR. We have pre-

viously shown (Fowler et al., 2021) that the accuracy of the

different structures within the NMR ensemble varies widely. In

Figure 3B, we therefore compare the AF2 prediction with the

best-scoring model from the NMR ensemble. The difference in

ANSURR score is now only 2, indicating a very similar overall ac-

curacy for the two methods, though with a wide spread.

Figure 3C depicts the difference in ANSURR score between

AF2 and NMR structures according to regular secondary-struc-

ture content. We find that the difference in accuracy is particu-

larly apparent for b-sheet proteins (mean difference of 45),

whereas the accuracy of a-helical proteins is closer (mean differ-

ence of 17). The difference for proteins with mixed secondary-

structure content falls in between (mean difference of 29). These

results make sense, as a-helices have limited variation in local

geometry, and so hydrogen bonds (important for imparting rigid-

ity) are relatively straightforward to obtain during refinement. In

contrast, b-sheets can adopt a wider range of local geometries,

making it more challenging to correctly resolve hydrogen bonds.

We have noted this effect before (Fowler et al., 2021) and found

that NMR structures often lack hydrogen bonds in b-sheets.

For a new protein target, an AF2 structure can be generated by

a non-expert within a few minutes, while an NMR structure

generally takes months of specialist skills and equipment. A

simplistic conclusion would therefore be that AF2 is quicker,

cheaper, and at least as accurate and so should be the preferred

method for the generation of structural models. However, the re-

ality is more nuanced, and we approached it by looking in more

detail at instances where one method represents a significant

improvement over the other.

Examples where Alpha-Fold structures are significantly

more accurate than NMR structures

To understand why AF2 structures tend to be more accurate

than NMR structures, we looked more closely at the AF2 struc-

tures that had ANSURR scores at least 50 greater than those

of the NMR structures. There were 273 such structures (30%

of the 904). The increased accuracy largely stemmed from AF2

models having more extensive hydrogen-bond networks than

NMR structures, which results in them being more rigid overall,

giving them a higher ANSURR RMSD score. We have noted

previously (Fowler et al., 2021) that NMR structures tend to be

too floppy and that increasing the rigidity of the NMR structure

by the addition of hydrogen bonds generally improves its

ANSURR score. The locations of the hydrogen bonds do of

course have to be correct, and AF2 provides accurate predic-

tions of hydrogen-bond locations (Jumper et al., 2021). Figure 4

provides two examples.

Figures 4A and 4B depict the ANSURR output for the 20th Fil-

amin domain from human Filamin B, a fairly rigid protein, while

Figures 4C and 4D depict ANSURR output for a much more flex-

ible zinc-finger domain. For both proteins, the AF2 structure has

greater rigidity and matches better to the rigidity determined

from experimental chemical shifts. For the Filamin domain

(Figures 4A and 4B), the additional hydrogen bonds mainly

define and extend the b-sheet regions better (and more

correctly). The zinc finger (Figures 4C and 4D) has a large flexible

loop between residues 16–30, which is completely lacking any

backbone hydrogen bonds in the NMR structure. However, the

AF2 structure contains six backbone hydrogen bonds in this re-

gion so that the loop adopts a loose b-sheet-like conformation.

These hydrogen bonds act to reduce the overall flexibility and,

more specifically, in a way that leads to better agreement with

the flexibility obtained from chemical shifts, suggesting that

they persist in solution. In summary, we suggest that the AF2

models tend to be better than NMR structures because they

A

B

C

Figure 3. Frequency distribution for the difference in ANSURR score

between the AF2 prediction and NMR structure

Values are given as [AF2 score] - [NMR score] so that a positive difference

indicates a better score for the AF2 prediction. Selection criteria are outlined in

STAR Methods.

(A) Comparison of AF2 to the averaged ANSURR score for the NMR ensemble.

Mean difference is 28.

(B) Comparison of AF2 to the single best NMR structure in the ensemble (the

NMR structure with the best ANSURR score). Mean difference is 2.

(C) Breakdown of the data in (A) by protein secondary structure classification

as determined by DSSP using proteins classified as a-helical, b-sheet, or

mixed a/b.
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contain not just more hydrogen bonds but also correct hydrogen

bonds that tend to persist in solution.

