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A robust COVID‑19 mortality 
prediction calculator based 
on Lymphocyte count, Urea, 
C‑Reactive Protein, Age and Sex 
(LUCAS) with chest X‑rays
Surajit Ray1, Abhirup Banerjee2, Andrew Swift3, Joseph W. Fanstone4, Michail Mamalakis5, 
Bart Vorselaars6, Craig Wilkie1, Joby Cole3, Louise S. Mackenzie7,8* & Simonne Weeks7,8

There have been numerous risk tools developed to enable triaging of SARS‑CoV‑2 positive patients 
with diverse levels of complexity. Here we presented a simplified risk‑tool based on minimal 
parameters and chest X‑ray (CXR) image data that predicts the survival of adult SARS‑CoV‑2 positive 
patients at hospital admission. We analysed the NCCID database of patient blood variables and CXR 
images from 19 hospitals across the UK using multivariable logistic regression. The initial dataset was 
non‑randomly split between development and internal validation dataset with 1434 and 310 SARS‑
CoV‑2 positive patients, respectively. External validation of the final model was conducted on 741 
Accident and Emergency (A&E) admissions with suspected SARS‑CoV‑2 infection from a separate 
NHS Trust. The LUCAS mortality score included five strongest predictors (Lymphocyte count, Urea, 
C‑reactive protein, Age, Sex), which are available at any point of care with rapid turnaround of results. 
Our simple multivariable logistic model showed high discrimination for fatal outcome with the area 
under the receiving operating characteristics curve (AUC‑ROC) in development cohort 0.765 (95% 
confidence interval (CI): 0.738–0.790), in internal validation cohort 0.744 (CI: 0.673–0.808), and in 
external validation cohort 0.752 (CI: 0.713–0.787). The discriminatory power of LUCAS increased 
slightly when including the CXR image data. LUCAS can be used to obtain valid predictions of 
mortality in patients within 60 days of SARS‑CoV‑2 RT‑PCR results into low, moderate, high, or very 
high risk of fatality.

The UK National Health Service (NHS) experienced unprecedented pressure due to the recurrent surges of 
coronavirus disease 2019 (COVID-19) cases caused by the SARS-CoV-2 virus. To date, more than two million 
confirmed cases in the UK have forced healthcare professionals to face complex decisions on how to effectively 
triage patients on admission who may need acute care. Admissions to hospital have increased from 6894 to 8431 
in the seven days ending 8th March 2022 in the UK where routine lateral flow testing by the general public is 
no longer required and are ‘incidentally diagnosed’1. Conditions remain strained, and there is a need to develop 
risk tools to enable accurate and rapid triaging of SARS-CoV-2 positive patients. While prognostic tools are 
available, there is an ongoing need to develop tools that enable healthcare professionals to prevent unnecessary 
hospital admission and also work in combination with other predictive models commonly used in practice. Any 
new model must support the healthcare professional’s experiential knowledge and clinical  reasoning2 in both 
patient care management and allocation of limited healthcare resources.
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In hospitals, the main method used to detect COVID-19 is the reverse transcription-polymerase chain reac-
tion (RT-PCR), and the severity of the infection determined by blood markers and chest radiological imaging 
such as X-ray and computed tomography (CT)3–5 scans. While CT is a sensitive tool, it is not used for periodic 
monitoring of patients. The use of x-ray is widespread and is used routinely to determine severity of lung injury. 
Its use has been included in numerous prognostic  tools6, and in combination with other blood markers such 
as D-dimer, white blood count, and  neutrophils7. However, some biomarkers such as D-dimer are not being 
routinely measured during hospital admission and triage.

Predictive models such as the National Early Warning Score 2 (NEWS2) is widely used in practice to observe 
and identify deteriorating  patients8,9. Although favourable amongst healthcare  professionals10, this predictive tool 
has caused increased false trigger rates for SARS-CoV-2 positive  patients11,12. Another familiar tool in practice in 
the UK is the Acute Physiology and Chronic Health Evaluation II (APACHE II), which is a validated intensive 
care unit (ICU) scoring tool used to estimate ICU mortality. However, it has underestimated the mortality risk 
in SARS-CoV-2 positive  patients13. Several published models have aimed to meet the clinician’s need to stratify 
high-risk SARS-CoV-2 positive patients; but they are yet to be widely clinically implemented or had poor clini-
cian  feedback14.

There are varying reports of changes in the full blood count, with it being reported that 80% of COVID-19 
patients with severe symptoms and 20% of mild cases presented with  lymphopenia15, which indicates that a low 
lymphocyte count is not an accurate marker taken  alone16,17. Many studies have suggested the use of Interleu-
kin 6 (IL6)16, Interleukin 10 (IL10)16,  ferritin16, and D-Dimer7,17, since they are good discriminators of disease 
prognosis; but they are not routinely measured upon admission to hospital.

