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Abstract Objective: Machine learning approaches for predicting Alzheimer's disease (AD) progression can substantially assist 
researchers and clinicians in developing effective AD preventive and treatment strategies. Methods: This study proposes a novel 
machine learning algorithm to predict the AD progression utilising a multi-task ensemble learning approach. Specifically, we 
present a novel tensor multi-task learning (MTL) algorithm based on similarity measurement of spatio-temporal variability of brain 
biomarkers to model AD progression. In this model, the prediction of each patient sample in the tensor is set as one task, where all 
tasks share a set of latent factors obtained through tensor decomposition. Furthermore, as subjects have continuous records of brain 
biomarker testing, the model is extended to ensemble the subjects' temporally continuous prediction results utilising a gradient 
boosting kernel to find more accurate predictions. Results: We have conducted extensive experiments utilising data from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) to evaluate the performance of the proposed algorithm and model. Results 
demonstrate that the proposed model have superior accuracy and stability in predicting AD progression compared to benchmarks 
and state-of-the-art multi-task regression methods in terms of the Mini Mental State Examination (MMSE) questionnaire and The 
Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) cognitive scores. Conclusion: Brain biomarker 
correlation information can be utilised to identify variations in individual brain structures and the model can be utilised to 
effectively predict the progression of AD with magnetic resonance imaging (MRI) data and cognitive scores of AD patients at 
different stages.  
 
 
Index Terms—Alzheimer’s disease, multi-task learning, brain biomarker spatio-temporal correlation, tensor decomposition, gradient 
boosting ensemble learning. 
Clinical and Translational Impact Statement: The model utilises magnetic resonance imaging data to calculate cognitive scores 
at different stages of patients to predict and diagnose AD progression. The important brain biomarker correlation information 
revealed in experiments can be utilised as potential indicators for early identification of AD.  
 
 

I. INTRODUCTION1 
LZHEIMERS’S disease (AD) is a severe primary 
neurodegenerative disease in which neurons and their 

connections deteriorate over time, leading to a full spectrum 
of dementia including cognitive decline, memory loss and 
executive dysfunction [1]. There is currently no cure to treat 
or reverse the progression of the disease and it puts patients 
and their families under enormous psychological and 
emotional stress. Numerous studies have been conducted to 
recognize sensitive and precise biomarkers of early 
Alzheimer's disease progression that will assistance in early 
AD diagnosis to create, evaluate and validate current and 
new treatments.  

Utilising machine learning methods to predict AD 
progression can greatly support clinicians and researchers in 
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making effective disease prevention and treatment decisions. 
Standard AD prediction methods rely on quantifying and 
extracting important biomarkers from diverse modalities 
(e.g., Magnetic Resonance Imaging (MRI) and Positron 
Emission Tomography (PET)), and then learning the model 
as a regression problem to calculate cognitive scores at 
different time points. Existing AD progression models 
mainly utilise machine learning regression algorithms [2][3], 
statistical probability-based survival models [4][5] and deep 
learning methods based on neural networks [6][7]. The input 
features of the above models are signified as second-order 
matrices containing patient and biomarker information, and 
this data representation makes it difficult to predict and 
analyse disease progress from multiple dimensions (e.g., 
spatial and temporal dimensions). At the same time, the 
second-order matrix can only focus on a single biomarker, 
which will lose the correlation information between different 
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AD biomarkers.  
Therefore, instead of applying a second-order matrix with 

two components for each index, we constructed a third-order 
tensor with three components for each index (Fig. 1). The 
paper proposes to build a third-order tensor to build an AD 
prediction model to better present numerous aspects of AD 
data in both spatial and temporal dimensions. With the 
enhanced presentation of AD biomarker features, the utilise 
of the tensor in regression algorithms can improve prediction 
accuracy, stability and interpretability. Secondly, for AD 
prediction models, multi-task learning (MTL) can share 
information across tasks, outperforms traditional single-task 
learning methods in terms of prediction accuracy, 
interpretability and generalisation, and is most effective 
when the number of samples is small [8]. Therefore, we 
designed a tensor-based MTL approach to predict AD 
progression by incorporating spatio-temporal information on 
brain structural variations. Specifically, we first propose a 
method for quantifying structural variations in the brain 
based on similarity calculations, which expresses the 
similarity of morphological variation trends between 
biomarkers as a third-order tensor with dimensions 
corresponding to the first biomarker, the second biomarker 
and the patient sample. Subsequently, the proposed 
algorithm performs a CANDECOMP/PARAFAC (CP) 
decomposition of the tensor [9] and extracts a set of rank-one 
latent factors from the data. As shown in Fig. 1, the similarity 
in morphological variation trends between biomarkers can be 
decomposed into a set of rank-one tensors, each calculated 
from the outer product of three rank-one latent factors. Each 
latent factor is described by its first biomarker, second 
biomarker and patient sample dimension, resulting in an 
interpretable way to describe the latent factors controlling the 
variability of the data, and the latent factors can be utilised 
as predictors for training the MTL model. 

In addition to the above challenges, in real-life 
applications, patients with suspected AD will continue to go 
to hospital for testing, which is a waste of subsequent 
incremental data if only a baseline model is utilised or if 
continuous testing records of the patient cannot be 
reasonably integrated. To address this problem, we utilise a 
gradient boosting ensemble learning approach to integrate 

consecutive test records of subjects to further improve 
prediction accuracy. 

The contributions of this article are summarized as follows: 
1) A similarity measurement method for quantifying and 
understanding variability in AD brain structure data is 
proposed to extract temporal and spatial information 
between biomarkers, further combined with tensor 
decomposition to obtain latent factors. 
2) The proposed tensor-based MTL algorithm seamlessly 
integrates spatio-temporal information based on brain 
structural variations and its biomarker latent factors, thus 
significantly improving the predictive accuracy and stability 
of AD progression.  
3) Identified and analysed important spatio-temporal 
variation correlations between brain biomarkers in the AD 
progression. 
4) The proposed AD dynamic prediction utilises gradient 
boosting ensemble learning to combine multiple consecutive 
MRI detections and the experimental results demonstrate 
that the prediction accuracy continues to improve as the 
number of MRI detections increases.  