Examples where NMR structures are significantly more

accurate than Alpha-Fold structures

There were only 22 instances (2% of the 904) where NMR struc-

tures had an ANSURR score at least 50 greater than the AF2

structure. From the ANSURR output and inspection of the struc-

tures, we find that there are three main reasons as to why.

First, in some cases, better ANSURR scores were achieved

due to differences in terminal regions that likely result from

NMR measurements being performed on constructs represent-

ing only part of an entire protein, e.g., a single domain. The

models in the Alpha-Fold Protein Structure Database cover the

entire sequence associated with a particular UniProt accession

number, whereas many NMR structures only represent some

portions. As a result, terminal regions in NMR structures are likely

to be more disordered/flexible than they would be as part of a

larger construct, which could explain differences between

NMR and AF2 structures at the C-terminal end of Figures 5A

and 5B. An example outlining this in more detail is included in

Figure S5. It should be noted that because we use the chemical

shifts associated with an NMR structure, we are biased toward

favoring NMR structures. This makes the high ANSURR scores

obtained by the AF2 structures even more impressive.

Second, some AF2 models are missing the correct regular

secondary structure. An example is shown in Figures 5A and

5B, where the NMR structure has a short b-sheet region that is

missing in the AF2 structure. As a result, the AF2 structure is

much too flexible between residues 732–738 and 763–771. We

note that AF2 produces its own confidence score called per-res-

idue local difference distance test (pLDDT). AF2 correctly indi-

cates confidence in this particular prediction as ‘‘low,’’ with a

mean pLDDT of 66 (out of a maximum of 100; Figure S6).

Third, some AF2 models have an incorrect secondary struc-

ture. Figure 5C shows the NMR structure of a membrane-asso-

ciated a-helix with a break that is reflected in both the flexibility

determined from chemical shifts and the computed flexibility.

In contrast, the AF2 structure does not have the break, clearly

in violation of the NMR data. As before, AF2 correctly indicates

‘‘low confidence’’ in the prediction, with a mean pLDDT of 58,

and particularly low confidence in the region that should contain

the break (Figure S6B). We speculate that AF2 will struggle to

predict breaks in helices as they are less commonly observed

in crystal structures (because they are difficult to crystallize or

because crystallization stabilizes unbroken helices) and are

therefore under-represented in the AF2 training data.

Comparison of estimated pLDDT and ANSURR scores

Figure 5 shows two examples where the AF2 structures are less

accurate than NMR structures. In both cases, AF2 had correctly

identified a low confidence in the predictions via a low mean

pLDDT. We therefore carried out an analysis to see whether

mean pLDDT can be used as a measure of accuracy. Figure 6A

shows that the AF2 models that have significantly better

ANSURR scores than the NMR structures (AF2 >> NMR) have

a larger mean pLDDT, whereas the AF2 models that have signif-

icantly worse ANSURR scores have a smaller mean pLDDT.

However, overall, there is no correlation between pLDDT and

ANSURR scores (Figure 6B). In a paper accompanying the public

release of AF2, it was demonstrated that regions with low pLDDT

tend to be disordered, to the extent that pLDDT can be used as

highly competitive disorder predictor (Ruff and Pappu, 2021;

Tunyasuvunakool et al., 2021). Hence, AF2 may assign low con-

fidence to a disordered region, which ANSURR highlights as ac-

curate because it correctly lacks structure (see Figures 4C and

A

B

C

D

Figure 4. Representative ANSURR output for two proteinswhere the

AF2 model is more accurate than the NMR structure

Each panel shows the rigidity from chemical shifts in blue and the structure

rigidity in orange. The colored bars at the top of each plot indicate regions of

regular secondary structure: a-helix (red) and b-sheet (blue). The structures are

shown beside each plot in cartoon representation, with backbone hydrogen

bonds depicted as gray lines.

(A and B) Twentieth Filamin domain from human Filamin-B. (A) is the NMR

structure (PDB: 2DLG, model 19) and (B) is the AF2 model (UniProt: O75369).

(C and D) The zinc-finger BED domain of the zinc-finger BED-domain-con-

taining protein 1. (C) is the NMR structure (PDB: 2CT5, model 3) and (D) is the

AF2 model (UniProt: O96006).
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4D as an example of how ANSURR can distinguish between re-

gions of high flexibility and complete disorder). To test this idea,

we re-computed the mean pLDDT for each AF2 structure using

only the well-defined regions identified in the corresponding

NMR ensembles. Mean pLDDT for well-defined regions does

correlate with the ANSURR score, albeit weakly (Figure 6C).

