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Adaptive Cooperative Control Strategy for a Wrist

Exoskeleton using Model-based Joint Impedance

Estimation
Yihui Zhao, Kun Qian, Sheng Bo, Zhiqiang Zhang, Member, IEEE, Zhenhong Li, Member, IEEE, Gu-Qiang Li,

Abbas A. Dehghani-Sanij, Member, IEEE, and Shengquan Xie, Senior Member, IEEE

Abstract—Wrist rehabilitation exoskeletons have gained much
attention over the last decades, striving to restore motor functions
for patients with neuromuscular disorders. Electromyography
(EMG) signal has been employed to estimate the motion in-
tention to achieve interactive training schemes. However, it is
a challenging task to estimate the joint impedance in real-
time, as it is a crucial parameter for control of exoskeletons.
This paper proposes an adaptive cooperative control strategy
for a wrist exoskeleton based on a real-time joint impedance
estimation approach. By explicitly interpreting the underlying
transformation in the muscular and skeletal systems, the pro-
posed approach estimates the motion intention and the joint
impedance of a human subject simultaneously without additional
calibration procedures and regulates the training trajectories
and assistance accordingly. Results indicate the proposed method
outperforms other training protocols, including the trajectory
tracking control and the fixed cooperative control. The proposed
control strategy provides an additional 66.25% motion deviation
when estimated joint torque increases 12.36%, which enhances
the training effectiveness and the interaction safety and promotes
subjects’ active engagement.

Index Terms—Wrist rehabilitation robot, electromyography,
musculoskeletal model, joint impedance, adaptive cooperative
control strategy.

I. INTRODUCTION

WRIST rehabilitation exoskeletons have been studied

in the last decades, striving to restore the motor

function for patients with neuromuscular disorders [1]. The

interactive training schemes have gained much attention as

they encourage the patients’ participation and promote motor

recovery [2]–[4]. For the interactive training schemes, the
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accuracy and reliability of motion intention estimation are

paramount for such control strategies.

Electromyography (EMG) signal offers a promising solution

given its ability to decode motion intention at the spinal

cord level and can be detected prior to the initiation of

movement [5], [6]. State-of-the-art EMG-based approaches

mainly employ regression algorithms that map EMG signals

to the motion intention through numerical functions [7]. For

example, Sierotowicz et al. presented a soft glove with a

control scheme to estimate motion intention based on the ridge

regression algorithm [8]. Wu et al. used a Gaussian radial

basis function network to estimate the motion intention for an

adaptive controller in the upper limb rehabilitation robot [9].

However, the regression algorithms require abundant training

data and are sensitive to movement artefacts. Additionally, they

fail to decouple the joint impedance property when trained

by the EMG signal and kinetic/kinematic data. In fact, the

joint impedance can vary substantially while kinetic/kinematic

outputs stay same. The exoskeleton should adapt to the joint

impedance to ensure the comfortable coordinated motion in

the interactive training scheme [10], [11].

To evaluate joint impedance, experimental measurements

are commonly conducted using the perturbation tech-

niques [12]–[15]. However, it becomes a challenging task to

estimate the joint impedance with the wearable exoskeleton

in real-time, as the joint impedance is influenced by muscle

activation patterns significantly. Efforts are made into inte-

grating the joint impedance with control strategies via EMG

signals [16], [17]. For instance, Antuvan et al. modulated

the stiffness parameter of the controller using the index of

muscle co-contraction around the joint [18]. Wu et al. utilised

a piecewise function to relate the stiffness of the robotic

manipulator to EMG signals in the demonstration learning

task [19]. Zeng et al. also utilised the EMG signal to map the

joint impedance profile into robot impedance controller [20].

These methods require rich and diverse experimental data for

calibration, which increases experimental and computational

costs.

To address these issues, a musculoskeleltal model has been

proposed to estimate the motion intention and joint impedance

simultaneously. The model-based approach explicitly reveals

the underlying non-linear transformation among the muscular

and skeletal systems. Pfeifer et al. employed an EMG-driven

model-based approach to estimate the knee stiffness which

coincides well with the conventional perturbation method [21].
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Zonnino et al. utilised a model-based approach to simulate

the wrist joint impedance profiles in active and passive condi-

tions [22]. However, it is unclear if the model-based approach

can be generalised to estimate the joint impedance in real time

when it is implemented for robot-aided wrist rehabilitation.