Here, we aim to avoid ‘clinical resistance’ by developing and validating a new simple and explainable prognos-
tic tool that extends the widely used NEWS2  model18. This model combines clinical data, routine laboratory tests 
and chest x-ray (CXR) data to improve risk stratification and clinical intervention for SARS-CoV-2 infection. 
Studies have shown CXR results add value in the triage of patients who are SARS-CoV-2  positive19; however, 
the incremental prognostic value of  CXR6 in addition to clinical data and routine laboratory tests remains to be 
consolidated in practice.

We used well-defined predictors and outcomes to limit model  overfitting20. The model’s development and 
reporting adhered to the TRIPOD (transparent reporting of a multivariable prediction model for individual pre-
diction or diagnosis)  guidelines21,22 to publish a simple, user-friendly scoring system for adult patients admitted 
to hospital with SARS-CoV-2 infection. This resulted in improved integration of the best evidence into clinical 
care pathways that will assist clinicians in risk, patient, and resource management. The aim of this study was to 
develop a simple objective tool for risk stratification in SARS-CoV-2 infection by integrating results from rapid 
and routine clinical, laboratory and CXR image data that would easily support established triage practice in the 
hospital setting.

Methods
Sources of data. A prospective cohort study was conducted with the National COVID-19 Chest Imaging 
Database (NCCID)23 that collated clinical data from secondary and tertiary NHS Trusts across the UK with the 
aim to support SARS-CoV-2 care pathways (Supplementary Table 1). NHS staff submitted data for patients sus-
pected of SARS-CoV-2 with a RT-PCR test that was positive or negative. The centralised data warehouse stored 
de-identified clinical data for those admitted to hospital between 23rd January 2020 and 7th December 2020, 
which was used for both the development and validation of the mortality risk tool.

To evaluate the tool’s generalised performance, a second dataset was used for external validation. The data 
extracted from the Laboratory Information Management System (LIMS) came from a large NHS Foundation 
Trust hospital in north-east England UK, which had not participated in the NCCID initiative. Patients who were 
admitted with suspected SARS-CoV-2 infection at the Accident and Emergency (A&E) Department between 
1st March 2020 and 21st August 2020 were included. This population was representative of the adult general 
population and therefore patients aged 16 years and younger were excluded, as the laboratory data thresholds 
vary compared to adults. The datasets are retrospective and therefore consent is not possible.

Participants. The three datasets (‘development’, ‘internal’ and ‘external validation’) consisted of data for 
adult patients with positive RT-PCR results for the SARS-CoV-2 virus. To mitigate the issues with the lower RT-
PCR sensitivity and accuracy during the initial stages of the pandemic, NCCID provided an overall SARS-CoV-2 
status that was derived from cumulative RT-PCR tests. This approach was also applied to identify SARS-CoV-2 
positive patients in the external validation dataset.

To evaluate the tool’s predictive performance, the NCCID dataset was non-randomly split with the admissions 
before 30th April 2020 making up the development cohort (n = 1434) and admissions on or after 1st May 2020 
making up the internal validation cohort (n = 310) (Fig. 1). The external validation cohort (n = 741) was created 
by identifying fatal outcomes within 60 days of A&E admission of all patients who were confirmed positive for 
SARS-CoV-2 infection by RT-PCR. This approach was rationalised since patients were more comparable on 
latent variables such as co-morbid illnesses that were not explicitly captured during the LIMS data extraction 
of laboratory results. In addition, the filtering on admitted patients increased the density of laboratory results 
across all the candidate predictors, which made the model less reliant on imputation.

Outcome. The primary outcome of interest was in-hospital mortality within 60-days of a positive SARS-
CoV-2 RT-PCR test. To identify this outcome, the date of death was followed up and entered by hospital staff as 
part of the NCCID initiative.
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Predictors. The NCCID dataset collected 38 clinical data points for each patient that served as candidate 
predictors. They were categorised into demographics, risk factors, past medical history (PMH), medications, 
clinical observations, chest imaging data, and laboratory parameters measured on admission. Chest X-ray (CXR) 
reports from the NCCID model development dataset and the external dataset were dichotomised as normal ver-
sus abnormal. All laboratory tests were measured before SARS-CoV-2 RT-PCR test and mortality date, which 
ensured these potential predictors were blinded to the outcome. The SARS-CoV-2 swab and RT-PCR results 
established the final COVID-19 status. In the event of deterioration, data points such as the NEWS2 score, Acute 
Physiology And Chronic Health Evaluation (APACHE) score, Intensive Therapy Unit (ITU) admission, intu-
bation and mortality date were also recorded. Since the focus of the study was to identify predictors that were 
available at the point of admission, the ITU admission and intubation data were excluded in the final analysis.

