
This is a repository copy of PyKale: Knowledge-aware machine learning from multiple 
sources in Python.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192608/

Version: Accepted Version

Proceedings Paper:
Lu, H. orcid.org/0000-0002-0349-2181, Liu, X., Zhou, S. et al. (6 more authors) (2022) 
PyKale: Knowledge-aware machine learning from multiple sources in Python. In: Hasan, 
M.A. and Xiong, L., (eds.) CIKM '22: Proceedings of the 31st ACM International 
Conference on Information & Knowledge Management. CIKM '22: The 31st ACM 
International Conference on Information and Knowledge Management, 17-21 Oct 2022, 
Atlanta GA USA. ACM , pp. 4274-4278. ISBN 9781450392365 

https://doi.org/10.1145/3511808.3557676

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is 
an author-produced version of a paper subsequently published in CIKM '22: Proceedings 
of the 31st ACM International Conference on Information & Knowledge Management. 
Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



This is a repository copy of PyKale: Knowledge-Aware Machine Learning from Multiple 
Sources in Python.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191957/

Version: Accepted Version

Article:

Lu, H orcid.org/0000-0002-0349-2181, Liu, X, Turner, R orcid.org/0000-0002-1353-1404 et
al. (5 more authors) (2021) PyKale: Knowledge-Aware Machine Learning from Multiple 
Sources in Python. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



PyKale: Knowledge-Aware Machine Learning from Multiple
Sources in Python

Haiping Lu
The University of Sheffield

h.lu@sheffield.ac.uk

Xianyuan Liu
University of Chinese Academy of

Sciences
liuxianyuan16@mails.ucas.ac.cn

Shuo Zhou
The University of Sheffield
shuo.zhou@sheffield.ac.uk

Robert Turner
The University of Sheffield
r.d.turner@sheffield.ac.uk

Peizhen Bai
The University of Sheffield

pbai2@sheffield.ac.uk

Raivo E Koot
The University of Sheffield
raivokoot@gmail.com

Mustafa Chasmai
Indian Institute of Technology Delhi

cs1190341@iitd.ac.in

Lawrence Schobs
The University of Sheffield
laschobs1@sheffield.ac.uk

Hao Xu
Queen’s University, Canada

xu.hao@queensu.ca

ABSTRACT

PyKale is a Python library for Knowledge-aware machine learning
from multiple sources of data to enable/accelerate interdisciplinary
research. It embodies green machine learning principles to reduce
repetitions/redundancy, reuse existing resources, and recycle learn-
ing models across areas. We propose a pipeline-based application
programming interface (API) so all machine learning workflows
follow a standardized six-step pipeline. PyKale focuses on leverag-
ing knowledge from multiple sources for accurate and interpretable
prediction, particularly multimodal learning and transfer learning.
To be more accessible, it separates code and configurations to enable
non-programmers to configure systems without coding. PyKale is
officially part of the PyTorch ecosystem and includes interdisci-
plinary examples in bioinformatics, knowledge graph, image/video
recognition, and medical imaging: https://pykale.github.io/.

KEYWORDS

machine learning, multimodal learning, transfer learning, PyTorch

ACM Reference Format:

Haiping Lu, Xianyuan Liu, Shuo Zhou, Robert Turner, Peizhen Bai, Raivo

E Koot, Mustafa Chasmai, Lawrence Schobs, and Hao Xu. 2022. PyKale:

Knowledge-Aware Machine Learning from Multiple Sources in Python. In

Proceedings of the 31st ACM International Conference on Information and

Knowledge Management (CIKM ’22), October 17ś21, 2022, Atlanta, GA, USA.

ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3511808.3557676

1 INTRODUCTION

A growing number of researchers hope to solve real-world inter-
disciplinary problems using machine learning (ML). However, nav-
igating through the abundant choices and variety of ML software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17ś21, 2022, Atlanta, GA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557676

Load Preprocess Embed Predict Evaluate Interpret

Load digits
Standardize

images

Learn CNN 
features

Predict  
digit class

Compute 
accuracy

Visualize 
pa�erns

Load BindingDB
Chem chars 
�sequence

Drug/target 
embedding

Predict 
binding

Concord 
index

Visualise 
rela�ons

Load MRIs
Standardize

MRIs

Learn MPCA
features

Predict MRI
class

Compute
accuracy

Visualize
pa�erns

Figure 1: PyKale has a unified pipeline-based API so that all

ML workflows follow a standardized six-step pipeline.

is not trivial. Solving complex real-world problems often involves
analyzing multiple sources of data, e.g., multiple modalities, mul-
tiple domains, and multiple knowledge bases. Most ML software
packages are developed with a specific domain of application in
mind. Popular generic packages such as scikit-learn, PyTorch, and
TensorFlow focus on generic frameworks and need additional de-
velopment to support interdisciplinary research, e.g., with both
flexible configurations and high-level integration.

In this paper, we propose PyKale, an open-source Python library
to enable and accelerate interdisciplinary research via knowledge-
aware multimodal learning and transfer learning on graphs, images,
and videos. It aims to fill the gaps between rich data sources, abun-
dant ML libraries, and eager interdisciplinary researchers, by focus-
ing on leveraging knowledge from multiple sources for accurate
and interpretable prediction. It considers both multimodal learn-
ing and transfer learning under a common framework of learning
from multiple sources. It makes latest ML tools more accessible to
accelerate their development. The name of the library consists of
Py for Python, and Kale for Knowledge-aware learning.

PyKale proposes a novel pipeline-based application programming
interface (API) so that all ML workflows follow a standardized six-
step pipeline as shown in Fig. 1. It embodies our greenML concepts
of reducing repetitions and redundancy (Fig. 2(a)), reusing existing
resources (Fig. 2(b)), and recycling learning models across areas
(Fig. 2(c)). It has examples in bioinformatics, knowledge graph,
image/video recognition, and medical imaging. It was motivated
by needs in healthcare applications and considers healthcare as a
primary domain of usage. It is largely built on PyTorch and has



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Lu, et al.

(a) Reduce (b) Reuse (c) Recycle (d) The PyKale logo

Figure 2: Green machine learning concepts in PyKale.

been approved officially to join the PyTorch ecosystem https://
pytorch.org/ecosystem/. The logo in Fig. 2(d) reflects the above
characteristics using multiple (three) kale leaves.

PyKale is available at https://github.com/pykale/pykale under
an MIT license, with many community-engaging features. PyKale
can be installed via pip install pykale from the Python Pack-
age Index (PyPI). The primary targeted users are researchers and
practitioners who have experience in Python/PyTorch program-
ming and need to apply/develop ML systems to integrate data from
multiple sources for prediction tasks in interdisciplinary areas such
as healthcare. This paper refers to release version 0.1.1.

2 RELATED WORK

We have learned from numerous libraries in the public domain to
build PyKale. Here, we can only briefly mention several that have
been particularly influential or relevant.

PyKale aims to fill the gap within the PyTorch ecosystem to sup-
port more interdisciplinary research that integrates multiple data
sources. Therefore, we make extensive usage of existing libraries
from the PyTorch ecosystem to reduce duplicated implementation,
including PyTorch Lightning [8], TensorLy [17], TorchVision [26],
and PyTorch Geometric [9]. We also learned from MONAI [25],
GPyTorch [12], Kornia [34], and TorchIO [32].

PyTorch-based libraries on multimodal/transfer learning include
the MultiModal Framework (MMF) [38], the Transfer-Learning-
Library [15], Cornac [35], the ADA ((Yet) Another Domain Adapta-
tion) library [41], and the Multimodal-Toolkit [13].

PyKale frames multimodal learning and transfer learning under
one roof of knowledge-aware ML from multiple sources with a
unified pipeline-based API to support interdisciplinary research
rather than just popular vision/language tasks. PyKale differs from
these existing libraries not only in the API design, but also in the
number of modalities supported, the scientific fields covered, and
interdisciplinarity. Part of PyKale refactored ADA to our pipeline-
based API, with the sources indicated at the top of respective files.

