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Incorporating Neighboring Stimuli Data for

Enhanced SSVEP-Based BCIs
Jiayang Huang, Pengfei Yang, Member, IEEE, Bang Xiong, Quan Wang, Bo Wan, Ziling Ruan, Keyi Yang, and

Zhi-Qiang Zhang, Member, IEEE

Abstract—Various spatial filters have been proposed to enhance
the target identification performance of steady-state visual evoked
potential (SSVEP)-based brain-computer interfaces (BCIs). The
current methods only extract the target-related information from
the corresponding stimulus to learn the spatial filter parameter.
However, the SSVEP data from neighboring stimuli also contain
frequency information of the target stimulus, which could be
utilized to further improve the target identification performance.
In this paper, we propose a new method incorporating SSVEPs
from the neighboring stimuli to strengthen the target-related
frequency information. First, The spatial filter is obtained by
maximizing the summation of covariances of SSVEP data cor-
responding to the target and its neighboring stimuli. Then the
correlation features between spatially filtered templates and test
data are calculated for target detection. For the performance
evaluation, we implemented the offline experiment using the 40-
class benchmark dataset from 35 subjects and the 12-target self-
collected dataset from 11 subjects. Compared with the state-
of-art spatial filtering methods, the proposed method showed
superiority in classification accuracy and information transfer
rate (ITR). The comparison results demonstrate the effectiveness
of the proposed spatial filter for target identification in SSVEP-
based BCIs.

Index Terms—Brain-computer interfaces (BCIs), neighbor-
ing stimuli, spatial filter, steady-state visual evoked potential
(SSVEP).

I. INTRODUCTION

Brain-computer interfaces (BCIs) have emerged as the direct

channel for people to interact with the outside world through

brain activities [1]. Due to high signal-to-noise ratios (SNRs)

and fast information transfer rates (ITRs) [2], the steady-

state visual evoked potential (SSVEP)-based BCI [3] has been

one of the most popular electroencephalography (EEG)-based

BCIs [4]. Specifically, SSVEP-based BCIs have been used

in varieties of applications, such as prosthesis control [5],

spelling [6], and robot control [7].
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Target identification is an essential step for constructing

SSVEP-based BCIs, which is to translate SSVEP signals into

commands [8]. So far, researchers have proposed various

spatial filters for target identification in SSVEP-based BCIs

[9]. Canonical correlation analysis (CCA) [10], the most

widely used spatial filter, was used to find a pair of weights

for the maximal correlation coefficient between EEG signals

and sine-cosine reference signals. To further boost the SSVEP

detection performance, expansions of CCA developed from

two aspects. On the one hand, CCA was combined with signal

processing techniques, such as filter bank CCA (FBCCA)

[11], binary subband CCA (BsCCA) [12], and multivariate

variational mode decomposition CCA (MVMD-CCA) [13],

to extract SSVEP harmonic frequency information for target

recognition. On the other hand, individual calibration data

was incorporated into CCA, such as L1-regularized multi-

way CCA (L1-MCCA) [14], multi-set CCA (MsetCCA) [15],

individual template CCA (IT-CCA) [16], and extended CCA

(eCCA) [17], to improve the SSVEP frequency detection

performance. Besides CCA-based expansions, Nakanishi et

al. introduced task-related component analysis (TRCA) into

SSVEP-based BCIs [18] by maximizing the inter-trial co-

variance of individual data. Zhang et al. proposed correlated

component analysis (CORCA) [19] to construct template

signals by maximizing inter-subject covariance. Kiran Kumar

et al. proposed the sum of squared correlation (SSCOR)

method [20] to maximize inter-session individual data. In the

aforementioned algorithms, the spatial filters were obtained

with SSVEP data corresponding to the target stimulus, but the

information from other stimuli was understudied. It is reported

that SSVEPs from different stimuli share a common spatial

pattern [21] [22], so incorporating data from other stimuli

to train the spatial filter would make further improvements

in target detection [18]. Moreover, according to the compet-

itive interactions of SSVEPs [23] [24], the target SSVEPs

contain frequency information from neighboring stimuli at

close distance, and vice versa. Therefore, SSVEPs across

neighboring-location stimuli share a common spatial pattern

and contain common frequency information. In this way,

utilizing the training data from not only the target stimulus but

also the nearby-location stimuli to train a spatial filter would

be an effective way to improve target frequency detection

performance.

