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ABSTRACT

PyKale is a Python library for Knowledge-aware machine learning
from multiple sources of data to enable/accelerate interdisciplinary
research. It embodies green machine learning principles to reduce
repetitions/redundancy, reuse existing resources, and recycle learn-
ing models across areas. We propose a pipeline-based application
programming interface (API) so all machine learning workflows
follow a standardized six-step pipeline. PyKale focuses on leverag-
ing knowledge from multiple sources for accurate and interpretable
prediction, particularly multimodal learning and transfer learning.
To be more accessible, it separates code and configurations to enable
non-programmers to configure systems without coding. PyKale is
officially part of the PyTorch ecosystem and includes interdisci-
plinary examples in bioinformatics, knowledge graph, image/video
recognition, and medical imaging: https://pykale.github.io/.
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1 INTRODUCTION

A growing number of researchers hope to solve real-world inter-
disciplinary problems using machine learning (ML). However, nav-
igating through the abundant choices and variety of ML software
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Figure 1: PyKale has a unified pipeline-based API so that all

ML workflows follow a standardized six-step pipeline.

is not trivial. Solving complex real-world problems often involves
analyzing multiple sources of data, e.g., multiple modalities, mul-
tiple domains, and multiple knowledge bases. Most ML software
packages are developed with a specific domain of application in
mind. Popular generic packages such as scikit-learn, PyTorch, and
TensorFlow focus on generic frameworks and need additional de-
velopment to support interdisciplinary research, e.g., with both
flexible configurations and high-level integration.

In this paper, we propose PyKale, an open-source Python library
to enable and accelerate interdisciplinary research via knowledge-
aware multimodal learning and transfer learning on graphs, images,
and videos. It aims to fill the gaps between rich data sources, abun-
dant ML libraries, and eager interdisciplinary researchers, by focus-
ing on leveraging knowledge from multiple sources for accurate
and interpretable prediction. It considers both multimodal learn-
ing and transfer learning under a common framework of learning
from multiple sources. It makes latest ML tools more accessible to
accelerate their development. The name of the library consists of
Py for Python, and Kale for Knowledge-aware learning.

PyKale proposes a novel pipeline-based application programming
interface (API) so that all ML workflows follow a standardized six-
step pipeline as shown in Fig. 1. It embodies our greenML concepts
of reducing repetitions and redundancy (Fig. 2(a)), reusing existing
resources (Fig. 2(b)), and recycling learning models across areas
(Fig. 2(c)). It has examples in bioinformatics, knowledge graph,
image/video recognition, and medical imaging. It was motivated
by needs in healthcare applications and considers healthcare as a
primary domain of usage. It is largely built on PyTorch and has
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Figure 2: Green machine learning concepts in PyKale.

been approved officially to join the PyTorch ecosystem https://
pytorch.org/ecosystem/. The logo in Fig. 2(d) reflects the above
characteristics using multiple (three) kale leaves.

PyKale is available at https://github.com/pykale/pykale under
an MIT license, with many community-engaging features. PyKale
can be installed via pip install pykale from the Python Pack-
age Index (PyPI). The primary targeted users are researchers and
practitioners who have experience in Python/PyTorch program-
ming and need to apply/develop ML systems to integrate data from
multiple sources for prediction tasks in interdisciplinary areas such
as healthcare. This paper refers to release version 0.1.1.

2 RELATED WORK

We have learned from numerous libraries in the public domain to
build PyKale. Here, we can only briefly mention several that have
been particularly influential or relevant.

PyKale aims to fill the gap within the PyTorch ecosystem to sup-
port more interdisciplinary research that integrates multiple data
sources. Therefore, we make extensive usage of existing libraries
from the PyTorch ecosystem to reduce duplicated implementation,
including PyTorch Lightning [8], TensorLy [17], TorchVision [26],
and PyTorch Geometric [9]. We also learned from MONAI [25],
GPyTorch [12], Kornia [34], and TorchIO [32].