3 PYKALE DESIGN

3.1 Green machine learning

Green ML is a scarcely used term referring to energy-efficient
computing [6, 11, 19, 36]. We propose a different, new green ML

perspective for ML software development with the 3R guiding
principles formulated below, by extending similar principles in
standard software engineering practices to machine learning.

Reduce repetition/redundancy: 1) Refactor code to standardize
workflow and enforce styles, e.g., we refactored Deep Drug-Target
binding Affinity (DeepDTA) [28] into PyKale API (bottom of Fig.

1); 2) Identify and remove duplicated functionalities, e.g., we built
data loading API for popular datasets to avoid repetition.

Reuse existing resources: 1) Reuse the same ML pipeline for dif-
ferent data/applications, e.g., using the same Multilinear Principal
Component Analysis (MPCA) pipeline for gait [24], brain [39], and
heart [2, 40]; 2) Reuse existing libraries (e.g., scikit-learn) for avail-
able functionalities rather than implementing them again.

Recycle learning models across areas: 1) Identify commonalities
between applications, e.g., the similarity between commercial rec-
ommender systems (user-item interactions) and drug discovery
(drug-target interactions); 2) Recycle models for one application to
another, e.g., from recommender system [3] to drug discovery [45].

Although based on existing practices, this new formulation offers
a new perspective to focus on core principles of standardization and
minimalism. It has guided us to design a unique pipeline-based API
to unify workflow, break barriers between areas and applications,
and cross boundaries to fuse existing ideas and nurture new ideas.

3.2 Pipeline-Based API

Inspired by the convenience of ML pipelines in ML libraries Spark
MLlib [27] and scikit-learn [30], we design PyKale with a pipeline-
based API as shown in Fig. 1. This design has six key steps and
embodies our green ML principles by organizing code along a stan-
dardized ML pipeline to identify commonalities, reduce redundancy,
and minimize cognitive overhead. In the following, we explain our
unified API by starting with what the input and output are.

Load. The kale.loaddatamodule mainly takes source paths (lo-
cal or online) as the input and constructs dataloaders for datasets as
the output. It aims to load data for input to the ML system/pipeline.

Preprocess. The kale.prepdata module takes the loaded raw
input data as input and preprocesses (transforms) them into a suit-
able representation for the following ML modules. Preprocessing
steps include data normalization, augmentation, and other transfor-
mations of data representation not involving ML. Its submodules
are typically imported in kale.loaddata.

Embed. The kale.embed module takes preprocessed, normalized
data representations to learn new representations in a new space as
the output. It includes dimensionality reduction (feature extraction)
algorithms, such asMPCA [24] and Convolutional Neural Networks
(CNNs). They can be viewed as encoders or embedding functions
that learn suitable representations from data. This is an ML module.

Predict. The kale.predict module takes the learned (or pre-
processed, if skipping kale.embed ) representations to predict a
desired target value as the output. Thus, this module provides pre-
diction functions or decoders that learn a mapping from the input
representation to a target prediction. This is also an ML module.

Evaluate. The kale.evaluatemodule evaluates the prediction
performance using some metrics. We reuse metrics from other
libraries (e.g., sklearn.metrics) and only implement metrics not
commonly available, such as the Concordance Index (CI) [1] for
measuring the proportion of concordant pairs.

Interpret. The kale.interpretmodule provides functions for
interpreting learned features, models, or prediction results/outputs,
e.g., via further analysis or visualization. We only implement func-
tions not commonly available, e.g., visualizing trainedmodel weights,
showing output distribution, and displaying multiple images.



PyKale: Knowledge-Aware Machine Learning from Multiple Sources in Python CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Pipeline. The kale.pipeline module provides mature, off-
the-shelf ML pipelines for łplug-in usagež. Its submodules typically
specify an ML workflow by combining several other modules.

Utilities. The kale.utils module provides common utility
functions, e.g., setting seeds, logging results, or downloading data.

