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Many companies have made zero-deforestation commitments (ZDCs) to reduce carbon emissions 20 

and biodiversity losses linked to tropical commodities. However, ZDCs conserve areas primarily 21 

based on tree cover and aboveground carbon, potentially leading to the unintended consequence 22 

that agricultural expansion could be encouraged in biomes outside tropical rainforest, which also 23 

support important biodiversity. We examine locations suitable for zero-deforestation expansion of 24 

commercial oil palm, which is increasingly expanding outside the tropical rainforest biome, by 25 

generating empirical models of global suitability for rainfed and irrigated oil palm. We find that 26 

tropical grassy and dry forest biomes contain >50% of the total area of land climatically-suitable for 27 

rainfed oil palm expansion in compliance with ZDCs (following the High Carbon Stock Approach; in 28 

locations outside urban areas and cropland), and that irrigation could double the area suitable for 29 

expansion in these biomes. Within these biomes, ZDCs fail to protect areas of high vertebrate 30 

richness from oil palm expansion. To prevent unintended consequences of ZDCs and minimise the 31 

environmental impacts of oil palm expansion, policies and governance for sustainable development 32 

and conservation must expand focus from rainforests to all tropical biomes. 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 
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Commercial agriculture drives one-quarter of tropical deforestation1, causing substantial biodiversity 42 

loss2 and carbon emissions3. Many companies have, therefore, made voluntary ‘zero-deforestation 43 

commitments’ (ZDCs) for tropical commodity supply chains4,5. ZDC-compliant commodities cannot 44 

be cultivated on recently-forested land, and ZDCs could effectively protect tropical rainforest from 45 

encroachment6 if uptake of the commitments is widespread7. However, ZDCs could then displace 46 

agricultural expansion to other biomes: primarily tropical grassy biomes (grasslands, savannas and 47 

shrublands8) and dry forests (closed-canopy forests with highly seasonal rainfall9)10,11. These habitats 48 

often lack protection, despite supporting distinct biota and potentially high carbon stocks9,12–14. 49 

Without robust guidance to identify and protect their biodiversity, agricultural expansion into these 50 

biomes in compliance with ZDCs could undermine benefits of ZDCs for global biodiversity and 51 

climate change mitigation. 52 

Palm oil is a key deforestation-risk commodity15, and ZDCs cover two-thirds of global palm oil 53 

production volume4. Palm oil ZDCs are chiefly implemented through Roundtable on Sustainable Palm 54 

Oil (RSPO) certification4, which requires expansion to follow the combined High Conservation Value-55 

High Carbon Stock Approach (HCV-HCSA) to determine habitat for protection16, a methodology also 56 

applied to other commodities17. The HCV-HCSA conserves aboveground carbon and woody 57 

vegetation structure (‘HCS’); biodiversity, ecosystem services and social/cultural values (‘HCVs’); 58 

peat soils; and requires Free, Prior and Informed Consent before encroaching on community 59 

land17,18. However, national-level HCV guidance was originally developed for forestry, and the 60 

combined HCV-HCSA was largely developed in response to oil palm-driven deforestation in 61 

Southeast Asia15, so guidance for other habitats is currently limited. Tropical grassy and dry forest 62 

biomes differ from rainforest in structure and function9,12,13, which current HCV-HCSA guidance does 63 

not address, leading to inconsistent identification of their biodiversity values (Supplementary 64 

Information 1). Latin America and Africa support extensive grassy and dry forest biomes, where 65 

commercial oil palm is expanding rapidly15,19–21, with irrigation in dry locations22. In Latin America, 66 

palm oil production has increased by 60% since 201123, and 80% of expansion prior to 2014 replaced 67 
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cropland, pasture and savanna19. The largest RSPO-certified plantation in Africa was developed 68 

entirely in savanna24, and sites of new certified plantations are frequently selected for their grassy 69 

habitat (Supplementary Information 1). Thus, we urgently need to understand the potential for zero-70 

deforestation oil palm expansion in biomes outside tropical rainforest, and consequent biodiversity 71 

loss. 72 

Here, we generate new maps of climatically-suitable areas for rainfed and irrigated oil palm 73 

expansion, based on locations of existing plantations25 (an alternative approach to ‘agro-ecological’26 74 

or crop growth27 models), and accounting for water availability for irrigation (unlike existing 75 

models27). We assume that ZDCs protect all locations with ≥35 Mg ha-1 aboveground carbon and 76 

≥30% canopy closure, and/or peat soils from expansion, following the HCSA17. We find that tropical 77 

grassy biomes and dry forests contain nearly 200 Mha climatically-suitable for rainfed or irrigated oil 78 

palm expansion in compliance with ZDCs, including locations of high vertebrate richness and 79 

overlapping with the ranges of 10% of all threatened vertebrate species. Thus, to minimise 80 

biodiversity loss, comprehensive guidelines to identify and manage ‘high conservation values’ 81 

specific to tropical grassy and dry forest biomes must be developed. 82 

Results 83 

Potential areas for rainfed oil palm expansion under ZDCs 84 

Globally, we estimate that a total of 1.2 Bha of non-cultivated land (including primary vegetation, 85 

secondary vegetation, and both current and abandoned pasture, but excluding current cropland, 86 

tree plantations and urban areas), outside IUCN class I and II protected areas, are climatically-87 

suitable for rainfed oil palm expansion (Fig. 1). If widely and effectively implemented, ZDCs would 88 

protect up to 86% of this 1.2 Bha, following our scenario of ‘greater habitat protection’ according to 89 

the HCSA (based on canopy closure and aboveground carbon, although in practice, protection 90 

depends on local context: see Methods). Thus, 167 Mha of climatically-suitable, non-cultivated land 91 
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remains potentially available for expansion in compliance with ZDCs, which is six-fold greater than 92 

the current planted area of 27 Mha. 93 

Current guidance for ZDCs protects a considerably higher percentage of the areas climatically-94 

suitable for expansion in the moist forest biome (rainforest; 93%) than in grassy biomes (43%) or dry 95 

forest (51%) (Fig. 2a), because many areas of grassy and dry forest biomes have insufficient 96 

aboveground carbon and canopy closure to qualify for protection (Extended Data Fig. 1). 97 

Consequently, 95 Mha of the 167 Mha potentially available for expansion under ZDCs are in tropical 98 

grassy and dry forest biomes (~four-fold greater than the current planted area), the majority (87%) 99 

in the Neotropics and Afrotropics (Fig. 1). Just under half (69 Mha) of the potential area for 100 

expansion under ZDCs is in the tropical moist forest biome, which is likely to be highly degraded 101 

habitat, such as intensively-managed pasture, because of its low carbon stocks. The 95 Mha of 102 

climatically-suitable non-cultivated land in grassy and dry forest biomes includes both degraded 103 

pasture and also ancient habitats supporting high biodiversity, which cannot be distinguished by 104 

remote sensing, due to superficial similarity between the vegetation types. However, regional 105 

analyses in Brazil and Colombia suggest that a greater proportion of moist forest biome has been 106 

converted to pasture than other biomes (Supplementary Information 2). Consequently, our findings 107 

highlight the potential for zero-deforestation oil palm expansion into ancient, high-biodiversity 108 

grassy biome and dry forest habitats, emphasizing the need for sustainable development guidelines 109 

for identification and protection of biodiversity specific to these biomes, particularly in the 110 