In this paper, we proposed an adaptive cooperative con-

trol strategy for a wrist exoskeleton using the model joint

impedance estimation method. A wrist EMG-driven muscu-

loskeletal model is first developed with the consideration of

wrist primary muscles. The wrist exoskeleton is adaptively

regulated in response to the instantaneous muscular efforts

and joint impedance profiles. The contributions of this paper

include: 1) by explicitly imitating the underlying transfor-

mation in the muscular and skeletal systems, the model-

based approach estimates the joint torque and joint impedance

simultaneously without additional calibration procedures. 2) A

new adaptive admittance controller is proposed based on the

proposed joint impedance estimation approach to regulate the

training trajectory and robot’s assistance, and 3) the integration

and performance evaluation of the EMG-driven model-based

approach and the interactive control strategy for robot-aided

wrist rehabilitation. The experiments are conducted on 12

healthy subjects. Results indicate the proposed method out-

performs other training schemes, including trajectory tracking

control and fixed cooperative control. The proposed control

strategy provides an additional 66.25% deviation when esti-

mated joint torque increases 12.36%.

The remaining sections of this paper are organised as

follows. Section II details the methodologies for real-time

estimation of joint impedance. The implementation of model-

based control strategy and experimental protocols are also

presented. Section III presents the results of the experimental

work. The validation of the model-based joint stiffness estima-

tion and the performance of the adaptive cooperative control

strategy are discussed in section IV. The final section draws

the conclusion.

II. METHODS

A. Wrist exoskeleton

The wrist exoskeleton is developed by the intelligent Reha-

bilitation Robotics Center at Leeds [23]. Fig. 1 illustrates the

wrist exoskeleton which consists of a customised frame, two

Festo Fluidic muscles and the sensory system. The pneumatic

muscles are used as actuators to drive the exoskeleton in the

flexion/extension movement. Each muscle has the effective

length of 9 cm and the maximum contraction length of 1.8 cm,

which results in the maximum range of motion (RoM) of

± 30 degree. The compliance of pneumatic muscle could

improve the system’s flexibility, safety, and comfort of the

human-machine system. Moreover, the muscle has advantages

such as the simple structure, light weight, and high power-

weight ratio, compared with conventional electric motors [24],

[25]. The sensory system includes two load cells connected in

line with the pneumatic muscles respectively. A potentiometer

aligned with rotation centre is utilised as an angle sensor. Two

proportional pressure regulators are used for pressure control

of two muscles respectively. All sensors are communicated

with the NI-myRIO controller. A custom LabVIEW program is

designed to process the sensing information and the proposed

model-based control strategy.

Fig. 1. Mechanical configuration of the wrist exoskeleton. PAM is the
abbreviation of pneumatic artificial muscle. (a) The CAD of the wrist
exoskeleton. (b) The configuration of steel wires enables flexion/extension
movement. (c) Sensory system.

B. Estimation of wrist joint impedance

To estimate the joint impedance, we first develop the EMG-

driven musculoskeletal model for the wrist joint. This is

because the musculoskeletal model should be optimised in

order to obtain the subject-specific physiological parameters.

The estimated joint torque is also utilised for the adaptive

cooperative control strategy.

The envelop of the sEMG signals (i = 1. . . 5) are first ob-

tained by filtering the raw signal using a 4th order Butterworth

band-pass filter (pass band at 20Hz and 450Hz). The filtered

signals are fully rectified and low-pass filtered by a 4th order

Butterworth low-pass filter at a corner frequency of 4 Hz. The

low-pass filtered signal is then normalised by the maximum

voluntary contraction (MVC), results in the enveloped signal

ui(t) (ranged between 0 and 1). Then a non-linear equation is

used to obtain the muscle activation ai(t) from the enveloped

signal, which can be written as [26]:

ai(t) =
eAui(t) − 1

eA − 1
(1)

where A is the non-linear shape factor that has the range

between 0.001 and -3.