3.3 Machine learning models

PyKale focuses on integrating four categories of ML models.
Multimodal learning. To support learning from data of multi-

ple modalities, we leveraged the rich PyTorch ecosystem to build
APIs that support learning from each individual modality (e.g.,
graph, image, and video) into PyKale first. Then, we added support
for learning from heterogeneous data sources in data integration.
PyKale built a DeepDTA [28] pipeline kale.pipeline.deepdta

that learns from drug/target data represented as sequences/vectors.
PyKale also implemented the GripNet [45] kale.embed.gripnet
for link prediction and data integration on heterogeneous knowl-
edge graphs, with an example polypharmacy_gripnet on a bioin-
formatics knowledge graph [49, 50].

Transfer learning. In transfer learning, PyKale currently fo-
cuses on domain adaptation [4, 29]. We largely inherited the excel-
lent, modular architecture from ADA [41] to build important semi-
supervised/unsupervised domain adaptation algorithms including
Domain-Adversarial Neural Networks (DANN) [10], Conditional
adversarial Domain Adaptation Networks (CDAN) [22], Deep Adap-
tation Networks (DAN) [21], Joint Adaptation Networks (JAN) [23],
and Wasserstein Distance Guided Representation Learning (WD-
GRL) [37]. We extended them to videos and further implemented
two multi-source and two independence-based domain adaptation
algorithms: Moment Matching for Multi-Source Domain Adapta-
tion (M3SDA) [31] and Multiple Feature Spaces Adaptation Net-
work (MFSAN) [48], and Maximum Independence Domain Adapta-
tion (MIDA) [46] and Covariate Independence Regularized Least
Squares (CoIRLS) classifier [47]. Thus, PyKale has three domain
adaptation pipelines: domain_adapter, multi_domain_adapter,
and video_domain_adapter in kale.pipeline.

Deep learning. PyKale builds Deep Neural Networks (DNNs)
upon the PyTorch API. Current implementations include CNNs [18]
/ 3D CNNs [7, 42], Graph Convolutional Networks (GCNs) [16], and
attention-based networks such as transformers [44] and squeeze-
and-excitation networks [14]. We use TorchVision [26], PyTorch
Geometric [9], and PyTorch Lightning [8] in our implementation.

Dimensionality reduction. PyKale built a Python version of
the MPCA algorithm [24] at kale.embed.factorization and an
MPCA-based pipeline at kale.pipeline.mpca_trainer using the
scikit-Learn [30] and TensorLy [17] libraries. This pipeline has
been used for interpretable prediction in gait recognition from
video sequences [24], cardiovascular disease diagnosis [40] and
prognosis [2, 43] from cardiac magnetic resonance imaging (MRI),
and brain state classification using functional MRI (fMRI) [39].

3.4 Software engineering

The PyKale team includes ML researchers and Research Software
Engineers (RSEs). We have adopted good software engineering prac-
tices in a research context, often based on other libraries, particu-
larly those in the PyTorch ecosystem. The PyKale GitHub repository

scikit

PyKale

Figure 3: PyKale aims to make abundant ML software accessi-

ble for interdisciplinary research, even to non-programmers,

and support data of multiple modalities under one roof.

provides three-tier contributing guidelines at https://github.com/
pykale/pykale/blob/main/.github/CONTRIBUTING.md and multi-
option installation instructions at https://pykale.readthedocs.io/en/
latest/installation.html. It uses Sphinx (https://www.sphinx-doc.
org/) for automatic html documentation building from łdocstringsž,
and PyTest for testing, with nightly runs and currently achieving
90+% test coverage. Continuous integration (CI) is implemented us-
ing GitHub workflows/actions at https://github.com/pykale/pykale/
tree/main/.github/workflows, including pre-commit checks, linting,
documentation building, project assignment, PyPI release, PyTest
tests, and Codecov code coverage report. Merging into the main
branch requires passing several required checks and at least one
approval. To maintain a small repository size (now <1MB), we store
data in a separate repository at https://github.com/pykale/data.

4 PYKALE USAGE

PyKale aims to make abundant ML software accessible for interdis-
ciplinary research, even to non-programmers, as depicted in Fig. 3.
It lowers the barriers to entry with standardized examples/tutorials.