Afrotropics and Neotropics. 111 

Our estimates of the total area suitable for zero-deforestation expansion are sensitive to the 112 

thresholding of our models of suitability for cultivation (70-375 Mha for three thresholds tested), to 113 

the choice of suitability model (223 Mha according to an existing agro-ecological model26, of which 114 

110 Mha overlap with our model; Extended Data Fig. 2), and to habitat protection thresholds under 115 

ZDCs (358 Mha under a scenario of weaker habitat protection, compared to 167 Mha under greater 116 
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habitat protection which we present in the Main Article). Nevertheless, this variation does not affect 117 

our conclusion that tropical grassy and dry forest biomes, especially in the Neotropics and 118 

Afrotropics, contain the largest areas suitable for expansion under ZDCs (Supplementary Information 119 

3). 120 

Potential for ecoregion-level habitat loss 121 

If widespread, oil palm expansion under ZDCs could drive loss of unique habitats and biodiversity in 122 

tropical grassy and dry forest biomes, because large areas of certain individual ecoregions, which 123 

represent distinct habitats within biomes, are suitable for expansion. The percentage of individual 124 

ecoregions that is suitable for rainfed expansion under ZDCs is greater for ecoregions in the tropical 125 

dry forest biome (median 23% of ecoregions’ remaining non-cultivated land is suitable for 126 

expansion) and grassy biomes (16%) than in the moist forest biome (6%) (Fig. 2b). Biodiversity of 127 

ecoregions such as the Llanos in Colombia (~80% of remaining non-cultivated land is suitable for 128 

expansion under ZDCs), Beni savanna in northern Bolivia (~70%), and Guinean savanna in West 129 

Africa (~53%), is particularly vulnerable (Table 1). However, these areas of non-cultivated land 130 

include both intact habitats and some degraded land, where oil palm could expand with lower 131 

immediate environmental costs (see Discussion). Our regional analyses suggest that extensive 132 

suitable areas in some ecoregions (particularly in the moist and dry forest biomes) have been 133 

converted to intensively-managed pasture, but if we assume that this pasture is unavailable for 134 

expansion, our estimates of the percentage of remaining untransformed habitat (outside cropland, 135 

tree plantations, urban areas, and here pasture too) that is suitable for expansion appear robust 136 

(Supplementary Table 3, Supplementary Fig. 2). 137 

Yield in areas suitable for oil palm expansion under ZDCs 138 

Overall, 97% of locations suitable for expansion under ZDCs are likely to have low yields under 139 

rainfed, high-fertiliser input cultivation (~10 tha-1yr-1 fresh fruit bunches; inter-quartile range 6.2-140 

16.5 tha-1yr-1; Fig. 3a), based on recent yields in locations that we estimate as climatically-suitable 141 
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(see Methods). These low yields of ~10 tha-1yr-1 are roughly half of yields in existing industrial 142 

plantations (median 21 tha-1yr-1), but are nevertheless likely to be viable for cultivation (see 143 

Discussion), although we are unable to account for net profitability. Low yields particularly apply to 144 

potential ZDC expansion in grassy biomes (in which 99.8% of climatically-suitable locations for 145 

expansion have low expected yield) and dry forests (99.1%), but also tropical moist forests (92.2%). 146 

Regardless of ZDCs, 87% of locations suitable for expansion have low expected yields overall 147 

(Supplementary Fig. 7; agro-ecological suitability model26 results are similar: Supplementary Fig. 8), 148 

possibly because the most suitable locations for oil palm cultivation have already been converted to 149 

plantations or cropland (e.g. in Southeast Asia). 150 

Opportunities for improved oil palm yield under irrigation 151 

Our projections of climatically-suitable areas for expansion under ZDCs presented above are based 152 

on rainfed cultivation, but under irrigation up to 108 Mha could additionally become suitable (65% 153 

greater than rainfed cultivation alone, representing potential for a 10-fold expansion in the current 154 

planted area in total; Fig. 3b, Extended Data Figs. 3, 4). We assumed that surplus available water is 155 

used to irrigate the crop in dry months, calculated as the difference between monthly renewable 156 

water supply from freshwater lakes, rivers and renewable groundwater and current demand (see 157 

Methods). Irrigation could thus enable considerably greater expansion than rainfed cultivation 158 

alone, particularly in grassy biomes (up to an additional 79 Mha compared with rainfed cultivation) 159 

and dry forests (up to an additional 16 Mha; a two-fold increase compared with rainfed cultivation 160 

for both of these biomes) in the Neotropics and Afrotropics (Supplementary Information 4). Whilst 161 

we expect 97% of areas requiring irrigation to have low yield (Fig. 3b, pale colours), irrigation could 162 

improve yields in locations suitable for rainfed expansion, increasing the total climatically-suitable 163 

area with medium or high expected yield (17-18 tha-1yr-1 median yield) more than five-fold 164 

compared with rainfed cultivation alone (Fig. 3). 165 

Potential threats to vertebrate richness 166 
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We estimate that effective implementation of ZDCs would substantially reduce vertebrate (mammal, 167 

bird and amphibian) richness loss from oil palm expansion in rainforests, by protecting locations with 168 

the highest richness within the moist forest biome, and thus globally, from expansion (Fig. 4a). 169 

However, ZDCs fail to protect locations of high vertebrate richness within tropical grassy and dry 170 

forest biomes in Latin America and Africa, where the largest areas are suitable for zero-deforestation 171 

expansion (Fig. 4a). We estimated richness from vertebrate range maps refined by habitat type, and 172 

we estimated richness loss as the number of species that cannot persist in plantations, within 10-km 173 

grid-cells. Although this grid-cell resolution is likely to overestimate absolute values of richness, the 174 

broad patterns of richness loss among biomes and continents are likely to be robust (Supplementary 175 

Information 6). In Africa, where the contrast among biomes is greatest, expansion compliant with 176 

ZDCs within the moist forest biome would result in substantially less vertebrate richness loss 177 

(median 185 species lost per 10-km grid-cell on conversion to oil palm) than expansion in locations 178 

protected by ZDCs (median 224 species lost per 10-km grid-cell). By contrast, within grassy biomes in 179 

Africa, expansion under ZDCs would result in greater richness loss (median 200 species lost per 10-180 

km grid-cell) than expansion in locations protected by ZDCs (median 169 species lost per 10-km grid-181 

cell; fig 4a), so ZDCs could exacerbate vertebrate richness loss from oil palm expansion. All estimates 182 

of vertebrate richness loss assume that expansion is into intact habitat, and thus actual richness 183 

losses would be significantly lower if expansion also occurred in areas already converted to 184 

intensively-managed pasture (Supplementary Information 2). However, areas of intensively-185 

managed pasture may not always be available for oil palm expansion (see Discussion), and our 186 

estimates of richness loss are robust if we assume that intensively-managed pasture is unavailable 187 

(Supplementary Fig. 3). Estimates of richness loss are similar for the agro-ecological suitability 188 

model26, and when including suitability for irrigation (Supplementary Information 5). Thus, if 189 

widespread zero-deforestation oil palm expansion takes place, ZDCs could drive considerable 190 

biodiversity loss outside the tropical moist forest biome, despite substantially protecting rainforest 191 

biodiversity. 192 
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Range reduction of IUCN-threatened vertebrates 193 

Under ZDCs, oil palm expansion in all biomes could decrease the range sizes of IUCN-threatened 194 

vertebrates, although reductions are generally small. In total, 28% (879 of 3,155 species) of 195 

threatened terrestrial vertebrates could undergo range reduction because these species’ ranges 196 

overlap with potential rainfed expansion areas, and these species cannot persist in plantations (26% 197 

of threatened species according to the agro-ecological suitability model26). However, only a median 198 

