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Abstract—Recently, domain adaptation has been used to solve
the fault diagnosis problem in rolling bearings. However, most of
the existing methods only align the distribution of domains, and
ignore the fine-grained information of the same fault categories in
different domains, which leads to the degradation of diagnostic
performance. To address such domain difference issues, this
paper proposes a novel coarse-to-fine bi-level adversarial domain
adaptation approach (C2FADA) for bearings fault diagnosis.
Firstly, a sparse auto-encoder (SAE) is used to extract features
from raw data (containing both the source and target domains),
and a Kullback-Leibler (KL) divergence term is then introduced
to measure the discrepancy between the features from the source
domain and the target domain. Secondly, a bi-level adversarial
module is established to gradually align different domains at the
domain level (with a coarse-grained model) and the class level
(with a fine-grained approach) to tackle the domain shift issue,
and enable the classifier to learn the domain invariant
representation features. Thirdly, a spectral norm regularization
constraint term is introduced to improve the stability of
adversarial training process by mitigating the effect of adversarial
perturbations. results show that the classification performance of
the proposed C2FADA method is better than the compared
existing peer methods.

Index Terms—Fault diagnosis, rolling bearings, domain
adaptation , bi-level adversarial learning, sparse representation,
machine learning, deep learning,transfer learning.

I. INTRODUCTION1

N recent years, the rapid development of the internet of
things, big data, sensor technology and industrial wireless

networks have driven the progress of intelligent manufacturing
and Industry 4.0 [1]. In order to meet the needs of modern
industrial production, machinery equipment has been
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developed rapidly towards the direction of large-scale, complex,
intelligent and efficient. Rolling bearings, as an important
support component for rotating machinery, are one of the key
parts that are vulnerable to wear after long-term work under
heavy loads. Therefore, timely and effective detection of
rolling bearing failures is extremely important [2].
With the development of artificial intelligence (AI)

techniques especially machine learning, more and more
advanced smart diagnosis approach has been applied to the
domain of rotating machinery fault diagnosis in current years
[3]. The vibration signals of rolling bearings have the
characteristic of cyclostationarity due to their periodic
operation mode [4], [5]. In addition, when the rolling bearings
break down, the vibration signals may have obvious impulsive
characteristic [6]. Mining the information of these vibration
signals can improve the fault diagnosis level of rolling bearings.
Intelligent fault diagnosis methods for rolling bearings,
especially data-driven methods, have been developed more
widely and rapidly than ever before in industry [7]. The
commonly used methods include support vector machines
(SVMs) [8], deep belief networks (DBNs) [9], back
propagation (BP) neural networks [10], sparse autoencoder
(SAE) [11] and so on. Such approaches build discriminative
classifiers through learning from historical data. These methods
usually work well for some specific classification and diagnosis
tasks. However, the majority of the current popular data-driven
fault diagnosis approach has a common hypothesis, which is
the labeled training data and the unlabeled test data are have the
same distribution [12]. In fact, in real industry, the working
conditions of rotating machinery are usually variable with the
production demand, and thus the operation of rolling bearings
is carried out under different conditions due to the changes in
speed and load, which directly influences the vibration
characteristics of bearings. In the operating environment with
multiple alternative working conditions, the vibration data of
bearings cover a large amount of health and fault information
collected in different working conditions and complex
environmental factors. The fault category mapped by the
vibration data is unknown and changeable. In addition,
complex working conditions often mean that the test data are
collected in a working state different from the one of training
data. Therefore, the training and test data no longer completely
obey the same distribution, making it difficult for the model
trained by train data to perform well on the test data [13].
Domain adaptation (DA), as a new effective machine
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learning strategy closely pertaining to transfer learning, can be
used to obtain the most useful information from the training
data (source domain) and transfer it to other data of interest
(target domain). Zhao et al. [14] proposed a joint distribution
adaptation network for fault diagnosis of rolling bearings. This
method precisely matched the distribution matching, and
extracted the domain-invariant features of the source and target
domains by adversarial learning. In [15], a new
semi-supervised fault diagnosis method was presented by
mixing convolutional neural network (CNN), correlation
alignment loss, and transfer component analysis to classify the
fault characteristics. Xu et al. [16] designed a metric transfer
learning framework (MTLF), which can utilize the internal
information between instances in different domains more
effectively by learning instance weights and distance metrics at
the same time.
Although existing fault diagnosis methods such as DA have

achieved fine test effectiveness, the primary disadvantage
consists in the assumption that the test data corresponding to all
different equipment health conditions can be obtained and used
for training. When such a requirement is not satisfied, the
existing methods may produce invalid diagnosis. Recently,
more and more adversarial adaptation methods have been
introduced to minimize the difference distance between
domains through an adversarial objective of the domain
discriminator [17], [18]. These methods are highly related to
the well-known generative adversarial networks (GANs) [19],
in which two models are concurrently trained: a generative
model and a discriminative model; the models are used to
capture the data distribution and calculate the probability that
the sample came from the different data domain, respectively.
The generator is trained to produce data in a way that confuses
the discriminator, which in turn tries to distinguish them from
real data. Chen et al. [20] proposed a domain adversarial
transfer network (DATN) using deep CNNs with an
asymmetric encoder model, together with domain adversarial
training technology, to successfully solve the problem of fault
diagnosis in the presence of a large domain shift in data
distribution. Li et al. [21] proposed an improved domain
adaptation intelligent fault diagnosis method, where the
maximum mean difference and domain adversarial training are
used to train the two feature extractors of feature space distance
and domain adaptation, respectively. In this way, the feature
representation capability is enhanced. She et al. [22] proposed a
deep conditional adversarial diagnosis method based on
weighted entropy minimization. This method applies the
transferability weight of the sample to the entropy
minimization loss, and solves the problem of model collapse
and difficulty of sample transfer in the adversarial domain
adaptation training. In [23], Fu et al. designed a feature
enhanced GAN to extract the refined features by embedding the
self-attention mechanism in the residual network, and
constructed an auxiliary classifier to classified generated and
unlabeled samples. In [24], a deep transfer learning model was
proposed to detect the rolling bearing faults. In this model, the
Wasserstein GANs were introduced to calculate the
discrepancy between the domains, and the minimum singular

