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An atypical DYRK kinase connects
quorum-sensing with posttranscriptional
gene regulation in Trypanosoma brucei
Mathieu Cayla, Lindsay McDonald, Paula MacGregor†, Keith Matthews*

Institute for Immunology and Infection Research, School of Biological Sciences,
Charlotte Auerbach Road, University of Edinburgh, Edinburgh, United Kingdom

Abstract The sleeping sickness parasite, Trypanosoma brucei, uses quorum sensing (QS) to

balance proliferation and transmission potential in the mammal bloodstream. A signal transduction

cascade regulates this process, a component of which is a divergent member of the DYRK family of

protein kinases, TbDYRK. Phylogenetic and mutational analysis in combination with activity and

phenotypic assays revealed that TbDYRK exhibits a pre-activated conformation and an atypical HxY

activation loop motif, unlike DYRK kinases in other eukaryotes. Phosphoproteomic comparison of

TbDYRK null mutants with wild-type parasites identified molecules that operate on both the

inhibitory ‘slender retainer’ and activatory ‘stumpy inducer’ arms of the QS control pathway. One

of these molecules, the RNA-regulator TbZC3H20, regulates parasite QS, this being dependent on

the integrity of its TbDYRK phosphorylation site. This analysis reveals fundamental differences to

conventional DYRK family regulation and links trypanosome environmental sensing, signal

transduction and developmental gene expression in a coherent pathway.

Introduction
Eukaryotic cells respond to their environment via signal transduction cascades whose general struc-

ture and features have been intensively studied in model eukaryotes. These enable the adaptation

to a changing environment or response to external signals that regulate cellular differentiation and

specialisation. Many of these signalling cascades have been dissected in detail, revealing broadly

conserved networks that regulate molecular function and interactions in evolutionarily separated

eukaryotic groups (Manning et al., 2002a). Among the most common regulatory mechanisms is

through the action of proteins kinases and phosphatases, whose activity controls the reversible phos-

phorylation of approximately 30% of the proteome of eukaryotes, involving proteins implicated in a

wide range of functions, including cell growth and cell-cycle control, cytoskeleton organisation,

extracellular signal transmission and cell differentiation. The structure of conventional signalling cas-

cades, however, is not necessarily representative of the diversity of eukaryotic life, with the environ-

mental signalling pathways and regulatory pathways outside commonly studied model eukaryotes

being poorly understood.

A tractable model to explore the diversity of eukaryotic signalling networks are kinetoplastid par-

asites, which separated from the eukaryotic lineage at least 500 million years ago (Keeling and

Burki, 2019). These organisms encode around 190 protein kinases (Jones et al., 2014) and are

exquisitely sensitive to their environment. This sensitivity to well-defined environmental stimuli allows

the molecular dissection of signalling pathways that drive the differentiation events that characterise

the complex life cycles of these organisms. An exemplar is Trypanosoma brucei, a kinetoplastid par-

asite responsible for Human African Trypanosomiasis (HAT) and Animal African Trypanosomiasis

(AAT), that is transmitted through the bite of the tsetse fly. One major environmentally signalled

event for T. brucei involves their differentiation in the mammal host from a replicative ‘slender form’
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to an arrested and transmission-adapted ‘stumpy form’ (MacGregor et al., 2012). This differentia-

tion is triggered by a quorum-sensing (QS)-like mechanism where parasites respond to the accumu-

lation of a stumpy-induction factor (Reuner et al., 1997; Vassella et al., 1997; Rojas et al., 2019).

Once the signal is received, it is transduced via a non-linear hierarchical signalling pathway

(McDonald et al., 2018) comprising at least 30 molecules (Mony et al., 2014). This includes signal

processing molecules, protein kinases and phosphatases and posttranscriptional gene expression

regulators as well as additional proteins of unknown function.

One of the components involved in the differentiation process is a molecule related to the protein

kinase Yak sub family (McDonald et al., 2018; Mony et al., 2014). Yak kinases belong to the dual-

specificity yak-related kinases (DYRK) family included in the CMGC group, which is over represented

in trypanosomatids compared to humans (Parsons et al., 2005). The DYRK family is subdivided into

five sub families, the homeodomain-interacting protein kinases (HIPKs), the pre-mRNA processing

protein four kinases (PRP4s), the Yak kinases (present in lower eukaryotes only), the DYRK1 and the

DYRK2 kinases (reviewed by Aranda et al., 2011). In mammals, the DYRK1/2 sub families are charac-

terised by the DYRK-homology (DH)-box upstream of a kinase core that contains the ATP-binding

domain and the activation loop. The activity of DYRK kinases is dependent on auto-phosphorylation

of the second tyrosine residue in the YxY motif present in the activation loop, and they phosphory-

late substrates on serine and threonine residues. The full activity of mature DYRK proteins may also

require other phosphorylation events outside the kinase core (Cheng et al., 2009) or may depend

on their interaction with other proteins (Kim et al., 2004; Cheng et al., 2009). Several mammal

DYRKs have also been implicated in cell differentiation. For example, human DYRK1A/murine

DYRK1B and human DYRK2 have been suggested to have a role in differentiation mediated by cell

cycle arrest in G1/G0 and G2/M, respectively (Maddika and Chen, 2009; Yabut et al., 2010;

Zou et al., 2004).

Here, we describe the essential role of several unconventional features in the activity of an atypi-

cal DYRK-family kinase identified in the parasite T. brucei and that plays a major role in the quorum-

sensing stimulated development from slender to stumpy forms in the mammalian bloodstream. We

also describe the identification of likely T. brucei DYRK (TbDYRK) substrates and reveal their involve-

ment in both inhibitory and stimulatory arms of the developmental control pathway. This places

TbDYRK at a pivotal position in the control of parasite developmental competence, connecting sig-

nal transduction to gene expression regulatory processes.

Results

Tb927.10.15020 encodes for a divergent kinase of the DYRK family
To initially analyse the gene Tb927.10.15020, we performed a phylogenetic analysis using the kinase

core of all members of the CMGC kinase family from human, C. elegans, D. melanogaster, S. cerevi-

siae and all identified members of the DYRK family from T. brucei (Jones et al., 2014). This identi-

fied a DYRK1 family kinase (Tb927.5.1650) and a previously characterised DYRK2 member

(TbDYRK2; Tb927.11.3140; [Han et al., 2012]). The analysis revealed that Tb927.10.15020 is a diver-

gent DYRK belonging to a paraphyletic group of DYRK2 (Figure 1a). Indeed, the two C. elegans kin-

ases with which the trypanosome protein clusters, Ce_C36B7.1 and Ce_C36B7.2, have been

identified as DYRK2 kinases in the kinase.com database (http://kinase.com) and as DYRK3 in the

wormbase.org database (https://wormbase.org) (Manning, 2005). It is also notable that

Tb927.10.15020 presents a potential divergent DH box (NEx(2)DDx(3)Y) (Becker et al., 1998) specific

for DYRK1/2, a divergent NAPA-1 region (Lx(3)Ex(2)Ex(15)G), but no NAPA-2, both specific for DYRK2

and present in the previously analysed TbDYRK2 (Han et al., 2012; Kinstrie et al., 2010;

Figure 1b). Multiple sequence alignment of the kinase core of Tb927.10.15020 with several well

characterised members of the DYRK family from a number of model organisms (Figure 1—figure

supplement 1), also revealed the presence of three long inserts in the trypanosome kinase. The

kinase is present in the genome of different trypanosomatid organisms and sequences of the first

two inserts are relatively well conserved among these orthologues, while the sequence of the last

insert in Tb927.10.15020 is poorly conserved outside the brucei group (Figure 1—figure supple-

ment 2). These multiple sequence alignments also revealed the presence of a serine (S856) instead

of the classical glycine in the highly conserved DFG motif (Figure 1—figure supplement 1), as well
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Figure 1. Phylogenetic analysis of the CMGC protein kinase family. (a) The evolutionary history was inferred by using the Maximum Likelihood method

based on the Whelan And Goldman + Freq. model (Whelan and Goldman, 2001). Initial tree(s) for the heuristic search were obtained by applying the

Neighbour-Joining method to a matrix of pairwise distances estimated using a JTT model. The tree is drawn to scale, with branch lengths measured in

the number of substitutions per site. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing

data, and ambiguous bases were allowed at any position. Hs = Homo sapiens, Ce = Caenorhabditis elegans, Dm = Drosophila melanogaster,

Sc = Saccharomyces cerevisiae, DICDI = Dictyostelium discoideum, Tb927 = Trypanosoma brucei. The early divergent TbDYRK is highlighted in red. (b)

Schematic representation of linear protein sequence of TbDYRK, highlighting particular characteristics of its sequence. Identified phosphosites are

represented by an *. Insertions I, II and III are presented with the brown boxes. All residues or inserts mutated or deleted in this study are represented

in red.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Multiple sequence alignment of the kinase core of TbDYRK (lower sequence) with other DYRKs from other species.

Figure supplement 2. Phylogenetic analysis and conservation of DYRK orthologues in other kinetoplastids.
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as the presence of a histidine (H866), where usually is found a phosphorylable residue, in the HxY

motif of the activation loop (Figure 1—figure supplement 1). Analysis of this unconventional activa-

tion loop in various species revealed the motif was absent in yeast DYRKs, whereas one of 11 human

DYRKs present such a motif and one of six in Drosophila. In contrast, of the seven DYRKs identified

in the T. brucei kinome (Jones et al., 2014), four present unconventional activation motifs, of which

two include a histidine (Tb927.10.15020 and Tb927.5.1650), suggesting a particular mode of regula-

tion in trypanosomes more developed than in other species. Given the association with the DYRK

family, we henceforth refer to the protein encoded by Tb927.10.15020 as TbDYRK (previously

termed ‘YAK’ in Mony et al., 2014 and McDonald et al., 2018).

TbDYRK activity is required for the slender to stumpy differentiation
We initially confirmed the role for TbDYRK in differentiation competence described by Mony et al.

(2014) and McDonald et al. (2018). A wild-type differentiation competent cell line and a previously

validated TbDYRK knock-out (KO) cell line (McDonald et al., 2018) were assayed in vitro using the

cell permeable cyclic AMP analogue, 8-pCPT-cAMP, that promotes the expression of some charac-

teristics of stumpy forms (Laxman et al., 2006; MacGregor and Matthews, 2012). As expected,

the wild-type cells differentiated in response to treatment, causing a 60% growth inhibition at 96 hr

compared to untreated cells, whereas the TbDYRK KO cells had reduced differentiation compe-

tence, with only 23% growth inhibition at the same timepoint (Figure 2a). To gain further insight

into the specific function of this kinase and the role of selected residues for its kinase activity, we

also created two further cell lines ectopically expressing either a TY-YFP-tagged non-mutated ver-

sion of the kinase (‘NM’) or a predicted ‘kinase dead’ mutant with lysine 592 converted to alanine

(‘K592A’); in each case these were expressed in cells retaining the endogenous gene. Importantly,

the ectopic copy of the gene was provided with an aldolase 3’UTR and can therefore present an

expression and regulatory profile different to the endogenous gene. We then induced ectopic kinase

expression using doxycycline and compared the response of each cell line to 8-pCPT-cAMP. Ectopic

expression of the NM version of the kinase resulted in an increased differentiation response to 8-

pCPT-cAMP compared to wild-type cells (86% growth inhibition at 96 hr), whereas ectopic expres-

sion of the K592A mutant considerably reduced differentiation (27% growth inhibition at 96 hr),

despite the presence of the endogenous wild-type gene, presumably through a dominant-negative

mechanism (Figure 2a).