To further enhance the target detection performance of

SSVEP-based BCIs, SSVEP data from other stimuli was also

utilized in some previous studies. For instance, Cohen et

al. proposed rhythmic entrainment source separation (RESS)
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[25] which directly suppresses the adjacent frequencies from

the target SSVEP. Zhang et al. proposed a multi-objective

optimization-based high-pass spatial filtering method (termed

as MOO) [26] to reduce the influence of target-irrelevant

information by minimizing the correlation between the target

and other stimuli SSVEPs. Both methods suppress the adjacent

frequency information to improve the target detection perfor-

mance, which would lose target-related frequency information

from other stimuli. Nakanishi et al. proposed ensemble TRCA

(eTRCA) [18] which integrates the spatial filters from all tar-

gets to make further improvements, but the ensemble technique

would yield redundancy and greatly increase the computa-

tion costs. Wong et al. proposed multi-stimulus eCCA (ms-

eCCA) and multi-stimulus eTRCA (ms-eTRCA) [27] which

concatenates EEG data from the target and its neighboring

stimuli for spatial filter training. Here, the neighboring stimuli

denote the stimuli with nearby flickering frequencies. The

multi-stimulus methods utilized the information from nearby-

frequency stimuli to extract target-related components, but

they neglected the neighboring-location stimuli which do not

flash at nearby frequencies.

To address the drawbacks above, a new method incorpo-

rating SSVEP data from the neighboring-location stimuli is

proposed to enhance the target identification performance of

SSVEP-based BCIs. The main contributions of this study

include: 1) a novel spatial filtering method is introduced,

which incorporates SSVEP data from neighboring-location

stimuli to strengthen the target-related frequency information;

2) the spatial filter can effectively improve the target detection

performance and save computational costs; 3) a more efficient

training process, which works with small training data while

achieving high classification performance; 4) a self-collected

SSVEP dataset containing 12 visual stimulations to verify the

effectiveness of this proposed algorithm. The proposed method

is also verified by the 40-class benchmark dataset [28] with

the offline experiment. Extensive comparisons were conducted

with MVMD-CCA, TRCA, SSCOR, RESS, MOO, and ms-

TRCA on classification performance. The experimental results

illustrate the superiority of the proposed spatial filter in the

aspects of classification accuracy, ITR, sensitivity, and speci-

ficity, which demonstrates the efficiency of using SSVEP data

from the target and its neighboring stimuli for improving the

target identification performance of SSVEP-based BCIs. The

rest of the article is arranged as follows: Section II introduces

the materials and methods. In section III, the experimental

results with discussions are reported. Finally, the conclusion

is presented in the last section.

II. MATERIALS AND METHODS

A. Data Description

The public benchmark dataset [28] and a self-collected

dataset (termed Dataset I) were used in this study. The

benchmark dataset consists of 64-channel EEG data collected

from 35 healthy subjects stimulated by 40 stimuli, which is

modulated at 8–15.8 Hz frequencies with an interval of 0.2

Hz and 0-1.5π phases with an interval of 0.5π using joint

frequency and phase modulation (JFPM) [29]. The collected

data were downsampled to 250 Hz. The dataset contains 6-

block data, and each block is comprised of 0.5-s gaze shifting

cue, 5-s stimulation, and 0.5-s rest. The EEG data from

9 channels (Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and

O2) were used for performance evaluation in this study. In

addition, the details of the self-collected dataset are described

as follows.

1) Subjects: Eleven healthy subjects who participated in

this study (four females and seven males, aged from 23 to

27) have normal or corrected-to-normal vision and no brain-

related diseases. During the experiment, each subject was

asked to sit in a comfortable position in a dark and silent

room at a distance of 60 cm in front of the LCD screen

(Fig. 1(a)). All subjects were informed of the experimental

process and protocols and signed the informed consent before

the experiment. The experiment is approved by the Research

Ethics Committee of Xidian University under Application No.

20200017.

2) Stimulation Interface Design: In this study, a 4×3 matrix

of visual stimuli was designed, which is coded by the JFPM

method. The interface was displayed on a 23.6-inch LCD

screen which has a 1920-×1080-pixel resolution and a 60-

Hz refresh rate. The frequency ranged from 9.25 Hz to 14.75

Hz with an interval of 0.5 Hz, and the phase range was from

0π to 1.5π with an interval of 0.5π [18] [28]. The stimulation

program was coded with MATLAB using the Psychophysics

Toolbox Version 3 [30].