was applied to capture the effective fault information. However,
the training process of adversarial adaptation methods is often
unstable and easy to converge in advance, which may affect the
fault diagnosis effect of the models.
Due to its ingenious structure and excellent performance, the

adversarial domain adaptation method is gradually becoming
one of the mainstream approaches. Undoubtedly, the rapid
development of generative adversarial models provides a
powerful tool for addressing the fault diagnosis problem with
imbalance data, but the combination of the traditional fault
diagnosis methods and adversarial domain adaptation only
considers the distribution difference between the source and
target domains, the resulting performance may not be good
enough. This is because fault diagnosis tasks are far more than
just aligning the distribution of source and target domains.
Recently, a domain adaptation network for cross-domain

fine-grained recognition has been widely used in pattern
recognition and object detection [25]-[27]. The main idea is to
explore the commonalities between the fine-grained
information of existing image datasets and a large amount of
unlabeled data. On this basis, the concept of fine-grained
information has been introduced into the field of fault diagnosis.
It is known that coarse-grained information has the following
disadvantage: the coarse-grained process of some nonlinear
measurement methods (e.g. multi-scale permutation entropy)
only consider low-frequency information. To overcome such a
drawback, in [28] a fine-to-coarse multi-scale permutation
entropy measurement method is proposed, which can provide
low-frequency and high-frequency information to improve
bearing fault diagnosis performance. In [29], a coarse-to-fine
weak fault detection method for rotating machinery was
proposed, and a variational modal decomposition-based
coarse-to-fine decomposition strategy was designed to obtain
the optimal mode of rotating machinery and extract its weak
repetitive transients.
In many real fault diagnosis tasks, it not only needs to align

the data distribution of the source and target domains to lessen
the difference between domains, but also consider the specific
category information of the target sample to provide more
accurate diagnosis results. It is essential to establish an
effective method to achieve more comprehensive DA.
In this article, a framework of bi-level adversarial domain

adaptation based on coarse-to-fine features (called C2FADA) is
designed for bearings fault diagnosis under variable operating
conditions. In this framework, the relation information between
the source and target domains is used to ensure the success of
domain adaptation and fault classification. It uses
coarse-grained domain discriminator and fine-grained domain
discriminator to perform domain-oriented and class-oriented
alignment, respectively. Specifically, the C2FADA model
structure consists of four modules: a coarse-grained domain
discriminator, a fine-grained domain discriminator, a feature
generator, and a standard machine learning classifier. The
feature generator can generate domain-invariant feature
representations that retain the distinguishing structure. Each of
the two discriminators obtains features from the feature
generator and performs mini-max games with the generator
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respectively. The coarse-grained domain discriminator learns
the features of source and target domains and maps these
features into the domain label space (called coarse-grained
feature representation), and the fine-grained domain
discriminator approaches the predicted labels of the classifier to
learn the domain invariant features of each fault category, so as
to transform the features of the source domain into the fault
label space (called fine-grained feature representation).
Afterwards, the domain-invariant features learned by the model
can effectively transfer the knowledge to the target domain
from the source domain, so as to obtain more accurate
classification performance. The proposed C2FADA model
considers the problem of domain alignment and class alignment
in practical industry, and can well solve the fault diagnosis of
rolling bearings. the main contributions are as follows:
1) To effectively solve the domain shift problem in fault

diagnosis under variable operating conditions, a new
C2FADA framework is proposed. In this framework, a
bi-level adversarial module is established to gradually align
different domains at domain level and class level, enabling
the classifier to capture the domain invariant representation
features.

2) The proposed coarse-to-fine bi-level adversarial network
can better distinguish the fault structure, maximize the
intra-class distance, and minimize the inter-class distance.

3) To improve the stability of the GAN training process, a
spectral norm regularization (SNR) scheme is introduced.
Regular constraints are introduced based on the spectral
norm of the neural network parameter matrix to make the
training process more stable and quick to converge.

The remainder of this paper is organized as follows. Section II
provides the preliminaries. The proposed C2FADA method is
presented in Section III. In Section IV, plenty of comparative
experiments are validated. Finally, conclusion is in Section V.

II. PRELIMINARIES

A. Problem Formulation
The vibration data of rolling bearings under variable working

conditions generally have large differences, which make
bearing fault diagnosis an extremely challenging problem. In
order to overcome this challenge, a novel C2FADA method is
proposed in this paper. The method is based on feature transfer,
and the feature mapping process of the DA method is presented
in Fig. 1. According to the principle of feature transfer, it is
assumed that the following assumptions are satisfied:
1) The fault diagnosis tasks in different domains are the same;
all faults of rolling bearings can be categorized into a
limited number of classes.

2)Owing to variable working conditions, the data
distribution of the source and target domains may be
different, but there are similarities between data in the two
domains.
3)There are lots of labeled samples that can be used to
structure the fault types in the source domain, while only
unlabeled data are available in the target domain.

Fig. 1. An illustration of feature-based DA method.

