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Abstract: Adjusting dosing regimens based on measurements of carbapenem levels may improve
carbapenem exposure in patients. This systematic review aims to describe the effect carbapenem
therapeutic drug monitoring (TDM) has on health outcomes, including the emergence of antimicrobial
resistance (AMR). Four databases were searched for studies that reported health outcomes following
adjustment to dosing regimens, according to measurements of carbapenem concentration. Bias in
the studies was assessed with risk of bias analysis tools. Study characteristics and outcomes were
tabulated and a narrative synthesis was performed. In total, 2 randomised controlled trials (RCTs),
17 non-randomised studies, and 19 clinical case studies were included. Significant variation in TDM
practice was seen; consequently, a meta-analysis was unsuitable. Few studies assessed impacts on
AMR. No significant improvement on health outcomes and no detrimental effects of carbapenem
TDM were observed. Five cohort studies showed significant associations between achieving target
concentrations and clinical success, including suppression of resistance. Studies in this review
showed no obvious improvement in clinical outcomes when TDM is implemented. Optimisation and
standardisation of carbapenem TDM practice are needed to improve intervention success and enable
study synthesis. Further suitably powered studies of standardised TDM are required to assess the
impact of TMD on clinical outcomes and AMR.

Keywords: carbapenem; beta-lactam; meropenem; therapeutic drug monitoring; clinical outcomes;
antimicrobial resistance; personalised medicine

1. Introduction

Antimicrobial resistance (AMR) has become a global concern. It has been predicted
that by 2050 10 million deaths per year globally will be a result of antimicrobial resistant
infections [1]. In 2019, an estimated 4.95 million deaths were associated with bacterial
AMR [2]. The emergence of AMR can be exacerbated by inappropriate dosing of antibi-
otics [3]. Therapeutic drug monitoring (TDM) is the practice of measuring a drug and
adjusting dosing regimens, based on the measured amount, to reach a target concen-
tration [4]. Pharmacokinetic/pharmacodynamic (PK/PD) indices can help describe the
relationship between the dose, concentration, and outcome [5]. Thus, where it is known
that certain concentrations result in improved clinical outcomes, the PK/PD indices can be
used as concentration targets to adjust doses towards. PK/PD indices also reflect different
antibiotic action: time-dependent antibiotics (beta-lactams) are measured based on the
amount of time unbound antibiotic is above the minimum inhibitory concentration (MIC)
(ƒT>MIC), where a fraction of the antibiotic is reversibly bound to proteins; concentration-
dependent antibiotics (aminoglycosides) are measured on the ratio of peak concentration
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to MIC (Cmax/MIC); and antibiotics that display time and concentration-dependent ac-
tion are measured on the area under the curve to MIC (AUC/MIC) [6]. TDM is already
carried out on some antibiotics such as aminoglycosides and glycopeptides [7]. Previous
research has shown achieving Cmax/MIC targets [8–10], and AUC/MIC targets [11,12] in
aminoglycoside treatment improves clinical outcomes. Extended high AUC exposures and
high trough concentrations over a prolonged period have been associated with nephrotoxi-
city [5]. In glycopeptides, higher AUC/MIC ratios are associated with improved clinical
outcomes [13–15]. Clinical studies of patients treated with beta-lactams have shown an
association between clinical outcomes and beta-lactam exposure [16–25]. Because of the
different PK/PD properties of different beta-lactams, it cannot be assumed that effective-
ness of TDM of one beta-lactam will translate to all beta-lactams, so evaluations are needed
by antibiotic class. Despite evidence of associations between clinical outcomes and PK/PD
indices, few systematic reviews have assessed the impact antibiotic TDM has on clinical
outcomes and impacts on AMR [26–28].