II. RELATED WORK 
Numerous preceding brain science studies have focused 

on the differences in brain structure variation of AD, CN 
(cognitively normal older individuals) and MCI (mild 
cognitive impairment). [10] developed a distortion-based 
framework for modelling the properties of AD and aging on 
the morphological progression of the brain, emphasizing 
specific morphological changes in the brain to help identify 
clinical conditions. [11] evaluated the correlation of CSF and 
MRI biomarkers with clinical diagnosis and cognitive 
functioning in patients with CN, AD and aMCI (amnestic 
mild cognitive impairment). It was concluded that MRI 
provided stronger cross-sectional grouping, discrimination 
and correlated better with cross-sectional integrated 
cognitive and functional abilities. [12] used automated MRI 
analysis to evaluate cortical thickness in healthy older adults, 
MCI patients and AD patients. Patterns of cortical thinning 
were identified as a function of disease progression, and it 
was discovered that as the disease marched from MCI to AD, 

 
Fig. 1. CP decomposition on a spatio-temporal tensor representation based on the similarity of the morphological variation trend between 
brain biomarkers. 
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the whole cortex thinned and extended appreciably into the 
lateral temporal cortex.  

In addition, the research on correlations between AD MRI 
biomarkers has been a focus of brain structural variation 
research, [13] used correlation of multi-kernel support vector 
machines and regional mean cortical thickness to combine 
relevant information with ROI-based data to advance the 
classification performance of AD and its precursor stages. 
[14] structured brain networks by thresholding the cortical 
thickness correlation matrix for different regions and 
analysed them using graph theory. The above study 
evaluated and analysed the relationship between AD 
progression and brain biomarkers and showed that there are 
differences between brain biomarkers for AD, MCI and CN. 
However, the above studies only focus on a particular 
biomarker or the same category of biomarker, lacking the 
linkage and correlation of spatio-temporal variation between 
dissimilar categories of biomarkers, which is important for 
AD feature representation. 

The AD prediction can be considered as a multi-task 
regression problem [15]. The primary assumption of the 
model is that there is an intrinsic link between a large number 
of data records and that capturing the intrinsic link enhances 
the generalizability of the predictive model. The sharing of 
information between different patient prediction tasks 
promises advance achievable performance. This advantage is 
particularly pronounced when the number of input features 
(e.g., AD biomarkers) exceeds the number of samples (e.g., 
patient samples) [16]. In the field of MTL for AD, existing 
approaches have focused on modelling relationships between 
tasks using novel regularisation techniques [17][18]. Kernel 
methods were added to the technique to enable it to fit non-
linear relationships [19][20]. The aforementioned study and 
experiments demonstrated that the regularised MTL 
technique performs well in a diversity of AD prediction 
applications. 

To the best of our knowledge, there is no commonly 
exercised tensor regression algorithm that exploits the 
multidimensional properties of biomarker data to predict AD 
progression. Current third-order tensor-based algorithms in 
AD are mainly used for images (e.g., MRI) [21] and 
electroencephalograms (EEG), as the images themselves are 
third-order tensors and each patient's EEG can be composed 
of a third-order tensor in the time and frequency domains. 

But in terms of the form of the data, MRI brain biomarker 
data can be formed into a third-order tensor. The first 
characteristic of data that can be constructed as a tensor is 
that it is multidimensional data, and the second characteristic 
is that the original data is inherently a tensor, for example as 
an RGB image it is innately a three-dimensional tensor. 
Brain biomarker data are multidimensional data that fit the 
first characteristic of tensor data. Based on this fact, we have 
pioneered a tensor-based MTL method for accurate AD 
progression prediction. 

III. METHODOLOGY  

A. Denotation 
For brevity, we represent tensors as italic capital letters, 

such as X or Y, and matrices by capital letters, such as A or 
B. Vectors are denoted by lowercase letters such as x 
whereas Scalars are denoted by italic lowercase letters such 
as a. 

B. Spatio-temporal variation similarity calculation of MRI 
biomarkers 

Two successive MRI tests were utilised to calculate the 
spatio-temporal variation in brain biomarkers. The 
quantitative approach has been reported in its preliminary 
versions [22][23], and this research expands and exploits it 
across number of successive time points (BL to M06, M06 
to M12, M12 to M24). For instance, at time points baseline 
(the date the patient was first screened in hospital) and M06 
(the time point six months after the first visit), we utilised 
MRI at the corresponding time points to calculate the rate of 
change and velocity for each biomarker, where x is the test 
value of brain biomarkers and t is the MRI detection dates. 
The rate of change is ௫ಾబలି௫ಳಽ௫ಳಽ , the velocity is ௫ಾబలି௫ಳಽ௧ಾబలି௧ಳಽ  per 
month. The rate of change and velocity were then utilised to 
create a vector which describes the morphological variation 
trend of brain biomarker.  

In this study, the similarity between two vectors was 
calculated utilising the Mahalanobis distance as a method to 
indicate the similarity of the spatio-temporal variation of two 
MRI biomarkers. The Mahalanobis distance was utilised 
because it is scale-independent when the covariance matrix 
is divided [24]. The Mahalanobis distance between the 
vectors x௜  and x௝  is defined as: Ma൫x௜ , x௝൯ =ට൫x௜ − x௝൯୘Sିଵ(x௜ − x௝), where S is covariance matrix. 

Fig. 2 shows the spatio-temporal correlations of brain 
biomarkers of AD, CN and MCI calculated by Mahalanobis 
distances. Although similarity calculations can demonstrate 
differences in the spatio-temporal correlation of AD, CN and 
MCI brain biomarkers, there is a unifying problem that half 
of the data is duplicated due to pairings of biomarker 
association, it may increase the computational complexity 
and this study addresses this problem utilising the duplicate 
data correction matrix in the algorithm design.  

 
Fig. 2. Examples of Mahalanobis distance matrix distribution for 
AD, CN and MCI brain biomarker relationships. The difference in 
the matrix areas is evident in the figure, which indicates the 
difference in spatial changes in the brains of AD, CN and MCI as 
time progresses. (The scale from top to bottom is 1.0, 0.8, 0.6, 0.4, 
0.2, 0.0.) 
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C. Tensor Decomposition 
Our proposed formula requires an understanding of the 

latent factors of the correlation tensor of morphological 
variation trends between MRI biomarkers. These latent 
factors are represented by factor matrices A and B, which can 
be derived utilising tensor decomposition methods. There are 
two mainstream standard approaches for tensor 
decomposition, specifically Tucker and 
CANDECOMP/PARAFAC (CP) decomposition [9]. The 
Tucker decomposition decomposes the tensor into the result 
of the core tensor and the factor matrix for each mode. 
Although it expresses a more inclusive statement, it is 
problematic to interpret the latent factors, as the amount of 
latent factors may differ for different model. By comparison, 
CP decomposition decomposes the tensor into a set of rank-
one tensors. i.e., 𝑋 ≈  ⟦A × B × C⟧  =  ∑ a௜ ∘  b௜  ∘  c௜௥௜ୀଵ , 
where ∘  denote the outer product operation between two 
vectors, while a௜ , b௜  and c௜ correspond to the vectors related 
with the i-th latent factor. Given a tensor X of the size 𝑛ଵ  ×  𝑛ଶ  ×  𝑛ଷ , the size of matrix A, B and C is 𝑛ଵ  × 𝑟, 𝑛ଶ  × 𝑟 and 𝑛ଷ  × 𝑟 respectively.  