PyTorch-based libraries on multimodal/transfer learning include
the MultiModal Framework (MMF) [38], the Transfer-Learning-
Library [15], Cornac [35], the ADA ((Yet) Another Domain Adapta-
tion) library [41], and the Multimodal-Toolkit [13].

PyKale frames multimodal learning and transfer learning under
one roof of knowledge-aware ML from multiple sources with a
unified pipeline-based API to support interdisciplinary research
rather than just popular vision/language tasks. PyKale differs from
these existing libraries not only in the API design, but also in the
number of modalities supported, the scientific fields covered, and
interdisciplinarity. Part of PyKale refactored ADA to our pipeline-
based API, with the sources indicated at the top of respective files.

3 PYKALE DESIGN

3.1 Green machine learning

Green ML is a scarcely used term referring to energy-efficient
computing [6, 11, 19, 36]. We propose a different, new green ML

perspective for ML software development with the 3R guiding
principles formulated below, by extending similar principles in
standard software engineering practices to machine learning.

Reduce repetition/redundancy: 1) Refactor code to standardize
workflow and enforce styles, e.g., we refactored Deep Drug-Target
binding Affinity (DeepDTA) [28] into PyKale API (bottom of Fig.

1); 2) Identify and remove duplicated functionalities, e.g., we built
data loading API for popular datasets to avoid repetition.

Reuse existing resources: 1) Reuse the same ML pipeline for dif-
ferent data/applications, e.g., using the same Multilinear Principal
Component Analysis (MPCA) pipeline for gait [24], brain [39], and
heart [2, 40]; 2) Reuse existing libraries (e.g., scikit-learn) for avail-
able functionalities rather than implementing them again.

Recycle learning models across areas: 1) Identify commonalities
between applications, e.g., the similarity between commercial rec-
ommender systems (user-item interactions) and drug discovery
(drug-target interactions); 2) Recycle models for one application to
another, e.g., from recommender system [3] to drug discovery [45].

Although based on existing practices, this new formulation offers
a new perspective to focus on core principles of standardization and
minimalism. It has guided us to design a unique pipeline-based API
to unify workflow, break barriers between areas and applications,
and cross boundaries to fuse existing ideas and nurture new ideas.

3.2 Pipeline-Based API

Inspired by the convenience of ML pipelines in ML libraries Spark
MLlib [27] and scikit-learn [30], we design PyKale with a pipeline-
based API as shown in Fig. 1. This design has six key steps and
embodies our green ML principles by organizing code along a stan-
dardized ML pipeline to identify commonalities, reduce redundancy,
and minimize cognitive overhead. In the following, we explain our
unified API by starting with what the input and output are.

Load. The kale.loaddatamodule mainly takes source paths (lo-
cal or online) as the input and constructs dataloaders for datasets as
the output. It aims to load data for input to the ML system/pipeline.

Preprocess. The kale.prepdata module takes the loaded raw
input data as input and preprocesses (transforms) them into a suit-
able representation for the following ML modules. Preprocessing
steps include data normalization, augmentation, and other transfor-
mations of data representation not involving ML. Its submodules
are typically imported in kale.loaddata.

Embed. The kale.embed module takes preprocessed, normalized
data representations to learn new representations in a new space as
the output. It includes dimensionality reduction (feature extraction)
algorithms, such asMPCA [24] and Convolutional Neural Networks
(CNNs). They can be viewed as encoders or embedding functions
that learn suitable representations from data. This is an ML module.

Predict. The kale.predict module takes the learned (or pre-
processed, if skipping kale.embed ) representations to predict a
desired target value as the output. Thus, this module provides pre-
diction functions or decoders that learn a mapping from the input
representation to a target prediction. This is also an ML module.

Evaluate. The kale.evaluatemodule evaluates the prediction
performance using some metrics. We reuse metrics from other
libraries (e.g., sklearn.metrics) and only implement metrics not
commonly available, such as the Concordance Index (CI) [1] for
measuring the proportion of concordant pairs.

