
This is a repository copy of Distinguishing functions of trypanosomatid protein kinases.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192625/

Version: Published Version

Article:

Cayla, Mathieu orcid.org/0000-0002-3731-7947, Nievas, Y. Romina, Matthews, Keith R. et 
al. (1 more author) (2022) Distinguishing functions of trypanosomatid protein kinases. 
Trends in parasitology. pp. 950-961. ISSN 1471-4922 

https://doi.org/10.1016/j.pt.2022.08.009

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Review

Distinguishing functions of trypanosomatid
protein kinases

Mathieu Cayla ,1 Y. Romina Nievas ,2 Keith R. Matthews ,1 and Jeremy C. Mottram 2,*

Trypanosomatid parasitic protozoa are divergent from opisthokont models and

have evolved unique mechanisms to regulate their complex life cycles and to

adapt to a range of hosts. Understanding how these organisms respond, adapt,

and persist in their different hosts could reveal optimal drug-control strategies.

Protein kinases are fundamental to many biological processes such as cell

cycle control, adaptation to stress, and cellular differentiation. Therefore, we

have focused this review on the features and functions of protein kinases that

distinguish trypanosomatid kinomes from other eukaryotes. We describe the

latest research, highlighting similarities and differences between two groups of

trypanosomatid parasites, Leishmania and African trypanosomes.

Investigating the kinomes of trypanosomatids

Trypanosoma and Leishmania protozoan parasites are clinically important human pathogens that

cause African sleeping sickness, Chagas’ disease, and distinct forms of leishmaniasis worldwide,

as well as nagana, dourine, and leishmaniasis in mammalian animals. Their life cycles require prolifer-

ation and a series of cellular differentiation steps, generating parasite forms adapted to their mamma-

lian and haematophagous insect hosts. As in other eukaryotes, such processes are regulated by

phosphorylation-mediated signal-transduction events (Box 1) controlled by the antagonist action of

protein phosphatases and protein kinases (see Glossary). The protein kinase superfamily is com-

posed of atypical protein kinases (aPKs) and eukaryotic protein kinases (ePKs). The aPKs

comprise 28 and 20 members in Leishmania mexicana and Trypanosoma brucei, respectively.

ePKs are classified into two superfamilies: protein serine/threonine kinases, which are ubiquitous

to all eukaryotes; and protein tyrosine kinases that are absent in most unicellular eukaryotes,

including trypanosomatids. Tyrosine phosphorylation is nonetheless documented in these parasites

[1] and is carried out by dual-specificity kinases.Genomic searches for trypanosomatid kinomes iden-

tified 193 and 157 ePKs in L. mexicana and T. brucei, respectively [2–6], with 140 ePKs orthologues

shared between L.mexicana and T. brucei, as annotated in TriTrypDB (Figure 1). These parasites also

encode species-specific protein kinases as exemplified in L. mexicana, which encodes 24 protein

kinases unique to the Leishmaniinae and another 34 that are absent from T. brucei, whereas

T. brucei encodes 13 protein kinases that are unique to the Trypanosomatinae and 21 that are absent

from the L. mexicana kinome. The trypanosomatids’ kinomes are about one-third the size of that in

humans, and about twice the size of that in the malaria parasite Plasmodium falciparum,

which is intriguing considering that these parasites have similarly complex life cycles.

In a genome-wideRNA interference target-sequencing (RIT-seq) screen, Alsford et al. iden-

tified protein kinases required for T. brucei bloodstream form fitness after RNAi knockdown

in vitro (40 protein kinases at day 3 post-induction and 56 at day 6) [7]. Later, Jones and col-

leagues generated a kinome-focused RNAi library targeting 176 individual proteins in T. brucei

bloodstream forms and identified 42 protein kinases required for parasite proliferation in culture

[5]. Only half of the identified protein kinases were shared between both studies, and the authors
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attribute the variance to the use of different T. brucei strains, RNA constructs, and methods for

assessing cell growth. A complementary RIT-seq analysis of the pooled kinome-focused library

after mouse infection over 72 h identified a further nine protein kinases that appear to be more im-

portant for survival in the mammalian host than in culture [6]. The recent development of CRISPR/

Cas9 editing has enabled the study of the L. mexicana kinome, allowing comparison of protein

kinase functions between trypanosomatid parasites. This kinome-wide gene deletion bar-seq,

loss-of-fitness (LOF) screen highlighted that 35% of L. mexicana protein kinases are required

for survival in the three different life stages assessed (43 in culture promastigotes and 29 in

amastigote in vivo and in vitro, and 15 in forms found in the sand fly insect vector) [2]. Comparison

of the LOF data for each protein kinase in Leishmania and bloodstream-form African trypano-

somes revealed little correlation between essential stage-specific protein kinases (Figure 1 and