D. Tensor multi-task regression 
To predict cognitive scores (e.g., MMSE and ADAS-Cog) 

at future time points. Consider a tensor multi-task regression 

problem with t time points, n training samples with 𝑑ଵ and 𝑑ଶ features. Let X ∈  ℝௗభ×ௗమ×௡ be the input tensor from two 
consecutive MRI tests and the it is the amalgamation of 
similarity matrix of all n samples X௡  ∈  ℝௗభ×ௗమ , Y =[yଵ, ⋯ , y௧  ] ∈  ℝ௡×௧  be the targets and y௧ = [𝑦ଵ, ⋯ , 𝑦௡ ] ∈ ℝ௡ is the corresponding target (clinical scores) at different 
time points. We utilise the operator ⨀  as follows: Z =M ⨀ N denotes 𝑧௜௝ = 𝑚௜௝𝑛௜௝, for all i, j.  

The input tensor for the similarity of morphological 
variation trends in brain biomarkers is a symmetric tensor 
because the relationships between biomarkers are paired and 
therefore half of the data are duplicated. The research further 
proposes a duplicate data correction matrix to resolve the 
problem of duplicate data and it states as follows:  

K = ቎0 1 ⋯ 1⋮ ⋱ ⋮10 ⋯ 0቏ ∈  ℝௗభ×ௗమ                (1) 

For t-th prediction time point, the objective function of the 
proposed approach can be stated as follows:  𝐿௧(𝑋, y௧) = min୛೟, ୅೟, ୆೟, େ೟ 12 ‖yො௧ − y௧‖୊ଶ + 𝜆2 ‖𝑋 −  ⟦A௧ ,  B௧,  C௧⟧‖୊ଶ                   + 𝛽‖W௧,  A௧ ,  B௧,  C௧‖ଵ                  𝑦ො௡ =  ∑ ∑ U௜௝ௗమ௝ୀଵௗభ௜ୀଵ ,  

where U = (A௧B௧୘)⨀K⨀W௧⨀X௡ , U ∈  ℝௗభ×ௗమ.                (2) 

 
Fig. 3. The flowchart of the proposed method in the training stage. 
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where the first term computes the empirical error for the 
training data, yො௧ = [𝑦ොଵ, ⋯ , 𝑦ො௡] ∈  ℝ௡  are the predicted 
values, A௧  ∈  ℝௗభ×௥  is the latent factor matrix for first 
biomarker dimension and B௧  ∈  ℝௗమ×௥  is the latent factor 
matrix for second biomarker dimension with r latent factors, W௧  ∈  ℝௗభ×ௗమ  is the model parameter matrix for t-th 
prediction time point, 𝜆  and 𝛽  are the regularization 
parameters. Obtaining latent factors by optimising objective 
function ‖𝑋 −  ⟦A,  B,  C⟧‖୊ଶ , where 𝑋 = ⟦A,  B,  C⟧ =∑ a௜ ∘  b௜  ∘  c௜௥௜ୀଵ  where ∘ denote the outer product operation 
between two vectors. ‖W௧ ,  A௧ ,  B௧ ,  C௧‖ଵ  employing an ℓ1-
norm on the W௧, A௧, B௧ and C௧ matrices respectively.  

For all prediction time points, the objective function can 
be stated as follows:  𝐿(𝑋, Y) = min୛೑ ∑ 𝐿௧(𝑋, y௧)௧ଵ + 𝜃∥∥W௙P(𝛼)∥∥୊ଶ             (3) 

where ∥∥W௙P(𝛼)∥∥୊ଶ  is the generalized temporal smoothness 
term, model parameter matrix W௙  ∈  ℝ(ௗభ×ௗమ)×௧ is the temporal dimension unfolding for model parameter tensor 
W ∈  ℝௗభ×ௗమ×௧ , 𝜃  is the regularization parameter. The 
generalised temporal smoothing states the fact that in 
actually diagnosing AD, the specialist not only relies on the 
patient's current symptoms, but also takes into account their 
previous symptoms. Therefore, we assume that the i-th 
progression in an individual AD patient is related to all 
preceding progressions. The generalized temporal 
smoothness prior describe as follows: 

⎩⎪⎨
⎪⎧Δ𝑤ଵ = 𝛿𝑤ଵΔ𝑤ଶ = 𝛼ଵΔ𝑤ଵ + (1 − 𝛼ଵ)𝛿𝑤ଶΔ𝑤ଷ = 𝛼ଶΔ𝑤ଶ + (1 − 𝛼ଶ)𝛿𝑤ଷ⋯Δ𝑤௧ିଵ = 𝛼௧ିଶΔ𝑤௧ିଶ + (1 − 𝛼௧ିଶ)𝛿𝑤௧ିଵ

           (4) 

where Δ𝑤  denoted the progression with preceding 
progression information. 𝑤௜  is the i-th column of W. where 
the parameter α represents the relational degree of the i-th 
progression and all preceding progressions. In addition, the 
impact of each stage of disease progression on the following 
stage may not be consistent, and therefore the relational 
degree parameters differ for each disease progression stage. 
The definition of the i-th progression 𝛿𝑤௜  for one patient is: 𝛿𝑤௜ = 𝑤௜ − 𝑤௜ାଵ, 𝑖 = 1,2, ⋯ , 𝑡 − 1.              (5) 

As a result, we can describe the more realistic temporal 
smoothness assumption with matrix multiplication: WP(𝛼) = WHDଵ(𝛼ଵ)Dଶ(𝛼ଶ) ⋯ D௧ିଶ(𝛼௧ିଶ)           (6) 
where H ∈  ℝ௧×(௧ିଵ)  has the following definition: H௜௝ =1 if 𝑖 = 𝑗, H௜௝ = −1  if 𝑖 = 𝑗 + 1 and H௜௝ = 0  otherwise. P(𝛼) denotes the correlation between progress, it comprises 
the hyperparameters 𝛼, which depends on the result of cross-
validation. D௜(𝛼௜) ∈  ℝ(௧ିଵ)×(௧ିଵ) is an identity matrix and 
the value of D௜೘,೙(𝛼௜) is substituted by 𝛼௜ if 𝑚 = 𝑖, 𝑛 = 𝑖 +1 , the value of D௜೘,೙(𝛼௜)  is substituted by 1 − 𝛼௜  if 𝑚 =𝑛 = 𝑖 + 1. 