Carbapenems are effective antimicrobial agents against Gram-positive and Gram-
negative bacteria and display a broad spectrum of activity [29]. Being highly effective, but
broad-spectrum agents, carbapenems are considered a last resort antibiotic. All carbapen-
ems are on the World Health Organization’s ‘watch’ list, that refers to broad-spectrum
agents that have a higher potential for resistance [29–31]. Carbapenem combinations
meropenem–vaborbactam and imipenem–cilastatin–relebactam are included on the ‘re-
serve’ list, and are kept back for multidrug-resistant infections [30,31].

Usually dosing regimens for carbapenems are standardised and based on the suscepti-
bility of the most likely causative pathogen and data from pharmacokinetic and pharma-
codynamic (PK/PD) studies carried out in healthy volunteers [32]. However, significant
PK/PD variability, particularly in the critically ill, has been shown with carbapenems and
other beta-lactams [33–36]. The combination of PK/PD variability and standardised dosing
regimens can result in inappropriate prescribing, doses that are either too high or too low,
which can lead to less effective treatment and the emergence of AMR. Optimal stewardship
of these agents is essential in the fight against AMR, particularly in last-line antibiotics, such
as carbapenems. Clinical studies have reported associations between PK/PD indices and
clinical outcomes in carbapenems [16,17,19,24,25]; however, carbapenem TDM is a complex
intervention and there are a number of factors that can impact its effectiveness [26,37]. This
systematic review assesses carbapenem TDM practice, clinical outcomes, and the impact
on the emergence of AMR.

2. Results
2.1. Search Results

The search strategy identified 1086 studies and the full texts of 355 were screened for
eligibility in the review; 38 were included overall (see Figure 1). After de-duplication, no
additional studies were found from the hand-search of relevant reviews. Of the 38 included
studies, 2 were RCTs, 17 were non-randomised observational studies, and 19 were clinical
case studies. Some studies that measured carbapenem concentration and reported clinical
outcomes initially appeared to meet criteria but were excluded as dosing regimens were
not influenced by the measurement result.

2.2. Randomised Controlled Trials
2.2.1. Quality Assessment

The risk of bias of two RCTs was assessed using the RoB2 assessment tool [38], results
shown in Table 1. Both scored an overall ‘High’ risk of bias. As clinical outcomes were
not the primary outcomes of either study, these studies were not powered sufficiently to
identify differences in clinical outcomes [39,40].
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Table 1. Revised Cochrane Risk-of-Bias tool for Randomised Controlled Trials (RoB2) [38].

Study
Bias in

Randomisation
Process

Bias in Deviations
from Intended

Interventions (Effect
of Assignment to

Intervention)

Bias in Deviations
from Intended

Interventions (Effect
If Adhering to
Intervention)

Bias Due to
Missing

Outcome Data

Bias Due to
Measurement
of Outcome

Bias in Selection
of Reported

Result

Overall
Result

Fournier et al.
2018 [39] Some Concerns Low High Low High Some Concerns High

De Waele et al.
2014 [40] Some Concerns Low High Low Low Some Concerns High

2.2.2. Study Characteristics and Results

The characteristics of the included RCTs are summarised in Table S1. Patient popula-
tions included: burns patients [39], and patients with normal kidney function [40]. There
was little difference in clinical outcomes seen in patients where carbapenem TDM was
performed, compared to patients who received standard care. However, both RCTs were
not powered to identify clinical outcomes. Additionally, important aspects of TDM in both
RCTs were not comparable: PK/PD targets, dose-adjustment protocols, and TDM sampling
protocols were all different.

The RCT performed by Fournier et al. investigated the impact of using TDM in
beta-lactam treatment in burns patients and TDM improved target attainment compared
to the standard care group [39]. By comparing the initial carbapenem concentration to
subsequent results, they showed a 12% improvement in target attainment in the TDM
intervention group, compared to a 3% improvement in the standard care group. This
improvement in target attainment, however, did not correspond to an improvement in
clinical outcomes. The proportion of infections cured were largely the same across both
groups in infections treated with meropenem, imipenem-cilastatin, and ertapenem. This
study was limited by an unexpected decrease in the number of admitted patients, and
it ended up underpowered to detect significant pharmacological or clinical differences
between the arms; a sample size of 90 patients was required for a suitably powered study,
only 38 patients were eventually recruited. Additionally, there was no definition of clinical
cure, this introduced a bias in the measurement of the outcome as different clinicians may
have assessed clinical resolutions differently.