From this extensive list, only the demographics, clinical observations, and laboratory parameters recorded at 
the time of admission for SARS-CoV-2 positive patients were included in the analysis as key predictors. Previous 
medical history, smoking status and current pharmaceutical interventions were not included in the analysis. This 
rationale was based on consultations with biomedical scientists and clinicians working in A&E departments to 
determine which rapid and routine laboratory tests would be clinically relevant candidate predictors, as well 
as previously published literature on prognostic factors associated with SARS-CoV-2 infection for the model 
 development24.

To account for the risk of spurious selection or exclusion of important predictors in the model development, 
a minimum sample size of 380 was determined based on 10 outcome events per variable. Based on previous 
studies, a minimum sample size of 100 mortality events and 100 non-mortality events were required for external 
 validation25.

Statistical analysis. Reliability of data was ensured by excluding patients from the development and inter-
nal validation datasets if information was missing on key characteristics, such as RT-PCR SARS-CoV-2 positive 
results at admission, and mortality dates outside the 60-day prediction interval (Fig. 2). Predictors with more 
than 40% missing values were also excluded from the modelling process (Supplementary Fig. 1). Missing data 
from the remaining predictors were handled using Multiple Imputation by Chained Equations (MICE), and ten 
different imputed datasets were combined using the Rubin  rule26. Continuous predictors such as the laboratory 
tests and age were retained as continuous variables and not converted into categorical predictors using thresh-
olds.

An initial multivariable logistic regression (MLR) model started with 13 predictors with less than 40% miss-
ing values (Lymphocyte, Urea, CRP, Age, Sex, White Cell Count (WCC), Creatinine, Platelets, Diastolic BP 

Figure 1.  Patient flowchart with inclusion and exclusion criteria that established the development dataset as 
well as the internal and external validation datasets; n, number of patients in dataset.
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(Blood Pressure), Systolic BP, Temperature, Heart rate,  PaO2). Elastic Net (GLMNET)27, weighted combination 
of Least Absolute Shrinkage and Selection Operator (LASSO), and ridge regression were used to select predic-
tors of importance. The optimal value of the shrinkage estimator for LASSO and the relative weights for LASSO 
and ridge regression were chosen using a ten-fold cross validation using the R-package  caret28. Additionally, the 
performance of the MLR model was compared with the performance of the Random Forest Machine Learning 
 approach29. The variable selection and construction of the Random Forest was performed using ten-fold cross 

Figure 2.  Model development, internal and external validation workflow. AUC-ROC, area under the receiver 
operating characteristic curve; GLMNET, Lasso and Elastic-Net Regularised Generalised Linear Models; MLR, 
multivariable logistic regression; LUCAS, model using Lymphocyte, Urea, CRP, Age, Sex; CXR, Chest X-ray; 
NEWS2, National Early Warning Score; n, the number of predictors.
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validation. In each case, the imbalance in the positive and negative training samples was accommodated using 
the Synthetic Minority Oversampling Technique (SMOTE).

A second separate MLR model took a more pragmatic approach in predictor selection. From the 13 predictors 
of the first MLR model, we used only the blood panel measurements (Lymphocyte, Urea, CRP, WCC, Creatinine, 
Platelets) along with age and sex. In addition, it was assessed whether the inclusion of either NEWS2 or CXR or 
both improved this model’s performance.

Each model’s performance was assessed using Area Under the Receiving Operating Characteristics Curve 
(AUC-ROC) with a 95% confidence interval. The calibration performance of each model was measured as the 
slope of the calibration curve. The internal and external validation of each model were assessed with resampling. 
The predictor selection and entire modelling process were repeated in 1,000 bootstrap samples to estimate the 
realistic predictive measures for future patient cohorts. An AUC-ROC of 0.5 indicated a prediction based on 
random chance, 0.7–0.8 was considered acceptable, above 0.8 demonstrated excellent performance, and a value 
of 1.0 showed a perfect  prediction30. We also evaluated the goodness of fit using the Brier  score31, which is a 
measure to quantify the closeness of the probabilistic predictions to the binary ground-truth class labels. The 
score varies between 0 and 1, with the lower score indicating superior performance. Finally, the accuracy of the 
models was evaluated using the standard cut-off value of 0.5.

The internal validation included the NEWS2 score, which was not available for the external validation data-
set. The statistical package R (3.5.3) was used to perform all statistical analyses and implement the methods 
employed in the model development, validation workflow, and primary model fitting, followed by both internal 
and external validation.

Data protection/Ethics. De-identified and pseudo-anonymised patient data were obtained from datasets, 
and the methods used were approved by the ethics committee as part of the existing Cardiac Magnetic Reso-
nance Imaging (MRI) Database NHS Research Ethics Committee (REC) Integrated Research Application Sys-
tem (IRAS) Ref: 222349 and University of Brighton REC (8011). The need for informed consent was waived by 
the ethics committee due to retrospective nature of the study.