Levels of TbDYRK protein expression could not be detected using an antibody raised against

TbDYRK or even using epitope tagging. Therefore, as an alternative to monitor the level of

expressed kinase, we measured the total amount of TbDYRK mRNA by RT-qPCR, either detecting

both the endogenous and the ectopic gene-derived mRNAs or, by specifically targeting the YFP

component, only detecting the ectopic gene-derived mRNA (Figure 2a, middle panel). Interestingly,

when TbDYRK expression was examined in the NM kinase line, the total amount of TbDYRK tran-

script did not exceed the level in WT cells (74 ± 18.1% of expression), despite the ectopically

expressed gene contributing 31 ± 6.9% of the total TbDYRK mRNA. These results suggest that the

ectopic expression of the NM kinase leads to a reduction of the endogenous mRNA and that the

total amount of mRNA may be regulated. With the expression of the K592A mutant, the total

amount of mRNA was 129 ± 3.1% compared to WT cells, of which 60 ± 6.3% corresponded to the

K592A-YFP fusion.

Next, we determined the activity of the NM and predicted kinase-dead mutant in vitro. To iden-

tify a suitable substrate for this assay, we purified the expressed tagged NM kinase from insect cells

and performed an in vitro kinase assay in the presence of a panel of candidate generic substrates

(Figure 2—figure supplement 1a). The first 200 amino acids of the Mus musculus caspase 9 (Casp9)

was the best available substrate, and was used to perform kinetic analysis to determine the optimal

conditions to assay TbDYRK activity (Figure 2—figure supplement 1b and c). We then applied this

methodology to measure the phosphotransferase activity of the NM and K592A mutants, also

expressed in and purified from insect cells. The mean of the activity measured with the NM kinase

was set at 100% and the results indicated that the mutant K592A exhibited reduced activity com-

pared to NM (48.2 ± 8.0%, Figure 2a, lower panel), demonstrating that the predicted ‘kinase dead’

mutation reduced but did not completely eliminate activity.

To confirm the in vitro results suggesting that the ectopic expression of the active NM kinase

leads the cells to arrest at a lower concentration and potentially drives the cells to stumpy-like
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Figure 2. Ectopic expression of the TbDYRK drives stumpy differentiation. (a) The top panel shows the in vitro

phenotype analysis after expression of TbDYRK in different strains treated with doxycycline in the presence (grey)

or absence (black) of 8-pCPT-cAMP (n = at least two experiments in three replicates, error bars = SEM).

WT = Parental cell line, KO = Knock out cell line for the gene TbDYRK, NM = Ectopic expression of the non-

Figure 2 continued on next page
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differentiation earlier, we infected mice with the NM strain. The data in Figure 2b demonstrates that

the parasitaemia was reduced after induction of the expression of the non-mutated kinase by provi-

sion of doxycycline at 96 hr post-infection. Further, the cells presented a strong increase of PAD1

expression as assessed by IFA (Figure 2c) (63.7 ± 11.0% versus 8.5 ± 2.1% at 144 hr post-infection,

uninduced and induced, respectively) and arrested in G1/G0 earlier (Figure 2d). These results show

that the ectopic expression of active TbDYRK drives the cells to differentiate to stumpy forms at a

lower parasitaemia.

N-terminal phosphosite-residues and the HxY motif of the activation
loop are essential for TbDYRK activity
We next analysed the role of selected residues and domains of the TbDYRK molecule to explore

their difference from conventional eukaryotic DYRKs. First, we and others have identified nine phos-

pho-sites on the TbDYRK protein (asterisks on Figure 1b; McDonald et al., 2018; Nett et al., 2009;

Urbaniak et al., 2013). Eight of these are residues located in the N-terminal domain of the protein,

and one, Y868, belongs to the atypical HxY motif of the activation loop. We assessed the role of

three of the N-terminal residues for kinase function, that is T76, S77 and S472, by mutating them to

alanine and ectopically expressing the mutants in cells retaining the endogenous gene copies.

Thereafter, similar analyses to those previously were used, namely i) scoring cell growth upon

ectopic expression of the mutants in the presence or absence of 8-pCPT-cAMP in vitro (Figure 3a),

ii) quantification of the mRNA level of each mutant and total TbDYRK (Figure 3b), and iii) quantifica-

tion of the phosphotransferase activity of each protein expressed in insect cells (Figure 3c). The

results obtained for the WT, KO and NM repeat those presented in Figure 2 to provide comparison

with the generated mutants; the remainder are a combination of at least three independent experi-

ments in three replicates for each mutant. Expression of the T76A and S77A mutants did not change

the response to 8-pCPT-cAMP of the cells compared to WT parasites although the S77A mutant

grew more slowly (Figure 3a). Both mutations render the kinase completely inactive (Figure 3c) and

their mRNAs were well expressed (Figure 3b). For both mutations, mRNAs derived from the

mutated ectopic copy represented the majority of the total TbDYRK mRNA in each cell line

(72 ± 6.3, 72 ± 1.27%), although the combined mRNA level was not elevated over wild-type abun-

dance, implying that expression of the mutants causes regulation of transcripts derived from the

endogenous gene as seen earlier. The mutation of S472, by an alanine, also completely disrupted

the kinase activity and, similar to the phenotype observed with the KO cell line, generated resistance

to 8-pCPT-cAMP treatment, suggesting the inactive expressed kinase prevented the function of

TbDYRK expressed from the endogenous locus (Figure 3). This phenotype could be contributed to

by the high level of expression of the tagged gene, with the combined endogenous and ectopically

expressed TbDYRK mRNA reaching 164 ± 11.11% of TbDYRK in wild type cells.

Figure 2 continued

mutated version of TbDYRK, K592A = Ectopic expression of TbDYRK carrying the mutation K592A. The middle

panel represents the mRNA level of expression of TbDYRK (in black), including the endogenous and the ectopic

gene when present, and of the YFP tag of the ectopic fusion gene (in grey) (n = 1 experiment in three replicates;

error bars = SEM; individual datapoints are also presented). The dotted horizontal grey line represents 100% of

expression (mean), obtained from the expression of TbDYRK in the WT cell line after 24 hr of incubation with

doxycycline and no 8-pCPT-cAMP. Note that background signal by RT-qPCR is retained with the TbDYRK KO cell

line; independent northern blotting has confirmed absence of the transcript. The lower panel represents the

activity of the purified kinase against the generic substrate Casp9 as measured by radioactive kinase assay. The

mean level of activity of different experiments of NM has been set at 100% of activity (n = at least two experiments

in three replicates; error bars = SEM; individual datapoints are also presented). Statistical p-values are provided in

Supplementary file 5 for the kinase activity and mRNA level expression. (b) Parasitaemia measured in the

bloodstream of mice infected (n = 3, error bars = SEM) with the NM strain and treated (+Dox, grey) or not (-Dox,

black) after 96 hr post infection. (c) Percentage of PAD1 positive cells in the same blood smears as in panel b. (d) K

(inetoplast) N(uclear) scoring from DAPI staining of blood smears of the mice infected as previously described.

n = 250 cells, error bars = SEM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Kinase activity assays for TbDYRK.
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We next investigated the function of the unconventional HxY motif in the activation loop, where a

phosphorylable residue (Y or T) is usually observed instead of the histidine residue in TbDYRK. As

previously, we analysed the effect of the mutations H866A, Y868F and the combination

H866A_Y868F on the response to 8-pCPT-cAMP treatment, on TbDYRK mRNA levels and on kinase

activity (Figure 3a–c). Mutations of these residues disrupt the kinase activity with an activity level of

6.84 ± 4.34% (H866A), 10.54 ± 7.4% (Y868F) and 18.02 ± 9.25% (H866A_Y868F) compared to the

non-mutated (NM) protein. Expression of mutant H866A led to a similar response as WT cells to 8-

pCPT-cAMP. The TbDYRK Y868F mutant mRNA was expressed at a lower level than the NM mRNA

(12.05 ± 0.73%), and the cells responded to 8-pCPT-cAMP similarly to WT cells. In contrast, expres-

sion of a mutant with both mutations (H866A_Y868F) led to a slight resistance to 8-pCPT-cAMP,

with the mutant being highly expressed and comprising the majority of TbDYRK mRNA in the cell,

with reduction in the contribution of the mRNA from the endogenous TbDYRK allele, suggesting a

negative regulation.

Overall, these data show that mutation of any of the four putative phosphosite-residues, either in

the N-terminal domain or the HxY motif in the activation loop, disrupt TbDYRK kinase activity.

Despite the different mutations having the same apparent effect of creating kinase-dead mutants, a

range of phenotypes (increased, decreased or unchanging responsiveness to 8-pCPT-cAMP) were

observed when these were ectopically expressed in cells.

Figure 3. Analysis of the unconventional features of TbDYRK with respect to their phenotype, expression and activity. (a) In vitro phenotype analysis

after expression of TbDYRK mutants treated with doxycycline in the presence (grey) or absence (black) of 8-pCPT-cAMP (n = at least 2 experiments in

three replicates; error bars = SD). WT = Parental cell line, KO = Knock out cell line for the gene TbDYRK, NM = Ectopic expression of the non-mutated

version of TbDYRK. WT, KO and NM results are the same as presented in Figure 2 and are used here as control; other columns reflect the respective

mutants analysed. (b) mRNA level of expression of TbDYRK (in black), including the endogenous and the ectopic gene when present, and of the YFP

tag of the ectopic fusion gene (in grey) (n = 1 experiment in three replicates, error bars = SEM). The dotted horizontal grey line represents 100% of

expression (mean), obtained from the expression of TbDYRK in the WT cell line after 24 hr of incubation with doxycycline and no 8-pCPT-cAMP.

Statistical p-values are provided in Supplementary file 5. (c) Activity of the purified kinase against the generic substrate Casp9 as measured by

radioactive kinase assay. The mean level of activity of different experiments of NM has been set at 100% of activity (n = at least 2 experiments in three

replicates; error bars = SEM). Statistical p-values are provided in Supplementary file 5.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Modelling of the kinase core of TbDYRK.

Figure supplement 2. Analysis of cell viability by alamar blue of parasites expressing the ectopic DYRK NM/H866A / DII in response to 8-pCPT-cAMP

treatment.
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The three inserts inside the kinase core have a major role in the kinase
function
As highlighted earlier, the conventional kinase core sequence of TbDYRK is interrupted by three

inserts of 36, 22 and 119 amino-acids (Figure 1—figure supplement 1), which are predicted to be

positioned peripherally to the core enzyme structure and so amenable to functional analysis by dele-

tion (Figure 3—figure supplement 1a and b). Each insert was, therefore, deleted and the expressed

mutants assayed for their response to 8-pCPT-cAMP (Figure 3; DI, II or III). Activity assays demon-

strated that each of the three inserts was essential for the phosphotransferase activity of the kinase.