Latent factors A ∈  ℝௗభ×௥×௧, B ∈  ℝௗమ×௥×௧, C ∈  ℝௗయ×௥×௧ 
and the model parameter W∈  ℝௗభ×ௗమ×௧  can be learned by 
iteratively optimising the objective function for each set of 

variables to be solved. Because not all components of the 
objective function are differentiable, we utilise proximal 
gradient descent to solve each subproblem. Specifically, the 
terms in our objective function involving Frobenius norms 
are differentiable, but those involving the sparsity-inducing ℓ1-norms are not differentiable.  In the MTL model, the 
proximal approach is frequently utilised to construct the 
proximal issue for the non-smooth objective function 
[25][26][27][28], by replacing the smooth function with the 
quadratic function, we get the sum of the smooth and non-
smooth functions. Its quadratic functions can be constructed 
in a variety of ways based on Taylor series, and the resulting 
proximal problems are usually easier to solve than the 
original ones. The strategy can simplify the design of 
distributed optimisation algorithms or accelerate the 
convergence of the optimisation process.  

E. Gradient boosting 
Ensemble learning has been proven to be effective in a 

variety of prediction tasks by grouping a set of weak learners 
together to build stronger learners. Boosting is the dominant 
technique in ensemble learning methods, which produces a 
set of weak learners in which predictors are trained 
sequentially rather than individually, with the aim of utilising 
the errors of the previous learner to develop a more effective 
model for the next learner.  

Gradient Boosting (GB) is an extension of the boosting 
method which utilises gradient descent optimisation 
techniques to identify global or local minima of the cost 
function. It trains the machine to fit the model on the input 
feature space through a series of weak learners, each of 

TABLE I: DEMOGRAPHIC CHARACTERISTIC OF THE STUDIED SUBJECTS 
VALUED ARE SPECIFIED AS MEAN±STANDARD DEVIATION. (THE 

NOTATION “M12” INDICATES THE TIME POINT 12 MONTHS AFTER THE 
FIRST VISIT, “M24” INDICATES THE TIME POINT 24 MONTHS AFTER THE 

FIRST VISIT, ETC.) 
Time 
point 

Attribute MMSE ADAS-Cog 

M12 

 

 
 

M24 

 

 
 

M36 

 

 
 

M48 

 

 

Sample size (CN, 
MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, 
MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, 
MCI, AD) 

Gender(f/m) 

Age 

Sample size (CN, 
MCI, AD) 

Gender(f/m) 

Age 

1332 (358, 
725, 249) 

579/753 

75.0±7.1 

1110 (330, 
617, 163) 

484/626 

76.0±7.2 

710 (192, 509, 
9) 

307/403 

76.7±7.0 

456 (120, 334, 
2) 

195/261 

77.1±6.9 

1299 (351, 
716, 232) 

565/734 

75.1±7.1 

1066 (321, 
602, 143) 

464/602 

73.±7.1 

677 (186, 485, 
6) 

292/385 

73.5±7.0 

431 (114, 315, 
2) 

185/246 

73.1±6.9 
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which improves the prediction accuracy of the previous 
learner. GB trains powerful learners by combining numerous 
weak learners in multiple iterations [29][30]. The proposed 
method enhances prediction accuracy by sequentially fitting 
a more accurate model to the residuals of the preceding step 
in the final stage of the GB construction framework. This 
process will continue until a highly accurate model is 
obtained. The flowchart of the proposed method in the 
training stage is illustrated in Fig. 3. 

IV. EXPERIMENTAL SETTINGS 

A. Dataset 
Data used in the preparation of this article were obtained 

from the Alzheimer s Disease Neuroimaging   Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD. The primary 
goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and 
early Alzheimer s disease (AD). The FreeSurfer image 

analysis software (http://surfer.nmr.mgh.harvard.edu/) was 
used by a team from the University of California, San 
Francisco (UCSF) to conduct volumetric segmentations and 
cortical reconstruction using imaging data from the ADNI 
database, which includes all ADNI subprojects (ADNI 1, 2, 
GO, 3). We gained the MRI data from the ADNI website and 
continued to implement the subsequent pre-processing steps: 
 Removal of features with missing values in more than 

half of the sample;  
 Exclusion of individual participants who did not have 

BL and M06 MRI;  
 Missing data were filled with average of the features;  
 Removal of cognitive function assessments for 

individuals with missing follow-up points in 
longitudinal studies;  

 For AD dynamic prediction, exclude individuals who 
did not have follow-up MRI detections.  

After the pre-processing steps, there are a total of 313 MRI 
features. which can be classified into five categories: the 
volumes of cortical parcellations (CV), the volumes of 
specific white matter parcellations (SV), the total surface 
area of the cortex (SA), average cortical thickness (TA) and 
standard deviation in cortical thickness (TS). Table I depicts 
the demographic features of the ADNI MRI data utilised in 

TABLE II. COMPARISON OF THE RESULTS FROM OUR PROPOSED METHODS WITH BENCHMARKS AND STATE-OF-THE-ART METHODS FOR MMSE AT TIME POINTS 
M12 TO M48. THE BEST RESULTS ARE BOLDED. 