The muscle-tendon model is modelled as an elastic tendon

connected in series with a muscle fibre, of which the relation-

ship between muscle fibre and tendon is written as:

lmi = (kil
mt
i − lti)cos

−1φi (2)

where lmi , lmt
i and lti represent the muscle fibre length, muscle-

tendon length and tendon length. The muscle-tendon length

lmt
i is obtained by regressing equations using the upper limb

model [27], and ki is a scale coefficient to address the subject-

specificity. φi is the pennation angle between muscle fibre
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and tendon. The tendon compliance is omitted for real-time

computation. The muscle-tendon force is computed by:

Fmt
i = (FCE,i + FPE,i) cosφi (3)

= [Fm
o,ifa(l

m

i,a)f(vi)ai(t) + Fm
o,ifp(l

m

i )] cosφi

where FCE,i and FPE,i are the active force generated by

muscle contraction and passive force generated by muscle

stretch, respectively. fa(l
m

i,a) and f(vi) denote the force-length

relationship and force-velocity relationship respectively. Fm
o,i

is the maximum isometric force. l
m

i,a is the normalization of

muscle fibre length lmi with respect to the muscle activation

and optimal music fibre length lmo,i [28]. l
m

i denotes the ratio

of muscle fibre length to the optimal muscle fibre length. The

detailed expressions of FCE,i and FPE,i can be found in [29]

and [26]. The wrist joint torque is then computed by:

τ̂ =

5
∑

i=1

riF
mt
i (4)

where τ̂ represents the estimated joint torque during motion

tasks. Moment arm ri of each muscle is determined by the

partial derivative of muscle-tendon length with respect to the

joint angle.

To obtain the subject-specific characteristics of the muscular

and skeletal properties, the parameters, including the optimal

muscle fibre length lmo,i, tendon length lti , maximum isometric

force Fm
o,i and optimal pennation angle φo,i, the non-linear fac-

tor A, and scale coefficient ki, are optimised by minimisation

of the difference between the estimation and joint torque from

the inverse dynamic. The default physiological parameters

and optimised range are given in Table I. The parameter

optimisation are conducted using the genetic algorithm in

MATLAB offline. Once the parameters are obtained, the joint

stiffness Kjoint can be derived by:

Kjoint =

5
∑

i=1

(r2iK
mt
i +

∂ri
∂θ

Fmt
i ). (5)

where Kmt
i indicates the stiffness of each muscle. The Kmt

i

is obtained by:

Kmt
i = KCE

i +KPE
i (6)

where KCE
i and KPE

i are the stiffness of the contractile

element and parallel element, respectively. Inclusion of the

elastic tendon, in which the numerical stiff equation increases

the computation burden of the muscle-tendon model, hurdles

the implementation of the EMG-driven model in real-time.

Therefore, the tendon is assumed as a rigid element in this

study, as the ratio of tendon slack length to muscle-fibre length

is small in wrist muscles [28]. The KCE
i is obtained by:

KCE
i =

γai(t)F
m
o,ifa(l

m

i,a)

lmo,i
(7)

where γ is set to 23.4 [22]. The KPE
i is calculated by the

slope of the passive force-length relationship to account for

the muscle fibre stiffness in absence of the muscle activation

ai(t). In specific, the KPE
i is obtained through:

KPE
i =

{

0.0751Fm
o,i l

m

i < 1

6.32Fm
o,i l

m

i ≥ 1.
(8)

TABLE I
PARAMETERS SETTING IN THE EMG-DRIVEN MODEL

Muscle Default Optimised Range Muscle Default Optimised Range

Fm
o

FCR 407

±50% lmo

FCR 0.062

±2.5%FCU 479 FCU 0.051

ECRL 337 ECRL 0.081

ECRB 252 ECRB 0.058

ECU 192 ECU 0.062

Muscle Default Optimised Range Muscle Default Optimised Range

lt

FCR 0.24

±5% φo

FCR 0.05

±5%
FCU 0.26 FCU 0.2

ECRL 0.24 ECRL 0.04

ECRB 0.22 ECRB 0.16

ECU 0.23 ECU 0.06

A -2 [-3,0.001] ki all muscle 1 [0.9,1.2]

C. Control strategy

The proposed control strategy consists of a position con-

troller and an admittance controller. The position controller

is used to ensure the tracking performance for the trajectory

tracking control that is implemented to guide the subject’s

wrist joint following the reference trajectory [30], [31]. The

parameters Kp, Ki and Kd are well-tuned to minimise the

tracking errors (Kp = 4.65; Ki = 0.0075; Kd = 0.00225),

which results in the max error of 10% and root-mean-square

error (RMSE) of 0.0129 rad respectively.