De Waele et al. carried out an RCT looking at the differences meropenem and
piperacillin TDM made in patients with normal renal function [40]. Antibiotic concentra-
tions were adjusted in the intervention group to meet a target of 100% ƒT>4xMIC. TDM
improved target attainment compared to standard care. Initially the intervention group
and the standard care group had a target attainment of 9.5% and 20%, respectively. After
72 h, 58% of the intervention group met the target compared to 16% in the standard care
group, [p = 0.007]. A trend towards reduced bacterial pathogen persistence was observed
(1 patient in the TDM intervention group versus 5 in the standard care group [p = 0.093]).
Improvement in median Sequential Organ Failure Assessment (SOFA) score was larger
in the intervention group, while Intensive Care unit (ICU) and 28-day mortality were the
same across both groups (Intervention: ICU mortality, 1/6; 28-day mortality, 1/6. Control:
ICU mortality: 1/7; 28-day mortality, 1/7, mortality data provided by the author). As with
the previous RCT, the number of patients was small (n = 13, receiving meropenem), the
study was not powered to identify differences in clinical outcomes and the reported clinical
outcomes in the TDM group were not significantly different.
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Figure 1. Literature search process in accordance to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [41].

2.3. Non-Randomised Studies
2.3.1. Quality Assessment

Risk of bias according to the ROBINS I tool in the 17 non-randomised studies is
presented in Table 2. All of the studies scored a serious or critical risk of bias.
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Table 2. Quality Assessment of non-randomised studies as per the Risk of Bias in Non-Randomised
Studies of Interventions (ROBINS-I) assessment tool [42].

Study
Bias Due to
Confound-

ing

Bias in
Selection of
Participants

Bias in
Classification

of
Interventions

Bias Due to
Deviations

from Intended
Interventions

Bias Due to
Missing Data

Bias in
Measurement
of Outcomes

Bias in
Selection of
the Reported

Result

Overall
Result

Cies et al. 2018 [43]. Critical Low NA Serious Low Low Moderate Critical
Machado et al. 2017 [44]. Serious Low Low NI Low Low Moderate Serious

Economou et al. 2017 [45]. Critical Low NA Serious Low Low Moderate Critical
Fournier et al. 2015 [46]. Critical Low Serious Critical Low Low Moderate Critical

McDonald et al. 2016 [47]. Critical Critical NA NI Low Serious Moderate Critical
Pea et al. 2017 [48]. Serious Low NA Moderate Low Low Moderate Serious

Cojutti et al. 2015 [49]. Critical Low NA Serious Low Low Moderate Critical
Cojutti et al. 2018 [50]. Serious Low NA Serious Low Low Moderate Serious
Patel et al. 2012 [51]. Critical Low NA NI Low Serious Moderate Critical
Wong et al. 2018 [52]. Critical Low NA Critical Moderate Serious Moderate Critical

Roberts et al. 2010 [53]. Critical Low NA Serious Low Low Moderate Critical
Bricheux et al. 2019 [54]. Serious Low NA Serious Low Low Moderate Serious
Schoenenberger-Arnaiz

et al. 2019 [55]. Critical Low NA Critical Low Low Moderate Critical

Gatti et al. 2021 [56]. Serious Critical NA Low Low Low Moderate Critical
Al-Shaer et al. 2020 [57]. Serious Critical NA Critical Low Low Moderate Critical

Aldaz et al. 2021 [58]. Moderate Low Low Low Serious Low Moderate Serious
Scharf et al. 2020 [59]. Moderate Critical NA Critical Low Low Moderate Critical

Abbreviations: NI–Not enough information reported. NA–Not Applicable.