A domain, denoted by  = , ( )P XD X , consists of two main
components: a feature space of inputs X , and a marginal
probability distribution of inputs P(X), where the sample set

 1 2, , nX x x x  X . If the source domain sD and target
domain TD are different, they have different data spaces and
marginal distributions.
A task T , denoted by ={ }, f(x)T Y , contains two parts: a

label space Y and a target prediction function ( )f x . The
function is unknown but can be learned from data in the source
domain. From a probabilistic viewpoint, ( )f x can be
considered as a conditional probability distribution P(y|x),
where yY . In the fault diagnosis classification of this article,
Y is the set of all labels. For example, the values of y are
either true or false for a binary classification task.
In this paper, the situation where there is one sD and one

TD is considered. More specifically, let the labeled sD data be

  1= ( , ) sn
s i i ix y


D , where i sx X is the input and i sy Y is the
corresponding output. Analogously, let the unlabeled TD data

be  
1

tn

T j j
x


D , where the input j Tx X . sD and TD are

sampled from joint distributions P(X,Y) and Q(X,Y),
respectively, and due to the domain shift, P Q . The task is to
learn a function ( )f  from sD . Afterwards, the forecast
function built on sD will be applied to classify the unlabeled
samples of TD .

B. Spectral Norm Regularization
In recent years, GANs have been drawing growing attention in
the field of machine learning and successfully applied to
various types of tasks [30]. However, GANs are still very
difficult to train. In the training process, the discriminator may
enter the ideal state early and can always distinguish between
true and false samples. Therefore, for such a premature
convergence case, gradient information would become less
useful for proceeding and improving the model performance.
To overcome the premature convergence issue and stabilize the
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Fig. 2. The framework of the proposed C2FADA method.

training of discriminator networks, a simple and effective
spectral norm regularization (SNR) method is introduced.
For the discriminator network ( )D x , its input-output

relationship can be expressed as
 1 1,2, ,l l l l lx f W x b l L    (1)

where 1lx  is the input of the l-th layer, ( )lf  is the activation
function (ReLU), lW and lb denote the layer weight matrix and
bias vector, respectively, and the set of parameters can also be
written as   1, L

l l lW b


  . The spectral norm of the
discriminator network parameter matrix ,xW can be
represented as ,( )xW  . For a given vector x , ( )lf  is
equivalent to a diagonal matrix ,xH . If the corresponding
element in 1lx  is positive, the element on the diagonal is equal
to one; otherwise, it is equal to zero [31]. Therefore, the
discriminant network ( )D x can be expressed as the
multiplication of multiple matrices, and its input-output
relationship can be expressed as

1 1
, , , 1 , 1( ) .L L
x x L x L xD x W x H W H W H W

       (2)
Note that the ReLU function satisfies the 1-Lipschitz

constraint, so ,( ) 1l
xH   for every  1,2, ,l L  . Therefore,

we have
         

     

1
, , , 1

1
, 1

1
.

L L
x x L x L

L

x l
l

W H W H W

H W W

    

  


   







(3)

From this, it is concluded that to bound the spectral norm of
the parameter matrix ,xW , is sufficient to bound the spectral

norm of lW for every  1,2, ,l L  . To this end, the spectral
norm is added as a regular term to the loss function of
multilayer neural networks.

III. PROPOSEDMETHOD

This section presents the C2FADA method in detail. The
section includes four parts, namely, the framework overview,
the method of feature extraction, the domain alignment module,

and the optimization algorithm. DA is a core of the proposed
C2FADA method, therefore considerable attention is paid to it.

A. Bi-Level Adversarial Domain Adaptation Model
Considering the problem that rolling bearings are prone to

failure in complex work conditions, to find an effective method
to diagnose the faults of rolling bearings timely, a C2FADA
approach is proposed. As shown in Fig. 2, the framework of this
approach includes four modules: 1) the feature generator G
using SAE; 2) the coarse-grained domain discriminator cdD ; 3)
the fine-grained domain discriminator fdD ; 4) the fault
classifier yC with softmax loss.
As mentioned in section II, S and T are used to respectively

denote the source and target domains. Meanwhile, the number
of classes is denoted by classN . The input data (features) and the
associated class labels are presented by  1 2, , nX x x x  and a

vector 1 2[ , , , ]
class

T
NY y y y  , respectively.

In contrast to the existing methods of aligning different
domains, we argue that the category information should be
considered and used to facilitate the fault diagnosis task,
thereby highlighting the distribution of each category to further
refine feature alignment. As shown in Fig. 2, two modules are
developed to conquer the challenges in this task. Firstly, in
order to avert the performance degradation resulted from the
domain shift, a domain-level alignment module, that is, the
coarse-grained alignment module cdD , is proposed. This
module is used to align the distribution between two domains.
Secondly, it is known that the objects in fault type recognition
are usually different in the vibration data, a fine-grained
alignment module fdD is proposed accordingly. By aligning
the two domains at a fine-grained level, and learning the
domain invariant features of each fault class, this can better
fulfill a coarse-to-fine transfer of feature knowledge.