Fig. 2. The block diagram of the proposed adaptive control strategy for the
wrist exoskeleton.

The admittance controller is utilised to determine the devi-

ation of the trajectory in response to estimated joint torque.

The transfer function of the admittance controller is written

as:

θd(s) = θr(s) +
CrT̂ (s)

Ms2 +Bs+K
(9)

where θd and θr are the desired trajectory and reference trajec-

tory respectively. Cr is the cooperative ratio. T̂ (s) denotes the

joint torque obtained from the EMG-driven musculoskeletal
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model. The M,B and K are the mass, damping and stiffness

parameters of the admittance controller. Furthermore, the wrist

exoskeleton should provide adjustable compliance to guarantee

the safety during the rehabilitation exercise. This is achieved

by relating the impedance model to the subjects’ joint stiffness

Kjoint. The stiffness parameter K of the admittance controller

is linearly adapted by:

K = Kmax − (Kmax −Kmin)
Kjoint −Kmin

joint

Kmax
joint −Kmin

joint

(10)

the Kmax and Kmin are determined empirically, which are set

to 10 and 3 respectively. The damping parameter B is shown

that it has a linear relationship to K [32]. Therefore, in this

study, the damping parameter is chosen as:

B = 0.2
√
K. (11)

To avoid the instability of the control system and enhance

safety, an additional saturation function is implemented.

D. Experimental Protocol

Twelve healthy subjects (aged between 27 and 30) par-

ticipated in this study. Prior to the experiment, participation

consent forms are signed by all subjects. All subjects have no

reported wrist muscular disorders and can perform the wrist

flexion/extension in full RoMs. This experiment is approved

by the MaPS and Engineering Joint Faculty Research Ethics

Committee of the University of Leeds (MEEC 18-002).

This first experiment is conducted to obtain the subject-

specific EMG-driven model and to validate the estimated

joint stiffness. To measure the EMG signal, electrodes (Del-

sys quattor sensor) are attached over four wrist muscles,

including Flexor Carpi Radialis (FCR), Flexor Carpi Ulnaris

(FCU), Extensor Carpi Radialis(ECR), Extensor Carpi Ul-

naris (ECU). The raw EMG signal of ECR is assigned to the

Extensor Carpi Radialis longus (ECRL) and Extensor Carpi

Radialis Brevis (ECRB), as these two muscles are closely

adjacent. The placement of electrodes is first based on the

palpation. The qualities of the signal are evaluated through

the Delsys data acquisition software. The sampling frequency

is 2000Hz.

To record the motion data, two inertia measure units (IMUs)

are attached to the third metacarpal bones and back of the

forearm respectively. The sampling frequency is 256Hz. A

Kalman filter is used to compute the wrist flexion/extension

motion. Before the experiment, subjects are asked to perform

the MVCs for muscle activation normalisation. Then subjects

are asked to perform the continuous wrist flexion/extension

motion for the subject-specific parameters optimisation. Each

motion trial lasts 15 seconds and 2 trials are recorded. Since

IMUs are sampled at 256Hz, all sensor data are resampled

and synchronised at 1000Hz for data processing.

The second experiment is conducted to evaluate the pro-

posed adaptive cooperative control strategy. Three training

protocols, namely, trajectory tracking control (TTC), fixed

cooperative control (FCC), and adaptive cooperative control

(ACC) are tested. For FCC and ACC, two different cooperative

Fig. 3. Experiment setup. The wrist exoskeleton guides the subject’s wrist
following the predefined trajectory. The sEMG signal is recorded from the
primary wrist muscles.

ratios are utilized to evaluate the performance. In specific, each

training protocol is defined as,

1) The first training protocol (TTC) is conducted without

the cooperative control strategy (Cr = 0). The joint

torque τ̂ and muscle activation levels ai(t) are monitored

at the same time.

2) The second protocol (FCC) is conducted with the fixed

admittance parameters, of which the M , K and B are set

to 0.15, 10 and 0.63. Two cooperative ratio (Cr = 0.3
and 0.6) are used in FCC. In this experiment, the desired

trajectory is determined by the estimated joint torque

solely.