(a) (b) (c)

Fig. 1. The EEG recording environment is shown in (a). The electrodes used for EEG collection are circled in yellow (b). The experimental paradigm design
is presented in (c).
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3) EEG Collection: The EEG collection equipment is

g.USBamp-Research with 256-Hz sampling rate. According

to the 10-20 standard system, 9 Ag/AgCl electrodes (Pz, PO7,

PO3, POz, PO4, PO8, O1, Oz, and O2) were selected from the

parietal and occipital regions (Fig. 1(b)) which is the reflection

zone of SSVEP signals. The ground and reference electrodes

were placed at FPz and right earlobe respectively. During the

EEG collection, electrode impedances were kept below 10 kΩ
and an event trigger produced by the stimulation program was

sent through the parallel port to the amplifier and computer

simultaneously. The event trigger was to mark the time when

all stimuli began to flash simultaneously. For each subject, 6-

block EEG data were collected in the BCI experiments. The

same as the benchmark dataset, each block contains 0.5-s cue,

5-s stimulation, and 0.5-s rest. During the stimulation, subjects

were asked to avoid eye blinks. To prevent visual fatigue,

there was a two-minute rest between two successive blocks

(Fig. 1(c)).

B. Data Preprocessing

Firstly, the 9-channel EEG data epochs were extracted as

[0.64 s 0.64+d s] according to the 0.5-s cue and the 0.14-

s visual latency, where d is the size of the time window for

target recognition. And then, all the extracted data epochs were

filtered by a 6-order Butterworth filter with the 7-90 Hz band.

A notch filter at 50 Hz is utilized to eliminate the power-

line noise. After the preparation was completed, all the data

processing and target detection were then performed.

C. Target Identification Method

In this section, the spatial filter using SSVEP data from the

target and its neighboring stimuli is introduced and used as

the target identification method. We will elaborate on neighbor

definition, spatial filter training, and testing below.

1) Neighbors Definition: As shown in the figure 2, the

neighbors of the n-th stimulus are defined as the horizontally

and vertically adjacent stimuli. Due to the location of the target

stimulus, the number of its neighbors m varies between 2 and

4. To simply the description, we denote the neighbors of n-th

stimulus as the l1n-th, l2n-th, ..., lmn -th stimuli.

2) Training stage: The individual calibration data for the n-

th stimulus are denoted as Xn ∈ R
Nc×Ns×K , where Nc, Ns,

and K represent the number of channels, the data length of

the data epoch, and the number of training trials respectively.

Fig. 2. The neighbors of the target stimulus are defined as its horizontally and
vertically adjacent stimuli, and the number of its neighbors varies between 2
and 4.

For any trial h (h = 1, 2, · · · ,K), the calibration data for the

n-th stimulus is denoted as X
h
n ∈ R

Nc×Ns , so that

Xn =
[

X
1

n,X
2

n, · · · ,X
K
n

]

. (1)

The collection of the neighbors of the n-th stimulus is defined

as

Y n =
{

X l1
n
,X l2

n
, · · · ,X lm

n

}

, (2)

where X li
n

is the training data from lin-th stimulus, and i =
1, 2, · · · ,m. In this method, both Xn and Y n are used as the

training data to obtain the spatial filter for the n-th stimulus.

With the training data, the filter bank technique [11] is first

applied to extract information from the harmonic frequencies.

The subbands of the filter bank are implemented by zero-phase

Chebyshev type I infinite impulse response (IIR) filters. The

b-th subband is at the frequency range of [b×8 Hz, 88 Hz].

For each subband, there adds 2 Hz bandwidth to both sides

of the passband. For each X
h
j , it will be decomposed into Nb

sub-band components X
h,1
j ,X

h,2
j , · · · ,X

h,Nb

j , where j =
1, 2, · · · , Nf , Nf is the number of stimuli and Nb is the total

number of subbands.