The DI mutant was highly expressed, and phenotypically, this expression rendered the cells relatively

resistant to 8-pCPT-cAMP-induced arrest despite the presence of the endogenous TbDYRK allele.

The DII mutant was expressed at a similar level as NM; however, despite this and the lack of activity

of this mutant, a similar phenotype as the expression of NM was observed. Thus, there was a

decrease of the parasite density in response to 8-pCPT-cAMP treatment that was greater than seen

with WT cells. In contrast, the inactive DIII mutant generated a similar phenotype to WT cells in

response to the 8-pCPT-cAMP, despite its effective expression although overall growth was slower.

To explore the phenotype of the DII mutant, which matched the ectopic expression of the NM

kinase and yet lacked kinase activity we performed a viability assay of cells where the NM or the DII

mutant were expressed in the presence or absence of 8-pCPT-cAMP (Figure 3—figure supplement

2). This revealed that expression of the inactive DII mutant resulted in cell death after 8-pCPT-cAMP

exposure, whereas those expressing the NM kinase were viable. Apparently therefore, expression of

the DII mutant is toxic to cells exposed to 8-pCPT-cAMP but not those in the absence of this

stimulus.

The S856 in the DFS motif allows a potential pre-activation state
We next investigated the role of S856 that contributes to the unconventional DFS motif of TbDYRK.

This motif, usually comprising DFG, functions in the conformational changes upon kinase activation

necessary for the correct alignment of the catalytic residues and the binding of ATP. The mobility

brought about by the glycine residue allows the switch of the phenylalanine from the inactive state

‘DFG-out’ to the active state ‘DFG-in’ (Kornev et al., 2006).

By analysis of the T. brucei kinome, we firstly established that unconventional DFG motifs (either

absent or mutated on the phenylalanine and/or the glycine) were present on 18.5% of T.brucei

ePKs, and that eight kinases possess a change of the glycine to either an aspartic acid, an asparagine

or a serine (Figure 4a). We note that the DFS motif is present on four kinases in T. brucei

(Tb927.9.1670, Tb927.1015020, Tb927.10.16160 and Tb927.11.5340), representing 2.5% of T. brucei

ePKs, while it is present in only 0.4% of the ePKs in humans.

To investigate the role of this serine in the activation state of the kinase, we modelled the kinase

core of TbDYRK using the i-TASSER server. The model obtained revealed interesting features,

although the overall scores highlighted complexity of the predictions (c-score = �2.73, estimated

TM-score = 0.40 ± 0.13, estimated RMSD = 14.5 ± 3.7 Å), undoubtedly influenced by the three

inserts generating a more important b-factor due to the consequent low alignment coverage and

the absence of predicted secondary structure (Figure 3—figure supplement 1a). Based on the

structural prediction, the N-terminal lobe appears to be well conserved with the presence of the

classical beta sheet b1–5 and the aC helix. The C-terminal lobe is composed of the classical beta

sheet b6/7 after the hinge region, the a-helix C/D/E/F/G/H and I, and also contains the MK1 insert

specific of the CMGC family and the a-helix 7 and 8 (Kannan and Neuwald, 2004; Kannan et al.,

2007; Manning et al., 2002b; Figure 3—figure supplement 1a,b,d). From this analysis, we pre-

dicted that the presence of this serine in place of glycine leads to a pre-activation state of the kinase

with a phenylalanine in position ‘DFS-in’, and the aspartic acid pointing towards the active site, as

observed on the crystal structure of active p38 (Figure 4b). In addition, and in support of the

hypothesis of a pre-active conformation of TbDYRK, the model suggests a close conformation of the

ATP binding pocket with the glutamine 607 at 3.5 Å from the lysine 592, in concordance with the

3.8 Å measured between the corresponding amino acid of the active structure of p38 (Figure 3—fig-

ure supplement 1c). This observation is also accompanied by fully aligned regulatory and catalytic

(R- and C-) spines as observed in active kinases (Kornev et al., 2006; Taylor and Kornev, 2011;

Horjales et al., 2012; Figure 3—figure supplement 1d).
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Figure 4. The unconventional DSF motif renders the kinase more rigid and is essential for the activity of the

kinase. (a) Table indicating the unconventional DFG motif in T. brucei ePKs. Conventional = conventional kinases,

Orphan = orphan kinases. (b) Model of the TbDYRK kinase core generated by the i-TASSER server, indicating the

position ‘DFS-in’ of the DFS motif of the kinase. (c) Structure/function analysis, as presented earlier, of the DFS

Figure 4 continued on next page
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Interestingly, mutation of the serine S856 to alanine (DFA) did not greatly reduce kinase activity

(69.83 ± 21.17%, Figure 4c, lower panel), whereas the mutation to glycine, to generate a classical

DFG motif, almost completely disrupted the kinase activity (13.27 ± 7.96), suggesting that the

greater mobility brought by the glycine is detrimental for activity. In addition, despite the strong

expression of the S856A mutant (Figure 4c, middle panel) and the maintenance of around 70% of its

kinase activity in vitro, the same phenotype as WT cell was observed in response to 8-pCPT-cAMP

(Figure 4c, top panel). These results suggest either that the remaining activity of this mutant is not

sufficient to generate the strong NM phenotype, or that the activity against endogenous substrates

may be different to activity against Casp9 in vitro.

In combination these structural predictions and functional studies demonstrated that phosphory-

lation at the N terminus of TbDYRK, the presence of atypical inserts and integrity of the activation

loop in the kinase core region, and the presence of the unconventional DFS motif all are important

for the activity of the atypical kinase leading to a range of phenotypic outputs in response to 8-

pCPT-cAMP. Moreover, there is evidence of mRNA regulation when the mutants were responsive to

8-pCPT-cAMP but less when this response is reduced.

Identification of substrates of TbDYRK implicated in stumpy
differentiation
The next step of the analysis was to explore the signalling pathway in which TbDYRK functions.

Therefore, in a first screen, we examined phosphoproteomic changes upon deletion of both TbDYRK

alleles in slender form parasites. Parental T. brucei EATRO 1125 AnTat 1.1 90:13 and TbDYRK KO

cells were cultured in duplicate at equivalent cell density in vitro and protein extracted and analysed

after isobaric tandem mass tagging (Flow chart in Figure 5a) as described in McDonald et al.

(2018). A total of 2499 unique proteins and 7293 unique phosphopeptides were identified; correla-

tions between the replicates were >99% at the peptide level, and at the phosphopeptide level were

0.8805 (T. brucei EATRO 1125 AnTat1.1 90:13) and 0.9896 (TbDYRK null mutant) respectively, dem-

onstrating excellent reproducibility (Figure 5—figure supplement 1). The results were filtered for

peptides with >1.5 fold change in phosphorylation regardless of direction, with an adjusted p value

of < 0.05, (Supplementary file 2), revealing that 213 peptides on 172 different proteins were less

phosphorylated, and that 191 peptides on 149 unique proteins were more phosphorylated in the

TbDYRK KO cell line. As expected, the most depleted protein was TbDYRK itself (Tb927.10.15020).

Also, supporting the involvement of the TbDYRK protein in the stumpy differentiation pathway, two

sites were identified as less phosphorylated in the null mutant line on Protein Associated with Differ-

entiation (PAD) PAD2 (Tb927.7.5940 - S324: Log2–1.276 - adj p=0.0128; S309: Log2–1.268 - adj

p=0.0055, Figure 5a, Supplementary file 2). In addition, the analysis revealed a strong enrichment

of proteins implicated in the regulation of gene expression, posttranscriptional regulation, RNA reg-

ulation, phosphorylation and protein and vesicle transport. These data indicate that the absence of

TbDYRK influences a broad spectrum of substrates implicated in several essential biological pro-

cesses, particularly those having a direct action on effectors of gene expression such as the eukary-

otic translation initiation factor 4e (Tb927.11.11770), the transcription elongation factor s-II, putative

(TFIIS2-1, Tb927.2.3580) or the negative regulator of transcription NOT5 protein (Tb927.3.1920,

Figure 5a), for example.

To filter the extensive list of potential substrates, we took advantage of the structure/function

analysis performed previously and used the purified kinase, either as the active (NM) or inactive

(H866A) form, to differentially phosphorylate triplicate T. brucei procyclic cell lysates previously

treated with phosphatase to remove any existing phosphorylation (Figure 5b). Lysates of this life

cycle stage were used to provide sufficient material for analysis. In this analysis, 38 phophopeptides

on 29 unique proteins were significantly phosphorylated (FC > 1.5 – p-value<0.05) with the active

Figure 4 continued

motif. WT, KO and NM results are the same as presented in Figure 2 and are used here as control.

S856A = Ectopic expression of TbDYRK carrying the mutation S856A, S856G = Ectopic expression of TbDYRK

carrying the mutation S856G. For the growth curves, n = 3, error bars = SEM; for the mRNA and kinase activity

assays, n = 3, error bars = SEM. Statistical p-values are provided in Supplementary file 5 for the kinase activity

and mRNA level expression.
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kinase NM whereas, no significant phosphorylation events were identified with the inactive mutant

H866A. As for the previous phosphoproteomic analysis, a GO enrichment of similar functions was

also observed in the identified phosphosubstrates that is regulation of gene transcription, transport

and cellular reorganisation (Supplementary file 3). Comparison of both phosphoproteomic analyses

(i.e. whole phosphoproteome and the lysate phosphorylation analysis) demonstrated the enrichment

of a kinase substrate consensus motif (R-P/R-x-S/T-P) similar to that of mammalian DYRK 2 and 3

(Figure 5—figure supplement 2). Overall, 45 proteins were present in both analyses with a |

FC| > 1.5 (Supplementary file 4) and eight phosphosites were common for seven proteins (|

FC| > 1.5) with two sites being significant with a p value<0.05 (Figure 5). These two sites were i) ser-

ine 395 of the NOT5 protein, which is less phosphorylated in the KO cell line (Log2FC �0.5910 – p

value 0.0138) and phosphorylated by the NM kinase (Log2FC 0.7336 – p value 0.0221), and ii) serine

1048 of the WCB cytoskeleton associated protein Tb927.7.3550, which was phosphorylated in the

KO cell line (Log2FC 0.5879 – p value 0.0128) and phosphorylated by the NM kinase (Log2FC

0.7402 – p value 0.0481) (Figure 5a,b, Supplementary file 4).