2.3.2. Study Characteristics and Outcomes

The characteristics of the included non-randomised studies are summarised in Table S2.
Across the included studies there were a number of different populations studied: pae-
diatric patients [43,49], critically ill patients [47,52,53,55–59], burns patients [44,46,51],
patients administered antibiotics for a suspected or confirmed infection [54], oncohaemato-
logical patients [50], patients receiving Continuous Renal Replacement Therapy (CRRT) [45],
and patients with a carbapenemase-producing K. pneumoniae infection [48]. No clear benefit
to clinical outcomes from the use of carbapenem TDM was identified from these studies.

TDM sampling protocols varied across studies, the majority of studies did not have
a protocol for the frequency of TDM measurement and did not specify how frequently
samples were taken [44–47,49,51,54,56–58]. Some studies reported that some patients
received multiple TDM measurements, however multiple sampling was only carried out in
47.4%, [55] 31% [52], and 21.6% [53] of patients. A few studies reported median numbers of
TDM measurements [48,50], or a minimum number of samples per patient [43]. One paper
excluded patients with less than two TDM measurements [59].

All studies measured carbapenem blood levels, in plasma or serum, by liquid
chromatography-based methods, either coupled to ultraviolet spectroscopy or tandem
mass spectrometry. There was considerable variation in pharmacological targets: of the
17 observational studies, 11 different pharmacological targets were used, shown in Table 3
(also includes targets used in RCTs).

Most studies intended to determine pathogen susceptibility through susceptibility
testing but when this was not available, i.e., when a pathogen could not be isolated, then
‘surrogate’ MICs were used. These were predominately based on European Committee on
Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoint data.

In most studies, protocols to adjust dosing were not specified [44–46,48–50,56–58], or
dose adjustments were at clinician’s discretion guided by antibiotic concentration measure-
ments [54,55,59]. In other studies, a general protocol was described, stating that dosing was
accordingly increased or decreased [43,51], or a more specific protocol was used, where
dosing changes were pre-specified by a certain percentage increase, for example [47,52,53].

Few studies showed that TDM improved target attainment, i.e., by showing that target
attainment increased after adjusting dosing regimens. Improvement in target attainment
was only seen in two studies [48,51], variable success was seen in four studies [46,49,53,57],
and no difference was seen in one study [52]. Differences in target attainment after dose
adjustment was not reported in the remaining studies [43–45,47,50,55,58,59].
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Of the studies that included a comparator group, evidence of clinical improvement by
TDM was variable (Table 4). One study saw clinical improvements in markers for infection
and hospital length of stay in the TDM group [58]. One study saw no difference in clinical
outcomes between groups [44], and one study saw significantly longer length of stay in the
TDM group [46].

Table 3. Pharmacological targets of RCTs and cohort studies.

Pharmacological Target References

100% f T>4-10xMIC [40]
40% f T>4-6xMIC [43]

60% f T>MIC [44]
100% f T>1-10xMIC [45,52]

100% f T>MIC [46,47,51,57,59]
Css:MIC ≥ 1 [48]
Css:MIC ≥ 4 [48]

Css:MIC = 4–6 [49]
Css:MIC = 4–8 [50]

100% f T>4-5xMIC [53,58]
100% f T>4xMIC [55,57,59]

Specific carbapenem concentration [39]
At clinician’s discretion guided by TDM result [54,56]

Table 4. Effect of carbapenem TDM in health outcomes.

Study Population
Improved

Target
Attainment?