B. Sparse Auto-encoder for Feature Extraction
A large amount of raw vibration data of rolling bearings can

be obtained, but the collected data can become noisy after the
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Fig. 3. The structure of the proposed SAE.

bearings work for a long time [32]. Therefore, it is required to
pre-process the data and extract useful features. SAE provides a
good approach to automatically process information and extract
efficient features from unlabeled data. Thus, this paper uses
SAE as the feature generator, which, working together with a
sparse constraint, can mine more essential and discriminative
features as well as avoid feature redundancy.
As shown in Fig. 3, the sparse auto-encoder is an

unsupervised feature learning neural network with three layers,
where the input layer represents the data inputs, the hidden
layer represents the learned features, and the same dimension
output layer represents the reconstructed inputs. The encoder
network transforms the original data from a high dimensional
space into hidden representation codes with lower dimension,
while the decoder network can reconstruct the original inputs
from the learned hidden codes without the need of label
information.
Given a total of n samples, denoted by
 1 2, , ,i nX x x x x   , where each sample is defined in N

dimensional space, that is, 1
ix R . The encoding mapping

function is
1 1( )h f W X b   (4)

where h denotes the hidden layer feature, ( )f  is the
activation function (sigmoid function), 1W and 1b are the
weight matrix and corresponding bias vector of the encode
network. Similarly, the role of the decoder is to reconstruct X
from h , and the decoding mapping function is

 2 2X̂ f W h b   (5)
where 2W and 2b are the weight matrix and corresponding bias
vector in the decoding network. The learning process of SAE is
to minimize the loss function [11]

   2

1 1

1 1 ˆˆ
2

n s

Spare f i i j
i j

J x x KL
n

   
 

    
 

  (6)

   1ˆ log 1 .
ˆ ˆ1

KL  
   

 


  


(7)

where 1 1 2 2{ , , , }f W b W b  is the parameter set, s denotes the
neurons number, β controls the weight of the sparsity penalty
term, ρ represents the sparsity parameter, ̂ denotes the
average activation value of the j-th hidden unit, and the

standard KL divergence function is used to realize the sparse
representation of SAE hidden layer features.
SAE improves the performance of the traditional

auto-encoder. It can learn the representative features of original
data in a complex data environment while reducing the
dimensionality efficaciously. In consequence, it is especially
applicable for fault diagnosis under variable conditions.

C. Domain Alignment Module
Different domains are continuously aligned at the domain

level and the class level. Specifically, we first reduce the
differences between different domains on the whole, and then
further align the same categories under different domains. This
is different from most existing research, which usually only
focuses on the domain-level alignment but ignores the
class-level alignment. This is the merit of the proposed method.
1) Domain-level alignment
The features extracted generally have domain shifts between

the source and target domains (features are denoted by Sh and

Th , respectively, in Fig. 2). Therefore, an adversarial learning
method is adopted to achieve alignment at the domain-level.
The process of adversarial domain adaptation is a zero-sum
game process between the feature extractor and the domain
discriminator. Specifically, the domain discriminator
distinguishes the source and target domains features through
learning, and maps the feature representations to coarse-grained
label space [0, 1] to represent the source and target domains
samples. The output of the domain discriminator is:

3 3( , ) ( )cd cdD h sigmoid W h b    (8)
where 3W and 3b represent the weight matrix and
corresponding bias vector.
Owing to the instability of GAN training process, spectral

norm regularization is introduced. In this method, regular
constraints are introduced from the perspective of the spectral
norm of the neural network parameter matrix to make the
training process more stable and easier to be converged. The
logistical loss of the domain-level alignment is defined as:

     

 

  

     

 

1

2

1

2

1
, , ,

2

1
log ,

1 log 1 ,

2

S T

cd cd

cd

S T

cd

n n

D f cd D cd f i f i
iS T

D

n n

i cd S i f
is T

i cd T i f

D

D G x cd
n n

W

d D G x
n n

cd D G x

W

c

  
























 


   

















L L

(9)

where sG and TG represent the feature extractors of the source
and target domains respectively (a shared weight strategy is
adopted for the two extractors here), f is the parameter of the
feature extractor (SAE), cdD is a binary domain classifier
(similar to the discriminator in GAN), and icd denotes the
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coarse-grained label of ix , whose value is 1 if ix belongs to the
source domain and 0 if target domain,  is a regularization
factor,

cdDW is the weight matrix of the discriminator cdD .

2) Class-level alignment
In addition to domain-level alignment, class-level alignment

should also be built to ensure that the same category features
from different domains are close, so as to achieve more
comprehensive DA. In order to achieve the alignment in
class-level and learn the domain invariant features of each fault
type, a fine-grained domain discriminator is built. Since the
label knowledge of the source domain reflects the type of
failure, the classifier yG can provide predicted fault labels for
each sample. Features extracted by the feature generator fG

can be divided into classN types of fine-grained feature
representations. The output of the class discriminator is
represented as:

 
1

2

1

exp
log

exp( )
(1 ( )( , ) )

2 class

s
T
i

N T
jj

i

i

n

fd s fd
is h

h
pD h

n
y









 


 (10)

where fd is the parameter of the discriminator, and ( )p y
denotes the class probability output by classifier C.
Similar to the coarse-grained alignment module, class-level

domain alignment is also realized by the adversarial learning
method, and a regularization based on the spectral norm is
imposed. According to the predicted labels, the class-level loss
is defined as follows:

     

 

  

     

 

1 1

2

2

1 1

1 1
, , ,

2

1 1
log ,

1 log 1 ,

2

class S T

fd fd

cd

cd

class S T

N n n

D f fd D fd f i f i
c iclass S T

D

i fd S i f
class S T

i fd S i f

D

N n n

c i

D G x fd
N n n

W

fd D G x
N n n

fd D G x

W

  













 



 






 


   







 





 

L L

(11)

where fdD represents the fine-grained domain discriminator,

ifd is the fine-grained domain labels of ix , and
fdDW denotes

the weight matrix of fdD .

D. Softmax Classifier for Fault Diagnosis
The softmax classifier has been widely used for multi-class

classification tasks [33]. In the source domain, given
  1= ( , ) sn

s i i iD x y

, where 1N

ix  denotes the labeled training

sample, and  1,2, ,i classy N  represents the corresponding
label. For an input sample ix , the softmax function is used to
calculate, by regression analysis, the probability  ˆ |i i ip y y x

for each label  ˆ ˆ 1, 2, ,i i classy y N  . The hypothesis function
is given by:

Fig. 4. The flowchart of the C2FADA method.
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where 1 2, , ,
class

T

N       represents the softmax

parameters.
The cross-entropy function yL is adopted as the

classification loss function [34], and yL is defined as:

     
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1 1
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(13)

where  1 iy k is the indicator function, whose equals to 1 (if
the condition is true) or 0 (otherwise).