Table S1 in the supplemental information online). For example, 45% of the kinome is required

for the survival of T. brucei bloodstream forms, and only 19 out of 27 of the ‘essential’

L. mexicana protein kinases that have orthologues in T. brucei (70%) are also found to be required

for the bloodstream form. The correlation between the T. brucei and L. mexicana orthologous

protein kinases exhibiting LOF in the mammalian stage is lower than between different life stages

of each parasite (55%). However, it remains to be determined if the function of the protein kinases

required for the Leishmania promastigote stage is the same in the amastigote stage, for example,

and further conditional gene-deletion experiments will be necessary to answer this. These studies

have also revealed that only 40% of ‘unique’ protein kinases ‘in T. brucei and 25% in L. mexicana

are required at any one life stage.

Trypanosomatid kinomes possess homologues of five major ePKs groups: CMGC, AGC, CAMK,

STE, and CK1. The remaining ePKs that do not fall into these groups are categorized as ‘Other’.

CAMK and AGC groups are poorly represented in trypanosomatid kinomes, whereas CMGC,

STE, and Other-NEK families are expanded [3]. The never-in-mitosis gene A (NIMA)-related kinase

Box 1. Phosphorylation in trypanosomatids

Phosphorylation is a highly abundant and dynamic post-translation modification in trypanosomatids. Analysis of the

phosphoproteomes of T. brucei bloodstream and procyclic forms identified 8275 differentially phosphorylated sites in

2233 proteins. Several protein kinases showed differential phosphorylation in the two forms analysed, including members

of the MAPK signalling cascade (STE11-STE7-MAPK) together with proteins implicated in developmental events, sug-

gesting a phosphorylation-specific regulatory role in each life cycle stage [1]. Furthermore, quantitative

phosphoproteomics in synchronised T. brucei PCF identified 917 cell-cycle-regulated phosphorylation sites on 586 pro-

teins. Peaks in phosphorylation abundance occurred mostly during S-phase and mitosis with two potential inhibitory sites

on CRK3 (T33, Y34) and two sites on PLK (S388 and T469) exhibiting increased phosphorylation at this cell cycle stage.

Consistent with a role in cytokinesis, MAPK6 and RCK showed a peak in phospho-site abundance at the early G2-M

phase only (pY176 and pS344). Changes in phosphorylation during the cell cycle were identified also for kinetochore pro-

teins, in RNA-binding proteins and in components of the translation machinery [68]. In L. donovani, a phospho-proteome

analysis during the time course of promastigote to axenic amastigote differentiation identified peaks in phosphorylation

abundance early in the differentiation signal response and during the morphological transition stages. In contrast, dephos-

phorylation was observed during parasite movement cessation and amastigote maturation. Several protein kinases were

phosphorylated during differentiation together with proteins involved in translation and heat shock [69]. Indeed, HSP90

and HSP70 family members are proteins phosphorylated specifically in amastigote forms [70], suggesting a relationship

between the adaptation to developmental programmes and stress-response processes in Leishmania. In T. brucei, a

phosphoproteomic analysis of heat-shock-stimulated cells identified 193 sites in 148 proteins to be differentially phos-

phorylated. Several key regulators of the heat-shock response were heavily phosphorylated upon treatment, including

the RNA helicase DHH1 the poly(A) binding protein PABP2 and the ZC3H11-MKT1 complex. Differentially phosphorylated

protein kinases included proteins required for the survival of the bloodstream form parasite such as CK1.2, GSK3, and

PLK among others [71]. In L. mexicana, a recent study combined in vivo protein crosslinked proximity biotinylation (XL-

BioID) and phosphoproteomics to follow the spatial dynamics of the kinetochore assembly during the cell cycle. The

method allowed the identification of sites with a specific decrease in phosphorylation but not in protein abundance, sug-

gesting that phosphorylation of kinetochore proteins could be regulating kinetochore function. Combining proximity

phosphoproteomics with chemical inhibition is a potential approach for discovery of in vivo protein kinase signalling path-

ways [11].
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Glossary

AGC: group of ePK named after the

Protein Kinase A, G, and C families (PKA,

PKC, PKG).

Atypical protein kinase (aPK):

atypical protein kinases that lack

sequence similarity to ePKs, but have

been shown experimentally to have

protein kinase activity.