3) The third protocol (ACC) is conducted with the pro-

posed adaptive control strategy. Two cooperative ratio

(Cr = 0.3 and 0.6) are also utilised in the ACC. In this

experiment, the robot’s behaviour is regulated according

to the estimated joint torque and joint stiffness.

During experiments, subjects are encouraged to involve their

voluntary effort. The reference trajectory of all experiments

is set as a sine-wave with the amplitude of 0.25 rad and

frequency of 0.05Hz. In addition, the deviation is limited

between ±0.45 rad, which is close to the maximum ROM of

the wrist exoskeleton. Each protocol contains three trials and

each trial lasts 60 seconds. For all experiments, a five-minute

rest is given between trials to prevent muscle fatigue.

E. Performance Index

Three performance indexes are evaluated, including RMSE,

root-mean-square of estimated joint torque (RMSτ ), and root-

mean-square of the deviation (RMSdev). The RMSE between

the desired trajectory (reference trajectory for TTC) and

measured trajectory is calculated to evaluate the tracking

performance. To compare the performance between different

training protocols, the ratio of the RMSτ and RMSdev is

computed by:

rtd = RMSτ/RMSdev (12)

where rtd represents the robot’s compliance. In specific, a

larger value means the wrist exoskeleton modifies the trajec-

tory slightly, which indicates a smaller robot’s compliance.

Separate one-way analysis of variance (ANOVAs) are con-

ducted for each experiment. RMSE is used as the response
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TABLE II
RESULTS OF JOINT STIFFNESS ESTIMATION ACROSS ALL SUBJECTS.

Subject Index

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Mean Std.

Passive stiffness 0.81 0.43 0.41 0.19 0.21 0.55 1.17 2.22 0.83 0.64 0.83 1.06 0.78 0.55
Active stiffness 14.31 7.27 11.44 7.45 10.07 9.14 9.56 16.48 6.30 10.51 8.86 14.94 10.53 3.22

* Nm/rad.
* Active stiffness is calculated at neutral position with flexor activation of 15% MVC.
* Std. = standard deviation.

variable. A post-hoc analysis using Tukey’s Honest Significant

Difference test is applied. The significance level is set at

p < 0.05.

III. RESULTS

A. Joint stiffness estimation

After optimisation, the personalised physiological parame-

ters are used to estimate the joint stiffness based on equa-

tion (5). Additional, the parameters and MVCs are stored

for further implementation in the proposed control strategy.

In specific, the passive and active stiffness are validated by

comparing with measurements in the literature respectively.

The passive joint stiffness is simulated at the zero muscle

activation level (ai(t) = 0) and neutral position (θm = 0).

The active joint stiffness is emulated at the neutral position

(θm = 0) while the flexor are activated around 15% MVC

(a1,2(t) = 0.15), as reported in [33] and [34].

The results across all subjects are presented in Table II.

The passive joint stiffness has a range from 0.21Nm/rad
to 2.22Nm/rad, while the active joint stiffness has a range

from 7.45Nm/rad to 16.48Nm/rad. The mean passive and

active joint stiffness are 0.78 ± 0.55 Nm/rad and 10.53 ±
3.22 Nm/rad respectively. Fig. 4 elucidates the comparison of

the passive joint stiffness with measurements in the literature.

Table III gives the comparison between the model estimation

and reported mean value under the same condition. Results

yield that the estimated active stiffness has the similar value

compared with [33], but slightly larger than [34].

0.0
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Formica et al.,

Durand et al.,

Axelson et al.,

Leger et al.,

Pando et al.,

Model estimation

Fig. 4. Comparison of the estimated passive stiffness with measurements in
the literature. Prior measurements has the range from 0.554Nm/rad in [35],
0.89 ± 0.18 Nm/rad in [15],0.554Nm/rad in [36], 2.2Nm/rad in [12] and
0.85 ± 0.007 Nm/rad in [13].

TABLE III
COMPARISON OF ACTIVE JOINT STIFFNESS WITH MEASUREMENTS IN THE

LITERATURE.

Study Contraction Active stiffness Model estimation

Halaki et al. [33] Flexor 10.5 ± 0.4 10.53 ± 3.22

Milner et al. [34] Flexor 9.22± 6.60 10.53 ± 3.22

* Unit = Nm/rad (standard deviation)
* Active stiffness is calculated at neutral position with flexor activation of

15% MVC.