E. Diagnosis Procedure
Fig. 4 presents a simple flowchart of the C2FADA-based

fault diagnosis process.
In the training phase, the proposed model is trained using the

labeled source domain data and unlabeled target domain data.
The parameters of each module are learned by optimizing the
objective function. Then, the fault diagnosis model based on
C2FADA is obtained.
In the testing phase, the target sample is firstly input into the

parameter-sharing feature generator to obtain the feature
representation. Then, the obtained features are input into the
fault classifier to obtain the fault category of the target domain
sample. Thereby, the diagnostic result of the target domain
sample is determined.

F. Optimization Algorithm
By integrating equations (9), (11), and (13) together, the

overall loss function is as follows:
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where  is the tradeoff parameter that controls the level of
adversarial domain adaptation.
The goal of optimization is to find a set of optimal

parameters ( , , , )f y cd fd    so that yG minimizes the loss of
the classification of all labels, and at the same time, cdD and

fdD maximize the loss of the domain labels. Hence, the
optimization objective can be written as:

   
,

ˆ ˆ, argmin , , ,
f y

f y f y cd fd
 

      L (15)

   
,

ˆ ˆ, argmax , , ,
cd fd

cd fd f y cd fd
 

      L (16)

In the training stage, the adversarial between minimizing the
loss of the label predictor and maximizing the loss of the
domain discriminator is the transfer process of the model.
Among this process, the model automatically extracts the
features of transfer between different domains. Actually, G and
D are connected through a gradient reversal layer (GRL) to
learn the invariant features of the domain [35]. GRL only
affects the gradient calculation in the backward pass because it
is placed between G and D.

y fdcd
f f

f cd fd

y
y y

y

cd
cd cd

cd

gd
gd gd

gd

   
  

  


  


  


 
   

  


 




 



 


  
      

L LL

L

L

L

(17)

Stochastic gradient descent (SGD) method can be applied to
address the optimization problems (15) and (16). In the training
process, the parameters are updated according equation (17),
where  represents the learning rate,  denotes the gradient
reversal.

IV. EXPERIMENTS

Two real datasets are considered to test the performance of
the proposed method. The modeling setups and results for the
two datasets are detailed in Sections A&B and Section C,
respectively.

A. Set-ups of CWRU Dataset
1) Datasets
The experiment builds the multi-condition rolling bearing

dataset based on the bearing data center of Case Western
Reserve University [36]. The bearing vibration data of 0~3hp
load were recorded during the experiment, and the vibration
data of different working conditions includes four bearing
states, namely normal (NR), fault of inner race (FIR), fault of
outer race (FOR), and fault of rolling ball (FRB). Each fault
state corresponds to four fault diameters of 0.007 inches, 0.014
inches, 0.021 inches, and 0.028 inches, respectively.

In this article, two domains are generated according to the
load of the motor. Specifically, the source domain consists of
data obtained from four bearing states under the same motor
load,  0 0 0 0 0 0 0

1 1 1 2 2 2, , , , , ,S NR FIR FOR FRB FIR FOR FRBD , with

fault diameters of 0.007 and 0.014 inches. The target domain
consists of data obtained from four bearing states under another
motor load,  1 1 1 1 1 1 1

1 1 1 2 2 2, , , , , ,T NR FIR FOR FRB FIR FOR FRBD ,

with fault of the two types of (0.007 and 0.014 diameters). The
task is to get the status label of the unlabeled data in the target
domain, 1 2[ , , , ]

class

T
NY y y y  . Therefore, according to the

two fault diameters and four different loads (0~3hp), the
bearing conditions are split into several cases, resulting in six
types of domain shift tasks, details of which are shown in Table
I. The fast Fourier transform (FFT) is performed on the signal
samples, and the first half of the frequency coefficients are
retained as the input of the model.

TABLE I
TASKS AND THEIR ASSOCIATED FAULT LABELS

Task Domain shift NR
label

0.007 inches
fault labels

0.014 inches
fault labels

H0→H1
H0→H2
H0→H3
H1→H2
H1→H3
H2→H3

0hp→1hp
0hp→2hp
0hp→3hp
1hp→2hp
1hp→3hp
2hp→3hp

1
1
1
1
1
1

2, 3, 4
2, 3, 4
2, 3, 4
2, 3, 4
2, 3, 4
2, 3, 4

5, 6, 7
5, 6, 7
5, 6, 7
5, 6, 7
5, 6, 7
5, 6, 7

2) Baselines and Settings
The proposed C2FADA approach was compared with three

traditional methods without using DA and other six methods
using DA. These compared methods are: BP method [10],
Softmax method, SAE method [11], domain adaptation in fault
diagnosis (DAFD) method [37], MTLF method [16],
double-level adversarial domain adaptation network
(DL-ADAN) method [38], deep adversarial domain adaptation
(DADA) method [32], deep convolution domain-adversarial
transfer learning (DCDATL) method [39], and CNN-based
C2FAFA (C2FADA-CNN) method.
The three traditional supervised methods, BP, Softmax, and