Bar-seq: a high-throughput method that

quantifies changes in a population by

measuring changes in the abundance of

mutants containing unique short

nucleotide barcodes integrated into the

genome.

CAMK: calmodulin/calcium regulated

kinase is a ePK group that also includes

non-calcium regulated protein kinase

families.

CK1: previously known as Casein Kinase

1 group, is now renamed to Cell Kinase 1.

CMGC: ePK group named after the

initials of some members (CDK, MAPK,

GSK3, and CLK).

Eukaryotic protein kinase (ePK): a

superfamily of structurally-related protein

kinases to which most protein kinases in

eukaryotes belong.

Loss of fitness (LOF): a decrease in

the fitness of an organism after gene

knockout or gene knockdown.

Mitogen-activated protein kinases

(MAPKs): in Leishmania, MAPKs have

been abbreviated as ‘MPK’, and in

Trypanosoma as ‘MAPK’.

NEK: protein kinase family named after

the never-in-mitososis gene A (NIMA)-

related kinase.

Protein kinases: protein kinases are

clustered by sequence similarity in the

kinase domain and additional

information from outer domains,

evolutionary conservation and known

function, to create groups that are

further separated into subfamilies.

Typically, two superfamilies, aPK and

ePK, have been described with the

ePKs further separated into nine groups,

including tyrosine kinases and tyrosine

kinase-like, AGC, CAMK, CK1, CMGC,

STE, RGC, and Other kinases.

Protein serine/threonine kinases:

protein kinases that phosphorylate

substrate proteins on threonine or serine

residues.

Protein tyrosine kinases: protein

kinases that phosphorylate substrate

proteins on tyrosine residues.

RNA interference target-

sequencing (RIT-seq):

high-throughput phenotyping using



(NEK) family promotes cell cycle events in eukaryotes. Despite being expanded in Leishmania, NEK

family members are largely dispensable in the promastigote stage as gene deletion mutants could

be generated for 18/20 members [2]. In all groups, a similar number of protein kinases are required

in each parasite, except for the CAMK group, which have more protein kinases with a LOF

phenotype in T. brucei bloodstream (around 50%) compared to 15% in the different Leishmania

life stages. Trypanosomatid cells have a highly polarized morphology that changes during their life

cycle; thus, the expansion of the CMGC group may ensure stringent control of the replication and

segregation of organelles during both their cell cycle and their life cycle. In this regard, most of the

CMGC kinases that are required for survival are well studied regulators of the cell cycle, such as

CDC2-related protein kinases (CRKs), CDC-like protein kinases (CLKs) or GSK3 (Box 2). However,

other CMGC kinases identified in the L. mexicana kinome-wide screen had a LOF in the amastigote

(i.e., CRK7, CRK8, MPK10) or the sand fly stages (MPK9, LmxM.14.1070), suggesting that they

may be stage-specific regulators. In summary, 60% of CMGC protein kinases are required for

survival of the bloodstream form of T. brucei, whereas 43% are required for L. mexicana. The STE

group includes Ste7/MAP2K, Ste11/MAP3K, and Ste20/MAP4K that function as upstream regula-

tors of MAP kinases. This is the second largest protein kinase group in trypanosomatids, comprising

mainly orthologues of STE11 and STE7; STE20 orthologues are rare [3]. Little is known of their func-

tion but ~40% have LOF phenotypes in both parasites [2,5,8,9].

Overall, these studies have revealed that the trypanosomatids contain orthologues of many

conserved eukaryotic protein kinases with similar anticipated functions to those in mammalian

cells. However, other protein kinases are likely to have parasite-specific functions, such as

coordinating the duplication of specific organelles or differentiation events. This review provides

the current state of knowledge on the role of protein kinases in trypanosomatids, focusing on

the unique and unusual features that reflect the complexity of their biology.

Protein kinases and the cell cycle

Trypanosomatids are evolutionarily divergent eukaryotes and exhibit unique features in their cell

cycle, many of which will be regulated by protein kinases. This includes their unique apparatus

for chromosome segregation and the regulatory processes governing the highly orchestrated

duplication and segregation of single-copy organelles. Conserved functions for protein kinases

in cell cycle control are discussed in Box 2.