For each subband b (b = 1, 2, · · · , Nb) , the spatial filter for

the n-th stimulus is obtained by maximizing the summation

of the auto-covariances of the templates. The summation of

the auto-covariances of X b
n and X

b
li
n

is denoted as:

S = cov
(

X
b
n

)

+

m
∑

i=1

cov
(

X
b
li
n

)

(3)

where

X
b
n =

1

K

K
∑

h=1

X
h,b
n (4)

and

X
b
li
n

=
1

K

K
∑

h=1

X
h,b

li
n

. (5)

(a) (b)

Fig. 3. The proposed training model of each sub-band is shown in (a). The
flowchart of the proposed target identification method is illustrated in (b).
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To obtain a finite solution, the sum of covariances of all-trial

data from n-th stimulus is constrained as:

w⊤

(

K
∑

h=1

cov
(

X
h,b
n

)

)

w = 1. (6)

The constraint also applies to the neighboring-stimulus data,

which means for any i,

w⊤

(

K
∑

h=1

cov
(

X
h,b

li
n

)

)

w = 1. (7)

The constrained optimization problem is defined as:

ŵ
b
n = argmax

w

w⊤Sw

w⊤Qw
, (8)

where

Q =

K
∑

h=1

cov
(

X
h,b
n

)

+

m
∑

i=1

K
∑

h=1

cov
(

X
h,b

li
n

)

. (9)

Via solving the equation (8) with generalized eigendecom-

position of Q−1S, the spatial filter ŵ
b
n is determined as

the eigenvector corresponding to the largest eigenvalue. The

constrained optimization process will repeat Nb times to

ensure each subband gets its spatial filter.

3) Test stage: With the spatial filter wb
n trained by the

training model, the target frequency of the single-trial test

data X ∈ R
Nc×Ns can be identified, as shown in Fig. 3(b).

Firstly, with filter bank analysis, the single-trial test data

X ∈ R
Nc×Ns is decomposed into Nb subbands with Xb

as the data sub-band b. Then the test data Xb and the n-th

stimulus template X
b
n are respectively spatially filtered with

the optimal solution wb
n. For any sub-band b, the correlation

coefficient between the spatially filtered test data and template

is calculated as:

γb
n = ρ

(

(

Xb
)⊤

wb
n,
(

X
b
n

)⊤

wb
n

)

, (10)

where ρ(s1, s2) is the Pearson’s correlation coefficient be-

tween s1 and s2 [31]. By integrating the γb
n from all subbands,

the final correlation feature γn is calculated as:

γn =

Nb
∑

b=1

c(b) ·
(

γb
n

)2

, (11)

where the weights for the subband component c(b) = b−1.25+
0.25 is to maximize the classification performance [11]. The

target frequency f̂ with the largest correlation coefficient is

defined as:

f̂ = argmax
n

γn, n = 1, 2, · · · , Nf . (12)

D. Performance Evaluation

In this study, the classification accuracy, ITR, sensitivity,

and specificity estimates were computed to evaluate the target

identification performance of the proposed method. The esti-

mates were calculated by using leave-one-out cross-validation.

For both datasets with 6 blocks, 5-block data were used as the

training dataset and 1-block data was used as the test data (i.e.,

K = 5). In the offline experiment, each-block data was used

as the test data, so the whole procedure was repeated 6 times

for each subject. Therefore, for each subject, the overall result

was obtained by averaging across blocks.

The classification accuracy is defined as the percentage of

the correct predictions out of all predictions. ITR is the amount

of information transferred per minute, defined as:

ITR=
60

T
×

[

log
2
Nf+P × log

2
P+(1−P)×log

2

(

1−P

Nf−1

)]

,

(13)

where T is the selection time for each target, including gazing

time and 0.5-s gaze-shifting time, Nf is the number of stimuli,

and P represents the classification accuracy. Besides, the

sensitivity and specificity of the classification model were also

calculated to further evaluate the target detection performance

of the proposed method. Sensitivity refers to a true positive

rate, which is defined as:

Sensitivity=
TP

TP + FN
. (14)

Specificity refers to the true negative rate, defined as:

Specificity=
TN

TN + FP
. (15)

The terms TP , TN , FP , and FN represent the number

of true positives, true negatives, false positives, and false

negatives respectively.