SAE, have been widely used for fault diagnosis applications.
Among the DA methods, the DAFD method reduces the
differences between different domains by learning the
transferable features between domains, while strengthening the
identifiable features in the original data; the DL-ADANmethod
combines domain discriminator and classifier to bridge
differences between domains through adversarial training; the
MTLF method learns the instance weights and Mahalanobis
distance to minimize the inter-class distance and maximize the
intra-class distance for the target domain; the DADA method
uses the SAE as the feature extractor and the adversarial
training is performed using the GRL; the DCDATL method
designs a deep residual network to extract the features from two
domains and the joint distribution of the samples from two
domains is utilized for domain-adversarial training; the
C2FADA-CNN method uses the CNN as the feature extractor,
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TABLE II
THE TEST RESULTS (%) OF DIFFERENTMETHODS ON THE CWRU DATASET

Methods
H0→H1 H0→H2 H0→H3 H1→H2 H1→H3 H2→H3

Average (%)
Average (%)STDEVAverage (%)STDEVAverage (%)STDEVAverage (%)STDEVAverage (%) STDEVAverage (%)STDEV

BP 81.375 0.008 82.698 0.043 71.012 0.030 85.188 0.032 84.246 0.046 73.681 0.041 79.700

Softmax 76.811 0.063 71.320 0.057 79.545 0.051 69.771 0.057 71.564 0.067 66.571 0.047 72.597

SAE 84.372 0.045 80.018 0.035 84.814 0.047 83.261 0.041 84.099 0.046 82.512 0.035 83.179

MTLF 82.665 0.040 68.544 0.037 77.862 0.042 83.671 0.047 85.542 0.039 84.824 0.042 80.518

DAFD 96.024 0.054 90.131 0.043 95.503 0.036 94.274 0.034 90.290 0.053 97.321 0.030 93.924

DL-ADAN 95.446 0.027 94.304 0.032 96.339 0.027 95.232 0.031 90.036 0.053 93.232 0.038 94.098

DADA 95.393 0.009 95.500 0.031 94.696 0.056 93.661 0.045 90.643 0.032 93.375 0.036 93.878

DCDATL 91.786 0.051 94.250 0.050 95.107 0.049 95.607 0.053 94.250 0.059 97.429 0.053 94.738

C2FADA-CNN 96.607 0.031 96.357 0.033 95.071 0.027 97.393 0.024 94.375 0.028 97.839 0.030 96.274

Proposed method 98.050 0.022 98.498 0.024 97.452 0.020 96.339 0.026 97.007 0.021 98.500 0.023 97.641

which is different with the proposed C2FADA method using
the SAE as the feature extractor.
This work uses the classification accuracy of the target task

as the performance evaluation index, which is popular in fault
diagnosis [11], [37]. The calculation formula is defined as

: ( ) ( )
:

T

T

x x prediction y actual y
Acc

x x
  




D
D (18)

where TD denotes the dataset of the target domain,
( )prediction y denotes the labels predicted by the classifier,

( )actual y are the actual labels of x .
In addition, the diagnostic performance of the seven DA

methods is also evaluated by Macro_F1 score index, which can
be calculated as follows:

21 precision recallF
precision recall
 




(19)

1
1

_ 1

classN

i
i

class

F
Macro F

N



(20)

where precision represents the ratio of the number of positive
samples correctly classified to the number of positive samples
determined by the classifier, and recall denotes the proportion
of correctly classified samples to the total number of samples.

B. Results and Analysis
1) Experimental Results
In the work, each experiment was conducted ten times, and

the average accuracy and the standard deviation of the
classification results of all tasks was recorded. The comparison
of the results from the nine contrasted methods and the
proposed C2FADA method, for the six diagnosis tasks, are
shown in Table II, where the “Average” and “STDEV”
represent the average accuracy and the standard deviation of the
diagnosis results, respectively. It can be easily discovered that
the test and diagnosis performance of the proposed method
under different tasks outperforms other listed methods, and the
test accuracies are basically above 95%, which clearly verifies
the availability of the C2FADA method. Specifically, the

accuracy of the baseline Softmax method is only 72.597%,
which is 25.044% lower than that of the proposed method. BP
acquires the best accuracy of 85.188% amidst the three
methods without DA, which is 12.453% lower than the
proposed approach. The accuracy of SAE diagnosis results is
above 80%, even so, there is still a certain distance from the
required diagnosis. In these methods with DA, the DAFD
method shows the higher accuracy of 97.321%, but is still
lower than the proposed method.
The DL-ADAN, DADA, and DCDATL methods adopt the

adversarial training to learn the domain information and obtain
better performance than simple domain adaption methods, and
the accuracy of these methods is over 90%. However, these
methods only align the distribution of domains, and ignore the
fine-grained information of the same fault categories from
different domains, and thus obtain lower accuracy. Different
with the proposed method using SAE to learn the features of the
source and target domains, the C2FADA-CNN method uses the
CNN as the feature extractor. From Table II, it shows that the
C2FADA-CNN method obtains similar performance with the
proposed method, and even achieves higher accuracy (97.393%)
than the proposed method on the H1→H2 task. However, on
the most tasks, the accuracy of the proposed method is slightly
higher than that of the C2FADA-CNN method, which means
that the SAE can more efficiently extract the domain features in
the adversarial training. Additionally, the proposed method
achieves better stability results compared with other
comparison approaches for multiple-class classification tasks.
This can be interpreted that the adoption of DA improves the
capability of the model classifier, and the adoption of spectral
norm regularization imposed on the adversarial training makes
it more effective in reducing the domain shift. In addition, from
Table II, it can be also seen that the standard deviation of the
diagnosis results of the proposed method is smaller than that of
other methods on most tasks, especially for other DA methods.
That means that the proposed method has more stable
performance in fault diagnosis of rolling bearing.
In order to further verify the superiority of the proposed

method, the comparison results for four DA methods based on
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TABLE III
THEMACRO_F1 SCORE RESULTS (%) OF FOUR DAMETHODS ON THE CWRU DATASET