Chromosome segregation

During mitosis, the macromolecular structure providing the major attachment point for spindle micro-

tubules is the kinetochore, which assembles on the centromeres of chromosomes. Strikingly,

trypanosomatids lack classical homologues of most of the kinetochore components that are

ubiquitously conserved among yeasts, plants, and mammals. Instead, the inner trypanosomatid

kinetochore is composed of at least 26 distinct and essential proteins (KKT1-26) that include four

protein kinases, CLK1 (KKT10), CLK2 (KKT19), KKT2, and KKT3 [10,11]. CLK1 and CLK2 have

overlapping functions and are required for the phosphorylation of KKT2, KKT4, and KKT7 [10–12].

These kinases exhibit a dynamic localisation at kinetochores during metaphase and disappear at

the onset of anaphase, events requiring CLK1 to interact with KKT7 and the KKT8 complex [13]. A

specific amidobenzimidazole inhibitor of CLK1 (AB1) was identified from using a phenotypic screen

against bloodstream forms of T. brucei [12]. CLK1 was irreversibly inhibited by AB1 by forming a

covalent bond with Cys215 in the ATP-binding pocket, a residue that is absent from human CLK1.

Importantly, chemical inhibition of CLK1 by AB1 led to chromosome mis-segregation and cell cycle

arrest, leading to cell death of T. brucei. AB1 also exhibited activity against T. cruzi, L. mexicana,

and Leishmania donovani, suggesting that CLK1 is a pan-trypanosomatid drug target [12]. The

peculiar TbECK1, which shares features of mitogen-activated protein kinases (MAPKs) and
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Figure 1. Leishmaniamexicana and Trypanosomabrucei kinomes. Representation of eukaryotic protein kinases (ePKs) and the subfamily of phosphatidylinositol 3′ kinase-

related kinases (PIKKs) of atypical protein kinases (aPKs). Each family is separated by colours defined by primary protein sequence conservation. Image for illustrative purpose only

with no phylogenetic significance. The colours filling the dots represent as follows: red, required in L. mexicana promastigotes; orange, loss of fitness (LOF) in L. mexicana

amastigotes; green, LOF for sand fly infection; dark blue, LOF in bloodstream form (BSF) T. brucei in vitro [5]; turquoise, LOF in BSF T. brucei in vivo [6]; light blue, LOF in BSF

T. brucei in vitro [7]. The protein kinases unique either to Leishmaniinae or to Trypanosomatinae are indicated in bold. Underlined L. mexicana protein kinases are absent in

T. brucei only and underlined T. brucei protein kinases are absent in L. mexicana only.
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cyclin-dependent protein kinases (CDKs), may also be involved in chromosome segregation as

aberrant nuclear and kinetoplast configurations and DNA content were observed upon expression

of a truncated protein lacking its regulatory C-terminal extension [14].

Cytokinesis and organelle segregation

Successful cell division of trypanosomatid parasites requires that they accurately replicate and

segregate several single-copy organelles to each daughter. This includes their flagellum and

kinetoplast, a large concentration of mitochondrial DNA segregated through tethering to the

cytoskeleton through the basal body [15], a structure related to centrioles of the eukaryotic

nuclear spindle pole. Several protein kinases and protein kinase families have been found to con-

tribute to these events. Polo-like kinases (PLKs) play an important role in a variety of mitotic events

inmammalian cells, ranging from centriole separation and chromosome condensation to abscission.

To fulfil these roles, PLK homologues have been observed at different cellular locations as the cell

cycle progresses, with PLK at the centrosome, the spindle poles, and the midbody. In T. brucei,

the single PLK homologue is essential for cytokinesis and is necessary for the correct duplication

of the centrin-containing bilobe, a cytoskeletal structure that serves as a scaffold for Golgi duplication

[16]. Unlike all the other nuclear eukaryotic PLKs that control both mitosis and cytokinesis, PLK

localizes to the basal body and only regulates cytokinesis [17]. Indeed, PLK localizes to the basal

body, then successively locates to a series of cytoskeletal structures that regulate the position and

attachment of the flagellum to the cell body by association with a specialized set of microtubules,

known as the microtubule quartet [18]. This observed change of localisation and abundance is

controlled by interaction with a Cullin-RING ubiquitin ligase complex that degrades PLK in the

basal body and the bilobe after the G1/S cell cycle transition. This degradation promotes bilobe

duplication, basal body separation, and flagellum–cell body adhesion [19]. Interestingly, amongst

the 23 protein kinases that are located to the basal body in L. mexicana only two are essential

for parasite survival, one of which is PLK [2]. TOEFAZ1, an essential trypanosomatid-specific

component of the T. brucei cytokinetic machinery, is reported to be phosphorylated by PLK to

allow cytokinesis initiation or the initiation of cleavage furrow ingression [20,21]. Similarly, PLK phos-

phorylates SPBB1, a basal body protein, to promote basal body segregation and the initiation of the