B. Adaptive cooperative control

1) Statistical results: Each experiment contains 36 trials

(n = 36) for statistical analysis. Fig. 5 and Table IV give the

results of performance indexes with respect to the different

training protocols. The mean RMSE of TTC is 0.0264 ± 0.008

rad. The post-hoc tests show that TTC is significantly different

from other experiments (p < 0.001). The mean RMSE are

0.0172 ± 0.002 rad and 0.0171 ± 0.002 rad for FCC with 0.3

Cr and 0.6 Cr respectively. The mean RMSE are 0.0186 ±
0.002 rad and 0.0214 ± 0.006 rad for ACC with 0.3 Cr and

0.6 Cr respectively.

TABLE IV
MEAN RMSE (rad), RMSτ (Nm), RMSdev (rad) AND THE RATIO FOR

ALL TRAINING PROTOCOLS.

TTC FCC (Cr=0.3) FCC(Cr=0.6) ACC(Cr = 0.3) ACC(Cr=0.6)

RMSE 0.0264 0.0172 0.0171 0.0186 0.0214
RMSτ 0.316 0.382 0.353 0.392 0.431
RMSdev N/A 0.012 0.022 0.017 0.042
Ratiortd N/A 32.870 16.435 25.093 11.711

The mean RMSE significantly decreases when the coopera-

tive control strategies are applied. Small RMSEs are found

in FCC with two different cooperative ratios are applied.

However, no significant difference is found between FCC with

two different cooperative ratios (p = 1). The ACC with 0.3

Cr is not significant different to ACC with 0.6 Cr (p = 0.104)

and the FCC with 0.3 Cr (p = 0.718). However, there is a

significant difference between ACC with 0.6 Cr and FCC with

0.6 Cr (p = 0.002).

The ratio of the RMSτ and RMSdev is calculated for

fixed cooperative control and adaptive cooperative control

respectively. The FCC with 0.3 Cr has the largest rtd among

training protocols (32.87). The ACC with 0.3 Cr also has

a large rtd (25.09), but is smaller than the FCC with 0.3

Cr. In addition, the smallest rtd is found in ACC with 0.6
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Fig. 5. Performance indexes of each training protocol. (a) RMSE; (b) RMSτ ;
(c) RMSdev; (d) The ratio of RMSτ and RMSdev.

Cr (11.71), compared with FCC with 0.6 Cr (16.44). This

indicates the wrist exoskeleton becomes more compliant when

the wrist joint stiffness is taken into account. Fig. 6 illustrates

the exoskeleton’s behaviour in each training protocol when the

subject produces the voluntary effort. The similar joint torque

output of one representative subject in wrist flexion direction

is chosen.
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Fig. 6. Representative example of the exoskeleton’s behaviour in each training
protocol. The top figure shows the tracking performance of TTC when the
subject actively participated. The middle figure indicates the input pressures.
The bottom figures indicate the trajectory deviations in training protocols.

Fig. 7(a) and Fig. 7(b) illustrate the tracking performance

of the ACC with two different cooperative ratios. The RMSE

are 0.0174 rad and 0.0255 rad when the cooperative ratio is set

to 0.3 and 0.6 respectively. The real-time adaptation of admit-

tance parameters is also presented in the figure. In the third

training protocol, stiffness and damping parameters increase

as muscular efforts decrease while parameters decrease as

muscular efforts increase. These parameters are also affected

by the joint position. For example, at around 10 second of

Fig. 7(a), the reference trajectory deviates more in flexion. In

Fig. 7(b), the exoskeleton reaches a larger deviation when a

larger cooperative ratio is used.

IV. DISCUSSION

A. Joint stiffness estimation

The passive and active joint stiffness are derived through the

EMG-driven musculoskeletal model. To evaluate the estimated

joint stiffness, we compare the model estimation with the

measurements reported in the literature which are obtained

through the perturbation approaches. In specific, the passive

joint stiffness is determined by the passive torque-angle curve,

i.e., the wrist joint is passively driven from the neutral position

to the certain RoMs. Likewise, the active joint stiffness is

determined with the external perturbation, i.e., the position

perturbations are applied to the wrist joint while the subject

maintains a constant level of torque or EMG level [37]. The

regression algorithms are then utilised to infer the relationship

between muscle activities, joint position, and joint impedance.