Target: MMSE Input MRI data nMSE M12 rMSE M24 rMSE M36 rMSE M48 rMSE 
Ridge 

 
 

Lasso 
 
 

TGL 
 
 

nCFGL1 
 
 

cFSGL 
 
 

NC-CMTL 
 
 

FL-SGL 
 
 

FTS-MTFL 
 
 

GAMTL 
 
 

dMTLc 
 
 

TMTL-GB 
 
 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 

3.1052±0.5803 
7.5077±1.8073 

10.1467±4.9847 
1.0635±0.1408 
1.1887±0.3307 
1.1931±0.4177 
0.7557±0.0948 
0.6448±0.1526 
1.6408±0.2564 
0.4609±0.0694 
0.3970±0.0257 
0.4456±0.1265 
0.6899±0.1378 
0.5472±0.0330 
1.1483±0.4289 
0.4923±0.0990 
0.5309±0.0547 
0.5095±0.0916 
0.6186±0.1324 
0.5658±0.1009 
0.5135±0.0647 
0.4434±0.0477 
0.5166±0.1385 
0.4725±0.0982 
0.4212±0.0224 
0.4837±0.0378 
0.4327±0.1646 
0.4211±0.0670 
0.4459±0.0502 
0.4179±0.0387 
0.3119±0.0421 
0.3014±0.0574 
0.2552±0.0283 

4.5980±0.5196 
- 
- 

2.4041±0.2048 
- 
- 

2.3491±0.2496 
- 
- 

1.5990±0.2039 
- 
- 

1.9939±0.2025 
- 
- 

1.5901±0.2152 
- 
- 

1.5949±0.2362 
- 
- 

1.6019±0.2208 
- 
- 

1.6861±0.1608 
- 
- 

1.4728±0.1852 
- 
- 

1.4577±0.1665 
- 
- 

5.0259±0.4925 
7.8248±1.0884 

- 
2.8315±0.2728 
3.0930±0.6897 

- 
2.3924±0.1822 
2.2461±0.1647 

- 
1.9405±0.2753 
1.5791±0.2059 

- 
2.2874±0.2635 
1.8646±0.2345 

- 
1.7454±0.2432 
1.8492±0.3216 

- 
1.8812±0.2813 
1.8750±0.2796 

- 
1.8825±0.2288 
1.7910±0.2323 

- 
1.7414±0.1827 
1.9608±0.2191 

- 
1.7208±0.0741 
1.7908±0.1423 

- 
1.4959±0.1587 
1.2534±0.0561 

- 

5.5803±0.4948 
8.3919±1.1916 

12.5386±1.4103 
3.3494±0.4011 
3.5850±0.8825 
3.5953±0.7182 
2.6532±0.4482 
2.4579±0.2869 
3.9806±0.5370 
2.2243±0.4086 
1.7253±0.1967 
2.0062±0.3586 
2.4874±0.2099 
2.0759±0.3413 
3.8737±0.7312 
1.9506±0.2389 
2.1096±0.3341 
2.1880±0.4971 
2.0049±0.2533 
2.1844±0.2363 
2.4659±0.2989 
2.1584±0.3356 
2.1124±0.3644 
2.0178±0.2423 
2.1726±0.3309 
2.0752±0.3493 
1.9180±0.1201 
2.0877±0.4341 
2.1016±0.3219 
2.2954±0.3773 
1.5520±0.1450 
1.3919±0.0809 
1.2963±0.0584 

6.3998±0.7111 
8.6505±0.7495 

12.0900±1.9673 
4.6762±0.5320 
4.2383±0.6208 
4.1443±0.9627 
3.1915±0.2351 
2.7096±0.4303 
5.1047±0.4786 
3.1998±0.4022 
2.3118±0.5327 
2.6751±0.5949 
3.1284±0.4442 
2.9894±0.3671 
4.1492±1.0407 
2.8301±0.4291 
3.1799±0.3126 
3.3899±0.2483 
2.9717±0.5587 
3.5419±0.2596 
3.4615±0.5029 
2.7485±0.2815 
2.9670±0.6952 
3.1199±0.4141 
3.1652±0.4937 
3.0218±0.6099 
2.9964±0.5195 
2.7384±0.4462 
3.1987±0.2949 
2.7465±0.6070 
2.2129±0.2111 
2.0594±0.1549 
1.9356±0.0146 
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this research.  
For the predictive target of the approach, cognitive scores 

(MMSE and ADAS-Cog) can be used to precisely 
differentiate between CN, MCI and AD in the clinical 
scenarios. For MMSE with score range 0–30, 30 is 
represented as cognitively no dementia, 29–26 is represented 
as questionable dementia, 25–21 is represented as mild 
dementia, 20–11 is represented as moderate dementia, 10–0 
is represented as severe dementia. For ADAS-Cog with score 
range 0–70, where higher scores indicate greater cognitive 
impairment. 

B. Evaluation metrics 
The similarity tensor of morphological variation trends 

between MRI brain biomarkers was utilised to build 
predictive models for each target. The data was randomly 
divided into a training set and a test set in a ratio of 9:1. As 
the number of model parameters (λ, β and θ), the 
hyperparameters α and the latent factor r must be designated 
during the training phase, we utilise 5-fold cross-validation 
on the training data to select them. The research evaluates the 
prediction performance of various methods for each single 
time point utilising the root mean square error (rMSE) as the 
major evaluation metric. We use normalised mean square 

error (nMSE) for the overall regression performance metrics, 
which is commonly utilised in multi-task learning research 
[31]. The rMSE and nMSE are stated as follows: rMSE(y, 𝑦ො) = ට‖୷ି୷ෝ‖మమ௡                           (7) 

nMSE (Y, Y෡) = ∑  ೟೔సభ ∥∥ଢ଼೔ି,ଢ଼෡೔∥∥మమ ఙ(ଢ଼೔)൘∑  ೟೔సభ ௡೔                  (8) 

 
where for rMSE, y is the ground truth of target at a single 
time point and yො is the corresponding prediction by a model. 
For nMSE, Y௜ is the target's ground truth at time point i and Y෡௜ is the corresponding prediction from a model. We reported 
the mean and standard deviation based on 20 iterations of 
experiments on dissimilar splits of data.  

V. RESULTS AND DISCUSSION 

A. Comparison with the benchmarks and state-of-the-arts 
We utilised the Mahalanobis distance to construct a tensor 

of morphological variations in the brain, combined with the 
proposed tensor multi-task ensemble learning (TMTL-GB) 
algorithm to compare with single task learning, benchmarks 
and state-of-the-art multi-task learning algorithms that were 

TABLE III. COMPARISON OF THE RESULTS FROM OUR PROPOSED METHODS WITH BENCHMARKS AND STATE-OF-THE-ART METHODS FOR ADAS-COG AT TIME 
POINTS M12 TO M48. THE BEST RESULTS ARE BOLDED. 