Box 2. Protein kinases functioning as conserved cell division regulators

Progression through the cell cycle in trypanosomatids is regulated by cyclin-dependent kinases (CDKs), as occurs in all

eukaryotes examined. Six from the 11 identified CDKs (named cdc2-related kinases, CRKs) in T. brucei [5] and 7 in Leish-

mania [2] are necessary for proliferation in L. mexicana promastigotes (CRK1-3, 9, 11-12) [2] and T. brucei bloodstream forms

(CRK1-3, 6, 9, 12) [5,6]. T. brucei CRK1 is involved in regulating the G1/S transition via phosphorylation of two translation

initiation factors, eIF4E4 and PABP1, which enhance the interaction of eIF4G3 with the m7G cap and of PABP1 to poly

(A) sequences. It also induces the interaction with the eIF4G3 translation initiation factor to promote global protein translation

[72]. CRK3 (orthologue of human CDK1/ Saccharomyces pombe cdc2), interacts with different cyclins during the cell cycle

(CYC1/CYCA, CYC6, CYC2) [73–75]. CYC6 RNAi in T. brucei procyclic forms and inducible deletion of CRK3 in

L. mexicana resulted in accumulation of zoids (anucleate cytoplasts) and cells arrested in G2/M [76,77]. CRK2-CYC13 acts

as an S-phase CDK by phosphorylating Mcm3 helicase promoting the recruitment of the GINS complex, necessary for the

initiation of DNA replication [78]. Another complex CRK12-CYC9 has also been identified in T. brucei with RNAi induction

of CRK12 in bloodstream parasites resulting in growth arrest with replicative cells presenting enlarged flagellar pocket and de-

fect in endocytosis leading to cell death [79]. Additionally, genetic and chemical approaches were used to show that Leish-

mania CRK12 is essential and a good drug target [80]. Trypanosomatids possess homologues of Tousled-like kinases

(TLKs), evolutionary conserved protein kinases involved in development, chromatin assembly, DNA repair, transcription,

and chromosome segregation [81]. T. brucei TLK1 depletion causes defective spindle formation and chromosome segrega-

tion during mitosis [82]. It interacts with the chromosomal passenger complex (CPC), formed by CPC1, CPC2, the kinesin

KIN-B and the Aurora B kinase homologue AUK1. AUK1 is regulated both by phosphorylation of two threonine residues in

the activation loop of the kinase domain and SUMOylation [83]. Degradation of AUK1 requires two destruction boxes in a

mechanism mediated by the E3 ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) [83]. Two additional au-

rora kinases have been identified in T. brucei; AUK2 depletion led to a growth retardation [6] and sensitises the bloodstream

form to genotoxic stress [84], whereas AUK3 is also possibly involved in mitosis and/or cytokinesis [5]. In L. mexicana AUK1

and AUK2 are essential for promastigotes, whilst AUK3 is dispensable [2].
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flagellar attachment zone (FAZ) filament to allow adhesion of the flagellum and the initiation of

cytokinesis [22]. Finally, PLK acts antagonistically with the phosphatase KPP1 to regulate flagellum

inheritance during parasite cytokinesis [21]. Specifically, KPP1 dephosphorylates PLK, reducing its

phosphotransferase activity, thus reducing the hyper phosphorylation of TbCentrin2, a step required

for the completion of the hook complex duplication, enabling correct flagellum inheritance during cell

division [23,24].

The mammalian NIMA-related kinase 2 (NEK2) has important cell cycle functions related to

centriole integrity and division. In T. brucei, NEK-related kinase NRKC is located on mature and

immature basal bodies and is implicated in basal body segregation during cytokinesis [25].

NEK12.1, one of only two T. brucei ePKs to possess a small gatekeeper residue in its ATP binding

pocket, and NEK12.2 (repressor of differentiation kinase RDK2) have also been demonstrated to

regulate kinetoplast division and cytokinesis [5]. The depletion of both genes resulted in LOF both

in culture and in a mouse model. As well as cell cycle control, NEK12.2 and several other NEK

family members are also involved in cell differentiation events, as detailed in subsequent text.