III. EXPERIMENTAL RESULTS WITH DISCUSSIONS

In this section, we first evaluated the performance of the

proposed method on the 40-target benchmark dataset [28]

and the 12-target self-collected SSVEP dataset. Extensive

comparisons of target detection performance evaluated by the

classification accuracy, ITR, sensitivity, and specificity were

implemented between the proposed method and state-of-the-

art SSVEP target recognition methods. And then, the influ-

ences of different parameters such as the filter bank analysis,

the number of training blocks, and the number of neighbors

were also reported. Based on the experimental results, the

discussions were presented in the last subsection.

A. Target Recognition Performance

The target recognition performance was compared be-

tween the proposed method and state-of-art methods, such

as MVMD-CCA, TRCA, SSCOR, RESS, MOO, and ms-

TRCA. From the results shown in Fig. 4, the accuracies of all

methods gradually increase with the time windows. Generally,

the proposed method reached the highest accuracies and ITRs

among all methods regardless of time windows. To be specific,

in Fig. 4(a), the highest ITRs of the proposed method are

obtained with a 0.6-s time window reaching 205.79±66.13

bpm. With 12-target Dataset I (Fig. 4(b)), the proposed method

reached the highest ITR of 123.16±32.87 bpm with a 0.8-s

time window. To intuitively reveal the significant difference

between our proposed method and other compared methods,

pairwise analyses were implemented using paired t-tests on

these two datasets. Table I listed the multiple comparison
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Fig. 4. Averaged accuracies and ITRs across subjects of the proposed method and six compared methods as MVMD-CCA, TRCA, SSCOR, RESS, MOO,
and ms-TRCA using different time windows on the benchmark dataset (a) and Dataset I (b). The time window increases from 0.2 s to 1.0 s with a step
of 0.2 s. The error bar represents the standard deviation. The asterisks indicate significant differences between the seven methods obtained by paired t-tests
(∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001).

TABLE I
THE SIGNIFICANT DIFFERENCE IN CLASSIFICATION ACCURACY BETWEEN THE PROPOSED AND OTHER STATE-OF-ART METHODS OBTAINED BY PAIRED

T-TESTS

Methods
Time windows

Benchmark Dataset Dataset I
0.2 s 0.4 s 0.6 s 0.8 s 1.0 s 0.2 s 0.4 s 0.6 s 0.8 s 1.0 s

MVMD-CCA vs. Proposed method∗ <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 0.0476 0.1819

TRCA vs. Proposed method <0.0001 <0.0001 0.0074 0.0464 0.1127 0.0011 0.0020 0.0007 0.0055 0.0035

SSCOR vs. Proposed method <0.0001 <0.0001 0.0075 0.0824 0.2498 0.0004 0.0009 0.0023 0.0100 0.0154

RESS vs. Proposed method <0.0001 <0.0001 <0.0001 0.0039 0.0100 0.3335 0.0893 0.0295 0.0497 0.0335

MOO vs. Proposed method 0.0006 0.0029 0.0475 0.2199 0.4005 0.0795 0.0147 0.0039 0.0184 0.0078

ms-TRCA vs. Proposed method 0.0190 0.0098 0.0497 0.3126 0.3345 0.0960 0.1415 0.0417 0.0522 0.2109

* The proposed method serves as the control group.

results in terms of SSVEP target recognition accuracy with

different time windows. It is shown that with the time window

smaller than 0.6 s, the proposed outperformed the other

competing methods by a significant margin especially with

the benchmark dataset, verifying the effectiveness of using

information from neighboring stimuli. With a time window

larger than 0.8 s, the differences in accuracies were no

longer statistically significant, since the accuracies for different

methods are gradually close to 100%. In conclusion, by

using SSVEPs corresponding to the target and its neighboring

stimuli, the proposed spatial filter can effectively improve the

SSVEP stimulus recognition performance.

Apart from classification accuracy and ITR, the results

of the sensitivity and specificity are also calculated as the

evaluation of the target recognition performance. Table II re-

ports the averaged sensitivities and specificities across subjects

with two different datasets. From the results listed in the

table, it can be seen that the sensitivity results are consistent

with the accuracy and ITR results. The proposed method

reached the highest sensitivity among all seven competing

methods, which indicates that the proposed method shows

the greatest capability of detecting positive samples. While

for the specificities, all methods reached the results close to

100% and had slight differences from each other, indicating

that these methods can correctly classify negative samples.