4.3% of species’ total global range overlaps with potential rainfed expansion areas (Fig. 4b). When 199 

including locations requiring irrigation, 34% of threatened vertebrates (1,071 species) could undergo 200 

range reduction from oil palm expansion under ZDCs (Supplementary Fig. 18). As expected, the 201 

majority of these threatened species occur in tropical moist forest (817 species under rainfed 202 

expansion; 26% of threatened terrestrial vertebrates), although rainfed expansion in grassy biomes 203 

and dry forests could reduce the ranges of 189 threatened vertebrates (6% of all threatened 204 

vertebrates for both biomes combined; 10% when including locations requiring irrigation). Overall, 205 

there are likely opportunities for ongoing expansion under ZDCs without significant negative impacts 206 

on threatened vertebrates, provided that sufficient guidance is developed to identify and protect 207 

areas supporting such species.  208 

Discussion 209 

Suitable areas for oil palm expansion 210 

We generated new empirical models of suitability for oil palm expansion under rainfed and irrigated 211 

conditions. Our rainfed suitability model is broadly similar to existing models that were generated 212 

using contrasting methods26,28, but with slightly reduced area, suggesting that our estimated 213 

potential for expansion is conservative. We modelled suitability based on locations of commercial oil 214 

palm mills25, representing areas most climatically similar to those already under commercial 215 

cultivation. Our model may therefore have excluded marginal areas that will become increasingly 216 

viable for commercial cultivation with the development of new varieties and practices to maintain 217 
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high yields under climate change26,28–30. A few regions are predicted as suitable in our model but not 218 

in other models26,28 (e.g. parts of the Caatinga in northern Brazil, Venezuelan Llanos; Extended Data 219 

Fig. 2), probably because we accounted for seasonality of water availability by calculating maximum 220 

cumulative water deficit in order to capture water stress experienced by growing oil palms31 221 

(Supplementary Information 7). Areas that we mapped as suitable for irrigated cultivation alone 222 

largely coincide with other models that assumed unlimited water availability27,28, but are restricted 223 

to locations of sufficient surplus available water to remove the critical rainfed water deficit. 224 

Even though we estimated that ZDCs would protect extensive areas, we found considerable 225 

potential for expansion under ZDCs. However, we could not account for availability of land (e.g. land 226 

ownership), nor exclude areas that should be protected for their biodiversity or local ecosystem 227 

service values, which depend on the rigour of local assessments (Supplementary Information 1)18, 228 

suggesting that the actual area available for expansion is much lower than our estimates. Oil palm 229 

expansion could also occur in human-modified habitats (existing cropland or tree plantations17, 230 

which we assumed were unavailable, or intensively-managed pasture19, which we were unable to 231 

exclude from our analyses), which would drive less biodiversity loss than in areas of intact habitat 232 

(Supplementary Figs. 3, 15), but could in turn displace these land-uses to natural habitat11,32. Our 233 

main conclusions appear robust (Supplementary Information 2-5), but local information and 234 

mapping are needed to assess likely protection under ZDCs and potential impacts of expansion in 235 

detail (Supplementary Information 6). 236 

We examine oil palm expansion if ZDCs were widely and effectively implemented. However, 237 

increasing numbers of ZDCs4,5,33 have not necessarily resulted in action to reduce deforestation5, and 238 

the impact of ZDCs has not yet been well-studied5,34,35. RSPO certification appears to reduce 239 

deforestation36,37, although net benefits are minimal as deforestation increases concurrently 240 

elsewhere38, and RSPO-certified palm oil has stagnated at ~19% of global production volume39. Thus, 241 

strong sector-wide regulation is imperative for reducing deforestation globally33,37,38,40. 242 
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Potential for loss of tropical grassy and dry forest biodiversity 243 

If oil palm production continues to expand rapidly41,42, including under ZDCs, our findings 244 

demonstrate the potential for loss of unique biodiversity and habitats in tropical grassy and dry 245 

forest biomes in Latin America and Africa12,43–46. Widespread implementation of ZDCs would mitigate 246 

global biodiversity loss from oil palm expansion overall, by extensively protecting tropical moist 247 

forest, but could also drive conversion of distinct grassy biome and dry forest ecoregions20, and 248 

increase expansion in locations of high vertebrate richness within these biomes. Recent soy 249 

expansion in the Cerrado has driven substantial habitat loss in a global biodiversity hotspot47, 250 

possibly as an unintended consequence of the moratorium on expansion in the Brazilian 251 

Amazon10,11,48,49, and we highlight the potential for a similar pattern in global oil palm expansion, 252 

before widespread conversion of grassy biomes and dry forests has occurred. 253 

We estimate relatively small impacts of zero-deforestation oil palm expansion on IUCN-threatened 254 

vertebrates overall, but we have likely underestimated the impacts of expansion on biodiversity 255 

(Supplementary Information 6). We have not examined potential loss of plant or invertebrate 256 

biodiversity from expansion, yet grassy biomes often support high endemism and richness of these 257 

taxa45, comparable to tropical rainforest in certain ecoregions44 (e.g. the Cerrado46). Moreover, the 258 

locations suitable for expansion under ZDCs in the moist forest biome are likely to be highly 259 

degraded (and include large areas of intensively-managed pasture: Supplementary Information 2), 260 

whereas suitable areas in grassy biomes and dry forests include intact habitat, such as in the Guinea 261 

savanna, Northern Congolian Forest-savanna, and Cerrado50,51 (among other ecoregions). Overall, 262 

widespread agricultural expansion under ZDCs could have substantial negative impacts on 263 

biodiversity, highlighting the need for robust guidance for sustainable agricultural development in all 264 

biomes. 265 

Implications for greenhouse gas emissions 266 
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We were not able to quantify potential greenhouse gas emissions from zero-deforestation oil palm 267 

expansion in this study, because belowground carbon stocks are poorly understood in across the 268 

Tropics, particularly in grassy biomes12,52, and aboveground carbon stocks are also poorly quantified 269 

outside rainforest12,53. Existing data suggest that belowground carbon stocks in grassy biomes are 270 

highly variable and can exceed those of moist forest54–56, resulting in substantial carbon emissions 271 

upon conversion to cropland50,55, and upon conversion of degraded pasture to oil palm57. Thus, the 272 

potential greenhouse gas emissions from conversion of tropical grassy and dry forest biomes to oil 273 

palm could be as high as those from rainforest conversion in many locations, but the lack of data on 274 

below- and aboveground carbon stocks, and the dynamics of belowground carbon following 275 

conversion to oil palm, highlights the need for more research on this topic. 276 

Gaps in current guidance and key recommendations 277 

While tropical conservation efforts have typically focused on rainforests, other biomes are also 278 

subject to multiple threats and are less well-protected9,12,20,54,58–60, with ~50% of tropical dry forests 279 

already converted to other land-uses61. Therefore, there is an urgent need for policies and 280 

governance for sustainable tropical land-use in all biomes. Current guidance (HCV-HCSA and national 281 

interpretations16–18, particularly “Annex 2. Grasslands in HCVs” in 18) does not recognise important 282 

differences between tropical moist forest and grassy and dry forest biomes (e.g. importance of 283 

herbaceous vegetation; Supplementary Information 1, Box 1). Many recent oil palm concessions 284 

were developed on grassy or savanna habitat to comply with ZDCs, risking that these habitats could 285 

become rare through widespread conversion (e.g. savanna in Southern Gabon24; Supplementary 286 