Target: ADAS-Cog Input MRI data nMSE M12 rMSE M24 rMSE M36 rMSE M48 rMSE 
Ridge 

 
 

Lasso 
 
 

TGL 
 
 

nCFGL1 
 
 

cFSGL 
 
 

NC-CMTL 
 
 

FL-SGL 
 
 

FTS-MTFL 
 
 

GAMTL 
 
 

dMTLc 
 
 

TMTL-GB 
 
 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 
BL, M06 

BL, M06, M12 
BL, M06, M12, M24 

BL, M06 
BL, M06, M12 

BL, M06, M12, M24 

1.3773±0.1298 
1.5331±0.2192 
1.7338±0.1754 
0.7974±0.0917 
0.7631±0.0937 
0.7186±0.0912 
0.3688±0.0424 
0.4229±0.0806 
0.2772±0.0315 
0.2255±0.0256 
0.2144±0.0462 
0.2327±0.0443 
0.3623±0.0488 
0.2801±0.0532 
0.2359±0.0343 
0.2386±0.0351 
0.1757±0.0226 
0.1955±0.0217 
0.2505±0.0423 
0.3197±0.0457 
0.2666±0.0140 
0.2360±0.0306 
0.2051±0.0226 
0.2252±0.0539 
0.2146±0.0381 
0.1963±0.0089 
0.2066±0.0341 
0.2139±0.0286 
0.1959±0.0270 
0.2007±0.0408 
0.1919±0.0160 
0.1673±0.0152 
0.1584±0.0254 

9.4358±0.9725 
- 
- 

6.4992±0.5238 
- 
- 

4.7842±0.3764 
- 
- 

3.6844±0.2590 
- 
- 

4.1972±0.2893 
- 
- 

3.7329±0.4119 
- 
- 

4.4357±0.6086 
- 
- 

3.9568±0.3706 
- 
- 

3.9110±0.3454 
- 
- 

4.0192±0.1445 
- 
- 

3.4351±0.3292 
- 
- 

9.7975±1.1718 
10.4089±1.4291 

- 
6.9227±1.1271 
6.6594±0.5650 

- 
4.6610±0.5169 
5.4470±0.5740 

- 
3.4506±0.2410 
3.8132±0.7284 

- 
5.0202±0.5373 
4.1486±0.4266 

- 
4.0644±0.6422 
3.3772±0.2310 

- 
4.1841±0.3426 
4.9369±0.4912 

- 
4.0168±0.5553 
3.6510±0.3699 

- 
3.1081±0.5278 
3.7110±0.4135 

- 
3.4101±0.4066 
3.6894±0.2469 

- 
3.2926±0.1513 
3.2294±0.1870 

- 

10.9876±1.3781 
11.5586±1.5590 
12.1387±1.5305 
8.6765±1.0948 
8.9510±1.2444 
8.4415±1.2726 
5.7494±0.5775 
5.5116±0.7395 
4.4827±0.3285 
3.8452±0.1968 
3.6613±0.2673 
3.9810±0.4929 
5.3536±0.5622 
5.0682±0.3117 
4.3043±0.5869 
4.2489±0.4014 
4.0025±0.3989 
3.9598±0.2237 
4.7807±0.5122 
4.3522±0.7789 
4.7754±0.3305 
4.1329±0.2210 
4.3284±0.5781 
3.8780±0.4388 
3.7255±0.4643 
4.3212±0.9916 
4.5519±0.3304 
3.8021±0.5264 
3.7553±0.8032 
4.1612±0.6067 
3.6045±0.2307 
3.6290±0.5421 
3.5645±0.3680 

14.6598±1.8363 
15.1463±1.9747 
14.8322±1.3309 
11.9426±1.6025 
11.3838±1.4890 
10.4232±1.6738 
7.7067±1.2795 
8.5023±1.8449 
7.1983±1.1176 
7.5590±1.5356 
6.4116±0.8013 
6.5759±1.9124 
8.2545±2.1690 
6.3823±1.0508 
6.9518±1.6547 
5.6502±0.9988 
4.9068±0.2093 
5.9555±1.1476 
6.8256±0.3117 
6.8449±0.5871 
8.1430±0.8817 
6.4760±1.4213 
6.0530±1.4375 
5.6164±1.0738 
6.4080±0.9305 
5.8161±0.9832 
6.5930±0.9055 
6.6308±1.1940 
6.7850±0.5438 
6.4822±0.8864 
4.9111±0.3109 
4.5516±0.6506 
4.2781±0.5841 
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chosen as competitive methods in studies to predict clinical 
deterioration, including Ridge regression (Ridge) [32], Lasso 
regression (Lasso) [33], Temporal Group Lasso (TGL) [8], 
Non-convex Fused Sparse Group Lasso (nFSGL1) [34], 
Convex Fused Sparse Group Lasso (cFSGL) [8], Non-
Convex Calibrated Multi-Task Learning (NC-CMTL) [35], 
Fused Laplacian Sparse Group Lasso (FL-SGL) [36], Joint 
feature and task aware multi-task feature learning (FTS-
MTFL) [37], Group Asymmetric Multi-Task Learning 
(GAMTL) [38] and Dual feature correlation guided multi-
task feature learning (dMTLc) [39]. The experimental results 
of MMSE and ADAS-Cog predictions are shown in Table II 
and III.  

For overall regression performance, our proposed 
approach outperforms benchmarks and state-of-the-art 
approaches in terms of nMSE for both cognitive scores 
MMSE and ADAS-Cog. And for all individual time points, 
the proposed approach obtains a smaller rMSE than other 
approaches. The followings are our main observations: 1) 
The proposed tensor MTL model outperforms single-task 
learning models, benchmarks and state-of-the-art MTL 
models, demonstrating the utilise of morphological variation 
trend similarity calculations and tensor latent factor 
hypothesis in our MTL formulation. 2) The proposed tensor 
MTL method significantly improves the prediction stability. 
The results obtained through 20 iterations have a lower 

TABLE IV. THE TOP-10 RANK BRAIN BIOMARKER RELATIONSHIPS WITH TIME POINT M12 FOR THE PROPOSED TMTL-GB MODEL ON MMSE PREDICTION. 
Rank Biomarker relationship Weight parameter value 

1 Vol(C). of R.RostralMiddleFrontal (RMF.R) - Surf. Area of R.InferiorTemporal (ITG.R) 0.4560 
2 CTA. of L.SuperiorParietal (SPG.L) - Vol(C). of R.InferiorParietal (IPL.R) 0.4452 
3 CTA. of R.ParsTriangularis (PTRI.R) - CTA. of L.Bankssts (BAN.L) 0.4434 
4 Vol(WM). of CorpusCallosumMidAnterior (CCMA) - CTA. of L.TransverseTemporal (TTEM.L) 0.4402 
5 Vol(WM). of L.Caudate (CAU.L) - CTStd. of R.InferiorTemporal (ITG.R) 0.4274 
6 Vol(C). of L.SuperiorFrontal (SFGdor.L) - Surf. Area of L.SuperiorTemporal (STG.L) 0.4154 
7 Surf. Area of R.Pericalcarine (CAL.R) - Surf. Area of R.LateralOrbitofrontal (LORB.R) 0.4076 
8 Surf. Area of R.Postcentral (PoCG.R) - CTStd. of R.Insula (INS.R) 0.4057 
9 Vol(C). of L.ParsTriangularis (PTRI.L) - Vol(WM). of CorpusCallosumMidAnterior (CCMA) 0.4039 

10 Surf. Area of R.Paracentral (PCL.R) - Surf. Area of L.Precuneus (PCUN.L) 0.4010 
TABLE V. THE TOP-10 RANK BRAIN BIOMARKER RELATIONSHIPS WITH TIME POINT M24 FOR THE PROPOSED TMTL-GB MODEL ON MMSE PREDICTION. 