Both sensitivity and specificity results further demonstrate that
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(a) Benchmark dataset (b) Dataset I

Fig. 5. Classification accuracy distributions of the four competing methods without filter bank technique (w/o FB) and with filter bank analysis (w/ FB)
on two datasets. Here the time windows were set to 0.6 s and 0.8 s respectively for the two datasets. The top and bottom sides of the violin represent the
maximum and minimum without an outlier. The width of the violin refers to the probability density estimate. For the box in the violin, the top and bottom
of the box represent the 25th and 75th percentiles respectively. The middle line and the x-mark indicate the median value and the mean value respectively.
The asterisks indicate significant differences between methods w/o FB and w/ FB obtained by paired t-tests (∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001).

TABLE II
THE AVERAGED SENSITIVITY AND SPECIFICITY RESULTS ACROSS

SUBJECTS OF THE PROPOSED AND STATE-OF-ART METHODS

Datasets Methods Sensitivity (%) Specificity (%)

Benchmark

dataset

MVDM-CCA 33.62±16.56 98.21±0.42
TRCA 66.70±23.49 99.15±0.60

SSCOR 81.86±19.47 99.53±0.49
RESS 55.76±21.19 98.86±0.54
MOO 70.23±22.49 98.56±0.57

ms-TRCA 76.56±21.05 99.26±0.52
Proposed method 82.04±19.60 99.54±0.50

Dataset I

MVDM-CCA 72.27±10.68 97.47±0.97
TRCA 59.09±20.54 96.28±1.86

SSCOR 70.83±21.84 97.35±1.99
RESS 78.88±13.58 98.08±1.23
MOO 69.18±15.58 97.28±1.07

ms-TRCA 80.24±19.68 98.53±1.25
Proposed method 87.12±12.14 98.83±1.10

The data lengths were set to 0.6 s and 0.8 s respectively for the two
datasets, where the highest ITRs were achieved.

the proposed method can effectively boost the target detection

performance.

B. The Influence of Parameters on Performance

In order to further evaluate the performance of the proposed

algorithm, we explored the impact of the filter bank analysis,

the number of training blocks, and the number of neighbors

on the SSVEP target recognition accuracy.

1) The filter bank analysis: The filter bank method is a

widely-used signal processing technique to decompose signals

into multiple sub-bands for extracting harmonic frequency

components. To explore the impact of the filter bank analysis

on target recognition, we conducted comparisons between

various methods with and without filter bank analysis. Here,

the numbers of subbands were set as 5 and 3 for two datasets

respectively, where the highest accuracies were achieved.

Fig. 5 depicts the classification accuracy distributions of the

seven methods without filter bank technique (w/o FB) and

with filter bank analysis (w/ FB) on two datasets via the half

violin plot. From the figure, it is shown that the classification

accuracies of the proposed method are higher than those of the

other six methods with or without filter bank analysis. To be

(a) Benchmark dataset

(b) Dataset I

Fig. 6. Averaged classification accuracies across subjects of the benchmark
dataset at 0.6 s data length (a) and Dataset I at 0.8 s data length (b)
with different numbers of training blocks varying from 2 to 5. The vertical
error bars represent standard deviations. The asterisks indicate significant
differences between the seven methods obtained by paired t-tests (∗p<0.05,
∗∗p<0.01, ∗∗∗p<0.001).

specific, the proposed method reached the highest mean value

and median value among the competing methods under two

conditions. And except for the RESS method, the classification

performance has been improved by employing the filter bank

analysis due to the information from the harmonic frequencies.

2) The number of training blocks: In the proposed method,

the spatial filters were learned from individual training data.

The impact of training blocks on target identification perfor-

mance can also be investigated. Figure 6 presents the averaged
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classification accuracies across subjects obtained with different

numbers of training blocks (K) on two datasets. As the

figures illustrated, the averaged target recognition accuracies

of TRCA, SSCOR, RESS, and MOO methods gradually

increased with the number of training blocks, while those of

ms-TRCA and the proposed method increased slightly with the

number of training blocks with 5% accuracy. Besides, there

shows no obvious difference in the MVDM-CCA classification

accuracy as the number of training blocks increases, since

the MVDM-CCA is a training-free method. From Fig. 6(a),

the proposed method and ms-TRCA can still achieve satis-

factory performance with only 2-block training data, which

implies that employing data from neighboring stimuli for

spatial filter training would reduce the sensitivities to the

number of training blocks. The result in Fig. 6(b) shows

consistency with the benchmark dataset, that is, with more than

2-block training data, the proposed method can get satisfactory

classification results. Overall, these results indicate that even

with limited training blocks, the proposed method reached the

highest classification accuracy among all methods, showing an

improvement in target recognition performance.