Gene transcription

In trypanosomatids, transcription occurs polycistronically and individual mRNAs are processed

from a precursor by trans-splicing of a spliced leader (SL) sequence at the 5′ end and

polyadenylation at the 3′ end. While several CRKs are implicated in cell cycle regulation (Box 1),

CRK9 is essential for the first step of splicing. CRK9 depletion triggers a reduction of mature

mRNAs and an increase in unspliced pre-mRNAs, accompanied by a reduction of the phosphor-

ylation of the RNA polymerase (pol) II subunit RBP1 [26,27]. CRK9 requires L-type cyclin (CYC12)

and CRK9-associated protein (CRK9AP) to form a tripartite complex resulting in autophosphor-

ylation and activation of CRK9 [28]. Protein kinase activity is also required for the transcription of

the multicopy SL RNA gene locus that depends upon the snRNA-activating protein complex

(SNAPc) and the TATA-binding protein TBP-related factor 4 (TRF4). Upon endoplasmic reticulum

(ER) stress, the homologue of eukaryotic initiation factor 2 (eIF2) kinase TbeIF2K3 (alias PK3) in

T. brucei, migrates from the ER membrane to the nucleus, and phosphorylates TRF4. This

phosphorylation on S35 leads to TRF4 release from the defined polymerase II promoter, resulting

in SL silencing and blockage of RNA transcription [29,30].

Protein kinases with distinct roles in Leishmania and trypanosomes

The complex life cycles of trypanosomatid parasites involve environmental fluctuations accompa-

nied by extensive metabolic, morphological, gene, and protein expression changes. Researchers

have exploited different methods to explore the regulatory control of these events, revealing both

shared underlying controls and parasite-specific mechanisms.

The comparison of the kinome-wide screens investigating protein kinase functions at different

life stages of trypanosomatid parasites revealed that a number of protein kinases generated a LOF

phenotype in both T. brucei mammalian bloodstream forms and during amastigote formation in

Leishmania (MPK1, CK2a1, CK2a2, STK36, MRK1, SLK1, KKT10, PK53, AKB1, LmxM.21.0270,

and LmxM.32.1710) or during the establishment of fly infection (BBP87, SRPK: Tb927.6.4970,

and the atypical ATR phosphatidylinositol 3-related kinase) [2,5,6]. To date only a few protein kinases

have been studied individually in both trypanosomatid species for their respective function in cellular

differentiation and host survival and adaptation. In the following paragraph, and Figure 2, we provide

examples of these protein kinases.

Protein kinase A (PKA) has been discovered in most eukaryotes, except plants, and is composed

of regulatory PKAR and catalytic PKAC subunits either as heterodimer or heterotetramer. Upon
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binding of the second messenger cAMP, PKAC is released from PKAR and activated. The

T. brucei genome encodes three orthologues of PKAC, and one PKAR. Both PKAC1 and

PKAC2 are required for optimal parasite growth [5,7]. The PKAR subunit has been identified as

a potential component of the trypanosome quorum-sensing differentiation pathway in a

genome-wide RNAi screen in response to cell permeable cAMP analogues [9]. Additionally,

PKAR is required for in vitro metacyclogenesis following overexpression of the RNA regulator

RBP6 [31]. Homology modelling and crystallisation of PKAR suggested that this subunit is unable

to form a homodimer [32] and confirmed that key amino acids in both CNB domains (required for

PKAC binding) together with a unique C-terminal αD helix account for the interesting cAMP-

independent activation mechanism of PKA [33,34]. In Leishmania, PKA expression and activity

increases upon starvation, leading to an increase in autophagy and metacyclogenesis [35–37].

In contrast to T. brucei, Leishmania PKA is inhibited by the phosphodiesterase PDEA (that

degrades cAMP) and activated by adenylate cyclase (involved in cAMP synthesis) [37] suggesting
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a role for cAMP in the PKA pathway. L. donovani PDEA is reported to interact with PKAC1 and

PKAC2, resulting in protein kinase activity and an increase in the phosphodiesterase activity

through PKA-mediated phosphorylation [38]. Taken together, these observations are not easily

reconciled and the role of cAMP in PKA function in trypanosomatid organisms needs to be

resolved.

MPK4 andMPK1 have also been studied for their function during differentiation in Leishmania and

Trypanosoma. LeishmaniaMPK4 appears to be involved in pH sensing during metacyclogenesis

[39]. MPK4 is activated by the MAP kinaseMKK5 by direct phosphorylation on the activation loop

residues T190 and Y192 [40]. Another Leishmania MAPK, MPK1, is required for differentiation

and/or survival in both the insect vector and mammalian host [2]. In L. donovani [41] it is associ-

ated with HSP70/90 of the foldosome complex [42,43] and acts in the negative regulation of

P-glycoprotein-mediated efflux pump activity, leading to antimony sensitivity. These observations

were supported by the analysis of antimony-resistant Leishmania virulent field strains, which

exhibit a reduction in MPK1 expression [44].