We then selected five genes from the 45 proteins present in both proteomic analyses with a |

FC| > 1.5 to individually assess their involvement in the TbDYRK-regulated stumpy formation. These

were two hypothetical proteins (Tb927.1.4280 implicated in posttranscriptional activation

[Erben et al., 2014] and Tb927.4.2750), the NOT5 protein previously implicated in the negative reg-

ulation of mRNA stability (Tb927.3.1920) (Erben et al., 2014; Lueong et al., 2016; Singh et al.,

2014; Ling et al., 2011; Liu et al., 2020), a zinc finger protein TbZC3H20 (Tb927.7.2660) previously

shown to be associated to RBP10 protein, to interact with MKT1 and to be implicated in

Figure 5. Phosphoproteomic analysis for the identification of substrates of TbDYRK. (a) Quantitative phosphoproteomic analysis by TMT isobaric

tagging comparing the proteome of WT cells (T. brucei AnTat1.1 DYRK+/+) or cells deleted for TbDYRK (DYRK-/-). Top panel: flow chart. Lower panel:

Volcano plot of the phosphopeptides with the log2 of the fold change (FC) on the x-axis and the -log10 of the p-value on the y-axis. Vertical dotted

lines indicate a |FC| > 1.5 and the horizontal dotted line a p-value<0.05. (b) Quantitative phosphoproteomic analysis comparing the phosphoproteins of

cell lysates incubated with the purified active kinase (NM) or inactive (H866A). Top panel: flow chart. Lower panel: Volcano plot of the phosphopeptides

with the log2 of the fold change (FC) on the x-axis and the -log10 of the p-value on the y-axis. Vertical dotted lines indicate a |FC| > 1.5 and the

horizontal dotted line a p-value<0.05. Common peptides in both analyses, presenting a differential phosphorylation >1.5 times disregarding the sense

of regulation, are highlighted in both volcano plots.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Correlation plots between replicates of the phosphoproteomic analysis comparing DYRK-/-cells to WT AnTat1.1 cells.

Figure supplement 2. Substrate motif identification.
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the increase of protein translation or in mRNA stability (Erben et al., 2014; Singh et al., 2014), and

a bilobe region protein (Tb927.11.15140). Of the genes analysed, we were only able to generate a

null mutant cell line for the TbZC3H20 protein; for all others, conditional RNAi knock-down cell lines

were produced. We then investigated the capacity of the cells to differentiate in response to cell

permeable 8-pCPT-cAMP or to stumpy induction factor in vivo. Phenotypic analysis of the

TbZC3H20 KO cell line in vitro and in vivo demonstrated that this cell line was unable to differentiate

into stumpy forms, generating high parasitaemia in mice (Figure 6a), with no PAD1 positive cells

detected 144 hr post infection (Figure 6b) and an absence of cell-cycle arrest (Figure 6c), contrast-

ing with the development of the parental line. For the other selected targets, we generated condi-

tional knock-down of the corresponding coding genes by RNAi, and for two of them, the

hypothetical Tb927.1.4280 (Figure 6—figure supplement 1) and the bilobe region protein

Tb927.11.15140 (Figure 6—figure supplement 2), did not observe a significant effect on the slen-

der to stumpy differentiation in vivo. However, knock-down of hypothetical protein Tb927.4.2750

increased the capacity of the cells to differentiate into stumpy-like cells as judged by their increased

sensitivity to the 8-pCPT-cAMP (Figure 6—figure supplement 3), whereas NOT5 depletion acceler-

ated the capacity to generate PAD1-positive cells in mice (Figure 6—figure supplement 4). These

results suggest that these two proteins are ‘slender retainers’ that need to be inactivated or

degraded to allow the cells to efficiently differentiate into stumpy forms. In contrast, TbZC3H20 is a

stumpy inducer, whose activity is required for differentiation. In combination, this reveals a role for

TbDYRK on both the inhibitory and stimulatory arms of the stumpy formation pathway.

TbDYRK phosphosite mutation on TbZC3H20 abolishes differentiation
competence
To confirm the role of TbDYRK in the regulation of the developmental pathway we used CRISPR

mediated allelic mutation to replace the identified TbDYRK phosphosite on TbZC3H20 with a non

phosphorylable residue in T. brucei EATRO 1125 AnTat1.1 J1339 cells (Rojas et al., 2019). A cell

line was successfully generated in which one allele of TbZC3H20 was first replaced by the phospho-

site mutant (TbZC3H20T283A) and the other one then deleted (Figure 6—figure supplement 5a,b);

this cell line was predicted to be unresponsive to TbDYRK mediated phosphorylation and hence

unresponsive to the quorum sensing signal. Growth of the TbZC3H20T283A/- cell line in vivo in com-

parison with parental phospho-competent TbZC3H20+/+ cell lines demonstrated that the mutants

were hypervirulent in mice, with the parasites retaining a slender morphology, contrasting with the

wild-type parasites or the intermediate cell line containing one mutated allele and one WT allele

(TbZC3H20T283A/+; Figure 6—figure supplement 5c), which became stumpy from day 5 of infection

(respectively Figure 6d and Figure 6—figure supplement 5d). The TbZC3H20T283A/- mutant para-

sites also did not express PAD1 (Figure 6e and additional independent clones- Figure 6—figure

supplement 6) and did not exhibit cell cycle arrest in G1/G0 (Figure 6f and Figure 6—figure sup-

plement 6c), confirming their developmental incompetence. This was not related to overall mRNA

levels; the TbZC3H20 mRNA levels in the TbZC3H20T283A/- line were approximately equivalent to a

distinct single allele replacement line that is differentiation competent (Figure 6—figure supple-

ment 5b). Reintroduction of a wild-type TbZC3H20 allele partially restored the WT phenotype in the

phosphosite mutant, with cells presenting cell cycle arrest at peak parasitaemia (Figure 6—figure

supplement 7), although PAD1 expression was not restored. This was potentially related to the mul-

tiple rounds of transfection and selection required to generate these lines (Figure 6—figure supple-

ment 8) or the contribution of 5’UTR control signals to production of appropriate levels of

TbZC3H20 protein.

Discussion
The quorum-sensing signalling pathway of trypanosomes in their mammalian host provides a frame-

work for evolutionary analysis of signalling in a group separated from the major eukaryotic

models (Keeling and Burki, 2019). Here, we have analysed through sequence-guided functional

analysis and phospho-substrate identification an atypical DYRK component representative of a

widely conserved family of proteins centrally implicated in developmental control. This has revealed

striking divergence from precedent for this kinase group, particularly an atypical activation mecha-

nism involving unconventional DFS and HxY motifs. It has also defined the first regulatory cascade

Cayla et al. eLife 2020;9:e51620. DOI: https://doi.org/10.7554/eLife.51620 12 of 34

Research article Microbiology and Infectious Disease



Figure 6. The TbDYRK substrate TbZC3H20 is implicated in the slender to stumpy differentiation. (a) Parasitaemia

of the TbZC3H20 gene KO line (KO_ZC3H20) compared to the parental cell line (AnTat1.1_J1339), n = 3, error

bars = SEM. (b) Percentage of PAD1 positives cells of the TbZC3H20 gene KO line (KO_ ZC3H20) compared to the

Figure 6 continued on next page
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directly linking environmental sensing, signal transduction and posttranscriptional regulation in a

kinetoplastid parasite.

In other organisms, from yeast to mammals, DYRK kinases have roles, among other cellular func-

tions, in cell differentiation (Aranda et al., 2011), stress responses, neural development, myoblast

development and embryogenesis, with perturbed DYRK family activity implicated in downs syn-

drome and some cancers. The involvement of TbDYRK in the control of the trypanosome develop-

ment, therefore, highlights the evolutionarily conserved involvement of this kinase family in

differentiation processes across the diversity of eukaryotic life. Despite this, TbDYRK possesses

unique characteristics that suggest kinetoplastid specific features of this kinase distinct from other

eukaryotes. Particularly, our analysis of TbDYRK has generated the following model for the activa-

tion/function of this molecule (Figure 7a). In this model, the kinase would be expressed in slender

forms and auto-phosphorylated, possibly in trans, as previously suggested through the action of the

divergent NAPA-1 domain (Han et al., 2012), on the Y868 of the activation loop during translation,

as is typical for this kinase family (Kinstrie et al., 2010; Lochhead et al., 2005). This auto-phosphor-

ylation at the activation loop, the lack of a second phosphorylable residue on the activation loop

(with H in place of tyrosine) and the essential role of the serine the DFS motif (replacing the conven-

tional DFG motif) which is predicted to increase rigidity, suggest this kinase is preserved in a pre-

activation state. Indeed, the mutation of this serine to alanine (DFS >DFA) maintained ~70% of

kinase activity in vitro, unlike mutation to a glycine which significantly reduced kinase activity. In

addition, the modelling of the kinase core shows that the DFS motif is in position ‘DFS-in’, support-

ing the probable pre-activation state of the kinase, that would require other mechanisms for activa-

tion. For example, the kinase could be activated by phosphorylation on at least three sites in the

N-terminal domain (T76, S77, S472) in response to stumpy induction factor in vivo or in response to

cell permeable 8-pCPT-cAMP in vitro. The functional analysis also revealed the presence of three

inserts in the kinase core of the protein that are essential for kinase function. These may assist bind-

ing to partner proteins (Kelly and Rahmani, 2005; Sitz et al., 2004), similar to human DYRK2, that

also acts as an adaptor for the formation of the E3 ubiquitin ligase EDPV (Maddika and Chen,

2009). Indeed, the deletion of Insert II, which is cytocidal when cells are exposed to 8-pCPT-cAMP

treatment might be caused by effects on the capacity for binding partner interaction.

Figure 6 continued

parental cell line (AnTat1.1_ J1339) on different days of in vivo infection, n = 3, error bars = SEM. (c) Percentage of

1K1N, 2K1N and 2K2N cells on different days of in vivo infection. n = 3, error bars = SEM. (d) Parasitaemia of the

TbZC3H20 T283A /- line compared to the parental cell line (AnTat1.1_ J1339), n = 3, error bars = SEM. (e)

Percentage of PAD1 positive cells of the TbZC3H20 T283A /- line compared to the parental cell line (AnTat1.1_

J1339), n = 3, error bars = SEM. (f) Percentage of 1K1N, 2K1N and 2K2N cells of the TbZC3H20 T283A /- line

compared to the parental cell line (AnTat1.1_ J1339) on different days of in vivo infection, n = 3, error bars = SEM.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. In vivo phenotypic analysis of the RNAi knocked-down cell line for Tb927.1.4280, uninduced

(-dox, black line) or induced with doxycycline at 72 hr post infection (+dox, grey line).

Figure supplement 2. In vivo phenotypic analysis of the knocked-down cell line for Tb927.11.15140, uninduced (-

dox, black line) or induced with doxycycline at 72 hr post infection (+dox, grey line).

Figure supplement 3. In vitro phenotypic analysis of the knocked-down cell line for gene Tb927.4.2750,

uninduced (-dox) or induced with doxycycline (+dox), and treated or not with the cell permeable 8’-pCPT-cAMP.

Figure supplement 4. In vivo phenotypic analysis of the knocked-down cell line for gene Tb927.3.1920, uninduced

(-dox, black line) or induced with doxycycline at 72 hr post-infection (+dox, grey line).

Figure supplement 5. Endogenous mutation TbZC3H20 T283A.

Figure supplement 6. In vivo phenotypic analysis of three additional clones of the cell line TbZC3H20T283A/-

confirms the differentiation resistant phenotype as presented in Figure 6.

Figure supplement 7. Add-back of a WT copy of TbZC3H20 in the TbZC3H20T283A/- strain in the endogenous

context under control of the 3’UTR partially rescues the WT phenotype.

Figure supplement 8. Schematic representation of the genetic background of the different cell lines generated

and their corresponding number of transfections.