Information 1), threatening biodiversity before guidance is comprehensive. 287 

Nevertheless, the existing HCV-HCSA provides a framework for implementing comprehensive 288 

biodiversity protection in all biomes, like for tropical moist forest17,18 (Fig. 2), with a current ‘policy 289 

window’ for development of detailed guidance beyond Southeast Asian rainforest. We provide 290 

recommendations for such guidance for grassy and dry forest biomes in Box 1. We also recommend 291 
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that companies extend commitments to ‘no conversion of natural habitat’, to bolster protection for 292 

all biomes and support the development of comprehensive guidance for biodiversity protection. The 293 

RSPO should stipulate ‘protection of biodiversity in all biomes’ in its Principles and Criteria (which 294 

require new plantings to follow HCV-HCSA guidance17,18)16, to encourage rigorous HCV assessments, 295 

in line with the biodiversity identification and monitoring for all native vegetation types in the Round 296 

Table on Responsible Soy standard62. The RSPO should incorporate estimation of below-ground 297 

carbon storage of natural vegetation and soils into its greenhouse-gas emissions estimates, which 298 

are high in some tropical grassy biomes (and moist forests)63, although we acknowledge that soil 299 

carbon stocks remain poorly understood12,52, highlighting the need for further research on this topic. 300 

RSPO-certified oil palm is increasingly likely to expand in drier areas (Figs. 1, 3, Extended Data Figs. 3, 301 

4), exacerbating water scarcity, particularly under irrigation64, so detailed guidance for sustainable 302 

hydrological development (including irrigation) is also needed. 303 

Sustainably increasing palm oil production 304 

Oil palm expansion on highly-degraded pastures in the Llanos has limited negative impacts on 305 

biodiversity, and is carbon neutral six decades after conversion57,65,66. However, low-impact 306 

expansion in degraded habitat depends both on correct identification of grassy biomes and dry 307 

forests9,12–14 and a better understanding of degradation and intactness, highlighting the urgent need 308 

for improved guidance (Box 1). Moreover, conversion of degraded areas prevents their 309 

regeneration, hindering progress towards global conservation and climate goals (e.g. Bonn 310 

Challenge)20,67–69. Therefore, key priorities are to understand and define degradation, and examine 311 

the impacts of agricultural expansion in degraded areas, in all biomes and biogeographic regions. 312 

Given the potential negative impacts of ongoing expansion for biodiversity, improving yields of 313 

existing plantations could also reduce the environmental impacts of oil palm, through sustainable 314 

intensification70,71. The low yields we predict (10 tha-1yr-1 in most locations) are similar to yields of 315 

Southeast Asian smallholders72; and oil yields of ~2 tha-1yr-1 (assuming a conversion factor of 20% 316 
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from fresh fruit bunch yield to crude palm oil31), are equivalent to the maximum of other oil crops27. 317 

Thus, oil palm cultivation may be feasible in these locations. However, yield and economic viability 318 

depend on many factors, including costs of labour, seed material, inputs, transportation, and returns 319 

from competing land-uses; further research efforts could integrate these with considerations of 320 

climatic suitability for expansion. Global productivity could be increased by reducing labour 321 

shortages for harvesting73, by implementing best management practices (potentially including 322 

irrigation), and/or planting oil palm varieties with broader climatic tolerances73,74. However, 323 

increasing yield does not necessarily remove economic incentives for expansion elsewhere75. Thus, 324 

there is strong need for internationally-coordinated governance to reduce yield gaps, better protect 325 

natural habitats, and reduce economic incentives for expansion76. 326 

Conclusion 327 

Oil palm expansion that is compliant with ZDCs is most likely to occur in tropical grassy and dry 328 

forest biomes, where it has the potential to drive substantial habitat and biodiversity loss. New 329 

guidance is urgently needed to identify and protect areas of conservation priority in these biomes. 330 

Well-governed international policies that recognise and conserve natural habitat types are thus 331 

imperative for achieving sustainable tropical agriculture. 332 

Methods 333 

Overview 334 

We mapped suitability for rainfed oil palm using the species distribution model Maxent, 335 

incorporating locations of current oil palm cultivation (a global dataset of oil palm mills25) and 336 

climate data77, and selecting the best model from a range of permutations. We evaluated our 337 

models of climatic suitability for oil palm by comparing our estimates to current global oil palm 338 

plantations derived from the ‘Spatial Database of Planted Trees’78. We mapped suitability for 339 

irrigated oil palm by supplementing monthly rainfall with a recent hydrological dataset of monthly 340 

surplus available freshwater79. We thereby produced new, up-to-date models of climatic suitability 341 
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for both rainfed and irrigated oil palm. We conducted analyses for a recent agro-ecological model of 342 

suitability for rainfed oil palm26 alongside our new rainfed model, as a sensitivity test. We mapped 343 

locations potentially available for oil palm cultivation (locations that have not been transformed to 344 

cropland80,81, urban areas80,81 or tree plantations78, subsequently termed ‘non-cultivated land’). We 345 

then quantified whether these areas would be protected under ZDCs, and identified their biome 346 

type, using four further global spatial datasets: aboveground biomass82,83, canopy closure84, 347 

peatlands85, and terrestrial ecoregions20. To assess the impacts of oil palm expansion on vertebrates, 348 

we estimated the potential vertebrate richness of locations we deemed to be climatically-suitable 349 

for oil palm, by refining vertebrate range maps86,87 according to habitat types suitable for each 350 

species. We conducted regional sensitivity analyses (for Brazil and Colombia) that explicitly included 351 

intensively-managed pasture as a land-use type, to assess whether our inclusion of intensively-352 

managed pasture as ‘non-cultivated land’ potentially available for oil palm expansion in our global 353 

analyses (alongside primary and secondary vegetation) may have led to inaccuracies in our main 354 

findings. We ran all models and analyses at 5’ grid-cell resolution (~10 km at the Equator), the finest 355 

possible from component datasets; where data were provided at finer resolution, we aggregated 356 

them before use. We ran all models and analyses of expansion across all tropical regions (between 357 

23.5° N and 23.5° S, except for the regional analyses including intensively-managed pasture, and the 358 

refinement of global vertebrate range maps by habitat type), using R version 3.5.288 and ArcGIS Pro 359 

version 2.2.0. 360 

Current occurrence of oil palm cultivation 361 

To train our species distribution models of oil palm suitability, we used a global dataset of oil palm 362 

mills, collected from major palm oil supply chains and therefore representing occurrence of 363 

industrial oil palm cultivation25 (and additionally smallholder cultivation where it is associated with 364 

industrial plantations, such as in Southeast Asia). Oil palm fresh fruit bunches require processing 365 

soon after harvest31, so mills are generally adjacent to plantations78. We excluded mills in locations 366 

likely to be irrigated and thus cultivated under artificially-altered climatic conditions. We used a 367 
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global dataset of water withdrawal for irrigation in 201479 to determine locations of potential 368 

irrigation, excluding all mills within 10 km of non-zero water withdrawal for irrigation. Additionally, 369 

we excluded mills in regions described as having widespread irrigation of oil palm89. Our final dataset 370 

for locations of current cultivation of rainfed oil palm therefore comprised N = 1021 oil palm mills 371 

occupying separate 5’ grid-cells of the climate data. We assumed that each of these mills 372 

represented one known ‘presence’ datapoint for oil palm cultivation. 373 

This dataset of rainfed oil palm occurrence exhibited spatial bias (88.4% of the mills were in 374 