Interpret. The kale.interpretmodule provides functions for
interpreting learned features, models, or prediction results/outputs,
e.g., via further analysis or visualization. We only implement func-
tions not commonly available, e.g., visualizing trainedmodel weights,
showing output distribution, and displaying multiple images.
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Pipeline. The kale.pipeline module provides mature, off-
the-shelf ML pipelines for łplug-in usagež. Its submodules typically
specify an ML workflow by combining several other modules.

Utilities. The kale.utils module provides common utility
functions, e.g., setting seeds, logging results, or downloading data.

3.3 Machine learning models

PyKale focuses on integrating four categories of ML models.
Multimodal learning. To support learning from data of multi-

ple modalities, we leveraged the rich PyTorch ecosystem to build
APIs that support learning from each individual modality (e.g.,
graph, image, and video) into PyKale first. Then, we added support
for learning from heterogeneous data sources in data integration.
PyKale built a DeepDTA [28] pipeline kale.pipeline.deepdta

that learns from drug/target data represented as sequences/vectors.
PyKale also implemented the GripNet [45] kale.embed.gripnet
for link prediction and data integration on heterogeneous knowl-
edge graphs, with an example polypharmacy_gripnet on a bioin-
formatics knowledge graph [49, 50].

Transfer learning. In transfer learning, PyKale currently fo-
cuses on domain adaptation [4, 29]. We largely inherited the excel-
lent, modular architecture from ADA [41] to build important semi-
supervised/unsupervised domain adaptation algorithms including
Domain-Adversarial Neural Networks (DANN) [10], Conditional
adversarial Domain Adaptation Networks (CDAN) [22], Deep Adap-
tation Networks (DAN) [21], Joint Adaptation Networks (JAN) [23],
and Wasserstein Distance Guided Representation Learning (WD-
GRL) [37]. We extended them to videos and further implemented
two multi-source and two independence-based domain adaptation
algorithms: Moment Matching for Multi-Source Domain Adapta-
tion (M3SDA) [31] and Multiple Feature Spaces Adaptation Net-
work (MFSAN) [48], and Maximum Independence Domain Adapta-
tion (MIDA) [46] and Covariate Independence Regularized Least
Squares (CoIRLS) classifier [47]. Thus, PyKale has three domain
adaptation pipelines: domain_adapter, multi_domain_adapter,
and video_domain_adapter in kale.pipeline.

Deep learning. PyKale builds Deep Neural Networks (DNNs)
upon the PyTorch API. Current implementations include CNNs [18]
/ 3D CNNs [7, 42], Graph Convolutional Networks (GCNs) [16], and
attention-based networks such as transformers [44] and squeeze-
and-excitation networks [14]. We use TorchVision [26], PyTorch
Geometric [9], and PyTorch Lightning [8] in our implementation.

Dimensionality reduction. PyKale built a Python version of
the MPCA algorithm [24] at kale.embed.factorization and an
MPCA-based pipeline at kale.pipeline.mpca_trainer using the
scikit-Learn [30] and TensorLy [17] libraries. This pipeline has
been used for interpretable prediction in gait recognition from
video sequences [24], cardiovascular disease diagnosis [40] and
prognosis [2, 43] from cardiac magnetic resonance imaging (MRI),
and brain state classification using functional MRI (fMRI) [39].