Figure supplement 9. Add-back inducible ectopic expression of a WT copy of TbZC3H20 in the TbZC3H20T283A/-

strain is leaky and does not rescue the WT phenotype.
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We also observed that the ectopic expression of TbDYRK influenced the total level of TbDYRK

mRNA derived from the ectopic and the endogenous derived mRNAs, with this control being

relaxed when cells exhibited reduced differentiation. This feedback regulation could be mediated

via the 3’UTR of the TbDYRK transcript since the ectopic gene, provided with an aldolase 3’UTR,

was not subject to the same control. The regulatory effect was not fully correlated with the kinase

activity of the expressed TbDYRK mutants but did correspond to the differentiation phenotype gen-

erated by the expression of the mutants and so may relate to the activity of other components in the

pathway. The combination of kinase activity and/or protein-protein interactions of TbDYRK may con-

trol the activity of posttranscriptional regulators, which would then promote differentiation through

regulated mRNA stability or translation of downstream targets, but also regulate the level of

TbDYRK mRNA itself. Stringent regulation of TbDYRK levels would prevent the parasite irreversibly

differentiating to stumpy forms prematurely and is reflected in the very low levels of TbDYRK mRNA

and protein detectable in bloodstream forms.

Two complementary quantitative phosphoproteomic approaches to identify substrates of the

kinase were performed. First, we compared the phosphoproteome of WT and KO cells and identi-

fied around 400 peptides significantly differentially regulated between the cell lines. Interestingly,

we observed an enrichment of proteins implicated in chromatin reorganisation and transcriptional

regulation, mRNA stability and translation. For example, the histone deacetylase HDAC3

(Tb927.2.2190) presented reduced phosphorylation in the KO cell line, and the mammal DYRK1B

has been shown to phosphorylate HDAC5 and 9 to promote myocyte differentiation (Deng et al.,

2005). A previous study, on the hierarchical organisation of components implicated in the signal

transduction of the stumpy differentiation pathway, has identified potential substrates of the MEKK1

kinase, another protein implicated in this process (McDonald et al., 2018). Comparing the studies,

12 proteins were shared between the null mutants for each kinase that were less phosphorylated,

including the RNA-binding protein, RBP31 (Tb927.4.4230), which has been implicated in decreased

translation or mRNA stability (Lueong et al., 2016; De Gaudenzi et al., 2005), kinetoplastid kineto-

chore KKT4 protein (Tb927.8.3680) that is essential for chromosomal segregation (Akiyoshi and

Gull, 2014) and NEK17 (Tb927.10.5950), another component of the QS signalling pathway

(Mony et al., 2014). The latter protein exhibits reduced phosphorylation on threonine 195 in both

Figure 7. Model of the activation mechanisms and function of the TbDYRK. (a) Phosphorylation of the pre-active

kinase in response to the stumpy inducing signal results in activation of the kinase. (b) Consequences of the

activation of TbDYRK for the regulation of differentiation, through the inactivation of slender retainer molecules

and the activation of stumpy inducers.
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analyses, suggesting that NEK17 phosphorylation requires both TbDYRK and MEKK1 either directly

or through the action of another kinase.

Phosphorylation of parasite lysate substrates with the purified active kinase identified 29 proteins

that were significantly phosphorylated by the active kinase compared to the inactive mutant.

Observed differences between the phosphoproteomic analysis of the null mutant and the lysate

analysis are likely due to the technical and biological reasons. Firstly, the use of isobaric tags for

analysis of the null and wild type parasites is more sensitive. Secondly, direct and indirect phosphory-

lation events could contribute to the differences observed. DYRKs are known to act as priming kin-

ases, such that their phosphorylation of substrates is required for further phosphorylation by other

kinases, such as GSK3 or PLK (Gwack et al., 2006; Nishi and Lin, 2005; Nishi et al., 2008). This

could contribute to the reduction of phosphorylated proteins detected in the null mutant line that

are not directly phosphorylated by TbDYRK. Finally, the direct substrate analysis was carried using

procyclic form lysates in order to provide sufficient material for analysis, and so stage-specific differ-

ences in substrate proteins could contribute. Nonetheless, the comparison of both analyses revealed

the presence of 45 common proteins exhibiting a change in phosphorylation regardless of the direc-

tion of change or the statistical value, with two proteins that had a statistical change in phosphoryla-

tion on the same peptides. The identified molecules showed an enrichment of RNA binding

proteins, which is the predicted regulatory level of control for trypanosome development, given the

emphasis in kinetoplastid parasites of posttranscriptional regulation. Interestingly, conventional

DYRK3 members in other eukaryotes have been identified as regulators of stress granule integrity,

with the activity of the kinase influencing the dissolution of these membraneless organelles in order

to control the response of cells to stress through regulation of the action of mTOR (Wippich et al.,

2013; Rai et al., 2018). Trypanosome differentiation similarly requires the regulation of TOR activity

and the control of development through the dynamic association of predicted RNA binding proteins

with stress granules, and TbDYRK - with features of DYRK2 and DYRK3 families - may functionally

connect these regulatory components of trypanosome cell cycle exit and stumpy formation.

Genetic validation of some of the identified proteins in the stumpy differentiation pathway, by

knock-out or conditional knock-down, revealed that TbDYRK acts on both the inhibitory and stimula-

tory arms of the differentiation control pathway (Figure 7b). Indeed, knock-down of the hypothetical

protein Tb927.4.2750 rendered the cells more sensitive to 8-pCPT-cAMP and knock-down of NOT5

led to an increase in cell differentiation at a lower parasitaemia. These observations suggest that the

phosphorylation of these proteins by TbDYRK would inactivate their function, allowing the cells to

differentiate. This identifies these proteins as so called ‘slender retainers’ that are required for the

cells to remain as proliferative bloodstream forms. Conversely, the knock-out of the zinc finger pro-

tein TbZC3H20 rendered cells unable to differentiate from slender to stumpy forms, indicating that

its phosphorylation by TbDYRK would activate the protein to promote differentiation, a so-called

‘stumpy inducer’. Consistent with this, the deletion of TbZC3H20 rendered the cells unable to arrest

in G1/G0 and this phenotype was reproduced when only the phosphosite differentially detected in

TbDYRK null mutants was mutated. Although this supports a direct relationship between TbZC3H20

phosphorylation capacity and developmental competence, we found that re-expression of a WT

copy of TbZC3H20, either by inducible ectopic expression (Figure 6—figure supplement 9) or in its

endogenous context (Figure 6—figure supplement 7), only partially restored the WT phenotype.

For inducible expression, we observed TbZC3H20 ectopic expression in both induced and unin-

duced samples; this has the potential to select for the loss of stumpy formation capacity because dif-

ferentiation regulators can generate irreversible cell cycle arrest if inappropriately expressed in

slender forms (McDonald et al., 2018). Similarly, the multiple rounds of transfection and selection

associated with reintroduction of the wild type allele into cell lines where the endogenous gene cop-

ies are replaced with the phosphosite mutant can select for reduced pleomorphism. In consequence,

our biochemical and gene replacement data support a direct association of TbZC3H20 T283 phos-

phorylation with TbDYRK activity, but experimental challenges prevent a definitive link being fully

established.

In combination this study positions TbDYRK as a pivotal regulator of the trypanosome QS sensing

pathway, acting on both differentiation activators and inhibitors through phosphorylation mediated

control. Moreover, its effects on TbZC3H20 link the signal transduction cascade to post transcrip-

tional regulation in the parasite, mRNAs regulated by this molecule being important in the parasite’s

developmental events (Ling et al., 2011; Liu et al., 2020).
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-digoxinegin-AP Fab fragments Roche Cat# 11093274910 Sheep polyclonal,
dilution according to
manufacturer instruction

Antibody Anti-Ty1 epitope tag

specific BB2 antibody

Bastin et al., 1996;
hybridoma cell line a
gift of Keith Gull,
Oxford University/
available through
Thermofisher

Cat#MA5-23513;
RRID:AB_2610644

Hybrydome mouse
monoclonal, clone BB2,
WB (1:20), IF (1:5)

Antibody Anti-Mouse
AlexaFluor 488

molecular probes Cat# A1101 Goat polyclonal,
IF (1:500)

Antibody Anti-Mouse
AlexaFluor 568

abcam Cat# ab175701 Goat polyclonal,
IF (1:500)

Antibody Anti-Rabbit
AlexaFluor 488

invitrogen Cat# A1108 Goat polyclonal,

IF (1:500)

Antibody Anti-Rabbit
AlexaFluor 568

invitrogen Cat# A11036 Goat polyclonal,
IF (1:500)

Antibody IRDye 680 anti-mouse
secondary antibody

Li-Cor Cat#P/N 925-68070;
RRID:AB_2651128

Goat polyclonal,
IF (1:5000)

Antibody IRDye 800CW anti-
Mouse IgG (H + L)
secondary antibody

Li-Cor Cat#P/N 925-32210;
RRID:AB_2687825

Goat polyclonal,
IF (1:5000)

Antibody Anti-PAD1 Dean et al., 2009 N/A Rabbit polyclonal,

WB (1:1000), IF (1:1000)

Antibody Anti-Thio-
phosphate
ester [51-8]

abcam Cat# ab92570 Rabbit monoclonal,

clone 51-8, WB (1:1000)

Cell line
(Spodoptera
frugiperda)

SF9 insect cells gibco Cat# 12659017

Cell line
(Trypanosoma
brucei)

Trypanosoma brucei
EATRO 1125 AnTat1.1 90:13

Engstler and
Boshart, 2004

N/A

Cell line
(Trypanosoma brucei)

Trypanosoma brucei
EATRO 1125 AnTat1.1 J1339

Rojas et al., 2019 N/A

Commercial
assay, kit

DIG RNA labelling kit (SP6/T7) Roche Cat# 11175025910

Commercial
assay, kit

Dneasy Blood & Tissue kit Qiagen Cat# 69506

Commercial
assay, kit

Luna Universal
qPCR master mix

NEB Cat# M3003L

Commercial
assay, kit

Monarch DNA Gel
extraction kit

NEB Cat# T1020L

Commercial
assay, kit

Monarch PCR DNA
Cleanup kit

NEB Cat# T1030S

Commercial
assay, kit

Quickchange II site
directed mutagenesis kit

Agilent Cat#200523

Commercial
assay, kit

Rapid DNA ligation kit invitrogen Cat# K1423

Commercial
assay, kit

RNeasy mini kit Qiagen Cat# 74106

Continued on next page

Cayla et al. eLife 2020;9:e51620. DOI: https://doi.org/10.7554/eLife.51620 17 of 34

Research article Microbiology and Infectious Disease



Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Commercial
assay, kit

Zero blunt TOPO
PCR cloning kit

invitrogen Cat# 45-0245

Gene
(Trypanosoma brucei)

bilobe region
protein, putative

Hu et al., 2015 Tb927.11.15140

Gene
(Trypanosoma brucei)

hypothetical protein N/A Tb927.1.4280

Gene
(Trypanosoma brucei)

hypothetical protein N/A Tb927.4.2750

Gene
(Trypanosoma brucei)

Not5 Schwede et al., 2008 Tb927.3.1920

Gene
(Trypanosoma brucei)

TbDYRK (formely YAK) Mony et al., 2014 Tb927.10.15020

Gene
(Trypanosoma brucei)

ZC3H20 Liu et al., 2020 Tb927.7.2660

Other [g-32P]-ATP
(3000 Ci/mmol)