Usage of pipeline-based API in examples. PyKale exam-
ples are highly standardized. Each example typically has three
essential modules (main.py, config.py, model.py), one optional
directory (configs), and other optional modules (e.g., trainer.py):
main.py is the main module to be run, showing the main workflow;
config.py is the configuration module that sets up the default
configuration such as the data, prediction problem, and hyper-
parameters; configs is the directory to place customized configu-
rations for individual runs, where .yaml files (see below) are used
for this purpose; model.py is the model module to define the ML
model and configure its training parameters; trainer.py is the
trainer module to define the training and testing workflow, which
is not needed if using PyTorch Lightning.

Building new modules or projects. Users can build new mod-
ules or projects following these steps. Step 1 - Examples: Choose
one of the examples of the users’ interest to browse through the
configuration, main, and model modules, download the data if
needed, and run the example following instructions in the exam-
ple’s README. Step 2a - New model: To develop new ML models
under PyKale, define the blocks in the users’ pipeline to figure out
specific methods for data loading, preprocessing data, embedding
(encoder/representation), prediction (decoder), evaluation, and in-
terpretation, and then modify existing pipelines with the users’
customized blocks or build a new pipeline with pykale blocks and



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Lu, et al.

blocks from other libraries. Step 2b - New applications: To develop
new applications using PyKale, clarify the input data and the pre-
diction target to find matching functionalities in pykale (request if
not found), and tailor data loading, preprocessing, and evaluation
(and interpretation if needed) to the users’ application.

YAML configuration. PyKale examples configure an ML sys-
tem using YAML [5] to improve accessibility. This is inspired by
the usage of YAML in the GitHub package for the Isometric Net-
work (ISONet) [33] (https://github.com/HaozhiQi/ISONet). As mod-
ern ML systems typically have many settings to configure, spec-
ifying many/all settings in command line or Python modules be-
comes difficult to manage/read. Using YAML greatly improves the
readability and reproducibility, and makes configuration changes
much easier, via a default configuration specified in config.py

(e.g., https://github.com/pykale/pykale/blob/main/examples/digits_
dann/config.py) and customized configurations specified in a re-
spective .yaml file (e.g., https://github.com/pykale/pykale/blob/
main/examples/digits_dann/configs/tutorial.yaml), which will be
merged to overwrite the default setting at run time. Moreover,
non-programmer users can learn only YAML configuration to make
changes to model/experimental settings, making it highly accessible.

Notebook tutorials with Binder/Colab. We have ten real-
world examples of PyKale usage at https://github.com/pykale/pykale/
tree/main/examples. Tutorials without the need of any installation
are helpful for new users to get familiar with the PyKale workflow
and API. Therefore, we simplified typical examples into interac-

tive Jupyter notebook tutorials so that each tutorial takes minutes
instead of hours to run. This strikes a balance between computa-
tional requirements and runtime, without resorting to toy examples.
Moreover, we set up cloud-based services with both Binder (https:
//mybinder.org/) and Google Colaboratory (Colab) for our notebook
tutorials so that any users can run PyKale tutorials interactively
without the need of any installation. We have released five such
tutorials: https://pykale.readthedocs.io/en/latest/notebooks.html.

Scope of PyKale examples. PyKale currently has example
applications from three areas: 1) Image/video recognition, e.g., clas-
sification of images (objects, digits) or videos (actions); 2) Bioin-
formatics/graph analysis: prediction of links between entities in
knowledge graphs (BindingDB [20], BioSNAP-Decagon [50]); 3)
Medical imaging: disease diagnosis from cardiac MRI or brain fMRI.
These examples deal with graphs, images, and videos. Examples
in computer vision applications such as image/video recognition
are a good start for most users due to the popularity of vision
applications and a low barrier to entry (e.g., no need for specific
domain knowledge as in drug discovery). Models first developed in
computer vision can be reused or recycled for other applications.
Most data used in PyKale examples are real-world data frequently
used in research papers. Thus, it may take quite some time to run
these examples fully. For quick running and demonstration of the
workflow, Jupyter notebook tutorials above should be used.