3.4 Software engineering

The PyKale team includes ML researchers and Research Software
Engineers (RSEs). We have adopted good software engineering prac-
tices in a research context, often based on other libraries, particu-
larly those in the PyTorch ecosystem. The PyKale GitHub repository

scikit

PyKale

Figure 3: PyKale aims to make abundant ML software accessi-

ble for interdisciplinary research, even to non-programmers,

and support data of multiple modalities under one roof.

provides three-tier contributing guidelines at https://github.com/
pykale/pykale/blob/main/.github/CONTRIBUTING.md and multi-
option installation instructions at https://pykale.readthedocs.io/en/
latest/installation.html. It uses Sphinx (https://www.sphinx-doc.
org/) for automatic html documentation building from łdocstringsž,
and PyTest for testing, with nightly runs and currently achieving
90+% test coverage. Continuous integration (CI) is implemented us-
ing GitHub workflows/actions at https://github.com/pykale/pykale/
tree/main/.github/workflows, including pre-commit checks, linting,
documentation building, project assignment, PyPI release, PyTest
tests, and Codecov code coverage report. Merging into the main
branch requires passing several required checks and at least one
approval. To maintain a small repository size (now <1MB), we store
data in a separate repository at https://github.com/pykale/data.

4 PYKALE USAGE

PyKale aims to make abundant ML software accessible for interdis-
ciplinary research, even to non-programmers, as depicted in Fig. 3.
It lowers the barriers to entry with standardized examples/tutorials.

Usage of pipeline-based API in examples. PyKale exam-
ples are highly standardized. Each example typically has three
essential modules (main.py, config.py, model.py), one optional
directory (configs), and other optional modules (e.g., trainer.py):
main.py is the main module to be run, showing the main workflow;
config.py is the configuration module that sets up the default
configuration such as the data, prediction problem, and hyper-
parameters; configs is the directory to place customized configu-
rations for individual runs, where .yaml files (see below) are used
for this purpose; model.py is the model module to define the ML
model and configure its training parameters; trainer.py is the
trainer module to define the training and testing workflow, which
is not needed if using PyTorch Lightning.

Building new modules or projects. Users can build new mod-
ules or projects following these steps. Step 1 - Examples: Choose
one of the examples of the users’ interest to browse through the
configuration, main, and model modules, download the data if
needed, and run the example following instructions in the exam-
ple’s README. Step 2a - New model: To develop new ML models
under PyKale, define the blocks in the users’ pipeline to figure out
specific methods for data loading, preprocessing data, embedding
(encoder/representation), prediction (decoder), evaluation, and in-
terpretation, and then modify existing pipelines with the users’
customized blocks or build a new pipeline with pykale blocks and
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blocks from other libraries. Step 2b - New applications: To develop
new applications using PyKale, clarify the input data and the pre-
diction target to find matching functionalities in pykale (request if
not found), and tailor data loading, preprocessing, and evaluation
(and interpretation if needed) to the users’ application.

YAML configuration. PyKale examples configure an ML sys-
tem using YAML [5] to improve accessibility. This is inspired by
the usage of YAML in the GitHub package for the Isometric Net-
work (ISONet) [33] (https://github.com/HaozhiQi/ISONet). As mod-
ern ML systems typically have many settings to configure, spec-
ifying many/all settings in command line or Python modules be-
comes difficult to manage/read. Using YAML greatly improves the
readability and reproducibility, and makes configuration changes
much easier, via a default configuration specified in config.py

(e.g., https://github.com/pykale/pykale/blob/main/examples/digits_
dann/config.py) and customized configurations specified in a re-
spective .yaml file (e.g., https://github.com/pykale/pykale/blob/
main/examples/digits_dann/configs/tutorial.yaml), which will be
merged to overwrite the default setting at run time. Moreover,
non-programmer users can learn only YAML configuration to make
changes to model/experimental settings, making it highly accessible.

Notebook tutorials with Binder/Colab. We have ten real-
world examples of PyKale usage at https://github.com/pykale/pykale/
tree/main/examples. Tutorials without the need of any installation
are helpful for new users to get familiar with the PyKale workflow
and API. Therefore, we simplified typical examples into interac-

tive Jupyter notebook tutorials so that each tutorial takes minutes
instead of hours to run. This strikes a balance between computa-
tional requirements and runtime, without resorting to toy examples.
Moreover, we set up cloud-based services with both Binder (https:
//mybinder.org/) and Google Colaboratory (Colab) for our notebook
tutorials so that any users can run PyKale tutorials interactively
without the need of any installation. We have released five such
tutorials: https://pykale.readthedocs.io/en/latest/notebooks.html.