Results
Overall, the NCCID database comprised of 3,818 patients (from 23rd January 2020 to 31st December 2020). The 
number of patients that met the inclusion and missingness criteria were 1434 and 310, for the development and 
internal validation datasets, respectively (Fig. 1). All available data on positive patients were used in the external 
validation dataset, consisting of 242 fatal (mortality) and 499 non-fatal (no mortality) cases. The development 
dataset initially included 38 predictors (continuous and categorical), which was followed by the removal of 
variables with ≥ 40% missingness. Summary statistics of median with interquartile range (IQR) for continuous 
variables and proportions for categorical variables were presented and compared to those for the internal valida-
tion and external validation datasets (Table 1).

Model development. From the 38 predictors in the NCCID database, we selected 13 predictor variables 
that were judged to be clinically important and had no more than 40% missing values. These predictors relate to 
demographics, clinical observations and laboratory parameters recorded at the time of admission (Fig. 2). The 
variable importance plot indicates the relative importance of these predictors (Fig. 3); the most important pre-
dictor was sex, then lymphocyte count, urea, followed by age. The GLMNET model selection criteria optimally 
chose 8 predictors based on ten-fold cross validation that resulted in the MLR model having an AUC-ROC of 
0.759 (Table 2). In contrast, the Random Forest model used all 13 predictors, which increased the complexity of 
the prediction and achieved a slightly higher AUC-ROC value of 0.806. Thus, the simplicity and ease of fitting 
our MLR model make it a robust score which can be easily adaptable to new datasets.

The rapid blood test measurements, sex and age were recorded at the time of admission, and they parameter-
ised our model. The relative difference of the laboratory parameters along with age, between patients with fatal 
and non-fatal outcomes, is presented as violin plots in Fig. 4.

Starting with the MLR model with eight predictors, namely lymphocyte, urea, CRP, age, sex, WCC, creatinine, 
platelets, and using GLMNET for variable selection, a final model with 5 predictors was generated achieving 
AUC-ROC of 0.765 (Fig. 5). The predictors, namely Lymphocyte count, Urea, CRP, Age and Sex (LUCAS), were 
used in the final model with optimal accuracy results comparable to the MLR and Random Forest models with 
different numbers and sets of predictors included (Table 2). Sex had the greatest weight (0.22) in the model. The 
predicted probability of 60-day in-hospital mortality can be measured by the following expression:

In the Sex category, values of 0 and 1 were used for Female and Male, respectively.
From our development cohort, the LUCAS model can accurately predict 93% of the true fatal outcomes and 

33% of the true non-fatal outcomes. The confusion matrices for all three prediction models are presented in 
Supplementary Fig. 2 (with bootstrapping over 10 repetitions). Each entry in the confusion matrix represents 
the percentual average cell counts across resamples. Calibration measures are similar in all three models, with 
LUCAS model demonstrating the best calibration performance (Supplementary Fig. 3 and Table 2).

The first step taken to stratify the outcomes from each predictor involved effect plots along with the estimated 
linear predictor (linear combination of the predictors with the estimated coefficients of MLR) (Fig. 5). Each 

PMortality = 1 −
1

1 + e−5.54+Age∗0.05+Sex∗0.22+Urea∗0.07+CRP∗0.0037−Lymphocyte∗0.06
.
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Characteristics
Development
(n = 1434)

Internal validation
(n = 310)

External validation
(n = 741)

Data collection dates 23/01/2020–30/04/2020 01/05/2020–07/12/2020 01/03/2020–21/08/2020

Study design Prospective cohort Retrospective cohort

Setting Secondary care hospital admissions from 19 sites across the UK
Secondary care hospital A&E admissions from 
one UK site

Inclusion criteria
All adult patients with a positive SARS-CoV-2 status (derived from cumulative RT-PCR test results) and data at the point of 
hospital admission

Outcome In-hospital mortality within 60 days of positive RT-PCR test

Mortality n (%) 466 (33) 58 (18) 242 (33)

Demographics

Ethnicity: White British, Irish or any other back-
ground n (%)

498 (35) 90 (29) 599 (81)

Ethnicity: Mixed white and Caribbean, Asian or 
any other background n (%)

6 (0.4) 0 (0) 8 (1)

Ethnicity: Asian or Asian British background n 
(%) 

84 (6) 10 (3) 35 (5)

Ethnicity: Black or Black British background n (%) 78 (5) 2 (1) 45 (6)

Ethnicity: any other ethnicity n (%) 99 (7) 4 (1) 14 (2)

Ethnicity not stated or reported n (%) 669 (47) 204 (66) 40 (5)

Median age (IQR), [years] 73 (50) 74 (44) 76 (46)

Men n (%) 902 (63) 175 (57) 422 (57)