This suggests that ill-defined regions, which are often indicative

of local dynamics, are being judged differently by the two

methods. AF2 has a tendency to represent these as structured,

though with higher uncertainty; NMR (via the random coil index)

represents them as partially structured. Further support for this

suggestion as the source of the difference comes from a recent

paper (Buel and Walters, 2022), which shows that point muta-

tions that introduce local unfolding may not be well predicted

by AF2. A clear implication is that AF2 and NMR could be used

synergistically to produce an improved description of ill-defined

regions.

DISCUSSION

It is already clear that the availability, simplicity, and remarkable

accuracy of AF2 will make it invaluable for modeling protein

structures, for example, for the design of drugs that work by

binding to the protein. However, this is only true as long as the

AF2 models are good models for the structure of the protein in

solution. The studies presented here compare AF2 models

with solution chemical shifts and provide convincing evidence

for the accuracy of AF2 models as solution structures, confirm-

ing earlier reports (Robertson et al., 2021; Zweckstetter, 2021).

Nevertheless, there are rare occasions where the AF2 models

are incorrect, likely because they do not adequately represent

the dynamics of proteins in solution. Can NMR be used to iden-

tify and correct such errors?

Two reviews comparing NMR and crystal structures (Andrec

et al., 2007; Billeter, 1992) have concluded that NMR structures

have the same fold as corresponding crystal structures but are,

on average, of lower quality. Our own analysis using ANSURR

(Fowler et al., 2020, 2021) reached the same conclusion. An

interesting point made by Andrec et al. (2007) is that the preci-

sion of the NMR ensemble is tighter than the average distance

between the NMR ensemble and the crystal structure; that is,

that the most obvious measure of the ‘‘error’’ of the NMR struc-

tures is misleadingly small—not only are NMR structures of low

quality, but the error attached to them is unreliable. More recent

analyses have reached similar, though slightly more optimistic,

conclusions: Schneider et al. (2009) showed that NMR structures

can be useful templates for structural models; Abaturov and No-

sova (2012) showed that structural differences are minimized by

collecting more NMR data; Li and Br€uschweiler (2014) showed

that molecular dynamics optimization of NMR structures can

make themmuchmore comparable to crystal structures; Everett

et al. (2016) revisited the analysis of Andrec et al. (2007) and

concluded that the agreement between NMR and crystal struc-

tures is improved by using modern NMR methods; and Faraggi

et al. (2018) concluded that much of the difference may reflect

genuinely increased mobility in solution. We have shown that

although NMR structures are significantly too floppy compared

with chemical shift data, crystal structures are too rigid. Indeed,

numerous studies have shown that NMR structures can repre-

sent the dynamic nature of protein structures in solution better

than crystal structures: for examples, see Ikura et al. (1991)

and Tomlinson et al. (2009). These studies are of relevance to

the current work because AF2 predictions are trained on crystal

structures. Thus, if NMR can be used to ‘‘correct’’ crystal struc-

tures to produce a more correct dynamic solution structure, it

can clearly also do the same for AF2 structures.

A

B

C

D

Figure 5. Representative ANSURR output for two proteins where the

NMR structure is better than the AF2 model

Color scheme as for Figure 4. The structures are shown beside each plot

in cartoon representation, with backbone hydrogen bonds depicted as

gray lines.

(A and B) EF-hand domain of human polycystin 2. (A) is the NMR structure

(PDB: 2Y4Q, model 3) and (B) is the AF2 structure (UniProt: Q13563).

(C and D) Transmembrane and juxtamembrane domains of epidermal growth

factor receptor in dodecylphosphocholine (DPC) micelles. (C) is the NMR

structure (PDB: 2N5S, model 2), and (D) is the AF2 structure (UniProt: P00533).