Scope of PyKale examples. PyKale currently has example
applications from three areas: 1) Image/video recognition, e.g., clas-
sification of images (objects, digits) or videos (actions); 2) Bioin-
formatics/graph analysis: prediction of links between entities in
knowledge graphs (BindingDB [20], BioSNAP-Decagon [50]); 3)
Medical imaging: disease diagnosis from cardiac MRI or brain fMRI.
These examples deal with graphs, images, and videos. Examples
in computer vision applications such as image/video recognition
are a good start for most users due to the popularity of vision
applications and a low barrier to entry (e.g., no need for specific
domain knowledge as in drug discovery). Models first developed in
computer vision can be reused or recycled for other applications.
Most data used in PyKale examples are real-world data frequently
used in research papers. Thus, it may take quite some time to run
these examples fully. For quick running and demonstration of the
workflow, Jupyter notebook tutorials above should be used.

5 COMMUNITY ENGAGEMENT AND BEYOND

PyKale (https://github.com/pykale/pykale) is under an MIT license,
a simple permissive license with minimal restrictions. It has an ac-
tive discussion board (https://github.com/pykale/pykale/discussions)
for open dialogues with users and a project board (https://github.

com/pykale/pykale/projects) sharing the development process/plan
with users. We also released five YouTube videos (https://www.
youtube.com/results?search_query=pykale) to explain the moti-
vation/principles behind PyKale. PyKale has detailed documenta-
tion at https://pykale.readthedocs.io/, generated automatically from
https://github.com/pykale/pykale/tree/main/docs. PyKale provides
highly accessible tutorials and examples in a consistent format
(https://github.com/pykale/pykale/tree/main/examples), with de-
tailed contributing guidelines (https://github.com/pykale/pykale/
blob/main/.github/CONTRIBUTING.md) and change logs (https://
github.com/pykale/pykale/blob/main/.github/CHANGELOG.md).

PyKale is an open-source project started in Jun. 2020, with the
first PyPI release in Jan. 2021. It was officially approved to join
the PyTorch ecosystem in Sep. 2021. PyKale was motivated by the
growing needs for ML systems that can deal with multiple sources
of data, particularly in interdisciplinary areas such as healthcare.
For example, clinicians often need to make use of a combination
of medical images (e.g., X-rays, CTs, MRIs), biological data (gene,
DNA, RNA), and electronic health record for decision making.

To date, PyKale has built APIs supporting ML on graphs, im-
ages, and videos, with five mature pipelines implemented. APIs and
examples on tabular data, audio data, and text data are in develop-
ment. Developing projects involving multiple data sources takes
considerably longer time than developing those involving a single
data source. The current version of PyKale has two examples on
multimodal learning involving heterogeneous drug/target data and
four examples on domain adaptation for image/video data. These
examples laid solid foundations for growing research in these areas
and building more advanced examples.

6 CONCLUSIONS

PyKale is a Python library providing accessible machine learning
from multiple sources of data for interdisciplinary research, particu-
larly multimodal learning and transfer learning, named collectively
as Knowledge-aware machine learning (Kale). Motivated by needs
in healthcare applications (hence the acronym kale, a healthy veg-
etable), PyKale aims to make abundant ML software more accessible
for interdisciplinary research, even to non-programmers. Building
on existing practices, we proposed a new green ML perspective
to reduce repetitions/redundancy, reuse existing resources, and
recycle learning models across areas. Following such principles,
we designed the PyKale API to be pipeline-based to unify all ML
workflows into six standardized steps. This design can help break
barriers between different areas/applications and facilitate the fu-
sion and nurture of ideas across discipline boundaries. Moreover,
we separate code and configurations so that non-programmers can
configure ML systems without coding, greatly improving accessi-
bility. PyKale also makes it easier to bring ML models developed in
one area to another.
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