Median clinical data on admission

Duration of symptoms (IQR) [days] 5 (7) 3 (6) –

Respiratory rate (IQR) [breaths/min] 21 (7) 20 (6) –

Heart rate (IQR) [beats/min] 90 (25.0) 89 (26.2) –

PaO2 (IQR) [% room air] 93 (84.3)a 95 (6) –

FiO2 (IQR) [oxygen flow rate if on  O2] 21 (26) 4 (20.79) –

NEWS2 score (IQR) 4 (4)a 3 (5.0)a –

Diastolic BP (IQR) [mmHg] 74 (18.0) 74 (17.5) –

Systolic BP (IQR) [mmHg] 130 (32.0) 131 (35.0) –

Temperature (IQR)  [oC] 40 (15.0) 38 (14.0) –

Median laboratory data on admission

WCC (IQR) [×  10–9/L] 7.2 (5.1) 8.0 (5.4) 8.1 (5.8)

Lymphocytes (IQR) [×  10–9/L] 0.9 (0.64) 1(0.74) 0.9 (0.8)

Platelets (IQR) [×  10–9/L] 212 (125.0) 229 (134.2) 220 (121.0)

D-Dimer (IQR) [µg/L] – – 1118 (1585)a

Fibrinogen (IQR) [g/L] – – 5.6 (2.1)

CRP (IQR) (mg/L) 85 (121.5) 46 (98.2) 62 (101.0)

Ferritin (IQR)b 541 (230.5)a 601 (188)a 483 (697)a

Urea (IQR) [mmol/L] 6.8 (6.0) 6.5 (5.3) 7.2 (5.5)

Creatinine (IQR) [µmol/L] 86 (57.0) 85 (49.0) 88 (49.5)

Troponin I (IQR) [ng/L] 12 (42.5) 15 (172) –

Troponin T (IQR) [ng/L] 22 (40.5)a 17 (27)a –

Chest X-ray data

CXR (abnormal) n (%) 1006 (70) 172 (55) 361 (49)

Past medical history

Hypertension n (%) 603 (42) 144 (46) –

CVS disease n (%) 303 (21) 66 (21) –

Diabetes mellitus type II n (%) 390 (27) 92 (30) –

Lung disease n (%) 333 (23) 79 (26) –

Chronic kidney disease n (%) 279 (20) 54 (17) –

Current ACEi use n (%) 193 (14) 53 (17) –

Current Angiotensin receptor blocker use n (%) 116 (8) 24 (8) –

Current NSAID use n (%) 130 (9) 35 (11) ––

Risk factors

Smokers n (%) 303 (21) 82 (27) –

Median pack year history (IQR) 0 (26) 15 (40) –

Deterioration

Continued
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Table 1.  Comparison of development, internal and external dataset characteristics. RT-PCR, reverse 
transcription polymerase chain reaction; A&E, Accident and Emergency; WCC, White Cell Count; CRP, 
C-reactive protein. a Indicates missing data values over 40% (detailed description of the proportion of missing 
values is presented in Supplementary Fig. 1). b Indicates difference in units: internal dataset ng/ml and external 
dataset µg/L.

Characteristics
Development
(n = 1434)

Internal validation
(n = 310)

External validation
(n = 741)

ITU admission n (%) 181 (13) 38 (12) –

Median APACHE score (IQR) 16 (9.25) 12.5 (9.75) –

Intubation n (%) 143 (10)a 18 (6)a –

Figure 3.  GLMNET (Lasso/Ridge) Variable importance plot with predictors having less than 40% missing 
values in the database. All patients are confirmed positive for SARS-CoV-2 by RT-PCR. The plot shows the 
importance of predictors in building the development predictive model. BP, blood pressure;  PaO2, partial 
pressure of  O2; WCC, white cell count; CRP, C-reactive protein.
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sub-plot in Fig. 5 indicates how the individual predictor is related to the probability of fatal outcome. The binary 
predictor of sex shows an increase in probability of fatal outcome for males. For the continuous predictors (age, 
urea, and CRP), we can see a clear increase in the probability of fatal outcome corresponding to the increase 
in value of these predictors. We can also observe that in the presence of other predictors, lymphocyte count is 
a weak predictor; there is a slight decrease in the probability of fatal outcome with the increase in lymphocyte 
count. We can also notice that the error band around the mean effects is quite wide on the higher values of CRP 
and lymphocyte count, which is most likely due to the small number of observations in the higher ranges of these 
two predictors. However, when taken together in the linear combination given by LUCAS, the MLR prediction 
curve has a steep slope with a very narrow error bar, which indicates a very robust and accurate mortality score.

Along with the exact values of the probability of fatal outcome based on the five predictors, we propose a risk 
stratification (Table 3) based on these probabilities, which allows a simplified interpretation of mortality to low, 
medium, high, and very high risk of a fatal outcome.