Perkin Elmer Cat# NEG502A250UC

Other 8-(4-Chlorophenylthio)

adenosine 30,50-cyclic

monophosphate sodium salt

Sigma-aldrich Cat# C3912

Other Amaxa basic parasite
nucleofector kit 2 solution

Lonza Cat#VMI-1021

Other ATP-gamma-S Abcam Cat# ab18911

Other CDP star Roche Cat# 11685627001

Other Cellfectin
II Reagent

gibco Cat# 10362100

Other DE52 Whatman Cat# 4057200

Other Dyneabeads
protein G

Invitrogen Cat# 10003D

Other Grace’s Medium gibco Cat# 11595-030

Other HMI-9 Medium Life Technologies Cat#074-90915

Other MOPS sigma aldrich Cat# M3183

Other NuPAGE 4-12%
Bis-Tris Gel

invitrogen Cat# NP0322BOX

Other NuPAGE MES SDS
running buffer (20x)

invitrogen Cat# NP0002

Other Oligo dT(20) Primer Invitrogen Cat# 18418020

Other Paraformaldehyde sigma aldrich Cat# P6148

Other Phire green hot start
II DNA polymerase

thermo scientific Cat# F-124S

Other PNBM (p-Nitrobenzyl
mesylate) in DMSO

abcam Cat# ab138910

Other ProLong Diamond
antifade mount

invitrogen Cat# P36965

Other Protease inhibitor cocktail
completme EDTA-free

Roche Cat# 11873580001

Other RNAse H NEB Cat# M0297S

Other SDM-79 medium Life Technologies Cat#074-90916

Other Sf-900 1.3X gibco Cat# 10967-032

Other Sf-900 II SFM medium gibco Cat# 10902-096

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Other Superscript III reverse
transcriptase

Invitrogen Cat# 18080-044

Peptide,
recombinant
protein

Beta-Casein Sigma-aldrich Cat# C6905-250MG

Peptide,
recombinant
protein

Casein-
dephosphorylated

Sigma-aldrich Cat# C4032-100MG

Peptide,
recombinant
protein

Caspase 9, 200
first amino acids

Cloud-clone corp. Cat# RPA627Mu01

Peptide,
recombinant
protein

Histone H1 Milipore Cat# 14-155

Peptide,
recombinant
protein

Histones cores
H2A, 2B, 3, 4

BioVision Cat# 7677-50

Peptide,
recombinant
protein

MBP-depho
sphorylates

Millipore Cat# 13-110

Recombinant
DNA reagent

pALC14 Pusnik et al., 2007 N/A

Recombinant
DNA reagent

pALC14_1.4280 This study N/A Derived from
pALC14 from
Pusnik et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pALC14_NOT5 This study N/A Derived from pALC14
from Pusnik et al. (2007),
generated in
Keith Matthews’s Lab

Recombinant
DNA reagent

pALC14_Tb927.11.15140 This study N/A Derived from pALC14
from Pusnik et al. (2007),
generated in Keith
Matthews’s Lab

RecombinantDNA reagent pALC14_Tb927.4.2750 This study N/A Derived from pALC14
from Pusnik et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y Kelly et al., 2007 N/A

Recombinant
DNA reagent

pDEX577-Y_TbDY
RK_DI::YFP-TY

This study N/A Derived from
pDEX577-Y from
Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDY
RK_DII::YFP-TY

This study N/A Derived from pDEX577-
Y from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDY
RK_DIII::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK_
H866A_Y868F::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

pDEX577-Y_TbDYRK_
H866A::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK_
K592A::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK_
NM::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK_S
472A::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK_
S77A::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK
_S856A::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK
_S856G::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK
_T76A::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_TbDYRK
_Y868F::YFP-TY

This study N/A Derived from pDEX577-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pDEX577-Y_
ZC3H20::YFP-TY

This study N/A Derived from
pDEX577-Y from
Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pEnT6B-Y Kelly et al., 2007 N/A

Recombinant
DNA reagent

pEnT6B-Y_
UTRs_TbDYRK

This study N/A Derived from pEnT6B-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pEnT6P-Y Kelly et al., 2007 N/A Derived from pEnT6B-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pEnT6P-Y_
UTRs_TbDYRK

This study N/A Derived from pEnT6B-Y
from Kelly et al. (2007),
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pET28a Novagen Cat#69864

Recombinant
DNA reagent

pFASTBac1
expression vector

Invitrogen Cat# 10360-010

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-
TY::TbDYRK_DI

This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-
TY::TbDYRK_DII

This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-
TY::TbDYRK_DIII

This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-
TY::TbDYRK_H866A

This study N/A Derived from pFASTBac1
from Novagen

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY::
TbDYRK_H866A_Y868F

This study N/A Derived from
pFASTBac1
from Novagen,
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY
::TbDYRK_K592A

This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY:
:TbDYRK_NM

This study N/A Derived from
pFASTBac1 from
Novagen, generated in
Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY:
:TbDYRK_S472A

This study N/A Derived from pFASTBac1
from Novagen, generated in
Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY:
:TbDYRK_S77A

This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY::
TbDYRK_S856A

This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY
::TbDYRK_S856G

This study N/A Derived from pFASTBac1
from Novagen, generated
in Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY
::TbDYRK_T76A

This study N/A Derived from pFASTBac1
from Novagen, generated in
Keith Matthews’s Lab

Recombinant
DNA reagent

pFASTBac1_TY-YFP-TY
::TbDYRK_Y868F

This study N/A Derived from pFASTBac1
from Novagen, generated in
Keith Matthews’s Lab

Recombinant
DNA reagent

pGEMTeasy Promega Cat# A1360

Recombinant
DNA reagent

pJ1339 Kindly provided by
Dr Jack Sunter,
Oxford Brookes
University

N/A

Recombinant
DNA reagent

pPOTv6 Kindly provided by
Dr Sam Dean,
Oxford University

N/A

Recombinant
DNA reagent

pPOTv6_ZC3
H20_T283A

This study N/A Derived from pPOTv6,
generated in Keith
Matthews’s Lab

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

pPOTv7 Kindly provided by
Dr Sam Dean,
Oxford University

N/A

Recombinant
DNA reagent

pTOPO PCR blunt II invitrogen Cat# 45-0245

Recombinant
DNA reagent

pPOTv6_BLEO_BSD This study N/A Derived from pPOTv6,
generated in Keith
Matthews’s Lab

Recombinant
DNA reagent

pPOTv6_BLEO_
TY::ZC3H20_BSD

This study N/A Derived from pPOTv6,
generated in Keith
Matthews’s Lab

Software,
algorithm

Bioconductor Bioconductor http://www.
bioconductor.org/

Software,
algorithm

Blast NCBI https://blast.ncbi.
nlm.nih.gov/Blast.cgi

Software,
algorithm

ClustalXv2 Larkin et al., 2007 http://www.clustal.
org/clustal2/

Software,
algorithm

Eukaryotic Linear
Motif resource

Gouw et al., 2018 http://elm.eu.org/
infos/about.html

Software,
algorithm

GeneDB Hertz-Fowler, 2004 http://www.genedb.
org/Homepage

Software,
algorithm

iTASSER Yang and Zhang, 2015 https://zhanglab.ccmb.
med.umich.edu/I-TASSER/

Software,
algorithm

Jalview Waterhouse
et al., 2009

N/A

Software,
algorithm

LeishGEdit Beneke et al., 2017 http://www.leish
gedit.net/Home.html

Software,

algorithm

MEGA7 Kumar et al., 2016 https://www.
megasoftware.net

Software,
algorithm

MUSCLE Madeira et al., 2019 https://www.ebi.ac.uk
/Tools/msa/muscle/

Software,
algorithm

OrthoMCL Chen et al., 2006 http://orthomcl.
org/orthomcl/

Software,
algorithm

Pfam El-Gebali et al., 2019 http://pfam.xfam.org

Software,
algorithm

PRATT v2.1 Jonassen et al., 1995 N/A

Software,
algorithm

PyMol1.8 Schrödinger https://pymol.org/2/

Software,
algorithm

R R https://www.r-project.org/

Software,
algorithm

RNAit Redmond et al., 2003 https://dag.compbio.
dundee.ac.uk/RNAit/

Software,
algorithm

Rstudio Rstudio https://rstudio.com/

Software,
algorithm

TriTrypDB Aslett et al., 2010 http://tritrypdb.
org/tritrypdb/

Strain, strain
background (Escherichia coli)

MAX Efficiency
DH10Bac
chemically competent
cells

gibco Cat# 10361012

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Mus musculus)

Mouse MF1, female Charles River N/A

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_RNAi_Not5

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei
EATRO 1125
AnTat1.1 90:
13_RNAi_Tb927.1.4280

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei
EATRO 1125
AnTat1.1
90:13_RNAi_
Tb927.11.15140

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma brucei
EATRO 1125
AnTat1.1 90:
13_RNAi_Tb927.4.2750

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO
1125 AnTat1.1 90
:13_TbDYRK_DI

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_DII

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_DIII

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_H866A

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_Tb
DYRK_H866A_Y868F

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_K592A

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_KO

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_NM

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_S472A

This study N/A Cell lines generated in
Keith Matthews’s Lab

Continued on next page

Cayla et al. eLife 2020;9:e51620. DOI: https://doi.org/10.7554/eLife.51620 23 of 34

Research article Microbiology and Infectious Disease



Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_S77A

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 90:13_
TbDYRK_S856A

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei
EATRO 1125
AnTat1.1 90:13_

TbDYRK_S856G

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO
1125
AnTat1.1 90:13_
TbDYRK_T76A

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO
1125
AnTat1.1 90:13_
TbDYRK_Y868F

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 J1339
_ZC3H20_KO

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1 J1339_
ZC3H20_T283A/-

This study N/A Cell lines generated in
Keith Matthews’s Lab

Transfected
construct

Trypanosoma
brucei EATRO 1125
AnTat1.1
J1339_ZC3H20
_T283A/-_
pDEX577-Y-ZC3H20

This study N/A Cell lines generated in
Keith Matthews’s Lab

Ethics statement
Animal experiments in this work were carried out in accordance with the local ethical approval

requirements of the University of Edinburgh and the UK Home Office Animal (Scientific Procedures)

Act (1986) under licence number 60/4373.

Trypanosome culture, constructs and transfection
Pleomorphic T. brucei brucei EATRO 1125 AnTat1.1 90:13 cells (Engstler and Boshart, 2004) were

used for the phenotypic analysis of the ectopic expression of mutants of the DYRK kinase and knock-

down of the potential substrates in bloodstream forms. The T. brucei brucei EATRO 1125 AnTat1.1

90:13 cell line expresses the T7 RNA polymerase and tetracycline repressor protein. Pleomorphic T.

brucei brucei EATRO 1125 AnTat1.1 cells were transfected by the plasmid J1339 (kindly provided by

Dr. Jack Sunter), that contains the T7 RNA polymerase and the CRISPR/Cas9.