Indonesia and Malaysia), that does not reflect the spatial extent of global suitability for oil palm, 375 

which includes large areas in all tropical regions, including Latin America and Africa26,31. To reduce 376 

concurrent spatial bias in our suitability model outputs, we systematically subsampled the mills to 377 

one mill per 1°-resolution grid-cell (111 km resolution at the Equator; n = 194 mills, 68.0% in 378 

Indonesia and Malaysia)90, and found that this considerably improved model predictive 379 

performance, by reducing the dominance of the climate values at Asian mills in the overall 380 

distribution of climate values at mill locations (Supplementary Fig. 20; Supplementary Information 381 

7). In comparison with models trained on the full mill dataset, models for the subsampled mills had 382 

consistently higher Boyce Index values and spatial cross-validation performance, indicating that they 383 

better predicted current plantations, including in novel spatial regions (see ‘SDM evaluation’ and 384 

Supplementary Information 7). 385 

Climatic predictors of suitability for oil palm 386 

We derived all climatic predictors from WorldClim v.2 global gridded climate data, averaged for 387 

1970-2000, at 5’ resolution77. We initially selected five climatic predictors known to correlate with oil 388 

palm growth and yield31: mean annual temperature (°C), minimum temperature of the coldest 389 

month (Tmin, °C), mean annual precipitation (mm), an annual moisture index, and maximum water 390 

deficit (MWD, mm) (see Supplementary Information 7 for details). Some of these predictors were 391 

inter-correlated (Supplementary Table 8), so we ran models with two uncorrelated predictors, Tmin 392 
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and MWD, which represent the most strongly limiting climatic factors for oil palm growth and 393 

yield31. 394 

We did not include soil parameters as predictors of suitability for oil palm, because oil palm can be 395 

cultivated on the majority of tropical soil types, without substantial impacts on yield under 396 

appropriate management31. Previous estimates suggest that few locations in the tropics have 397 

unsuitable soil for oil palm cultivation26. However, we removed areas of mangrove from our 398 

predictions of climatically-suitable locations for planting (see below), to remove areas of saline soils, 399 

which limit oil palm yield31, as well as to remove unsuitable saline flooded areas. We discuss the 400 

limitations of our approach in Supplementary Information 6. 401 

Running species distribution models (SDMs) 402 

SDMs have previously been used to model climatic suitability for crops at large spatial scales91–93, 403 

and Maxent outputs have successfully predicted yield when trained on high-yield locations93, such as 404 

the majority of oil palm mill locations (industrial mills supplying global traders)25. We ran SDMs of oil 405 

palm suitability using the R package biomod294, to provide up-to-date models of climatic suitability 406 

for oil palm. We used the SDM Maxent, because it is robust to incomplete datasets95–97, and our oil 407 

palm mill locations do not represent all locations suitable for oil palm cultivation across the tropics. 408 

When running Maxent, we permitted linear and quadratic relationships with the climate variables31 409 

but otherwise maintained default settings. We projected all models across the entire tropics for the 410 

current climate. 411 

Maxent requires randomly-sampled ‘background’ climate data to contrast with the distribution of 412 

climatic predictors at ‘presence’ (oil palm mill) locations. We randomly sampled eight sets of 50,000 413 

background points (within seven buffer distances from the presence data, spanning 200-2000 km, 414 

and additionally with no buffer), weighted by latitude to account for variation in cell area in the 415 

unprojected climate grids, to find the optimal buffer size for model performance98. We therefore 416 

calibrated models with 16 combinations of presence and background locations (two presence 417 
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datasets, full and subsampled oil palm mills; and eight background datasets). We selected the 418 

optimum combination of presence and background datasets based on model evaluation metrics98, 419 

and found that an intermediate background buffer size was optimal (Supplementary Information 7). 420 

We classified the continuous suitability projections (0-1) of the SDM outputs into suitable (which we 421 

further classified; see below) and unsuitable locations, using Minimal Predicted Area thresholding 422 

based on projected values at the oil palm mill locations99,100 (Supplementary Information 7). 423 

SDM evaluation 424 

To examine the robustness of SDMs to spatial prediction, we conducted leave-one-out cross-425 

validation for each model (continuous suitability output) on three spatially distinct portions of the 426 

data (Americas, Africa and Asia/Australasia), which we evaluated using the moving window 427 

Continuous Boyce Index99. We also used the moving window Continuous Boyce Index99 to examine 428 

full model accuracy (accuracy of models trained with all of the data). We tested the continuous 429 

suitability projections of these full models on a largely-independent dataset of oil palm plantations 430 

(a map of global tree plantations compiled from mixed sources, largely from remote sensing, with a 431 

small subset of oil palm plantations verified against the oil palm mills dataset used to train the 432 

models)78, with 50,000 randomly selected testing background points. We selected the single best 433 

model based on these full-model and cross-validation scores, alongside relative variable importance, 434 

for use in our analyses (Supplementary Information 7). Our best model included spatially-435 

subsampled oil palm mills, and background points in a 500km-buffer, and was selected primarily for 436 

its high transferability to novel locations, suggesting robustness to spatial extrapolation. 437 

To examine the sensitivity of our model outputs to the threshold determining oil palm suitability, we 438 

compared the performance of the best model classified into suitable and unsuitable locations (from 439 

the continuous suitability output of values 0-1) at three different Minimal Predicted Area thresholds 440 

(Supplementary Information 7). To compare these classifications, we tested our projections for each 441 

classification on the largely-independent dataset of oil palm plantations78 (see above) using the True 442 
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Skill Statistic to measure predictive accuracy101, and we compared our projections with an agro-443 

ecological model of oil palm suitability26. We found that the mid-range suitability threshold of the 444 

three thresholds we tested (Minimal Predicted Area99) gave high values for both of the evaluation 445 

metrics (Supplementary Fig. 24), so we present this classification in the results in the Main Article. 446 

Our final model of suitability for rainfed oil palm was therefore similar to the agro-ecological 447 

suitability model26 (Extended Data Fig. 2), as well as to a recent low-resolution climatic envelope 448 

model21. As a sensitivity test to our reliance on our new model of oil palm suitability throughout the 449 

Results, we also conducted all key analyses for the agro-ecological suitability model26, and for a 450 

conservative, ‘high-confidence’ model of areas of overlapping suitability between our final rainfed 451 

model and the agro-ecological model. We found that our conclusions are robust to the use of these 452 

alternative rainfed suitability models (Supplementary Information 3-5). 453 

Classifying expected oil palm yield 454 

We classified the continuous suitability outputs of the suitable locations from the best SDM (i.e. 455 

excluding unsuitable areas) into three suitability classes for oil palm cultivation (low, medium, high), 456 

using Minimal Predicted Area thresholding (as we used for classifying suitable and unsuitable areas). 457 

Each suitability class contained one-third of the oil palm mills used to train the model, excluding any 458 

that fell below the suitability threshold (Supplementary Information 7). We obtained expected yield 459 

values for these classes from global maps of oil palm yield in 2010102, by comparing SDM outputs 460 

with all grid-cells where actual yield >0 tha-1 (Supplementary Information 7). For comparison with 461 

yield in current industrial plantations, we also extracted 2010 yield values102 at the locations of oil 462 

palm mills used as ‘presence’ locations in the SDMs. 463 

Modelling climatically-suitable locations under irrigation 464 

To simulate locations suitable for oil palm under irrigation, we projected our best SDM to an altered 465 

climate, for which we simulated MWD under irrigation (Tmin was unaltered). To calculate potentially 466 