Though the percentage of missing predictors in our reduced models were negligible, sensitivity analysis was 
performed using complete case data and as expected the model performance did not change. We also note that 
the simple logistic regression was preferred over machine learning approaches such as Random Forest starting 
from same set of predictors, based on simplicity and their performance in the validation dataset.

Model validation. We have performed validation on an internal validation (NCCID Data between 1st May 
2020 and 7th December 2020) cohort and external validation cohort consisting of data from a separate A&E site 
(n = 1012; between 1st March 2020 and 21st August 2020) with a small overlap with the available predictors from 
the derivation and internal validation cohort. However, all five predictors from the proposed model were present 
(LUCAS: Lymphocyte count, Urea, CRP, Age and Sex).

The median age of patients from the internal validation dataset was 74 years (IQR 62–84), which was not 
significantly different from the external validation dataset with a median of 76 years (IQR 61–84). The proportion 
of male patients was similar in both groups; 58% male in the internal validation set, and 55% male in external 
validation set (Table 1).

The performance of the LUCAS calculator on the internal validation cohort was very good; AUC-ROC 0.744 
(CI: 0.673–0.808) with an accuracy 0.796 at the standard cut-off of 0.50 for the probability of a SARS-CoV-2 
positive patient dying within 60 days of a positive test (Table 4). Use of the available NEWS2 data in combina-
tion with LUCAS had little effect on accuracy (AUC-ROC 0.747, CI: 0.668–0.821). In contrast, inclusion of CXR 
data in combination with LUCAS led to an increase in AUC-ROC to 0.770 (CI: 0.695–0.836). The choice to use 
the CXR outcome (normal vs abnormal) was therefore included in the simple LUCAS calculator as an optional 
extra predictor, as follows:

LUCAS showed an improved performance in the external validation cohort with an AUC-ROC value of 
0.752 (CI: 0.713–0.790) compared to the internal dataset (AUC-ROC 0.744, CI: 0.673–0.808). By including CXR 
information, there is an improved prediction performance, with an AUC-ROC of 0.791 (CI: 0.746–0.833). Note 
that the NEWS2 score was not available for the external validation cohort, so this result could not be externally 
validated.

Discussion
We have developed and validated a simplified, fast-track mortality calculator based on three rapid and routine 
blood parameter measurements, age and sex, with the option to use CXR results. The LUCAS calculator is freely 
available, relies on objective measurements only, and has been both internally and externally validated. The 
primary intended use of the LUCAS calculator is to aid triage on patient admission to A&E following a positive 
SARS-CoV-2 RT-PCR test. The robustness and generalised results in the validation process classify the tool as 
an excellent candidate for risk management of the mortality level in a 60-day survival interval of adult SARS-
CoV-2 positive patients. The LUCAS calculator delivered higher accuracy of the external validation compared 

PMortality = 1 −
1

1 + e−6.19+Age∗0.05+Sex∗0.13+Urea∗0.07+CRP∗0.0038−Lymphocyte∗0.07+CXR∗0.55
.

Table 2.  Best fit model by Lasso based sequential variable selection. CRP, C-reactive protein; WCC, white cell 
count; AUC-ROC, area under the receiver operating characteristic curve; BP, blood pressure;  PaO2, partial 
pressure  O2; ’Y’, retained in the model; ‘N’, excluded after statistical model selection; ‘–’, excluded from the 
initial model; k, number of predictors.

Model (no of 
predictors in 
initial model)

Predictors Model performance

Lymphocyte Urea CRP Age Sex WCC Creatinine Platelets
Diastolic 
BP

Systolic 
BP Temperature

Heart 
Rate PaO2 AUC-ROC Sensitivity Specificity Precision F1 Calibration

MLR
(k = 8)

Y Y Y Y Y N N N N N Y Y Y 0.759 0.886 0.378 0.738 0.805 1.025

Random Forest
(k = 13)

Y Y Y Y Y Y Y Y Y Y Y Y Y 0.806 0.890 0.661 0.838 0.863 1.021

LUCAS
(k = 5)

Y Y Y Y Y N N N – – – – – 0.765 0.931 0.330 0.757 0.835 1.003
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with the internal validation set, which indicates a high level of generalisation. In addition, the incorporation of 
CXR results as normal versus abnormal improved the prediction performance.

The NCCID dataset collected 38 clinical data points for each patient which served as candidate predictors. 
These predictors were categorised into demographics, risk factors, past medical history (PMH), medications, 
clinical observations, chest-imaging data, and laboratory parameters measured on admission to hospital. All 
laboratory tests were measured before the SARS-CoV-2 RT-PCR test result and mortality date, which ensured 
these potential predictors were blinded to the outcome. The SARS-CoV-2 swab and RT-PCR results established 
the final COVID-19 status. Moreover, thorough study of other included measures, such as the NEWS2  score11, 
was also performed. As a result, a comprehensive study and evaluation of all the possible blood markers and 
clinical patient information were taken into consideration. This study shows that a simple and objective tool 
can risk stratify SARS-CoV-2 positive patients within one hour after hospital admission. The primary objective 
showed that rapid and routine laboratory blood tests and chest imaging data added predictive value beyond the 
RT-PCR test and clinical observations with high AUC-ROC.