Rank Biomarker relationship Weight parameter value 
1 CTA. of R.ParsTriangularis (PTRI.R) - CTA. of L.Bankssts (BAN.L) 0.4707 
2 Vol(C). of R.RostralMiddleFrontal (RMF.R) - Surf. Area of R.InferiorTemporal (ITG.R) 0.4698 
3 Vol(C). of L.SuperiorFrontal (SFGdor.L) - Surf. Area of L.SuperiorTemporal (STG.L) 0.4671 
4 Vol(WM). of L.Caudate (CAU.L) - CTStd. of R.InferiorTemporal (ITG.R) 0.4576 
5 Vol(WM). of CorpusCallosumMidAnterior (CCMA) - CTA. of L.TransverseTemporal (TTEM.L) 0.4492 
6 Surf. Area of R.Paracentral (PCL.R) - Surf. Area of L.Precuneus (PCUN.L) 0.4482 
7 CTA. of L.SuperiorParietal (SPG.L) - Vol(C). of R.InferiorParietal (IPL.R) 0.4380 
8 Surf. Area of R.Postcentral (PoCG.R) - CTStd. of R.Insula (INS.R) 0.4312 
9 Vol(WM). of CorpusCallosumMidAnterior (CCMA) - Surf. Area of R.MiddleTemporal (MTG.R) 0.4196 

10 Surf. Area of L.CaudalMiddleFrontal (CMF.L) - CTA. of R.Bankssts (BAN.R) 0.4192 

TABLE VI. THE TOP-10 RANK BRAIN BIOMARKER RELATIONSHIPS WITH TIME POINT M36 FOR THE PROPOSED TMTL-GB MODEL ON MMSE PREDICTION. 
Rank Biomarker relationship Weight parameter value 

1 Vol(C). of R.RostralMiddleFrontal (RMF.R) - Surf. Area of R.InferiorTemporal (ITG.R) 0.5619 
2 CTA. of L.SuperiorParietal (SPG.L) - Vol(C). of R.InferiorParietal (IPL.R) 0.5093 
3 CTA. of R.ParsTriangularis (PTRI.R) - CTA. of L.Bankssts (BAN.L) 0.5080 
4 Vol(WM). of L.Caudate (CAU.L) - CTStd. of R.InferiorTemporal (ITG.R) 0.5049 
5 Vol(C). of L.SuperiorFrontal (SFGdor.L) - Surf. Area of L.SuperiorTemporal (STG.L) 0.4962 
6 Vol(WM). of CorpusCallosumMidAnterior (CCMA) - CTA. of L.TransverseTemporal (TTEM.L) 0.4851 
7 CTA. of R.ParsTriangularis (PTRI.R) - Surf. Area of R.Lingual (LING.R) 0.4739 
8 Surf. Area of R.Paracentral (PCL.R) - Surf. Area of L.Precuneus (PCUN.L) 0.4697 
9 Surf. Area of R.Postcentral (PoCG.R) - CTStd. of R.Insula (INS.R) 0.4660 

10 Vol(WM). of CorpusCallosumMidAnterior (CCMA) - Surf. Area of R.MiddleTemporal (MTG.R) 0.4659 
TABLE VII. THE TOP-10 RANK BRAIN BIOMARKER RELATIONSHIPS WITH TIME POINT M48 FOR THE PROPOSED TMTL-GB MODEL ON MMSE PREDICTION. 

Rank Biomarker relationship Weight parameter value 
1 Vol(C). of R.RostralMiddleFrontal (RMF.R) - Surf. Area of R.InferiorTemporal (ITG.R) 0.6197 
2 CTA. of R.ParsTriangularis (PTRI.R) - CTA. of L.Bankssts (BAN.L) 0.5943 
3 Vol(WM). of L.Caudate (CAU.L) - CTStd. of R.InferiorTemporal (ITG.R) 0.5679 
4 CTA. of R.ParsTriangularis (PTRI.R) - Surf. Area of R.Lingual (LING.R) 0.5444 
5 Vol(C). of L.SuperiorFrontal (SFGdor.L) - Surf. Area of L.SuperiorTemporal (STG.L) 0.5428 
6 Vol(WM). of CorpusCallosumMidAnterior (CCMA) - CTA. of L.TransverseTemporal (TTEM.L) 0.5420 
7 CTA. of R.ParsTriangularis (PTRI.R) - Vol(C). of R.LateralOccipital (LOCC.R) 0.5396 
8 CTA. of R.ParsTriangularis (PTRI.R) - Vol(WM). of R.Putamen (PUT.R) 0.5131 
9 CTA. of L.SuperiorParietal (SPG.L) - Vol(C). of R.InferiorParietal (IPL.R) 0.5111 

10 Surf. Area of R.Postcentral (PoCG.R) - CTStd. of R.Insula (INS.R) 0.5106 
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standard deviation compared to other comparative methods. 
This may be due to the addition of biomarker latent factors 
to the prediction algorithm to increase stability. 3) The 
proposed tensor multi-task ensemble learning can effectively 
aggregate the temporally continuous MRI records of subjects 
to improve the prediction accuracy, and with the increase of 
temporally continuous MRI records, the prediction accuracy 
increases for subsequent time points. In contrast, the addition 
of temporally continuous MRI records had no significant 
effect on benchmarks and state-of-the-art competitive 
methods.  

B. Interpretability of spatio-temporal relationships 
between biomarkers 
Currently, there is no cure for AD, therefore the key to 

current treatment is early detection and prevention of AD, 
therefore, identifying important spatio-temporal biomarker 
relationships in early MRI data can help clinicians to identify 
patients with suspected AD for early prevention. Tables IV, 
V, VI and VII provide the top 10 brain biomarker 
relationships in descending order of weighted parameter 
values for MMSE prediction (since the MMSE sample size 
was higher than the ADAS-Cog at all time points) at different 
time points for the proposed TMTL-GB model. Higher 
values indicate a greater impact on the final prediction.  