5 COMMUNITY ENGAGEMENT AND BEYOND

PyKale (https://github.com/pykale/pykale) is under an MIT license,
a simple permissive license with minimal restrictions. It has an ac-
tive discussion board (https://github.com/pykale/pykale/discussions)
for open dialogues with users and a project board (https://github.

com/pykale/pykale/projects) sharing the development process/plan
with users. We also released five YouTube videos (https://www.
youtube.com/results?search_query=pykale) to explain the moti-
vation/principles behind PyKale. PyKale has detailed documenta-
tion at https://pykale.readthedocs.io/, generated automatically from
https://github.com/pykale/pykale/tree/main/docs. PyKale provides
highly accessible tutorials and examples in a consistent format
(https://github.com/pykale/pykale/tree/main/examples), with de-
tailed contributing guidelines (https://github.com/pykale/pykale/
blob/main/.github/CONTRIBUTING.md) and change logs (https://
github.com/pykale/pykale/blob/main/.github/CHANGELOG.md).

PyKale is an open-source project started in Jun. 2020, with the
first PyPI release in Jan. 2021. It was officially approved to join
the PyTorch ecosystem in Sep. 2021. PyKale was motivated by the
growing needs for ML systems that can deal with multiple sources
of data, particularly in interdisciplinary areas such as healthcare.
For example, clinicians often need to make use of a combination
of medical images (e.g., X-rays, CTs, MRIs), biological data (gene,
DNA, RNA), and electronic health record for decision making.

To date, PyKale has built APIs supporting ML on graphs, im-
ages, and videos, with five mature pipelines implemented. APIs and
examples on tabular data, audio data, and text data are in develop-
ment. Developing projects involving multiple data sources takes
considerably longer time than developing those involving a single
data source. The current version of PyKale has two examples on
multimodal learning involving heterogeneous drug/target data and
four examples on domain adaptation for image/video data. These
examples laid solid foundations for growing research in these areas
and building more advanced examples.

6 CONCLUSIONS

PyKale is a Python library providing accessible machine learning
from multiple sources of data for interdisciplinary research, particu-
larly multimodal learning and transfer learning, named collectively
as Knowledge-aware machine learning (Kale). Motivated by needs
in healthcare applications (hence the acronym kale, a healthy veg-
etable), PyKale aims to make abundant ML software more accessible
for interdisciplinary research, even to non-programmers. Building
on existing practices, we proposed a new green ML perspective
to reduce repetitions/redundancy, reuse existing resources, and
recycle learning models across areas. Following such principles,
we designed the PyKale API to be pipeline-based to unify all ML
workflows into six standardized steps. This design can help break
barriers between different areas/applications and facilitate the fu-
sion and nurture of ideas across discipline boundaries. Moreover,
we separate code and configurations so that non-programmers can
configure ML systems without coding, greatly improving accessi-
bility. PyKale also makes it easier to bring ML models developed in
one area to another.

ACKNOWLEDGMENTS

This development is partially supported by the Wellcome Trust
(grant 215799/Z/19/Z). We thank the support from David Jones and
Will Furnass of the RSE team headed by Paul Richmond. We also
thank many others who have contributed to the development of
PyKale and/or encouraged us to keep moving forward.



PyKale: Knowledge-Aware Machine Learning from Multiple Sources in Python CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

REFERENCES
[1] Kartik Ahuja and Mihaela van der Schaar. 2019. Joint Concordance Index. In Pro-

ceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers.
2206ś2213.

[2] Samer Alabed, Johanna Uthoff, Shuo Zhou, Pankaj Garg, Krit Dwivedi, Faisal
Alandejani, Rebecca Gosling, Lawrence Schobs, Martin Brook, Yousef Shahin,
et al. 2022. Machine learning cardiac-MRI features predict mortality in newly
diagnosed pulmonary arterial hypertension. European Heart Journal-Digital
Health 3, 2 (2022), 265ś275.

[3] Peizhen Bai, Yan Ge, Fangling Liu, and Haiping Lu. 2019. Joint interaction
with context operation for collaborative filtering. Pattern Recognition 88 (2019),
729ś738.