Figure 4.  Violin plots of individual blood variables parameters and age, categorised by patient outcome. 
The boxplots showing median and 1st and 3rd quartiles of the predictor variables are overlayed on the violin 
plots. All NCCID patients tested positive by the RT-PCR test for SARS-CoV-2. WCC, white blood count; CRP, 
C-reactive protein. The p-values are tests of equality of population using the Wilcoxon rank-sum test, where 
p < 0.05 implies statistically significant difference between the populations.
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The ability of the LUCAS calculator to predict future outcomes was evaluated by non-randomly splitting the 
NCCID dataset to train on admissions before 30th April 2020 and predicting the outcomes for patients admit-
ted on or after 1st May 2020. The high prediction results of LUCAS in the internal validation dataset, as well as 
in the external validation dataset from a different NHS site (between 1st March 2020 and 21st August 2020), 
demonstrates the model’s robust and generalised performance.

Comparison with other studies. There have been many prognostic tools published, most notably the 4C 
Mortality  Score32 and  QCOVID33, which included large number of predictors in their algorithms. Our study is 
the first to combine a minimum number of blood results along with CXR data, to generate a simplified calculator 
based on as few objective predictors as possible.

The 4C Mortality Score includes 8 parameters including PMH, demographics and blood measurables, result-
ing in a higher AUC-ROC of 0.79032. However, gaining an accurate past medical history during triage is not 
always practical, and the 4C calculator was not externally validated. Our aim was to use the minimum number of 
predictors without losing accuracy, which was achieved using LUCAS that exhibits a similar level of prediction 
as the more complex and detailed 4C algorithm. The primary QCOVID score was developed as a risk predic-
tion algorithm to estimate hospital admission and mortality outcomes, which also included large number of 
predictors including  PMH33.

Numerous prediction models have been developed to aid triage and research into COVID-19 disease severity. 
While a great deal of useful insight into the disease has been gained from these studies and prognostic tools, there 
is a range of outcomes mostly due to some having a high risk of bias, lack of transparency or lack of  internal34 
or external  validation32,35. Our study improves on these issues by conforming to the Prediction model Risk of 
Bias Assessment Tool (PROBAST)21 and being both internally validated from the same large NCCID dataset 
and externally validated in a smaller, separate hospital database. In addition, many studies require past medical 

Figure 5.  Predictor plots; multivariate association between predictors (Sex, Age, Urea, CRP, Lymphocyte count, 
and their combination LUCAS) and probability of fatal outcome.

Table 3.  Risk stratification of LUCAS.

Risk level
Probability of fatal outcome 
cut-off

Interpretation (60-day 
mortality)

Proportion in development 
set
n (%)

Proportion in internal 
validation set n (%)

Proportion in external 
validation set
n (%)

Low  < 0.235 0.8–1.2% 574 (40) 127 (41) 201 (27)

Moderate 0.235–0.465 33–40% 516 (36) 112 (36) 333 (45)

High 0.465–0.7 53–60% 258 (18) 59 (19) 170 (23)

Very high  > 0.7  > 65% 86 (6) 12 (4) 37 (5)
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history, or base the prediction on the underlying health conditions of the  patient35,36. These data may be difficult 
to assess accurately on admission to hospital and may mislead should the patient have undiagnosed conditions. 
For this reason, we focused our model on measurables taken routinely on admission.

The NEWS2 score has been used routinely in hospitals to detect clinical deterioration, although it has mixed 
results in its success. In one multicentre retrospective study involving the inclusion of data from 1263 patients, the 
NEWS2 score was used to predict mortality, ICU admission and hospital mortality and resulted in an AUC-ROC 
of 0.65 for 30-day  mortality9. This compares to our NEWS2 findings of an AUC-ROC 0.59 in development cohort 
and 0.66 in internal validation cohort. When we combined NEWS2 with LUCAS in predicting mortality within 
60 days, this increased the AUC-ROC to 0.77 in development cohort and 0.75 in internal validation cohort, thus 
indicating an improvement of accuracy when in combination with the LUCAS algorithm. This large increase 
in predictive power also gives weight to the use of LUCAS over NEWS2 in prognosis modelling for COVID-19.

All the predictors used in the LUCAS calculator have been shown to be useful predictors in other published 
studies. Lymphocyte  count17,20,37,  urea32,38, and  CRP39–44 are recognised as key measurable predictors of severity 
of SARS-CoV-2 infection, and age and sex are also well-known predictors of  mortality32,33,38,43. While these fac-
tors have been used in other prediction models, our study is the first to use only these predictors in a prognostic 
score along with the option to use CXR data.