In Fig. 4, we observed a certain similarity in the plots of 
important brain biomarker relationships at different time 
points, indicating that there are a number of brain biomarker 
relationships that are consistently important in the 
progression of AD and that they can be utilised as potential 
indicators for the early identification of AD, and in 
combination with the above tables we discovered that several 
spatio-temporal relationships between brain biomarkers 
were significant at all time points. Specifically, they are 
Vol(C). of R.RostralMiddleFrontal - Surf. Area of 
R.InferiorTemporal, CTA. of L.SuperiorParietal - Vol(C). of 
R.InferiorParietal, CTA. of R.ParsTriangularis - CTA. of 

L.Bankssts, Vol(WM). of CorpusCallosumMidAnterior - 
CTA. of L.TransverseTemporal, Vol(WM). of L.Caudate - 
CTStd. of R.InferiorTemporal, Vol(C). of L.SuperiorFrontal 
- Surf. Area of L.SuperiorTemporal and Surf. Area of 
R.Postcentral - CTStd. of R.Insula.  

For Vol(C). of R.RostralMiddleFrontal - Surf. Area of 
R.InferiorTemporal, the frontal gyrus is related to a person's 
literacy and numeracy skills [41]; The inferior temporal 
gyrus is closely related to visual information processing, and 
abnormalities of the inferior temporal gyrus are associated 
with semantic memory disorders (e.g. AD), face blindness 
and cortical color blindness [42]. Both are related to the 
processing and implementation of information in the brain.  
  For CTA. of L.SuperiorParietal - Vol(C). of 
R.InferiorParietal, the superior parietal lobule is associated 
with spatially oriented brain functions; The inferior parietal 
lobule is associated with emotional cognition and the 
interpretation of sensory information, as well as with 
language, mathematical operations and bodily imagery [43]. 
This correlation can be a factor in causing decline estimation 
and analytical ability in AD. 

For CTA. of R.ParsTriangularis - CTA. of L.Bankssts, the 
pars triangularis is associated with the ability to translate 
from a second or third language back into the mother tongue, 
with its involvement in semantic processing [44]; Bankssts 
is the posterior part of the superior temporal gyrus, which is 
responsible for processing auditory signals, including speech, 
and the comprehension of language [45]. Both are correlated 
with the brain's linguistic response and semantic processing. 

For Vol(WM). of CorpusCallosumMidAnterior - CTA. of 
L.TransverseTemporal, the corpus callosum is a fibrous 
bundle of fibers linking the left and right hemispheres. It 
maintains coordinated activity between the two hemispheres 
and connects the corresponding parts of the left and right 
hemispheres, coordinating the activity between the two 
halves of the brain and making the brain function as one. If 

 
Fig. 4. Visualization for the top-10 rank brain biomarker relationships with different time points for the proposed TMTL-GB model on MMSE 
prediction. Visualization was performed by the toolkit of BrainNet Viewer [40]. The colors of the nodes represent the different biomarker 
categories and the thickness of the edges represents the importance of the relationship between the biomarkers, with thicker edges representing 
more important relationships between the biomarkers. 
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the corpus callosum is impaired, the activity of the two 
hemispheres is not coordinated [46]; The transverse temporal 
gyrus is the first cortical structure to process auditory 
information and is part of the primary auditory cortex [47]. 
This correlation can be one of the factors causing reduced 
physical coordination in AD.  

For Vol(WM). of L.Caudate - CTStd. of 
R.InferiorTemporal, the caudate nucleus is an important part 
of the brain's learning and memory system [48]; The inferior 
temporal gyrus is closely related to visual information 
processing. This correlation can be one of the factors that 
cause the decline of learning ability and memory in AD.  

For Vol(C). of L.SuperiorFrontal - Surf. Area of 
L.SuperiorTemporal, the superior frontal gyrus is involved 
in higher order cognitive functions of the brain, particularly 
working memory [49]; The superior temporal gyrus includes 
parts of the auditory cortex as well as the main areas of the 
language center [45]. This correlation can be a factor that 
causes the co-occurrence of language function and cognitive 
dysfunction in AD patients.  

For Surf. Area of R.Postcentral - CTStd. of R.Insula, the 
postcentral gyrus is the seat of the primary somatosensory 
cortex and is the nerve center of the somatosensory system 
[50]; The insula is thought to be associated with 
consciousness and to play a role in a variety of functions 
normally associated with the regulation of emotion or bodily 
homeostasis, these functions include perception, motor 
control, self-awareness, cognitive functions [51]. This 
correlation can be one of the factors that cause physical 
activity impairment in AD.  

AD is clinically characterized by generalized dementia 
manifestations such as memory impairment, agnosia, aphasia, 
apraxia, impairment of visuospatial skills, personality and 
behavioural changes, and executive dysfunction. We can 
observe that the important spatio-temporal relationships 
between brain biomarkers indicative of brain functions are 
all related to the clinical manifestations of AD. 

C. Clinical application 
In clinical application, our proposed approach can be 

utilised to obtain a patient's current MRI data and predict the 
patient's cognitive scores at multiple time points in the future, 
thereby helping clinicians and patients to detect the disease 
and implement intervention treatment in early stages. 
Moreover, patients suspected of AD will continue to go to 
the hospital for MRI testing in real-word application. 
Subsequent incremental MRI data is wasted if only the 
baseline model is used or if the patient's serial examination 
records cannot be properly integrated. To address this 
problem, we have applied the concept of ensemble learning 
to our approach, which allows the model to continuously 
receive MRI data from subjects and continuously update 
predictions of future cognitive scores with improved 
accuracy.  

VI. CONCLUSION 
We proposed a tensor multi-task ensemble learning 

method based on tensor decomposition for predicting AD 
progression at different time points to overcome variability 
and instability in prediction accuracy. In our framework, a 
prediction model is developed based on spatio-temporal 
morphological variation trend correlations across biomarkers 
and multi-task regression, utilising tensor latent factors as 
multi-task relationships to transfer knowledge and calculate 
final prediction results. Furthermore, the proposed approach 
utilises gradient boosting ensemble learning technique 
integrate temporally continuous MRI recordings to 
consistently improve predictive accuracy of AD progression. 
The results of the experiment demonstrate that correlation 
information can be utilised to identify variations in 
individual brain structures underlying AD, MCI, and CN, 
and support the utilisation of correlation data to predict and 
diagnose AD progression.  
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