For the passive stiffness, the model estimation has the

mean value of 0.78 ± 0.55 Nm/rad. Prior studies reported

the passive stiffness in wrist flexion/extension range from

0.554Nm/rad (toward flexion) and 1.021Nm/rad (toward

extension) in [35], 0.89 ± 0.18Nm/rad in [15], 0.554Nm/rad
in [36], 2.2Nm/rad in [12] and 0.85 ± 0.007 Nm/rad in [13].

The estimated passive joint stiffness in this study is within

the middle range of the reported value. Likewise, the active

stiffness is compared with [34] and [33]. The estimated joint

stiffness is consistent with measurements from the literature.

Furthermore, the age group reported in the literature, either

for passive or active joint stiffness, covers the age group

tested in this study. The results reveal that the EMG-driven

musculoskeletal model shows the capability to interpret the

wrist joint impedance during the motion tasks.

It is noticed that the optimised trial for each subject does

not exceed the limits of the wrist’s RoMs, in which passive

stiffness is mainly characterised by the stretch of muscle

tissues [34]. The active joint stiffness is dominated by the

muscle contraction. This study emulates the active stiffness

at the neutral position. The active stiffness varies over the

wrist’s RoM. This can be explained by the active force-

length curve in response to the variability of the muscle

fibre length during motion tasks. Additionally, the muscle

co-contractions contribute to the active joint stiffness signif-

icantly, which is caused by the increased number of cross

bridges [38]. The joint stiffness varies across the subjects,

which has the range from 0.21Nm/rad to 2.22Nm/rad and

7.45Nm/rad to 16.48Nm/rad for passive stiffness and active

stiffness respectively. The large variation can be explained

by the optimised muscular parameters in the EMG-driven

musculoskeletal model, such as the maximum isometric force,

tendon slack length, and muscle-tendon length. The kinematic

data is used to optimise these parameters which may lead to

estimation errors. It is difficult to measure the dynamic joint

torque when the exoskeleton is donned, due to the inherent

compliance of the pneumatic actuators. Future work will carry
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Fig. 7. Representative examples of the adaptive cooperative strategy with two different cooperative ratios. (a) For ACC with 0.3Cr (left), the RMSE
is 0.0174 rad. RMSτ and RMSdev are 0.445Nm, and 0.021 rad. (b) For ACC with 0.6Cr (right), the RMSE is 0.0255 rad. RMSτ and RMSdev
are 0.633Nm and 0.074 rad respectively.

out to apply a rigid apparatus to obtain the subject-specific

muscular parameters in the model.

Understanding the joint impedance of the patient is essential

for the assessment of motor function disorders after stroke

[39], [40]. One of the most prevalent symptoms and a key

source of impairment is the increased joint stiffness [35]. This

may be due to the alteration of the intrinsic muscle properties,

resulting in the abnormal joint stiffness [14]. The methods

used to evaluate the subject’s joint stiffness provide the vital

information for robot-aided therapy. In another word, the

estimated joint stiffness not only can be used to facilitate the

clinical assessment and the evaluation of therapeutic efficacy

but also can be conducive to the interactive training scheme.

However, the regression algorithms used in the prior studies

are difficult for real-time implementation. Rich and diverse

experimental data are required to establish the relationship

between stiffness, joint position, and muscle activation. The

proposed method provides a feasible solution to the real-time

computation of joint stiffness.

B. Adaptive cooperative control

To improve rehabilitation efficacy and safety, the adaptive

cooperative control strategy is proposed. During the repetitive

motion exercise, the EMG-driven musculoskeletal model con-

tinuously evaluates the muscular effort and joint impedance.

The wrist exoskeleton’s response is then adaptively regulated

with respect to the joint impedance. The mean RMSE of TTC

is significantly greater than in other experiments when the

subject actively participates in the experiment, as shown in

Fig. 5(a). This can be explained by the backdrivability of the

pneumatic actuated wrist exoskeleton, which ensures safety in

rehabilitation but leads to large tracking errors. Eventually, it

may cause discomfort or injury to the wrist joint if the robot

still follows the reference trajectory.

To evaluate the performance of the proposed ACC, the

effects of FCC and ACC are compared with the different

Cr. The rTD shows that the exoskeleton becomes more

compliant in ACC in both ratios when compared with FCC.