Membrane-bound eIF2a protein kinases have been identified in the flagellar pocket of T. brucei

(eIF2K), suggesting a relevance in environmental sensing or nutrient transport, whereas in

L. infantum eIF2K is a transmembrane kinase located on the endoplasmic reticulum. Its kinase

activity increases through autophosphorylation in response to different stresses. In vitro, the

active protein kinase phosphorylates the translation initiation factor 2-alpha subunit (eIF2a) at

threonine 166 [45], and in vivo is essential for the differentiation of Leishmania to amastigote

forms [2,46].

Protein kinases implicated in differentiation events

T. brucei long slender to short stumpy bloodstream trypomastigote development

For T. brucei, the quorum sensing (QS)-mediated development between proliferative slender

forms and transmissible stumpy forms was analysed through a genome-wide RNAi screen.

This screen was performed in a laboratory-adapted monomorphic strain and exploited cell-

permeable analogues of cAMP or AMP to mimic the QS signal. This identified a number of protein

kinases driving stumpy formation, including a 5' adenosine monophosphate-activated protein

kinase homologue AMPKα2, a MEK kinase MEKK1, the NEK17 kinases, and a DYRK/YAK

kinase, DYRK [9]. Each of these protein kinases are involved in the stumpy form developmental

pathway that seems to be organised in a nonlinear hierarchy [47]. DYRK shares characteristics

with the eukaryotic DYRK2 family while having unique characteristics such as mutations of key

residues leading to a possible preactivated state, a so-called ‘DFS-in’ state, and three insertions

within the kinase domain. Interestingly, this protein kinase acts on both positive and negative

regulators of stumpy formation by phosphorylating and activating ‘stumpy-inducer’ proteins such

as the zinc finger protein ZC3H20 and phosphorylating and inhibiting ‘slender-retainer’ proteins

such as the component of the CAF1/NOT deadenylation complex NOT5 [48].

T. brucei procyclic trypomastigote formation

Once inside the tsetse fly, stumpy forms differentiate to replicative procyclic forms, which eventu-

ally differentiate into the mammal infective metacyclic forms. A MKK1 null mutant in the procyclic

stage leads to parasites incapable of colonising the salivary glands of tsetse flies [49]. A kinome-

wide RNAi screen identified two kinases, RDK1 and RDK2, whose depletion promoted blood-

stream to procyclic form differentiation. It was shown that RDK1, a STE-like protein kinase,

acts together with a phosphatase cascade comprising PTP1 and TbPIP39 to block uncontrolled

differentiation, while RDK2 (NEK12.2) depletion triggers spontaneous differentiation of blood-

stream to procyclic forms [5]. Additionally, NRKA and NRKB mRNAs are enriched in stumpy
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forms and have been implicated in procyclic differentiation, likely operating downstream of the

PTP1 and PIP39 phosphatases [50].

T. brucei metacyclic trypomastigote formation

Using the expression of one of the major metacyclic VSGs, mVSG397, as a read out for

metacyclogenesis, Toh et al. have determined that the AGC/RSK, unique to trypanosomes, is

involved in metacyclogenesis [31]. In this analysis they also identified several other protein kinases

involved inmetacyclogenesis that have been previously implicated in QS-dependent differentiation,

such as AMPKα2, AMPKβ, and AMPKγ, PKAR and DYRK [31]. Additionally, RDK2was also found

to be upregulated in metacyclic cells evidenced by proteomics analysis [51]. The life cycle of

T. brucei is completed when metacyclic trypomastigotes are transmitted to a new host upon a

blood meal and differentiate to the slender form, but the protein kinases involved in this stage

remain to be elucidated due to the technical challenges of studying this transition.

Leishmania differentiation within the mammalian host

Leishmania differentiation in the mammal involves host cell occupancy. Thus, the elongated-

flagellated and cell-cycle-arrested metacyclic promastigote differentiates to an intracellular non-

motile and replicative amastigote form within the parasitophorous vacuole of host macrophages.