Bacterial
Persistence Mortality In-Hospital

Stay
Length of Stay

on ICU
Acute Kidney

Injury
Toxicity or

Adverse Effects
Treatment

Efficacy AMR

Randomised controlled
trials

Fournier et al. 2018. [39] Burns patients
(n = 17) Not significant - - - - - - No significant

difference -

De Waele et al. 2013. [40]
Non-renally

impaired
patients (n = 13)

Significant No significant
difference

No significant
difference - - - - No significant

difference -

Non-randomised
comparator studies

Machado et al. 2017. [44] Burns patients
(n = 16) Not specified - No significant

difference - - - - No significant
difference -

Fournier et al., 2015 [46]
Critically ill

burns patients
(n = 109)

Variable success - No significant
difference

TDM group
significantly

longer
- - - No significant

difference -

Aldaz et al., 2021. [58]
Critically ill

patients
(n = 154)

Not specified No significant
difference

No significant
difference

TDM group
significantly

shorter

No significant
difference - No significant

difference

Significant
normalisation

of infection
biomarkers

-

Abbreviations: -, Not assessed; ICU, Intensive care unit; TDM, Therapeutic drug monitoring.

Two studies investigated the effect of carbapenem TDM on AMR. Suppression of resistance
was associated with achieving target concentrations (fT>4xMIC [57], and CSS/MIC ≥ 5) [56].

2.4. Clinical Case Studies
2.4.1. Quality Assessment

The risk of bias of 19 clinical case studies was assessed using the OHAT Risk of Bias
Rating Tool for Human and Animal Studies [60]. Due to the nature of clinical case studies,
where there are a small number of selected patients with no ability to analyse influences
from confounding factors and no control comparisons, there was a high risk of bias. All the
studies scored ‘Definitely High’ for their associated risk of bias.

2.4.2. Study Characteristics and Outcomes

The included studies are summarised in Table S3 [61–79]. Best practice for carbapenem
TDM is not known, which has led to differences in the way it is carried out, particularly
concerning pharmacological targets, dose-adjustment protocols, and frequency of antibiotic
concentration measurement. These studies show, by measuring carbapenem concentrations,
a dose adjustment is often needed. Out of the 27 patients described in the studies, dose



Antibiotics 2022, 11, 1311 7 of 15

adjustments were required in 21 (78%) due to inadequate antibiotic levels, antibiotic levels
were shown to be adequate in 5 patients (19%), and in 1 patient it was unclear whether doses
were adjusted or not. Of those that needed a dose adjustment and where the pathogen MIC
was determined, levels met the target in 12/16 (75%) subsequent TDM measurements, and
4 did not meet the target. A positive clinical outcome was seen in 22/26 patients (85%) and
treatment was stopped for 1 patient due to COVID-19. Of the patients where a positive
clinical outcome was not reported, three did not reach target antibiotic levels, even after
dose adjustments.

Emergence of antibiotic resistance was reported in 3/27 (11%), and a decrease in
susceptibility was reported in an additional 2 cases.

3. Discussion

The currently published literature provides no strong evidence to conclude that car-
bapenem TDM results in improved patient health outcomes, nor reduces the emergence of
AMR. However, most studies were primarily powered to identify pharmacological impacts
of carbapenem TDM and underpowered to detect improved health outcomes. In spite of
this, there were some suggestions that carbapenem TDM could improve health outcomes:
Aldaz et al., included the largest number of patients and a more robust confounding factor
analysis than other non-randomised studies [58], and found TDM was associated with
significant improvements in normalisation of markers for infection, such as C-reactive
protein levels, and procalcitonin levels, as well as significantly shorter length of stays [58].
Two observational studies assessed the impact of TDM on AMR, both of which found sta-
tistically significant associations between AMR emergence and carbapenem concentrations
that met the pharmacological target [56,57].