Statistical results show that the mean RMSEs are similar to

two Crs in FCC, but a larger deviation is found when a

higher ratio is applied. Moreover, it is found that the ACC has

increased RMSE compared with FCC in the corresponding

Crs. This may be caused by the selection of the stiffness

parameters, which leads to large compliance at the minimum

stiffness parameter. The wrist exoskeleton provides the largest

RoMs when the cooperative ratio is set to 0.6 in ACC. This

reveals that the proposed ACC mainly takes account of the

minimisation of the tracking errors under a small cooperative

ratio. In contrast, the exoskeleton becomes more compliant to

ensure safety when the cooperative ratio is set to a large value.

The proposed ACC presents advantages compared with FCC

based on the fact that the robot is capable of adapting the

compliance according to wrist joint stiffness. This increases

the robot’s backdrivability in the training while maintaining

adequate tracking performance.

The tracking error could be alleviated by employing the

Euler-Lagrange system for the exoskeleton. For example,

Roy et al. proposed the adaptive sliding mode control and the

time-delayed adaptive-robust control for the Euler-Lagrange

system to improve the effectiveness and robustness of tra-

jectory tracking [41], [42]. Moreover, Zhao et al. proposed

the optimisation-based control and the multi-domain hybrid

model for the lower-limb prostheses to reduce the tracking

error and improve energy efficiency [43]. Liang et al. proposed
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the energy-based control for the 2-link PAM actuated robot to

achieve accurate trajectory tracking control [44]. Nevertheless,

the paper aims at designing the high-level controller that

combines the EMG-driven musculoskeletal model and control

strategy to enhance the safety and effectiveness of robot-aided

wrist rehabilitation.

C. Muscle Models

The Hill’s muscle model used in this paper is a static model.

Nevertheless, this model contains many subject-specific phys-

iological parameters that are well-tuned for each subject. The

optimised model can interpret the subject’s muscular efforts

and joint impedance profiles simultaneously. Moreover, the

stiffness and damping parameters in the proposed control strat-

egy are dynamically varied in relation to the joint impedance.

There are other muscle models are used to describe and

identify the dynamic properties of the musculoskeletal system

based on the spring-damping system. The springs and dampers

are utilised to interpret the stiffness and viscosity of the muscle

fibre whereas the contractile element and passive parallel

element are used in the Hill’s muscle model. Moreover,

the value of springs and dampers is determined by fitting

the model response to experimental observations during the

external perturbation. In contrast, the nominal physiological

parameters in Hill’s muscle model are obtained from cadavers’

measurements and then personalised for each subject based on

optimisation algorithms. In addition, it is found that the spring-

damper system may not describe the fundamental dynamic

properties of the musculoskeletal system, i.e., the non-linear

force-length-velocity relationship in the Hill’s muscle model,

and it is sensitive to the measurement error [45].

D. Limitations and Future work

There are several limitations in the current study. Firstly, this

study is experimentally validated only on healthy subjects. We

will recruit more subjects, including patients with neurological

diseases, to investigate and evaluate the proposed model-based

joint impedance estimation method and control strategy. Sec-

ondly, this study utilises the PID controller for the trajectory

tracking. We will carry on improving the tracking performance

by employing pneumatic muscle modelling techniques and

Euler-Lagrange dynamics. Finally, EMG-driven models will

be employed to design more interactive control strategies for

the robot-aided wrist rehabilitation.

V. CONCLUSION

This paper proposes the adaptive cooperative control strat-

egy for the wrist rehabilitation exoskeleton using the model-

based estimation method. To the authors’ best knowledge,

this is the first time to effectively combine the EMG-driven

model-based approach and the interactive control strategy for

the robot-aided wrist rehabilitation. Experimental evaluation

conducted on 12 healthy subjects affirms the mean passive

joint stiffness and active stiffness fall into the middle range

of measurements reported in the literature. The adaptive co-

operative control strategy is proposed that adaptively regulates

exoskeleton’s response with respect to the voluntary muscular

efforts and joint impedance profile. Experimental results show

that ACC outperforms other training protocols. The proposed

adaptive cooperative control strategy shows the potential to

enhance the training efficacy and safety for robot-aided wrist

rehabilitation.
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