Inclusion of CXR data is optional for the online LUCAS calculator and based on simple outcome of normal/
abnormal image results. The ability to include CXR results is not widely available in other prediction calcula-
tors and has been included in a  study35 along with ten other parameters (symptoms, past medical history and 
measurables). More recently, some of the studies have included the CXR imaging in prognostic  models45,46, 
with good accuracy; however, they have either utilised information such as electronic health  records45 includ-
ing  comorbidities46,47, which are not always known at the point of care, additional blood biomarkers such as 
D-Dimer7,41 and lactate  dehydrogenase42, which are not measured routinely during triage, or incorporated com-
plex deep-learning  methodologies46, affecting the explainability and simplicity of the model. Indeed, in a parallel 
study, we have developed a highly accurate deep-learning based model (DenResCov-19) to classify from CXR 
images patients positive for SARS-CoV-2, tuberculosis, and other forms of  pneumonia6, which will be integrated 
into the LUCAS calculator in a future study. Our focus in this study, however, was to form a simplified model on 
rapid and routine blood test results, with the option to use CXR images, which we have achieved.

Throughout the study, we have carefully considered the risk of bias that is inherent in retrospective studies. By 
conducting both internal and external validation, the study here indicates a robust model with reduced bias, since 
only patients testing positive for SARS-CoV-2 were included in the development of the LUCAS algorithm. The 
size of the external validation set was smaller than the development set allowing us to check for discrimination 
of population size, and the results indicate that the LUCAS calculator can predict from small cohorts as well as 
it can from larger size populations.

The patient data was collected at an early stage of the pandemic when treatments differed compared to 
later in the year, which would affect the death rate in hospital. In addition, our results do not account for non-
hospital deaths or deaths outside the 60-day window following diagnosis. Over time, any algorithm of mortality 
will change due to improvements in therapies as well as the use of vaccination which will change the profile of 
those at risk of COVID-19 related  death48. While these changes in therapeutic interventions change over  time49, 
multiple studies have reported the associated changes to inflammatory markers that are found in severe cases 

Table 4.  Internal and external validation results. LUCAS, model using Lymphocytes, Urea, CRP, Age, and Sex; 
CXR, chest X-ray severity score; NEWS2, National Early Warning Score 2.

Model AUC-ROC 95% confidence interval Accuracy at 0.50 cut-off Brier score

Development (data between 23/01/2020 and 30/04/2020) n = 1434

LUCAS 0.765 0.738–0.790 0.726 0.179

CXR 0.550 0.527–0.572 0.451 0.219

NEWS2 0.591 0.555–0.629 0.691 0.211

LUCAS + CXR 0.774 0.748–0.802 0.732 0.175

LUCAS + NEWS2 0.771 0.742–0.799 0.751 0.173

LUCAS + NEWS2 + CXR 0.779 0.746–0.808 0.742 0.171

Internal validation (data between 01/05/2020 and 07/12/2020) n = 310

LUCAS 0.744 0.673–0.808 0.796 0.156

CXR 0.596 0.528–0.653 0.447 0.165

NEWS2 0.655 0.570–0.736 0.711 0.159

LUCAS + CXR 0.770 0.695–0.836 0.794 0.152

LUCAS + NEWS2 0.747 0.668–0.821 0.778 0.154

LUCAS + NEWS2 + CXR 0.757 0.670–0.831 0.759 0.158

External validation (data between 01/03/2020 and 21/08/2020) n = 741

LUCAS 0.752 0.713–0.790 0.706 0.187

CXR 0.517 0.476–0.559 0.448 0.179

LUCAS + CXR 0.791 0.746–0.833 0.714 0.165



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18220  | https://doi.org/10.1038/s41598-022-21803-2

www.nature.com/scientificreports/

of COVID-1939. While improvements in medical care have significantly reduced mortality, the immunological 
responses that indicate severe cases of COVID-19 have not changed, making the use of prediction modelling 
important to aid in the triage of patients.

Conclusion
The major strengths of this study in mortality prediction of COVID-19 patients include the analytical approach 
taken, the comparison with the widely used NEWS2 score, the inclusion of CXR data, and the evaluation in 
both internal and external validation cohorts. The CXR data contributes to an improvement in the mortality 
prediction of the patient, although the CXR information used in the LUCAS calculator is binary (normal or 
abnormal). Further development of this work is currently ongoing, which will extract CXR image features using 
machine learning or deep learning  methods6 and combine with LUCAS to deliver an automated, integrated 
biomarker-imaging analysis.

Data availability
The data that support the findings of this study are available from the  NCCID23 and another NHS site; but 
restrictions apply to the availability of these datasets, which were used under license for the current study, and 
are not publicly available.

Code  availability
The Simple Logistic Regression based calculator is freely available at https:// mdsco re. org/.
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