Due to the wide variability in TDM practice, as well as the high risk of bias, a meta-
analysis was not possible. A meta-analysis was performed in Lechtig-Wasserman et al.’s
systematic review of carbapenem TDM use in critically ill patients, which also found that
there was not strong evidence to show clinical impacts of carbapenem TDM [27]. However,
the appropriateness of this approach can be questioned because of the same wide variation
in practice and risk of bias in their included studies: one study was a conference abstract
with limited information on their TDM practices [80], and the others, included in the meta-
analysis, carried out TDM differently [47,58]. Aside from the different pharmacological
targets (100% ƒT>MIC [47] vs 100% ƒT>4-5xMIC [58]), there were critical risks of bias in
confounding [47] and selection [47], as well as imbalances in patient exclusions between
intervention arms, the impact of which was not assessed [58].

Previous research has shown that beta-lactam TDM improves target attainment [33],
and previous clinical studies have shown associations between outcomes and PK/PD in-
dices [16,17,19,24,25]. However, this review has identified that, whilst there is a previously
observed association between outcomes and carbapenem target concentrations, there are
no obvious improvements in outcomes when carbapenem TDM is implemented. This
may be a result of study design, with inadequate power to detect a difference and/or how
carbapenem TDM is carried out. To ensure that concentration targets are being met over
the course of the treatment follow-up measurements must be taken. Just three of the in-
cluded studies demonstrated improvements in target attainment [40,48,51], and frequency
of concentration measurement was commonly not reported. A hurdle to successful TDM
may be the accessibility of TDM services. The current gold-standard is HPLC-MS/MS,
this requires specialised equipment, trained personnel, and time to prepare samples. More
accessible TDM services, using a lab-based test that utilises commonly available equipment,
such as an ELISA, or a ward-based point of care test, may allow for more frequent concen-
tration measurements; to ensure concentrations are within target ranges over the course of
treatment. This would be especially pertinent in patients with dynamic renal functions, or
in patients receiving RRT [16].
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This highlights the importance of the TDM clinical pathway, the steps required to
carry out TDM: sampling, measurement, analysis of result, dosing regimen adjustment,
follow-up measurements. Previous to this systematic review, TDM practice and the lack
of standardisation in carbapenem TDM has not been discussed. In the included papers,
timing of the first antibiotic concentration measurement differed, sampling frequency
was rarely reported, and it differed in those studies that did report it. Additionally, the
pharmacological targets, as well as definitions for ‘MIC’ for targets were inconsistent.
This can result in large differences in target carbapenem concentrations, particularly if a
measured MIC value is much lower than a non-species-specific clinical breakpoint. Dose-
adjustment protocols required for carbapenem levels to reach targets were seldom reported
and there was very little evidence reported of the effectiveness of dose adjustments. When
carrying out TDM in patients, a number of concentration measurements are required
throughout the treatment. This is to ensure that concentrations remain in the desired range,
or to ensure dose adjustments are effective, which is particularly pertinent in patients with
dynamic renal function.

TDM is a complex intervention and each step of TDM practice, from sampling to
response, can have an impact on the success of the intervention. If sampling is infrequent,
then there is less opportunity to respond to changing patient physiology, which is par-
ticularly important in critically ill patients and those with changing renal function. If
the dose adjustment is not effective at reaching the target concentration, or if there are
no data collected to show that TDM results subsequent to dose adjustments are within
target ranges, then there will be little difference to standard care. If a MIC surrogate is
used in place of a measured susceptibility, then a patient might receive a much larger
dose than needed which will increase toxicity, compounded with a ƒT>4-10xMIC target.
Differences between studies in the aforementioned variables of TDM will result in a con-
founded interventional outcome. What may have diluted the ability of this review to see
a clear impact of carbapenem TDM is in studies that included carbapenem TDM to treat
organisms that are typically resistant to carbapenems, such as: MRSA [50,74], MRSE [50],
and Staphylococcus epidermidis [73]. It is likely that certain conditions will be best suited
for carbapenem TDM, such as to treat an isolated pathogen where the susceptibility is
known as a monotherapy. To provide better evidence of when to implement carbapenem
TDM, comparative studies are needed to identify whether carbapenem TDM is more ef-
fective in ‘ideal’ conditions (for example, in patients with bloodstream infection caused
by Enterobacteriales), compared to conditions where pathogen identity and susceptibility
are not known. Patients with abnormal renal function may be an ‘ideal’ patient group to
benefit from carbapenem TDM. Carbapenem concentrations have previously been shown
to be affected by renal function [81,82]. Renal failure and augmented renal function may
result in a more unpredictable antibiotic elimination profile. Despite inconsistencies in
TDM practice and results, studies including patients with impaired renal function showed:
a need of dose adjustments in renally impaired [53]; impairment was associated with
excessive amounts of antibiotic exposure [52,59], and increased mortality [54,59]. Studies
that included patients with Augmented Renal Clearance (ARC) (Glomerular Filtration Rate
(GFR) >130 mL/min/1.73 m2) showed: patients required a higher than licensed dose and
more antibiotic [47]; a need for dose adjustments [53]; ARC was associated with failure
to reach PK/PD targets [52], increased mortality [50], and the development of AMR [56].
RCTs are needed to assess whether TDM can improve outcomes in patients with abnormal
renal function.