3) The number of neighbors: By employing SSVEPs from

both target and its neighboring stimuli, the proposed method

obtained enhanced performance on target identification. It

remains unclear how the number of neighbors influences the

target recognition performance, which needs further investi-

gation. The results of the classification accuracies with the

different number of neighbors on the benchmark dataset are

set out in Fig. 7. The comparison was conducted between ms-

TRCA and our proposed method at 0.6-s data length with the

number of neighbors (m) increasing from 0 to 8. In the pro-

posed method, the neighbors are defined as the nearby-location

stimuli. Therefore, when m = 4, it represents the horizontal

and vertical neighbors. When m = 8, it indicates all neighbors

surrounding the target stimulus, including horizontal, vertical,

and diagonal neighbors. It is also worth pointing out here that

m = 4 or 8 only applies to those stimuli in the middle, and the

stimuli on the border or corner will have a smaller number of

neighbors for both cases. From the graph, we can see that as

the number of neighbors increases from 0 to 4, the accuracies

0 4 8
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Fig. 7. The averaged target recognition accuracies across all subjects with
different numbers of neighbors varying from 0 to 8 on the benchmark dataset.
The vertical error bars represent standard deviations. The asterisks indicate
significant differences between the two methods obtained by paired t-tests
(∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001).

Fig. 8. The frequency spectrums correspond to the 2.0-s SSVEPs of 13
Hz stimulus with (w/) and without(w/o) the neighboring stimuli respectively.
The frequency amplitudes were computed with Fourier transform and then
normalized to 1. And the grey area represents the frequency range of the
neighboring stimuli.

of the two methods show increments of more than 6%. While

as the number of neighbors increases from 4 to 8, the accuracy

of the proposed method remains stable with a slight difference,

while ms-TRCA showed a slight increment with 2%. Never-

theless, the proposed method showed better performance than

ms-TRCA regardless of the number of neighbors. Therefore,

the incorporation of neighboring stimuli data does contribute

to improving target detection performance, and the horizontal

and vertical neighbors are adequate for improving the target

identification performance.

C. Discussions

1) The frequency spectrum analysis: In this study, we

constructed a novel spatial filter incorporating SSVEPs from

the neighboring stimuli for target identification. From the

experimental results, it is demonstrated that learning a spatial

filter by maximizing the summation of covariances of SSVEP

data corresponding to the target and its neighboring stimuli is

an effective solution for enhancing the performance of SSVEP-

based BCIs. The spatially filtered template signals would

include more accurate frequency information of the SSVEP

response. To take an example of 13 Hz stimulus, the frequency

spectrums of 2.0-s SSVEP signals with(w/) and without(w/o)

the neighboring stimuli are provided in Fig. 8. From the plot, it

can be seen that without incorporating the neighboring stimuli,

target SSVEPs include not only the major target frequency but

also the frequency information from the neighboring stimuli.

By contrast, the SSVEPs spatially filtered by the proposed

method mainly contain the target frequency information. It

demonstrates that the proposed method effectively strengthens

the target-related frequency information, leading to higher

classification accuracies.

2) The discriminability of correlation coefficients: With

more accurate target-relevant frequency information extracted

from the EEG signals, more discriminative correlation coeffi-

cients would be obtained for target identification. To intuitively

present the contribution of the accurate frequency information,

we choose 13 Hz as the exemplar stimulus frequencies from

the benchmark dataset. Figure 9 illustrates the correlation
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Fig. 9. Averaged correlation coefficients γ for 0.2-s SSVEPs at 13 Hz from
the benchmark dataset across subjects. The error bars represent standard
deviations. The dotted line represents the target stimulus frequency. The
asterisks indicate significant differences between the four methods obtained
by paired t-tests (∗∗∗p<0.001).

coefficients γ between 0.2-s test SSVEPs and the 8-15 Hz tem-

plate signals of the proposed spatial filters and the compared

methods TRCA, RESS, and ms-TRCA. As can be seen from

the graph, with TRCA and RESS spatial filters, there shows

a slight difference in correlation coefficients between certain

non-target frequencies and the target frequency, increasing

the false rate. Compared to TRCA and RESS, the features

obtained by ms-TRCA presented a slightly stronger contrast

between the target and non-target frequencies but were inferior

to the proposed method. With the proposed method, the

correlations γ reached the highest at the target frequency and

the lowest at the neighboring frequency, compared with the

other three methods. Therefore, with the more discriminative

features, the proposed method can effectively improve the

target recognition performance.