[4] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. 2007. Anal-
ysis of representations for domain adaptation. In Proceedings of the Advances in
Neural Information Processing Systems. 137ś144.

[5] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. 2009. Yaml ain’t markup lan-
guage (yaml™) version 1.1. Working Draft 2008-05 11 (2009).

[6] Antonio Candelieri, Riccardo Perego, and Francesco Archetti. 2021. Green ma-
chine learning via augmented Gaussian processes and multi-information source
optimization. Soft Computing (2021), 1ś13.

[7] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a new
model and the kinetics dataset. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 6299ś6308.

[8] William A Falcon and et al. 2019. PyTorch Lightning. GitHub. 3 (2019). https:
//github.com/PyTorchLightning/pytorch-lightning

[9] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[10] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. Journal of Machine Learning
Research 17, 1 (2016), 2096ś2030.

[11] Eva García Martín. 2017. Energy efficiency in machine learning: A position paper.
In Proceedings of the 30th Annual Workshop of the Swedish Artificial Intelligence
Society, Vol. 137. 68ś72.

[12] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G
Wilson. 2018. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference
with GPU Acceleration. In Proceedings of the Advances in Neural Information
Processing Systems, Vol. 31. 7587ś7597.

[13] Georgian. 2020. Multimodal-Toolkit. GitHub (2020). https://github.com/georgian-
io/Multimodal-Toolkit

[14] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7132ś
7141.

[15] Junguang Jiang, Bo Fu, and Mingsheng Long. 2020. Transfer-Learning-library.
GitHub (2020). https://github.com/thuml/Transfer-Learning-Library

[16] Thomas Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph
Convolutional Networks. In Proceedings of the 5th International Conference on
Learning Representations.

[17] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. 2019.
TensorLy: Tensor Learning in Python. Journal of Machine Learning Research 20,
26 (2019), 1ś6.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Proceedings of the Advances
in Neural Information Processing Systems. 1097ś1105.

[19] Sun Yuan Kung. 2014. Kernel methods and machine learning. Cambridge Univer-
sity Press.

[20] Tiqing Liu, Yuhmei Lin, Xin Wen, R. Jorissen, and M. Gilson. 2007. BindingDB: a
web-accessible database of experimentally determined proteinśligand binding
affinities. Nucleic Acids Research 35 (2007), D198 ś D201.

[21] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learn-
ing transferable features with deep adaptation networks. In Proceedings of the
International Conference on Machine Learning. 97ś105.

[22] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.
Conditional Adversarial Domain Adaptation. In Proceedings of the Advances in
Neural Information Processing Systems, Vol. 31.

[23] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. 2017. Deep
transfer learning with joint adaptation networks. In Proceedings of the Interna-
tional Conference on Machine Learning. 2208ś2217.

[24] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos.
2008. MPCA: Multilinear principal component analysis of tensor objects. IEEE
Transactions on Neural Networks 19, 1 (2008), 18ś39.

[25] Nic Ma, Wenqi Li, and Richard Brown. 2021. Project-MONAI/MONAI: 0.5.3. https:
//doi.org/10.5281/zenodo.4891800

[26] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. In Proceedings of the 18th ACM International Conference on
Multimedia. 1485ś1488.

[27] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. 2016.
Mllib: Machine learning in apache spark. Journal of Machine Learning Research
17, 1 (2016), 1235ś1241.

[28] Hakime Öztürk, E. Olmez, and Arzucan Özgür. 2018. DeepDTA: deep drugśtarget
binding affinity prediction. Bioinformatics 34, 17 (2018), i821 ś i829.

[29] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. 2010. Domain
adaptation via transfer component analysis. IEEE Transactions on Neural Networks
22, 2 (2010), 199ś210.

[30] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12 (2011), 2825ś2830.

[31] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.
2019. Moment matching for multi-source domain adaptation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 1406ś1415.