This review highlights challenges in the procedural and service delivery elements of
TDM: the importance of timely initial antibiotic concentration measurement, and follow-
up sampling, the need for standardised protocols for carbapenem TDM, frequency of
sampling, susceptibility testing, dose adjustments, renal function considerations, and
target concentrations; all of these elements can have a direct impact on the effectiveness
of carbapenem TDM. Further studies are needed to support the, that timely carbapenem
TDM can help suppress AMR and improve patient outcomes.



Antibiotics 2022, 11, 1311 9 of 15

Limitations

There are several limitations of this systematic review: (1) A proportion of the included
studies reported combined outcomes for carbapenem antibiotics and non-carbapenem
antibiotics, mostly other beta-lactams. (2) Both RCTs, and numerous observational studies
were not powered to identify clinical differences. This resulted in confounding biases
in the observational studies. (3) Due to the wide variation in how TDM was carried
out, it was not possible to conduct a meta-analysis on these studies. (4) Inclusion of
studies where carbapenem antibiotics were used to treat pathogens that are inherently
resistant to carbapenems.

4. Materials and Methods

This systematic review was reported following Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guidance [41]. The protocol was registered on
PROSPERO (ID: CRD42020202800).

Studies investigating carbapenems and TDM were identified from the MEDLINE, EM-
BASE, Cochrane, and Web of Science databases. The search was conducted from database
inception to 07 Feb. 2022. The search terms and strategy are shown in Supplementary
Material S1. A hand search was also carried out of references of relevant reviews.

4.1. Definitions

Therapeutic drug monitoring (TDM) was defined as the measurement of an antibiotic
used by healthcare professionals to alter the administration of the drug (dose, frequency, or
route) [4].

4.2. Inclusion and Exclusion Criteria

Population: Patients treated with carbapenem antibiotics. Condition: Suspected or
confirmed infection, as indicated by carbapenem treatment. Intervention: TDM practice
to modify the dosing regimen of prescribed carbapenems. Comparator/Control: Patients
treated using standard care, where dosing regimens were not influence by TDM results.
Type of study: Randomised controlled trials (RCTs), non-randomised trials, cohort studies,
quasi-experimental studies, retrospective, observational studies, and clinical cases were all
eligible for inclusion. Studies were excluded if not written in the English language; studies
not related to carbapenems; or studies not reporting clinical outcomes. Animal studies,
conference abstracts and reviews were also excluded.

4.3. Selection and Data Extraction

EndNote X9 software (Clarivate Analytics) was used to deduplicate and manage all
references. The references were screened by one reviewer (TL), 10% of the references were
randomly selected using a random number generator, for screening by a second reviewer
(JS) to ensure consistency. Any discrepancies between the selections were resolved through
discussion with the wider team. The full-text screen was carried out by a single reviewer
(TL) with 10% of the studies screened by the second reviewer (JS).