Methods H0→H1 (%) H0→H2 (%) H0→H3 (%) H1→H2 (%) H1→H3 (%) H2→H3 (%) Average (%)

MTLF 80.228 70.032 71.174 72.883 83.414 82.580 76.719

DAFD 93.401 89.021 92.953 92.224 91.336 95.924 92.477

DL-ADAN 94.006 94.104 95.319 93.886 90.547 91.511 93.229

DADA 94.281 95.003 94.621 92.908 90.152 92.968 93.322

DCDATL 91.219 93.886 93.739 94.597 93.195 96.286 93.820

C2FADA-CNN 96.532 95.996 94.720 96.537 93.837 97.371 95.832

Proposed method 97.255 97.329 97.264 94.826 95.371 98.902 96.825

(a) (b)

(c) (d)
Fig. 5. Confusion matrices of the fault diagnosis result. (a) DAFD; (b) DL-ADAN; (c) DCDATL; (d) C2FADA.

Macro_F1 score following (20) are shown in Table III. It can be
clearly observed from the table that the performance of the
proposed method is better than the other six DA methods.
In order to understand for which cases the performance is (and
is not) significantly improved by introducing DA, the confusion
matrices obtained by four DA methods (namely, DAFD,
DL-ADAN, DCDATL, and C2FADA) on the H0→H1 task are
shown in Fig. 5. For DAFD, it can be readily observed that
there are the classification errors in category FOR2, and the
accuracy of FOR2 is only 21.1%. The main reason for such
situation is that their fault categories are similar, but only the
fault severity is different; this makes the data samples located in
the decision boundary prone to being misclassified. The

DL-ADAN and DCDATL methods have also the different
classification errors in category FOR2. For the proposed
method, although there are a few misclassifications in the
diagnosis of FIR1 and FIR2, the overall accuracy rate remains
above 96%. The results show that the overall performance of
the proposed C2FADA method is superior to other compared
methods, and in the task of diagnosis, this method has a
significant superiority for obtaining more accurate recognition
performance.
2) Feature Visualization
In order to definitely present the matching degree of the data

distribution before and after the DA, an effective technology
t-SNE [40] is adopted to map the high-dimensional samples in
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(a) (b)

(c) (d)
Fig. 6. Feature visualization via t-SNE. (a) NR; (b) FIR; (c) FOR; (d) FRB.

the learned feature space to the two-dimensional space,
enabling the visualization of the high-dimensional data. The
0.007 inches fault diameter in the H0→H1 diagnosis task is
taken as an example, and the visualization effects of the four
bearing states features are shown in Fig. 6. It is obvious from
Fig. 6(a) that the discrepancy between the features extracted by
the proposed model (features from sD are marked by the
magenta asterisks and features from TD are marked by the red
diamonds ) is smaller than the features of SAE (points marked
by the cyan circle are from sD and the green cross are from

TD ). Similar observations can also be made in the other three
figures. The observed discrepancy between the results
produced by the proposed method and SAE can be explained
that the method of this article proposed clusters the data of the
same category and separates different categories, thus makes
the learned feature cluster better and more efficient for reducing
the domain shift. At the same time, the alignment of the source
and the target domain is well realized. Therefore, the model
trained on the source task can be commendably applied to the
fault diagnosis of the target task.
3) Effect of Feature Dimension
The model proposed in this article mainly relies on SAE as

the generator to acquire the hidden features of the original data.
Therefore, the choice of the neurons number in the hidden layer
(the input feature dimension) will greatly influence the
performance of machine learning. In this subsection, the
influence of feature dimension on fault diagnosis of variable

Fig. 7. Effects of the features dimension in the feature extractor.

conditions is studied, and the results are shown in Fig. 7. The
original sample dimension is 600, so the feature space is [1,
600]. The model diagnostic performance is sensitive to feature
dimensions. Specifically, as the feature dimension increases,
the diagnosis accuracy initially shows a rising trend, but then
the accuracy drops somewhere, and the optimal dimension was
identified to be between 350 and 450. This can be explained as
low-dimensional representations usually cannot capture
enough representative information for data generation and
classification, while high-dimensional representations are
prone to overfitting. According to this result, the feature
dimension was chosen to be 400. The experimental results
show that this choice is appropriate and can guarantee a good
performance.
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Fig. 8. Effect of the trade-off parameter λ on the overall performance.

Fig. 9. Spectral norm of discriminator weight matrix. (a) H0→H1; (b) H0→H2;
(c) H0→H3; (d) H1→H2; (e) H1→H3; (f) H2→H3.

4) Effect of Trade-off Parameter
The trade-off parameter λ in the overall loss function (14)

controls the adversarial domain adaptation level. Here, the
sensitivity of the overall objective function to the change in λ is
investigated. Experiments are carried out on six tasks of the
CWRU dataset, and the experimental results are shown in Fig.
8. It can be observed that when λ changes in the range [0.004,
0.014], the overall performance of the model is relatively good.
It is worth noting that when λ=0.01, the model shows the best
performance. Therefore, this value is selected as the value of
the trade-off parameter in this paper.
5) Spectral Norm Analysis of Discriminator Weights
In order to illustrate the influence of the spectral norm