See also Figures S5 and S6.
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Most AF2 structures are at least as accurate as NMR ensem-

bles. Calculation of an AF2 prediction takes minutes and can be

done with minimal training. By contrast, the calculation of an

NMR structure usually takes months and requires expensive

equipment and a trained operator. It is impractical to calculate

an NMR structure for every target. However, the backbone

NMR assignment of small- to medium-sized proteins can be

done almost automatically (Williamson and Craven, 2009; W€urz

et al., 2017) and permits the application of ANSURR. On the ba-

sis of the results presented here, we therefore propose that it

would make sense to test the accuracy of AF2 models by car-

rying out a semi-automated backbone assignment, followed by

ANSURR. A model validated by ANSURR can be accepted as

an accurate solution model (with no need for further NMR-struc-

ture calculation), while models that have clear local violations

need revision and would be good targets for NMR-based struc-

ture refinement of the AF2 model. Figures 5A and 5B provide a

good example of how this could be done. ANSURR shows that

the AF2 model for human polycystin 2 (UniProt: Q13563) is inac-

curate in that it is missing a short antiparallel b-sheet present in

solution. It would be straightforward to calculate amore accurate

structure by starting from the AF2 model and adding additional

restraints to produce the b-sheet.

NMR is not inherently an inaccurate method; rather, the prob-

lem is that calculation of a high-quality structure requires a large

amount of experimental and computational effort. Time and

financial restraints therefore often limit the accuracy of the final

structure. We suggest that where a computationally generated

structure clearly fits the experimental data well, it could simply

be accepted as a validated structure or taken as a starting point

for refinement against NMR data, thus providing the most effi-

cient way to produce an accurate solution structure.

It may be argued that such a procedure biases the resulting

NMR structure by imposing interatomic interactions present in

the AF2 starting model. However, bias of this type is imposed

on every NMR-structure calculation by the use of knowledge-

based restraints. The use of an AF2 model is just a more sophis-

ticated version of a knowledge-based restraint and should be

welcomed.

A complementary approach would be to produce a modified

version of AF2 trained to generate more accurate solution struc-

tures by ‘‘learning’’ the locations of dynamic structure. Such an

approach would be enormously powerful but would of course

require the generation of appropriate training sets. The most

obvious way of providing suitable training sets is via NMR chem-

ical shifts, which carry all the information needed to characterize

local dynamic regions (Dass et al., 2020; Kagami et al., 2021) and

are often available from the Biological Magnetic Resonance

DataBank (BMRB) (Ulrich et al., 2008). Alternatively, training

data for solution structure and dynamics could be generated

from molecular simulations (Ramaswamy et al., 2021) or deep-

learning methods (Noé et al., 2019).

Finally, we note that most structure calculations and predic-

tions assume that the structure can be represented reasonably

well by a single structure. In general, this seems to be true, but

some of the examples discussed here suggest some element

of heterogeneity, even if only in the form of folded and unfolded

local structure in equilibrium. Such heterogeneity is potentially of

great importance for both function and inhibition of function, and

the results presented here suggest that a combination of AF2

and ANSURR would be one way to identify and characterize

such equilibria.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

A

B

C

Figure 6. A comparison of pLDDT scores with ANSURR scores

(A) The mean pLDDT score averaged over all amino acids for each AF2 model.

Statistics are shown for all AF2 models in the test set and separately for the

n = 273 structures in which the AF2 structure is significantly better than the

NMR structure, and for the n = 22 structures in which the NMR structure is

significantly better than the AF2 structure. The mean pLDDT score is shown

below each box.

(B) Correlation plot for mean pLDDT scores versus ANSURR scores for each

AF2 model in the test set. The orange line is the line of best fit. Pearson’s

r and the corresponding two-tailed p value are given in the legend.

(C) Correlation plot for mean pLDDT scores computed for well-defined regions

versus ANSURR scores for each AF2 model in the test set.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for information on method, dataset or computational resources should be directed to and will be

fulfilled by the Lead Contact, Prof. M. P. Williamson (m.williamson@sheffield.ac.uk).

Materials availability

No new unique reagents or materials were produced in this study.

Data and code availability

d All data reported in this paper will be shared by the Lead contact upon request. The data reported in this study were obtained

using ANSURR v1.1.0, which can be downloaded from https://doi.org/10.5281/zenodo.4984229.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the Lead contact upon

request.