‘irrigated’ MWD, we assumed that months with sufficient surplus available water to remove a critical 467 
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annual MWD were ‘irrigated’. We calculated monthly surplus available water as the difference 468 

between monthly gross water demand (m3, incorporating demand from households, industry, 469 

livestock and irrigation) and total renewable supply (m3, incorporating unused desalinated water, 470 

renewable groundwater, and runoff from rivers, reservoirs and lakes), averaged for each month for 471 

2005-200979,103, and we converted this to mm by dividing by grid-cell area (m2). To simulate 472 

irrigation, we assumed a critical annual cumulative water deficit (at which oil palm begins to suffer 473 

water stress) of 100 mm, corresponding to empirical values of critical deficit31, driving a ~10% 474 

decrease in yield104, and to average monthly evapotranspiration for oil palm105. For locations 475 

requiring irrigation (i.e. with annual MWD >100 mm), we supplemented rainfall with surplus 476 

available water in the months with a moisture deficit (i.e. with rainfall < potential 477 

evapotranspiration, calculated according to the Hargreaves Equation106,107). Where monthly surplus 478 

available water was sufficient to reduce the annual MWD to <100 mm, we assumed that irrigation 479 

would be applied, because it could successfully remove the critical water deficit. Where monthly 480 

surplus available water was insufficient to reduce MWD to <100 mm, we used MWD based on 481 

rainfall alone. We tested the sensitivity of our estimates of suitability for irrigated oil palm 482 

cultivation to monthly surplus available water, and found that using 100% of surplus available water 483 

increases the area of non-cultivated land suitable for irrigated-only oil palm expansion by ~50% 484 

compared to using 50% of surplus available water (Supplementary Information 4). Our maps of 485 

suitability for irrigated oil palm contain some suitable zones of ~1° resolution, because Sutanudjaja 486 

et al. in 79 account for local water redistribution by pooling renewable water supply from desalinated 487 

and surface water across ~1° zones79 (Extended Data Figs. 3, 4). 488 

Mapping non-cultivated land 489 

We determined terrestrial non-cultivated land using Copernicus 2015 high-accuracy global land-490 

cover data80,81, first excluding all permanent water bodies80,81 and mangrove habitats20. We used the 491 

global land-cover data80,81 to exclude locations of cropland and urban areas, and a comprehensive 492 

database of global tree plantations (including oil palm plantations: Spatial Database of Planted 493 
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Trees)78 to exclude locations of existing tree plantations. Our areas of non-cultivated land therefore 494 

include all primary and secondary vegetation (including undisturbed natural habitat, degraded areas 495 

and intensively-managed pasture): habitats potentially available for conversion to oil palm. 496 

Nevertheless, we acknowledge the differing biodiversity values of these habitats (intact, disturbed 497 

and intensively-managed pasture), which we address in the Discussion and Supplementary 498 

Information 6, and in our sensitivity analyses including intensively-managed (improved) pasture (see 499 

below). 500 

Mapping protected areas 501 

We used the Protected Planet World Database on Protected Areas108 to identify areas that are 502 

protected from conversion to agriculture. We included all terrestrial protected areas of IUCN classes 503 

I and II, which are most strictly protected (by law) and therefore least likely to undergo 504 

conversion109. For a subset of protected areas without a shapefile, we estimated protected area 505 

coverage as circles centred on point coordinates, corresponding to the reported protected area size 506 

(km2)110. We considered a protected area to occupy a 5’ grid-cell if its polygon covered the cell 507 

centre. 508 

Determining protection under ZDCs 509 

During impact assessments for development of zero-deforestation oil palm plantations, HCSA 510 

guidance designates locations for conservation based on their vegetation structure17. The vegetation 511 

stratification is designed to vary by location and habitat type, but has only been developed for moist 512 

forest in Southeast Asia to date17. We therefore applied the stratification thresholds generically 513 

across the tropics, regardless of continent or biome, although in practise they could vary during local 514 

application. Under the HCSA, all locations with vegetation dominated by trees >30cm diameter at 515 

breast height, with >50% canopy closure and aboveground carbon of approximately >75 Mg ha-1 516 

(‘low density forest’) are designated for conservation. All locations dominated by trees 10-30cm 517 

diameter at breast height, with 30-40% canopy closure and aboveground carbon of ~35-75 Mg ha-1 518 
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(‘young regenerating forest’) are considered potential areas for conservation17. If these ‘young 519 

regenerating forest’ areas support additional conservation values identified in the ‘High 520 

Conservation Value’ assessment (conducted in tandem with the HCSA), or represent a significant 521 

habitat area in the landscape, they are designated for protection17. We therefore computed two 522 

scenarios to represent likely habitat protection under this scheme: in which all locations 523 

corresponding to (i) ‘low density forest’ are protected (weaker habitat protection), and (ii) all ‘young 524 

regenerating forest’ are additionally protected (greater habitat protection). We mapped these 525 

scenarios using global datasets of canopy closure84 and aboveground biomass (‘GlobBiomass’)82,83, 526 

assuming that 50% of biomass is carbon111. For both scenarios, we included all locations with peat 527 

soils as protected from cultivation85. We found that the two HCSA scenarios for habitat protection 528 

give similar patterns of potential availability for conversion across biomes and continents; therefore, 529 

we present the ‘greater habitat protection’ scenario (protection of ‘young regenerating forest’, ≥35 530 

Mg ha-1 aboveground carbon and ≥30% canopy closure) in the Main Article, and ‘weaker habitat 531 

protection’ (‘young regenerating forest’, ≥75 Mg ha-1 aboveground carbon and ≥50% canopy closure) 532 

in Supplementary Information 2-5. 533 

In addition to HCSA assessments, HCVs are also identified for protection prior to oil palm 534 

development17. However, we did not attempt to map these additional conservation values (e.g. 535 

presence of rare species in local habitat patch, conservation of socio-cultural values) because they 536 

cannot be captured reliably through global mapping, and require local case-by-case identification, 537 

based on on-the-ground data and stakeholder consultations. Furthermore, many of the national 538 

interpretations for HCVs were originally developed for forestry, and have not subsequently been 539 

developed for habitats other than tropical moist forest (Supplementary Information 1). Tropical 540 

grassy biomes are fundamentally different in biota and functioning to forests12 and therefore require 541 

separate criteria to identify areas with HCVs, so the extent of habitat protection for these biomes 542 

varies depending on the approach taken by the assessor(s) (Supplementary Information 1). We 543 

discuss the limitations of this approach in Supplementary Information 6. 544 
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Biome and biogeographic realm classification 545 

We based our biome classification on the most recent map of Terrestrial Ecoregions of the World20. 546 

We reclassified the biome assigned to 25 of 391 non-mangrove ecoregions, using ecological 547 

literature, expert knowledge of these habitats and the classification used in Murphy et al. 201644, 548 

mostly ensuring that grassland, savanna, shrubland and woodland ecoregions with a continuous 549 

grassy understorey were identified as ‘tropical grassy biome’8 (Extended Data Table 1). For our 550 

analyses, we then grouped ‘tropical & subtropical moist broadleaf forest’ ecoregions as tropical 551 

moist forest; ‘tropical & subtropical dry broadleaf forest’ ecoregions as tropical dry forest; 552 

ecoregions classified as ‘tropical and subtropical grasslands, savannas and shrublands’, ‘montane 553 

grasslands and shrublands’ and ‘flooded grasslands and savannahs’ as tropical grassy biomes; and 554 

ecoregions classified as ‘deserts and xeric shrublands’ and ‘tropical and subtropical coniferous 555 

forests’ as ‘other’ biomes. 556 

We also used the map of global ecoregions20 to classify locations by biogeographic realm. Because 557 

our region of interest is the tropics, we reclassified the realm of eight ecoregions in North Africa and 558 

the Arabian Peninsula, which had small suitable areas (median 161 km2 under suitability threshold 559 