4.4. Data Collection

Data were collected by hand by reviewer TL and validated by the second reviewer
(JS). Collected intervention data consisted of: antibiotic, administration method, dose and
dose frequency, duration of therapy, antibiotic quantification method, bodily fluid used
for antibiotic quantification (e.g., saliva, plasma, interstitial fluid), the fraction quantified—
the free or total fraction, frequency of quantification, dose-adjustment protocol, planned
antibiotic target level, and target attainment. Co-intervention data were also collected
for concomitant antibiotics, and renal replacement therapy. If co-intervention data were
missing, it was assumed that it was not present in the therapy. Study data collected
consisted of: study type, population, population size, intervention group size, control group
size, microbiological confirmation of infection, pathogen(s), study location (in hospital
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or community based study). Outcome data collected consisted of: mortality, in-hospital
stay, length of stay on ICU, acute kidney injury, toxicity or other adverse effects, treatment
effectiveness—that is the resolution of signs or symptoms of infection, duration of treatment,
readmission, target attainment, emergence of antibiotic resistance. If outcome data were
missing, it was assumed that the outcome measure was not recorded. Missing summary
data or missing outcome data were addressed in the quality assessment.

4.5. Quality Assessment

The risk of bias analysis was carried out independently by reviewers TL and JS using
the following tools: for RCTs, the Revised Cochrane Risk-of-Bias Tool for Randomised
Trials (RoB2) assessment tool [38]; for non-randomised intervention studies, the Risk of Bias
in Non-Randomised Studies (ROBINS-1) assessment tool [42]; for case studies, the Office of
Health Assessment and Translation (OHAT) assessment tool [60]. Bias was assessed based
on the clinical outcomes reported, irrespective if these outcomes were reported as primary
aims or secondary aims.

4.6. Data Analysis

The studies were allocated into three categories based on the level of evidence, RCTs,
non-randomised cohort studies, and case studies. To minimise impact of confounding
factors on RCT results, studies were grouped by study design [83]. Study characteristics
were tabulated. The following intervention characteristics were used to compare studies
and assess synthesis suitability: pharmacological targets, dose-adjustment protocols, sam-
pling initiation and frequency, type of administration, co-interventions, and susceptibility
definitions. Health outcomes of studies that included a comparison group were tabulated.
For studies scoring a low or moderate risk of bias, a meta-analysis would be carried out
where pharmacological targets and dose-adjustment protocols were consistent.

5. Conclusions

Despite previous research demonstrating improvements in pharmacological target
attainment from carbapenem TDM and observed associations between achieving target
concentrations and clinical outcomes, this systematic review found no strong evidence
of a beneficial effect of carbapenem TDM on health outcomes, including AMR. Whilst
previous reviews have reported the inconclusiveness of the evidence of carbapenem TDM
on clinical outcomes [27], this is the first systematic review to comprehensively analyse
carbapenem TDM methodology and highlight the inconsistencies in practice, which may be
the reason, alongside inadequately powered studies, why expected clinical improvements
from TDM have not been seen in studies. Further studies are needed to determine best
practice, such as: when to start concentration measurements, how frequently to measure
concentrations, and how best to adjust doses. Adequately powered RCTs of the clinical
utility of carbapenem TDM are needed, and to investigate impacts on AMR. A RCT protocol
to examine clinical outcomes of beta-lactam TDM, including meropenem, has already been
published that may provide more evidence of the impact of carbapenem TDM on health
outcomes [84].

This review is the first to discuss the potential importance of TDM practice for clinical
success, as well as assess the impact carbapenem TDM has on AMR. Where a gap in the
literature has been highlighted, with only two studies assessing AMR impacts. It is known
that inappropriate dosing can drive AMR, TDM is a tool to optimise dosing; therefore, it
stands to reason that TDM can be a tool to suppress AMR, further studies are needed to
investigate this hypothesis.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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