METHOD DETAILS

A set of comparable NMR and Alpha-Fold structures

Each structure in the Alpha-Fold Protein Structure Database (Varadi et al., 2022) is indexed by a UniProt accession number. We

used the Structure Integration with Function, Taxonomy and Sequence (SIFTS) resource (Dana et al., 2019) to map the UniProt

accession number of each human protein in the Alpha-Fold Protein Structure database to NMR structures in PDB (Burley et al.,

2019). Specifically, we used the uniprot_segments_observed.tsv SIFTS file to identify overlapping regions between the two types

of structures and extracted these regions from the structure files using an in-house program. AF2 structures do not contain

hydrogen atoms, so we added them using the program REDUCE v3.23 (Word et al., 1999). We applied the following criteria to filter

out NMR structures that could complicate our comparison. NMR structures should a) comprise only a single chain, b) have a set of

backbone chemical shifts in the BMRB with at least 75% completeness, to ensure the reliability of ANSURR, and c) have at least

20 amino acid residues. The final set consisted of 904 Alpha-Fold/NMR structure pairs. A summary listing UniProt accession

numbers and PDB IDs of the mapped AF2/NMR structures and corresponding residue ranges is provided in a supplemental infor-

mation (comparable_af2_nmr_structures.xlsx).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Protein data bank (Burley et al., 2019) www.rcsb.org

BMRB (Ulrich et al., 2008) https://bmrb.io/

Alpha-Fold protein structure database (Varadi et al., 2022) https://alphafold.ebi.ac.uk/

SIFTS (Dana et al., 2019) https://www.ebi.ac.uk/pdbe/docs/sifts/

ANSURR scores for CASP14 targets and

predictions: CASP14_ansurr_scores_NMR.xlsx,

CASP14_ansurr_scores_predictions.xlsx

This paper Data S1

Data S2

List of AF2 and NMR IDs comparable_af2_nmr_

structures.xlsx

This paper Data S3

ANSURR scores for structures reported here:

af2_ansurr_scores.xlsx, nmr_ansurr_scores.xlsx

This paper Data S4

Data S5

Software and algorithms

ANSURR v1.1.0 (Fowler et al., 2020) https://zenodo.org/record/4984229

REDUCE (Word et al., 1999) https://github.com/rlabduke/reduce

DSSP (Touw et al., 2015) https://swift.cmbi.umcn.nl/gv/dssp/

PyMol molecular graphics system Schrödinger, LLC https://pymol.org/2/
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ANSURR calculations

All ANSURR calculations were performed with ANSURR v1.1.0 (https://doi.org/10.5281/zenodo.4984229) with the following options:

re-reference chemical shifts using PANAV, include non-standard residues when computing flexibility, do not include ligands when

computing flexibility. NMR structures contain multiple models (typically 20) and so we computed ANSURR scores for all models

and averaged them to obtain a single ANSURR score for each PDB entry. Each AF2 structure could be mapped to multiple PDB en-

tries. In this case we computed the average ANSURR score of the PDB entries and compared this to the average ANSURR score

computed for regions taken from the AF2 structure which overlapped with the PDB entries. For example, AF2 structure O00206

was mapped to two PDB entries (5NAM and 5NAO), so we compared the average ANSURR score for the two PDB entries with

the average ANSURR score for models comprising residues 623–670 and residues 623–657 from the AF2 structure. We followed

a similar procedure to compare the best scoring NMRmodels to AF2 predictions (Figure 3B) e.g. for AF2 structure O00206, we aver-

aged the ANSURR scores for the best scoring models from 5NAM and 5NAO and compared this to the average ANSURR score for

the overlapping regions from the AF2 structure. Individual ANSURR scores for all structures validated in this work are provided as

supplemental information (AF2: af2_ansurr_scores.xlsx, NMR: nmr_ansurr_scores.xlsx). We chose not to include ligands when

computing flexibility as they are not present in AF2 structures. We therefore felt that removing any ligands from NMR structures

was the fairest comparison. We showed previously (Fowler et al., 2021) that ligands can cause changes in computed flexibility,

but that the overall effect on ANSURR score is small: including ligands to compute flexibility for a set of 162 NMR ensembles led

to a mean change in ANSURR score of only 1. Secondary structure was classified using DSSP v2.0.4 (Touw et al., 2015).

Data sources

Source data are listed in Supplementary information and are from publicly available databases: specifically, the Protein Data

Bank (www.rcsb/org), Biological Magnetic Resonance Bank (BMRB: www.bmrb.io) and the AlphaFold Protein Structure

Database (https://alphafold.ebi.ac.uk). The accession codes of PDB and BMRB entries used in this study are listed in the file

comparable_af2_nmr_structures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using standard Python routines. Values of n and statistical tests are described in Figure 6 and its

legend. No tests for data normality were conducted.
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