Minimal Predicted Area100) to ‘Afrotropic’ from ‘Palearctic’. 560 

Impacts of oil palm expansion on vertebrates 561 

Following references112–114, we estimated potential vertebrate richness loss from oil palm expansion 562 

as the difference between richness (total number of species occurring in a grid-cell) of natural 563 

habitat, and richness of oil palm plantations (i.e. species that can persist in plantations). To estimate 564 

species’ occurrence, we refined global range maps for three well-documented taxa (mammals, birds 565 

and amphibians)86,87 according to Terrestrial Ecoregions of the World biome classification20, and 566 

locations of cropland, urban areas80,81 and tree plantations78. We considered a species as ‘present’ in 567 

a given grid-cell if its original range map contained the grid-cell centre, and if the biome or 568 

transformed habitat type (cropland, urban, tree plantation) of the grid-cell was listed as suitable for 569 
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the species, following matching in Supplementary Table 7. Similarly, we considered that a species 570 

remained ‘present’ in a grid-cell following conversion to oil palm if its list of suitable habitats 571 

included ‘plantation’ (see Supplementary Fig. 15 for species richness maps). We also quantified 572 

threatened species’ (vulnerable, endangered or critically endangered in the IUCN Red List) potential 573 

range reduction from conversion to oil palm, by examining the overlap of locations suitable for oil 574 

palm expansion and threatened species’ refined range maps. 575 

Sensitivity analyses including intensively-managed pasture 576 

We were unable to account for locations of intensively-managed (improved) pasture globally, 577 

because there are no global datasets accurately distinguishing this land-use type from low-intensity 578 

natural or anthropogenic grazing8. We therefore used two recent, national landcover maps that 579 

distinguish intensively-managed pasture from natural grassy biome to conduct sensitivity analyses of 580 

our key results to the inclusion of pasture. We re-ran our main analyses for Colombia and tropical 581 

Brazil (i.e. North of -23.5°), incorporating intensively-managed pasture from IDEAM 2018 landcover 582 

for Colombia115, and MapBiomas 2020 landcover for Brazil116,117. These datasets were developed by 583 

machine learning classification of satellite images with manual verification, incorporating local land-584 

use statistics, biome type and expert knowledge (see Supplementary Information 6 for a discussion 585 

of their limitations). For both Brazil and Colombia, greater areas of forested biomes that we 586 

estimated as suitable for oil palm expansion had already been converted to pasture, in comparison 587 

to grassy biomes, suggesting that our conclusion that high-biodiversity habitats in grassy biomes are 588 

particularly vulnerable to oil palm expansion under ZDCs is robust (Supplementary Information 2). 589 

Our estimates of vertebrate richness loss from zero-deforestation oil palm expansion also appear 590 

robust, assuming that the areas already converted to intensively-managed pasture are unavailable 591 

for expansion. However, if pasture is available for expansion, we will have overestimated potential 592 

vertebrate richness loss in substantial areas of intensively-managed pasture (e.g. moist and dry 593 

forest in Brazil and Colombia: Supplementary Fig. 3). 594 
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Tables 617 

Table 1. Areas of individual ecoregions suitable for oil palm expansion under ZDCs. Data are provided for the 618 

20 ecoregions with the largest area suitable, for (a) rainfed, and (b) both rainfed and irrigated cultivation. 619 

Ecoregion names in bold are present in both (a) and (b), i.e. rank in the top 20 ecoregions with the largest 620 

suitable area for both rainfed-only (a) and rainfed and/or irrigated expansion (b) under ZDCs. Realms are 621 

coded as N: Neotropic; A: Afrotropic. 622 

 

 

(a) Rainfed cultivation (b) Irrigated and rainfed cultivation 

Ecoregion Biome Realm 

Suitable area for 

expansion under ZDCs: 

1000 km2  

(% of total non-

cultivated land) 

Ecoregion Biome Realm 

Suitable area for 

expansion under ZDCs: 

1000 km2  

(% of total non-

cultivated land) 

1 Llanos Grassy N 
274 

(79.7%) 
Llanos Grassy N 

279 

(81.1%) 

2 
Western Congolian 

forest-savanna 
Grassy A 

109 

(29.3%) 
Cerrado Grassy N 

245 

(16.1%) 

3 Guinean forest-savanna Grassy A 
93.7 

(18.0%) 
Guinean forest-savanna Grassy A 

132 

(25.4%) 

4 Beni savanna Grassy N 
77.1 

(70.3%) 

Western Congolian forest-

savanna 
Grassy A 

131 

(35.2%) 

5 
Southern Congolian 

forest-savanna 
Grassy A 

59.6 

(10.6%) 

Southern Congolian forest-

savanna 
Grassy A 

112 

(19.8%) 

6 Guianan savanna Grassy N 
56.7 

(53.2%) 
Caatinga 

Dry 

forest 
N 

82.3 

(11.6%) 

7 
Magdalena-Urabá moist 

forests 

Moist 

forest 
N 

45.7 

(64.3%) 
Beni savanna Grassy N 

77.7 

(70.9%) 

8 Eastern Guinean forests 
Moist 

forest 
A 

44.2 

(24.7%) 

Mato Grosso tropical dry 

forests 

Dry 

forest 
N 

76.2 

(20.2%) 

9 
Tocantins/Pindaré moist 

forests 

Moist 

forest 
N 

41.3 

(22.5%) 

Northern Congolian Forest-

Savanna 
Grassy A 

72.0 

(10.3%) 

10 
Xingu-Tocantins- 

Araguaia moist forests 

Moist 

forest 
N 

40.9 

(14.9%) 
Guianan savanna Grassy N 

56.7 

(53.2%) 

11 
Maranhão Babaçu 

forests 

Dry 

forest 
N 

36.2 

26.3%) 
Sudd flooded grasslands Grassy A 

52.0 

(27.5%) 

12 
Apure-Villavicencio dry 

forests 

Dry 

forest 
N 

35.9 

(64.0%) 

Madeira-Tapajós moist 

forests 

Moist 

forest 
N 

50.6 

(7.1%) 

13 
Madeira-Tapajós moist 

forests 

Moist 

forest 
N 

31.5 

(4.4%) 

Xingu-Tocantins-Araguaia 

moist forests 

Moist 

forest 
N 

49.9 

(18.2%) 

14 Bahia coastal forests 
Moist 

forest 
N 

30.4 

(30.9%) 
Sahelian Acacia savanna Grassy A 

48.5 

(1.4%) 

15 
Mato Grosso tropical dry 

forests 

Dry 

forest 
N 

27.6 

(7.3%) 

Magdalena-Urabá moist 

forests 

Moist 

forest 
N 

45.7 

(64.3%) 

16 
Northeast Congolian 

lowland forests 

Moist 

forest 
A 

26.6 

(5.2%) 
Eastern Guinean forests 

Moist 

forest 
A 

44.7 

(25.0%) 