[32] Fernando Pérez-García, Rachel Sparks, and Sebastien Ourselin. 2020. TorchIO:
a Python library for efficient loading, preprocessing, augmentation and patch-
based sampling of medical images in deep learning. (2020). http://arxiv.org/abs/
2003.04696

[33] Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, and Jitendra Malik. 2020. Deep
isometric learning for visual recognition. In Proceedings of the International
Conference on Machine Learning. 7824ś7835.

[34] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski.
2020. Kornia: an open source differentiable computer vision library for pytorch.
In Proceedings of the IEEE Winter Conference on Applications of Computer Vision.
3674ś3683.

[35] Aghiles Salah, Quoc-Tuan Truong, and Hady W Lauw. 2020. Cornac: A Com-
parative Framework for Multimodal Recommender Systems. Journal of Machine
Learning Research 21, 95 (2020), 1ś5.

[36] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. 2020. Green AI.
Commun. ACM 63, 12 (2020), 54ś63.

[37] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. 2018. Wasserstein distance
guided representation learning for domain adaptation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[38] Amanpreet Singh, Vedanuj Goswami, Vivek Natarajan, Yu Jiang, Xinlei Chen,
Meet Shah, Marcus Rohrbach, Dhruv Batra, and Devi Parikh. 2020. MMF: A
multimodal framework for vision and language research. https://github.com/
facebookresearch/mmf.

[39] Xiaonan Song, Lingnan Meng, Qiquan Shi, and Haiping Lu. 2015. Learning
tensor-based features for whole-brain fMRI classification. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted
Intervention. 613ś620.

[40] Andrew J Swift, Haiping Lu, Johanna Uthoff, Pankaj Garg, Marcella Cogliano,
Jonathan Taylor, Peter Metherall, Shuo Zhou, Christopher S Johns, Samer Al-
abed, et al. 2021. A machine learning cardiac magnetic resonance approach to
extract disease features and automate pulmonary arterial hypertension diagnosis.
European Heart Journal-Cardiovascular Imaging 22, 2 (2021), 236ś245.

[41] Anne-Marie Tousch and Christophe Renaudin. 2020. (Yet) Another Domain
Adaptation library. https://github.com/criteo-research/pytorch-ada

[42] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. 2018. A closer look at spatiotemporal convolutions for action recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
6450ś6459.

[43] Johanna Uthoff, Samer Alabed, Andrew J Swift, and Haiping Lu. 2020. Geodesi-
cally Smoothed Tensor Features for Pulmonary Hypertension Prognosis Using
the Heart and Surrounding Tissues. In Proceedings of the International Conference
on Medical Image Computing and Computer-Assisted Intervention. 253ś262.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
Gomez, Ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems. 6000ś6010.

[45] HaoXu, Shengqi Sang, Peizhen Bai, Ruike Li, Laurence Yang, andHaiping Lu. 2022.
GripNet: Graph Information Propagation on Supergraphs for Heterogeneous
Graphs. Pattern Recognition (2022).

[46] Ke Yan, Lu Kou, and David Zhang. 2017. Learning domain-invariant subspace
using domain features and independence maximization. IEEE transactions on
cybernetics 48, 1 (2017), 288ś299.

[47] Shuo Zhou. 2022. Interpretable Domain-Aware Learning for Neuroimage Classifi-
cation. Ph.D. Dissertation. University of Sheffield.

[48] Yongchun Zhu, Fuzhen Zhuang, and Deqing Wang. 2019. Aligning Domain-
Specific Distribution and Classifier for Cross-Domain Classification fromMultiple
Sources. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
5989ś5996.

[49] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinformatics 34, 13 (2018),
i457śi466.

[50] Marinka Zitnik, Rok Sosič, Sagar Maheshwari, and Jure Leskovec. 2018. BioSNAP
Datasets: Stanford Biomedical Network Dataset Collection.


	Abstract
	1 Introduction
	2 Related Work
	3 PyKale Design
	3.1 Green machine learning
	3.2 Pipeline-Based API
	3.3 Machine learning models
	3.4 Software engineering

	4 PyKale Usage
	5 Community Engagement and Beyond
	6 Conclusions
	Acknowledgments
	References