regularization on the GAN training process, this subsection
provides a visualization of the training process of the spectral
norm of the discriminator model, as shown in Fig. 9. It can be
observed that the spectral norm of the discriminator gradually
decreases with the training, and finally stabilizes after a number
of iterations. This means that the effect of constraints is
gradually weakened as the algorithm converges, which is
consistent with what is expected from the design of the
discriminator. It should be pointed out that the results in the
figure are based on the C2FADA method, where the
regularization constraints are removed on the premise of
ensuring higher accuracy. Take Fig. 9(a) as an example, where
the red curve and blue curve represent constrained and
unconstrained conditions, respectively. It can observe that
when there are no constraints, the model stabilizes after 70
iterations. However, after constraints are introduced to the
model, it stabilizes after 140 iterations. This can be explained
that due to the introduction of the spectral norm regularization
method, it imposes gradient constraints on the parameter matrix

in the model discriminant network, which limits the
convergence speed of the discriminator, thereby improves the
training stability of the entire network. The direct result of these
effects is to improve the data generation quality of the generator
during the game between the generator network and the
discriminator network.
In addition, the influence of spectral norm regularization on

fault diagnosis results of the six tasks is shown in Table IV,
where the column “Without SNR (%)” represents the fault
diagnosis accuracy obtained by the proposed method without
using the spectral norm regularization, and correspondingly,
the column “With SNR (%)” means the fault diagnosis
accuracy obtained by the proposed method using the spectral
norm regularization. From this table, it can been seen that the
proposed method using the spectral norm regularization can
obtain higher fault diagnosis accuracy. Take the H0→H1 task
as an example. The accuracy of the proposed method without
using the spectral norm regularization is 93.286%, which is
4.081% lower than that of the proposed method using the
spectral norm regularization. For the six tasks, the average
accuracy is 94.070%, which is 3.66% lower than that of the
proposed method using the spectral norm regularization.
Therefore, adding the spectral norm regularization to the
proposed method can better train the model and realize better
fault diagnosis performance.

TABLE IV
INFLUENCE OF SPECTRAL NORM REGULARIZATION ON FAULT DIAGNOSIS

RESULTS OF THE SIX TASKS
Task Without SNR (%) With SNR (%)

H0→H1
H0→H2
H0→H3
H1→H2
H1→H3
H2→H3

93.286
96.482
94.035
93.161
92.005
95.450

98.050
98.498
97.452
96.339
97.007
98.500

6) Convergence Performance
The convergence performance of the model was evaluated

by calculating the loss function of different methods. The
comparison results of the loss functions of different methods
under variable working conditions are shown in Fig. 10. It can
be seen from the figure that the proposed method can achieve
fast and stable convergence in the task of rolling bearing
diagnosis, and obtain the minimum loss value. Although the
results given by other methods also show good convergence

Fig. 10. The loss function of the training process.
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Fig. 11. Bearings test platform, and three types of faults in the dataset.

performances, the classification errors are larger. These
demonstrate that the proposed method is more effective than
the compared methods for cross-domain fault diagnosis.

C. Validation on Rolling Bearing Test Platform Dataset
In order to further verify the performance of the proposed

method, a rolling bearing fault test platform is established and
the bearing vibration data required for the experiment is
collected. In the experiment, the vibration data of five bearing
states were tested, including normal (NR), fault of inner race
(FIR), fault of outer race (FOR), fault of rolling ball (FRB),
fault of bearing cage (FBC), and fault of composite bearing
(FCB). For each state, the bearing operated under three
disparate speeds (1800RPM, 2100RPM, and 2400RPM), and
the sampling frequency is 48000Hz. The collected data
includes the shaft coupling end and the non-driving end (that is,
the test bearing end), and the test platform is shown in Fig. 11.
Corresponding to the CWRU dataset, the fault and normal

conditions are considered according to different fault locations
and operating speeds. In addition, new types of bearing cage
fault and composite fault have been added. Six transfer tasks
are tested, and the details of the task sample are described in
Table V.

TABLE V
DETAILS OF THE ROLLING BEARINGS TEST PLATFORM DATASET

Transfer
task

Source domain
(RPM)

Target domain
(RPM)

Number of
samples

P1→P2
P2→P1
P1→P3
P3→P1
P2→P3
P3→P2

1800
2100
1800
2400
2100
2400

2100
1800
2400
1800
2400
2100

6492
6492
6492
6492
6492
6492

Compared with the CWRU dataset, the bearing platform
dataset is more in line with industrial scenarios because it
contains bearing cage fault and composite bearing fault.
Therefore, the difficulty of fault diagnosis has also increased.
The experimental results are shown in Fig. 12, and compared
with six different methods. It can be observed that the fault
diagnosis accuracy of the platform dataset is generally lower
than that of the CWRU dataset. However, compared with other
methods, this method can still achieve the best performance
under different operating conditions, which further verifies the

Fig. 12. Classification results of the six tasks on the bearing test platform.

availability and meliority of this method.

V. CONCLUSIONS
This paper proposed a novel C2FADA method to address the

problem of domain difference in rolling bearings under variable
conditions. This method adopts a novel framework by making
good use of inter-domain fault feature information and
under-domain fault category information, and combines source
domain label information to optimize the feature representation
and parameters of the learning model. Compared with
traditional methods and several existing adaptation methods,
the combination of domain-level alignment and class-level
alignment can better identify the failure types of rolling
bearings and enhance the accuracy of the diagnosis results.
Meanwhile, the introduction of the spectral norm regularization
makes the training process of the model more stable and shows
better convergence property. Through feature visualization, it
illustrates the availability of the C2FADA method in reducing
the distribution difference between domains. Apart from this,
the proposed method can achieve more comprehensive domain
adaptation without need of manual feature extraction, and this
makes it more suitable for generalization to practical
applications.
The main limitation of the proposed method is that it needs

enough source domain data and corresponding labels to be
constructed to train the model. So, the next step of the research
is to develop methods and algorithms that can be used to
effectively train good models when the data and labels are not
balanced.
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