3) Activation pattern of the proposed method: In addition

to the correlation coefficients, the activation pattern is also

a profile of the feature space, which can directly present the

performance of the spatial filtering methods. Here, the stimulus

of 13 Hz was taken as an example. Fig. 10 illustrates the

averaged activation pattern of the 13 Hz and its harmonic

frequencies on the benchmark dataset for the three conditions,

without spatial filter (Fig. 10(a)), with TRCA spatial filter

(Fig. 10(b)), and with the proposed spatial filter (Fig. 10(c)).

The activation pattern was estimated by averaging the am-

plitude spectrum of 1.0-s SSVEPs from 2 training blocks

and all 35 subjects. It is shown in the figure that with a

spatial filter, the activation patterns are more densely in the

reflection zone at the fundamental and harmonic frequencies.

Moreover, compared with TRCA, the activation pattern of

the proposed method is more symmetrically distributed in

the occipital cortex by using neighboring stimuli information.

These results indicate that the proposed spatial filter can

effectively suppress the noise and strengthen the frequency

information of the SSVEP response, thus boosting the SSVEP

frequency detection performance with limited training blocks.

(a) Raw

(b) TRCA

(c) Proposed method

Fig. 10. Averaged activation pattern across subjects of 13-Hz SSVEPs at the
fundamental, second, third, and fourth harmonic frequencies (i.e., 13 Hz, 26
Hz, 39 Hz, and 52 Hz) on the benchmark dataset. The activation patterns were
computed with 2 training blocks and then normalized with 1.0-s EEG data.

4) Computational speed of the proposed method: The

above experiments were implemented on a Lenovo PC with the

Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, 32 GB RAM,

and 64-bit Windows 10 OS using Matlab 2022a. In the spatial

filter training stage, the computational time of the proposed

method for the benchmark dataset and Dataset I were 5.53 s

and 1.73 s respectively. For comparison, the training of the

ms-TRCA spatial filter costs 6.69 s and 2.45 s computational

time respectively. After the spatial filter training, the averaged

costs of each time window for performing target recognition

of both methods on the two datasets were 0.07 s and 0.03

s, respectively. Even though the two methods have the same

target identification speed, our proposed method saves some

training time compared to the state-of-art ms-TRCA method.

Therefore, we can say that the proposed method can improve

the target detection performance with less calibration time.

5) Future directions: In this study, a new method incorpo-

rating SSVEP data from the neighboring stimuli is developed

for the JFPM-coded SSVEP-based BCIs, which shows its

efficiency through offline experiments. There is abundant room

for further progress in constructing SSVEP-based BCIs. Apart

from the classical JFPM-coded target, the proposed method

has the potential to be utilized in the spatially-coded visual

BCIs [32] for target identification, which encoded one target

with multiple stimuli by the spatial information [33] [34]. In

this way, further research should be undertaken to investigate

the feasibility of the proposed method in spatially-coded BCIs.

Furthermore, the proposed method is a proof-of-concept that

verified the improvement in offline experiments. For practical

applications, the proposed method can incorporate the dynamic

stopping strategy [35] or sliding window strategy [36] to meet

the requirements of robust control in real-world scenarios.
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IV. CONCLUSION

This study proposed a novel method incorporating the

neighboring-location stimuli data to train a spatial filter for

boosting the target detection performance of SSVEP-based

BCIs. In this method, the spatial filter was obtained by

maximizing the summation of covariances of SSVEPs from

the target and its neighboring stimuli. Through extensive

comparisons with state-of-art spatial filtering methods, the

classification performance of the proposed method was verified

offline on two different SSVEP datasets. The experimental

results illustrated that the proposed method outperformed the

other spatial filters in classification accuracies and ITRs with

less training time, which demonstrated the effectiveness of

the proposed approach for enhancing the SSVEP frequency

identification performance.
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