17 
Western Guinean lowland 

forests 

Moist 

forest 
A 

24.9 

(12.3%) 
East Sudanian savanna Grassy A 

43.8 

(4.9%) 

18 Hispaniolan moist forests 
Moist 

forest 
N 

22.6 

(53.5%) 

Tocantins/Pindaré moist 

forests 

Moist 

forest 
N 

43.4 

(23.7%) 

19 Nigerian lowland forests 
Moist 

forest 
A 

19.6 

(31.4%) 
Maranhão Babaçu forests 

Dry 

forest 
N 

42.4 

(30.7%) 
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20 
Northern Swahili coastal 

forests 

Moist 

forest 
A 

18.9 

(14.6%) 

Victoria Basin forest-

savanna 
Grassy A 

40.5 

(54.4%) 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 
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 635 

 636 
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Box 639 

 640 

 641 

Box 1: Recommendations to improve the HCV-HCSA guidance for identifying ‘High Conservation Value’ biodiversity 

in tropical grassy and dry forest biomes 

1. Issue: Tropical grassy and dry forest biomes are frequently misidentified as ‘degraded’, low-biodiversity habitat, 

because of superficial similarity of vegetation structure to degraded moist forest (e.g. lower stature trees and/or 

grassy understorey with shrubs and small trees) and a lack of understanding that ancient grassy biomes are not 

recently derived habitat12,13,118. However, some tropical dry forests are so fragmented that only degraded habitat is 

likely to remain119. Current guidance17,18 does not clearly define these habitats and their intactness. 

Recommendations: Comprehensive definitions of different habitat types, recognising that certain degraded 

habitats may have unique conservation value. Crucially, guidance should include indicators to distinguish ancient, 

high-biodiversity grassy and dry forest biomes from degraded rainforest and recently-derived grassy biomes, such 

as fire-adapted flora in grassy biomes (with support for the ongoing development of these indicators)13,14,118,120,121. 

Floral biodiversity surveys require expert knowledge and are key in identifying habitat intactness120, so building this 

capacity in all relevant locations is critical.  

2. Issue: Tropical grassy biomes are characterised by frequent disturbance events (e.g. fire, grazing), and can vary 

temporally and spatially in vegetation type and cover, often comprising a mosaic of woody and open 

vegetation12,13. Without acknowledging this variation and ecological dynamism, impact assessments prior to 

plantation development could fail to identify the importance of these habitats (e.g. by omitting disturbance-

dependent plant species from field inventories). 

Recommendations: Biodiversity survey design to reflect disturbance regimes (e.g. by conducting repeat plant 

surveys before and after disturbance events), and landscape-scale factors (e.g. habitat variation, large vertebrate 

migration routes). 

3. Issue: Human livelihoods and ecological functioning of grassy biomes and dry forests are often tightly linked8,12,14, 

so incorporating local community requirements into agricultural development is imperative for conservation of 

these biomes122. Human disturbance in grassy biomes (e.g. burning, grazing) does not always indicate habitat 

degradation, and is often fundamental for ecological functioning8,12,14. In turn, grassy biomes provide livelihoods 

for one fifth of the world’s population (e.g. from grazing, firewood provisioning)12, including many of the world’s 

poorest people123. 

Recommendations: Recognition of potential importance of anthropogenic disturbance for dynamism of grassy 

biomes: requiring identification of disturbance regimes and management which support these, ensuring that 

appropriate fire and grazing of grasslands is permitted, while recognising that some human disturbances can also 

drive biodiversity loss (e.g. over-grazing, use of inorganic fertilizers). This may require extensive discussion with 

local communities12, and thus highlights the urgent need for improved practice of Free, Prior and Informed 

Consent124,125. 
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Figure legends 642 

Figure 1. Climatically-suitable locations for rainfed oil palm expansion under zero-deforestation 643 

commitments (ZDCs), by biome. (a) Neotropics, (b) tropical Africa, (c) tropical Asia and Australasia. Insets: (b) 644 

East coast of Africa and Madagascar, (c) South Pacific. Locations of ‘other’ biome are largely Neotropical ‘xeric 645 

shrublands’ with relatively high rainfall. 646 

 647 

 648 

 649 

Figure 2. Comparison of potential for rainfed, zero-deforestation oil palm expansion among biomes. (a) 650 

Estimated protection of climatically-suitable areas for rainfed oil palm expansion under zero-deforestation 651 

commitments (ZDCs), according to the High Carbon Stock Approach (HCSA). Data are plotted as a percentage 652 

of the total climatically-suitable area of non-cultivated land by biome; this total suitable area is shown in 653 

brackets along the x axis. Locations that would be protected under ZDCs are shown in grey and locations 654 

potentially available for ZDC expansion are shown in colours (see Fig. 1). (b) Potential for loss of remaining 655 

non-cultivated land of individual ecoregions (i.e. percentage of remaining non-cultivated land per ecoregion 656 

that is climatically-suitable for expansion under ZDCs). Boxplot centre lines show the median, lower and upper 657 
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hinges show the first and third quartiles respectively, whiskers extend to the maximum and minimum values 658 

within 1.5*inter-quartile range, and outliers are plotted individually. 659 

 660 

 661 

 662 

Figure 3. Expected annual fresh fruit bunch (FFB) yields in locations climatically-suitable for oil palm 663 

expansion under ZDCs, assuming high-fertiliser input cultivation. (a) Under rainfed cultivation; (b) under 664 

irrigation (assuming up to 100% of surplus available water is used for irrigation). In (b), dark colours show the 665 

expected yield in locations which are also suitable if rainfed, when under irrigation (i.e. the expected yield in 666 

locations shown in (a) when irrigation is applied, if required), and pale colours represent locations only suitable 667 

under irrigation. The difference between the distribution of expected yield values for dark colours in (a) and (b) 668 

thus represents the effect of applying irrigation to the locations suitable for rainfed cultivation. Note 669 

differences in y-axis values for the oil palm suitability classes. See Supplementary Information 4 for sensitivity 670 

analyses of predicted suitability for irrigated oil palm to model suitability thresholds, habitat protection under 671 

ZDCs, and water availability. 672 

 673 
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 674 

 675 

 676 

Figure 4. Potential impacts of rainfed, zero-deforestation oil palm expansion on vertebrates. (a) Vertebrate 677 

species richness change (mammals, birds and amphibians; negative values denote number of species lost), 678 

from conversion of natural habitat to oil palm, by expected protection under ZDCs, within each biome and 679 

continent. Boxplots show potential richness change of non-cultivated land climatically-suitable for oil palm 680 

expansion, where each datapoint is a 10-km grid-cell (sample sizes are given to the lower right of each 681 

boxplot). Richness loss in ‘Other’ biomes is negligible and shown in Supplementary Information 5. (b) Potential 682 

percentage range reduction of threatened vertebrates, from oil palm expansion under ZDCs (overlap between 683 

ranges of threatened vertebrates and locations climatically-suitable for expansion), for all species which could 684 

undergo range loss from expansion (i.e. species that have some range overlap with potential expansion 685 

locations and cannot persist in oil palm). Numbers of species overlapping with potential expansion locations 686 
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are given in x axis labels; note that a species can occur in more than one biome. For both (a) and (b), boxplot 687 

centre lines show the median, lower and upper hinges show the first and third quartiles respectively, whiskers 688 

extend to the maximum and minimum values within 1.5*inter-quartile range, and outliers are plotted 689 

individually. 690 

 691 

 692 
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