Slender forms were either grown in-vitro or harvested from MF1 female mice at 3 days post infec-

tion. Stumpy forms were harvested from MF1 female mice between 5- and 7 days post-infection. All

bloodstream form cell lines were grown in vitro in HMI-9 at 37˚C in 5% CO2. In vitro differentiation

into ‘stumpy-like’ forms was performed for 96 hr using 100 mM of the cell permeable cyclic AMP ana-

logue, 8-pCPT-cAMP, purchased from Sigma-Aldrich (United Kingdom) (Mony et al., 2014).

Ectopic expression constructs were generated using the pDex577-Y vector, that integrates in to

the 177 bp repeat mini-chromosome region. The different bloodstream RNAi cell lines were
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generated using the stem loop vector pALC14 (Pusnik et al., 2007). Both ectopic expression and

knock down were initiated by the addition of 2 mg/mL of doxycycline in the culture medium.

Null mutant constructs of the gene TbDYRK were created by replacing the YFP and TY tags of

the pEnT6B-Y and pEnT6P-Y vectors (Kelly et al., 2007) with fragments of the 3’ and 5’UTRs of the

target gene then integrated in the genome, as describe in McDonald et al. (2018).

CRISPR/Cas9 knock-out construct of Tb927.7.2660 was generated as described in Beneke et al.

(2017) using the pPOTv7 plasmid and transfected in the T. brucei EATRO 1125 AnTat1.1 J1339

strain. Correct integration of the construct and the deletion of the targeted gene were verified with

the pairs of primers MC016/018 + MC017/018 and MC016/075, respectively.

Endogenous mutation of the gene coding for the protein TbZC3H20 was generated, in the J1339

strain, by cloning the mutated version (OL068/069) of the gene into the pPOTv6-BSD plasmid using

primers OL066/067 and the restriction enzymes HindIII/ScaI, replacing the tagging cassette. Integra-

tion was then performed as described in Beneke et al. (2017). The second allele was deleted using

the pPOTv7-HYG plasmid as described in Beneke et al. (2017) (Primer list in Supplementary file 1).

The endogenous add-back of the WT version of the gene coding for the protein TbZC3H20 was

generated by cloning the WT version of the gene into pPOTv6-BLEO-BSD in place of the mNG tag.

Final transfected template fragment was amplified using the primers OL062/082. Correct mutagene-

sis and deletion were assessed by sequencing (Primer list in Supplementary file 1).

Pleomorph transfections were performed as described by MacGregor et al. (2013). Selection

was applied by using the appropriate drugs: Geneticin (G418, 90:13 = 2.5 mg/ml), Hygromycin

(HYG, All strains = 0.5 mg/ml), Puromycin (PURO, 90:13 = 0.25 mg/ml, J1339 = 0.05 mg/ml), Blastici-

din (BSD, 90:13 = 10 mg/ml, J1339 = 2 mg/ml) and Phleomycin (BLE, 90:13 = 2.5 mg/ml).

pDEX577-Y
pDEX577_Tb927.10.15020::YFP-TY was generated by Gibson cloning as described in

McDonald et al. (2018). Site direct mutagenesis (Primer list in Supplementary file 1) was then per-

formed to generate the different mutants and their fidelity confirmed by sequencing (Primer list in

Supplementary file 1). Plasmids were linearized with NotI, prior to transfection into the T. brucei

EATRO 1125 AnTat1.1 90:13 strain.

pALC14
RNAi target gene fragments were selected based on the default settings of the RNAit software

(Redmond et al., 2003). Fragments were amplified using the pairs of primers indicated in the primer

list in Supplementary file 1 and cloned into pCR-Blunt II-TOPO (Invitrogen), prior to sequencing.

Resulting constructs were then digested by HindIII/XbaI and the extracted fragments cloned into

pALC14 plasmid opened by the same enzymes. The second round of cloning was performed by

digestion by BamHI/XhoI, allowing the head-to-head arrangement of the two identical fragments

into the pALC14, generating the stem loop (Pusnik et al., 2007). Final plasmids were linearized with

NotI, prior to transfection into the T. brucei AnTat1.1 90:13 strain.

pFASTBac1_TY-YFP-TY::Tb927.10.15020
Amplification of TY-YFP from pDEX577-Y was performed using the primer pair MC003/004 and

cloned into pGEMTeasy (Promega), prior to sequencing (MC007/MC015). Next, the PstI restriction

site into the YFP gene was removed by site directed mutagenesis using MC043/044 and the con-

struct was linearised by the enzymes BssHII/PstI to allow the ligation of the hybridised primers

MC005/006, for the integration of the second TY tag. The final tag TY-YFP-TY was then extracted

from pGEMTeasy by BamHI/PstI and cloned into the pFASTBac1 vector (Gibco) previously digested

by the same set of enzymes, to generate the pFASTBac1_TY-YFP-TY plasmid, allowing tagging in

N-terminal or C-terminal. Cloning at the N-terminal end was performed by amplification of the gene

TbDYRK with the primers MC001/002, subcloned into pGEMTeasy for sequencing (MC007/010/011/

012/013/014/015), and digestion by BssHII/PstI to generate the final pFASTBac1_TY-YFP-TY::

Tb927.10.15020. This final plasmid was then transformed into Bac10 bacteria (Gibco) to generate

the baculovirus, necessary for the infection of insect cells, according to manufacturer instructions.

Site direct mutagenesis were then performed to generate the different mutants and then verified

by sequencing.
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Protein expression and purification
Expression and purification of the recombinant tagged TY-YFP-TY:: TbDYRK was performed using

the SF9 insect cell (Gibco) in SF900 II serum free medium, according to manufacturer’s instructions.

Lysis of infected SF9, by the baculovirus allowing expression of the kinase, was performed with RIPA

buffer (25 mM Tris pH7-8, 150 mM NaCl, 0.1%SDS, 0.5% Sodium deoxycholate, 1% Triton X-100,

Protease inhibitor cocktail Roche mini EDTA-free, Benzonase at 25 U/mL) and incubated 30 min on

ice. After sonication, samples were clarified and the supernatant incubated with the aBB2 antibody

(Bastin et al., 1996). Immunoprecipitation was then performed using the magnetic Dyneabeads pro-

tein G (Invitrogen), according to manufacturer’s instructions. Elution was carried out with 25 mM Tris

pH7.4.

Immunofluorescence
Cell cycle analysis and PAD1 protein expression analysis were carried out by staining ice-cold metha-

nol fixed cells with 4’,6-diamidino-2-phenylindole (DAPI) (100 ng/ ml) and an anti-PAD1 antibody as

previously described (MacGregor and Matthews, 2012).

Protein visualisation and western blotting
Protein samples were boiled for 5 min in Laemmli loading buffer (except PAD1 samples, that

remained unboiled), separated by SDS–PAGE (NuPAGE gel 4–12% Bis-Tris, Invitrogen) and visual-

ized either by Coomassie staining or SYPRO Ruby Protein Gel Stain (Invitrogen) using a Typhoon

9400 scanner (Amersham Biosciences) with lex = 457 nm and lem = 610 nm. Alternatively, proteins

were separated by SDS–PAGE on NuPAGE 4–12% Bis-Tris gels and blotted onto polyvinylidene

difluoride (PVDF) membranes (Pierce). After blocking with Odyssey Blocking buffer for at least 30

min at room temperature (RT), membranes were incubated with antibodies 1- to 3 hr at RT or over-

night at 4˚C under agitation in 2% BSA in TBS-T (0.1% Tween in TBS). The primary antibodies were

used at the following dilutions: aPAD1 (1:1000); aBB2 (1:5, [Bastin et al., 1996]); aThioP (1:1000,

Thio-phosphate ester [51-8], Abcam). After three washes in TBS-T, proteins were visualised by incu-

bating the membrane for 1 hr at RT with a secondary antibody conjugated to a fluorescent dye

diluted 1:5000 in 50%Odyssey Blocking buffer/50% TBS-T. Finally, membranes were scanned using a

LI-COR Odyssey imager system.

Northern blotting and transcriptome analysis
For northern blotting, RNA preparation and analysis were carried out as described by

McDonald et al. (2018). Briefly, the targeting sequence was chosen using the RNAit website

(Redmond et al., 2003), cloned into pGEMTeasy vector and then subclone twice into the pALC14

vector as described in the ‘construct’ section. The probe was then derived from the pGEMT interme-

diate vector using SP6 RNA polymerase from the DIG RNA labelling kit (Roche). Hybridisation was

carried out at a temperature of 62˚C.

Kinase assay
The identification of a generic in-vitro substrate was performed using a ‘cold’ kinase assay with 10

mg dephosphorylated MBP, 40 mg histone H1, 1 mg histone cores H2A, H2B, H3, H4, 20 mg dephos-

phorylated casein, 1 mg b-Casein, or 1 mg of the recombinant Mus musculus Caspase 9 (Casp9, first

200 amino-acids - Cloud-Clone Corp, #RPA627Mu01) as substrates in kinase buffer at pH 7.5 (50

mM of MOPS pH 7.5, 100 mM NaCl, 10 mM MgCl2, 10 mM MnCl2) in 20 ml final volume and in the

presence of 250 mM of adenosine- triphosphate (ATP)- g -S (Allen et al., 2007). After 30 min incuba-

tion at 37˚C, the phosphotransferase reaction was stopped by an incubation for 10 min at 95˚C,

immediately followed by 2 hr of incubation in presence 5 mM PNBM at 20˚C to initiate the alkylation

reaction as described in Allen et al. (2007). The reaction was then stopped by adding Laemmli load-

ing buffer. Reaction mixtures were separated by SDS–PAGE and transferred to PVDF membrane.

Protein loading was revealed either by ponceau staining (substrate) or western blotting (kinase)

using the aBB2 antibody. The phosphotransferase activity was revealed by western blotting using

the aThioP antibody, as previously described (Allen et al., 2007).

The structure/function analysis was performed in a ‘hot’ kinase assay, using 5 percent of the TY-

YFP-DYRK purified protein, incubated on a shaker for 25 min at 37˚C with 0.5 mg of the Casp9 as
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substrate, 200 mM of ATP, 50 mM of MOPS pH 7.5, 100 mM NaCl, 10 mM MgCl2 and 1 mCi

[g�32P]-ATP (3000 Ci/mmol) in a final volume of 20 ml. The phosphotransferase reaction was then

stopped by adding Laemmli loading buffer and boiling at 95˚C for 5 min. Reaction mixtures were

separated by SDS–PAGE and transferred to PVDF membrane. Protein loading was revealed either

by ponceau staining (substrate) or western blotting (kinase) using the aBB2 antibody. 32P incorpo-

ration was monitored by exposing the membrane on an X-ray sensitive film (Roche) at �80˚C. After

exposure, the bands corresponding to Casp9 were excised from the PVDF membrane and Cheren-

kov radiation was quantified by a scintillation counter using the 32P program.

Kinase assays to identify substrates of the DYRK kinase was performed as follows: 15 percent of

the TY-YFP-DYRK purified protein, incubated on a shaker for 30 min at 37˚C with 1 mg of parasite

lysate as substrate (see the phosphoproteomic section for the details), 200 mM of ATP, 50 mM of

MOPS pH 7.5, 100 mM NaCl, 10 mM MgCl2. The kinase reaction was stopped by boiling samples

for 5 min at 95˚C.