In L. infantum, a member of the DYRK family, DYRK1, that localises mainly in the flagellar pocket

and on endosomes during logarithmic growth, becomes recruited to the mitochondrion during

late stationary phase. This molecule is required to sustain stationary phase, metacyclogenesis.

and macrophage infection [52]. Notably, however, a DYRK1 null mutant was not achieved in

L. mexicana [2], suggesting different mechanisms in the two species.

Casein kinases CK1 are also essential for amastigote intracellular survival since specific inhibitors,

besides blocking promastigote growth, reduce axenic amastigote viability and decrease the

number of intracellular amastigotes in infected macrophages [53,54]. Depletion of CK1.2 resulted

in an increase in postmitotic and abnormal cells, suggesting direct or indirect effects on kineto-

plast division and cytokinesis [5]. CK1.2 has, as substrates, ZC3H11 [55], HSP90 [56], SP23,

and the related P23 cochaperone [57]. It is also released into the extracellular environment to

phosphorylate host proteins, such as the complement factor C3a or the interferon receptor

IFNAR1, to modulate the host immune response [58]. The overexpression of CK1.4 in

L. donovani induces parasites to grow at higher density and results in higher macrophage

infection [59], suggesting that a specific role evolved in Leishmania for intracellular parasite

survival and proliferation.

Amongst MAPKs, MPK10 is required for differentiation and/or survival in the mammalian host [2]. It

is an interesting protein kinase because the crystal structure [60] and a structure/function analysis

[61] revealed a constitutively active state, with the ‘DFG-in’ conformation observed in activated

kinases, and an autoinhibitory C-terminal domain negatively regulated by phosphorylation during

amastigote differentiation [61,62]. Like MPK10, Leishmania MPK2 is essential for differentiation

and survival in the host [2]. MPK2 modulates intramacrophage amastigote survival by phosphory-

lation of the aquaglyceroporin 1 (AQP1) and an amino acid transporter (APP3), with both

substrates respectively involved in drug resistance and the arginine depletion response [63,64].

The phosphorylation of AQP1 on T197 reduces its turnover and activity, modifies its localisation

from the flagellum to the cell surface, and leads to an increase of uptake of antimony [Sb(III)])

[63]. MPK7 overexpression inhibits intracellular growth of the L. donovani amastigote stage [65],

and the protein kinase activity is low in logarithmic promastigotes but increases in axenic amastigotes

[62]. The deletion of MPK7 in L. mexicana had no LOF phenotype during promastigote-to-

amastigote differentiation in Baker et al. [2].
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Leishmania development within the sand fly

Development of Leishmania in the sand fly is far more complex than in in vitro cultures and

involves sequential differentiation from procyclic promastigote to the nectomonad form and

then to the leptomonad form. However, because of the clear challenges of laboratory work

with the sand fly, most of the information collected to date has been derived from procyclic

promastigotes grown in vitro. For example, eK1 (LdBPK_110060.1), a L. donovani GCN2-like

eIF2α kinase, has been found to be activated in response to starvation stress, and phosphory-

lates eIF2a leading to G1 arrest and metacyclogenesis [66]. Two other protein kinases unique

to Leishmania, LmxM.06.0640 and LmxM.15.1200, had LOF phenotypes for the establishment

of infection in sand fly as gene deletion mutants. Additionally, seven protein kinases have been

reported to generate a LOF phenotype specifically in the sand fly (Table S1). This suggests that

Leishmania exhibits unique functional adaptions for sand fly colonisation [2].

Concluding remarks

The detailed dissection performed over the years of the signalling pathways mediating

trypanosomatid-specific functions have revealed fascinating insight into the parasites’ complex

biology. The recent development of high -throughput genetic screens and CRISPR technology

has greatly facilitated the study of protein kinases, allowing comparative analysis between

species. However, our analysis has highlighted the absence of systematic and comparative

functional analysis of orthologous protein kinases in trypanosomes and Leishmania, which there-

fore precludes the assignment of parasite-specific or shared biological activities for the respective

molecules. In addition, we have observed that, despite a general good phenotype conservation,

the genetic modification of several protein kinases can lead to different phenotypes between

independent studies. These differencesmay be dependent on the different strains, methodologies,

and quality and sensitivity of the assays used, and highlight that normalisation of protocols would

benefit the research community. Nevertheless, unique features of trypanosomatid kinomes

suggest that the development of innovative interventions are possible to specifically target protein

kinases in these pathogens. Protein kinases are established targets for the development of treat-

ment strategies in eukaryotes, and proof-of-principle data have been obtained under laboratory

conditions, demonstrating that trypanosomatid protein kinases are suitable targets, as reviewed

by Field et al. [67]. Further discovery research is therefore required on the function of kinomes in

these organisms, as well as more translational research to develop new broadmultispecies control

strategies (see Outstanding questions).
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