RT-qPCR
RNA preparation was performed using the Qiagen RNA extraction kit, according to manufacturer’s

instructions. 1 mg of RNA was treated with RQ1 RNase-free DNase (Promega) for 2 hr at 37˚C before

heat-inactivation. cDNA synthesis was performed using the SuperScript III Reverse Transcriptase

(Invitrogen), according to manufacturer’s instructions, in presence of oligo(dT)20 (Invitrogen) and 500

ng of RNA. Real time PCR was performed using a LigthCycler 96 (Roche). Oligonucleotides MC057/

058 and MC059/060 amplified ~120–150 bp fragments of TbDYRK or the YFP tag, respectively. Oli-

gonucleotides MC055/056 (Ma et al., 2010), recognizing a fragment of GPI8, were used as an

endogenous control for normalisation. PCRs were set up in triplicate, with each reaction containing

10 mL of Luna Universal qPCR Master Mix (New England BioLabs), 300 nM of each oligonucleotides,

5 mL of cDNA (diluted 1/10) in a final volume of 20 mL. PCR conditions were as follows: 1 cycle of 50˚

C for 2 min, 1 cycle of 95˚C for 10 min, followed by 50 cycles of 95˚C for 15 s and 58˚C for 1 min.

Final melting curve was obtained by gradient increase temperature from 65˚C to 95˚C.

Ct values were normalised with the internal loading control GPI8. To allow relative quantifications,

results were then compared to the mean value obtained for the DYRK gene in the WT strain, that

has been set at 100% of expression.

Cell viability assay
1 � 105 parasites per mL were incubated in HMI-9 at 37˚C in 5% CO2, for 48 hr, in the presence of 2

mg/mL of doxycycline and in the presence or absence of 100 mM of the cell permeable cyclic AMP

analogue, 8-pCPT-cAMP. After 48 hr, 100 mL was transferred into white bottomed 96-well plates. 10

ml alamarBlue (Bio-Rad) was added to each well and the plate was incubated for 4 hr in the same

conditions. Fluorescence was read using a FLUOstar OPTIMA fluorimeter (BMG Labtech) at 544 nM

excitation/590 nM emission. The mean of fluorescence values were normalised relative to the

untreated control (-cAMP) for each strains.

Phosphoproteomic analysis
The proteomic analysis comparing the phosphoproteome of the two strains T. brucei EATRO 1125

AnTat 1.1 90:13 WT or DYRK KO was performed exactly as described in McDonald et al. (2018).

Briefly, samples were extracted from two replicates for each cell line. For each, 2.7 � 108 cells were

lysed (4% SDS; 25 mM Tris(2-carboxyethyl)phosphine (TCEP) (Thermo); 50 mM N-ethylmaleimide

(Thermo); 150 mM NaCl;1x PhosSTOP phosphatase inhibitor (Roche); 10 mM Na2HPO4 pH6) and

then chloroform:methanol precipitated. Tryptic digestion was performed at 37˚C with 8 mg trypsin

(Pierce). Labelling and mass spectrometry were carried out at the FingerPrints Proteomics Facility at

the University of Dundee. The samples were purified by solid phase extraction and then quantified

by bicinchoninic acid assay prior to labeling with isobaric tandem mass tags (6-plex TMT). The sam-

ples were pooled and divided into fractions using hydrophilic interaction liquid chromatography. Sta-

tistical analysis of the fold change in phosphorylation between DYRK KO and T. brucei AnTat

replicates was performed using the R package limma (Phipson et al., 2016; Ritchie et al., 2015).

The substrate identification analysis was performed with 2 � 109 of procyclic cells. Lysates were

generated using 4% SDS buffer (4% SDS, 25 mM Tris, 50 mM N-Ethylmaleimide (NEM), 150 mM
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NaCl, 10 mM Na2HPO4, Protease inhibitor cocktail Roche mini EDTA-free, 25 U/mL Benzonase,

pH6), incubated 30 min on ice, sonicated and heat inactivated for 5 min at 95˚C. Next, samples were

treated with Lambda Phosphatase (~1 U/mg of proteins) for 1 hr at 30˚C, followed by another heat

inactivation step of 5 min at 95˚C. The kinase assay was then performed in three replicates with the

active kinase NM or the inactive one (H866A), purified from insect cells, as described in the kinase

assay section. To remove any trace of SDS, samples were precipitated with ice cold acetone, with a

ratio of acetone/sample of 90%/10% and incubated at �20 overnight. The next day, samples were

pelleted by centrifugation for 10 min at 4˚C, the supernatant discarded, and washed again with 1 ml

of ice-cold acetone and re-pelleted at four degrees. The following steps were performed at the

proteomic facility of the University of Edinburgh. Dried pellets were resuspended in 8M urea and a

protein assay performed (Bradford Biorad). One milligram of protein extract was digested (enough

for two phosphopeptide enrichments). Protein denaturation and reduction was performed in 2M

urea, 25 mM ammonium bicarbonate and 5 mM dithiothreitol (DTT). Samples were kept at room

temperature for 30 min before cysteine alkylation in 12.5 mM iodoacetamide for 1 hr. Ten micro-

grams of trypsin were added and digestions were performed overnight at room temperature. Pep-

tide extracts were then cleaned on an SPE reverse phase Bond Elut LMS cartridge, 25 mg (Agilent).

The samples were split into five hundred microgram aliquots and dried under low pressure (Thermo

Jouan Speedvac) and stored at �20˚C.

Samples were then resuspended with 25 ml of 0.5M lactic acid/50% ACN and sonicated, prior

phosphopeptide enrichment by adding 8 ml of resin (100 mg/ml of 10 mm TiO beads in isopropanol -

dried down). Following this, samples are mixed and incubated overnight at room temperature, with

shaking. The sample/TiO2 mix was then transferred to a small filter and spun for 5 min. 25 ml of

0.5M lactic acid/50% ACN was added to the spin tip and then spun for 1 min at 5000 rpm in a micro-

fuge. The resin washed with first 25 ml 0.5M lactic acid/50% CAN and then with 200 ml 80% ACN/

0.1% TFA and spun for 1 min at 5000 rpm in a microfuge. Three additional washes were performed

with 200 ml 50% ACN/0.1% TFA and spin for 1 min at 5000 rpm, followed by two washes with 200 ml

80% ACN/0.1% TFA and spin for 1 min at 5000 rpm. The first elution was performed as follows – 2

times with 50 ml 50 mM KH2PO4; the 2nd elution was as follows - 50 ml 2M Ammonia; and the third

elution comprised - 50 ml 80% ACN/0.1% TFA. The samples were dried under low pressure and

reconstituted in 100 ml Buffer A (2%Acetonitrile in water 0.1%formic acid) before clean-up. Clean-up

of the eluted peptides was carried out with C18 membrane tips and then dried under low pressure.

Once dried, the samples were reconstituted in 7 ml 2% Formic Acid and filtered using a 0.45 mm filter

in preparation for MS.

Nano-ESI-HPLC-MS/MS analysis was performed using an on-line system consisting of a nano-

pump (Dionex Ultimate 3000, Thermo-Fisher, UK) coupled to a QExactive instrument (Thermo-

Fisher, UK) with a pre-column of 300 mm x 5 mm (Acclaim Pepmap, 5 mm particle size) connected to

a column of 75 mm x 50 cm (Acclaim Pepmap, 3 mm particle size). Samples were analysed on a 90

min gradient in data dependent analysis (one survey scan at 70 k resolution followed by the top 10

MS/MS). The gradient between solvent A (2%Acetonitrile in water 0.1%formic acid) and solvent B

(80% acetonitrile-20% water and 0.1% formic acid) was as follows: 7 min with buffer A, over 1 min

increase to 4% buffer B, 57 min increase to 25% buffer B, over 4 min increase to 35%, over 1 min

increase to 98% buffer B and continuation under those conditions for 9 min, switch to 2% buffer B

over 1 min and the column was conditioned for 10 min under these final conditions. MS/MS Frag-

mentation was performed under Nitrogen gas using high energy collision dissociation in the HCD

cell. Data was acquired using Xcalibur ver 3.1.66.10.

Data from MS/MS spectra was searched using MASCOT Versions 2.4 (Matrix Science Ltd, UK)

against a Trypanosoma brucei database with maximum missed-cut value set to 2. The following fea-

tures were used in all searches: i) variable methionine oxidation, and S/T/Y phosphorylation, ii) fixed

cysteine carbamidomethylation, iii) precursor mass tolerance of 10 ppm, iv) MS/MS tolerance of 0.05

Da, v) significance threshold (p) below 0.05 (MudPIT scoring) and vi) final peptide score of 20. Pro-

genesis (version 4 Nonlinear Dynamics, UK) was used for LC-MS label-free quantitation. Only MS/MS

peaks with a charge of 2+, 3+ or 4+ were considered for the total number of ‘Feature’ (signal at one

particular retention time and m/z) and only the five most intense spectra per ‘Feature’ were

included.
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Bioinformatics approaches
DYRK orthologues of Leishmania spp and Trypanosoma spp genes and protein sequences were

retrieved from the web database TriTrypDB (http://tritrypdb.org/tritrypdb/) (Aslett et al., 2010).

Homology searches were carried out using BLAST with the default BLOSUM-62 substitution matrix

(Altschul, 1997), and pattern recognition analysis using the program PRATT v2.1 (Jonassen, 1997).

Multiple sequence alignments were performed using the built-in algorithm ClustalXv2. Additional

sequence analyses were carried out using the Jalview program (Waterhouse et al., 2009). Statistical

analysis and data plotting were performed using Rstudio software (http://www. rstudio.org/) and R

language (R Development Core Team (2005). R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3- 900051-07-0, URL: http://www.

R-project.org).

Statistical analyses
For the analysis of phenotypes, three to five animals per treatment were routinely used, with pilot

and independent replicates confirming observed responses. With effects sizes similar to those previ-

ously observed for RNAi mediated loss of developmental competence (0.637 to 1.804; e.g.

Mony et al., 2014) a sample size of three to five animals per group (+ or � DOX) , or a total of six

to ten, allows 80% power for test genes. Data were examined before analysis to ensure normality

and that no transformations were required. Global proteomic data analyses were carried out using

limma with a moderated t-test. Phosphoproteomic of the substrates of NM and the H866A mutant

kinase in cell lysates was carried out using a standard t-test. P values of less than 0.05 were consid-

ered statistically significant. Blinding was not carried out.
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Smith TK, Thompson J, Matthews KR. 2019. Oligopeptide signaling through TbGPR89 drives trypanosome
quorum sensing. Cell 176:306–317. DOI: https://doi.org/10.1016/j.cell.2018.10.041

Schwede A, Ellis L, Luther J, Carrington M, Stoecklin G, Clayton C. 2008. A role for Caf1 in mRNA deadenylation
and decay in trypanosomes and human cells. Nucleic Acids Research 36:3374–3388. DOI: https://doi.org/10.
1093/nar/gkn108, PMID: 18442996

Singh A, Minia I, Droll D, Fadda A, Clayton C, Erben E. 2014. Trypanosome MKT1 and the RNA-binding protein
ZC3H11: interactions and potential roles in post-transcriptional regulatory networks. Nucleic Acids Research
42:4652–4668. DOI: https://doi.org/10.1093/nar/gkt1416, PMID: 24470144
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