
This is a repository copy of An exploratory study on utilising the web of linked data for
product data mining.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192543/

Version: Published Version

Article:

Zhang, Z. orcid.org/0000-0002-8587-8618 and Song, X. (2023) An exploratory study on
utilising the web of linked data for product data mining. SN Computer Science, 4 (1). 15.

https://doi.org/10.1007/s42979-022-01415-3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)

SN Computer Science (2023) 4:15

https://doi.org/10.1007/s42979-022-01415-3

SN Computer Science

ORIGINAL RESEARCH

An Exploratory Study on Utilising the Web of Linked Data for Product
Data Mining

Ziqi Zhang1 · Xingyi Song2

Received: 11 September 2021 / Accepted: 16 September 2022

© The Author(s) 2022

Abstract

The Linked Open Data practice has led to a significant growth of structured data on the Web. While this has created an

unprecedented opportunity for research in the field of Natural Language Processing, there is a lack of systematic studies on

how such data can be used to support downstream NLP tasks. This work focuses on the e-commerce domain and explores

how we can use such structured data to create language resources for product data mining tasks. To do so, we process bil-

lions of structured data points in the form of RDF n-quads, to create multi-million words of product-related corpora that are

later used in three different ways for creating language resources: training word-embedding models, continued pre-training

of BERT-like language models, and training machine translation models that are used as a proxy to generate product-related

keywords. These language resources are then evaluated in three downstream tasks, product classification, linking, and fake

review detection using an extensive set of benchmarks. Our results show word embeddings to be the most reliable and con-

sistent method to improve the accuracy on all tasks (with up to 6.9% points in macro-average F1 on some datasets). Contrary

to some earlier studies that suggest a rather simple but effective approach such as building domain-specific language models

by pre-training using in-domain corpora, our work serves a lesson that adapting these methods to new domains may not be

as easy as it seems. We further analyse our datasets and reflect on how our findings can inform future research and practice.

Keywords Linked data · Web of data · Schema.org · Natural language processing · Nlp · Data mining · Product mining

 * Ziqi Zhang

 ziqi.zhang@sheffield.ac.uk

 Xingyi Song

 x.song@sheffield.ac.uk

1 Information School, University of Sheffield, Regent Court,

211 Portobello, Sheffield, South Yorkshire S1 4DP, UK

2 Department of Computer Science, University

of Sheffield, Regent Court, 211 Portobello, Sheffield,

South Yorkshire S1 4DP, UK

1 https:// www. w3. org/ TR/ rdfa- primer/.
2 https:// wiki. dbped ia. org/.
3 http:// webda tacom mons. org.

Introduction

Recent years have seen significant increase in the adoption

of the Linked Open Data practice [1] by data publishers on

the Web. LOD refers to the practice of describing structured

data using standard markup languages (e.g. RDFa1) and uni-

versal vocabularies (e.g. schema.org) that allow defining

properties and relations of data, and publishing and inter-

linking such data on the open Web (hence ‘semantic markup

data’). While early LOD datasets primarily took form of a

graph database such as DBpedia,2 an increasingly popular

decentralised approach has been the embedding of seman-

tic markup data within HTML pages. The Web Data Com-

mons3 (WDC) project extracts such markup data from the

http://orcid.org/0000-0002-8587-8618
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01415-3&domain=pdf
https://www.w3.org/TR/rdfa-primer/
https://wiki.dbpedia.org/
http://webdatacommons.org

 SN Computer Science (2023) 4:15 15 Page 2 of 27

SN Computer Science

CommonCrawl4 as RDF n-quads,5 and release them on an

annual basis. As by October 2021, its statistics showed that

over 60% of web pages, or over 50% of websites contained

semantic markups, amounting to over 82 billion quads—

more than doubled that from 2019.

Such semantic markup data allow the ‘machine read-

ing’ of the Web. It has not only driven the development of

new products and data integration services, but also created

unprecedented opportunities for research in the areas of Nat-

ural Language Processing (NLP, e.g. [2, 3]). This is because

the RDF n-quads extracted from such data are described by

universal vocabularies that define concepts, their properties

and relationships. One of the most popular vocabularies is

schema.org, which currently contains nearly 800 concepts

and 1400 properties, and is used by over 10 million web-

sites.6 Studies have shown that such data can be used to train

models for various NLP tasks, such as event extraction [2]

and entity linking [4].

A particular domain that is witnessing the boom of

semantic markup data is e-commerce, where online shops

are increasingly embedding product markup data described

using schema.org vocabularies into their web pages in order

to improve content accessibility. Among the over 82 bil-

lion RDF n-quads mentioned above, nearly 17% are related

to products, and are described by schema.org vocabularies.

As examples, previous studies [4, 5] showed that among all

product offers, 95% had an n-quad related to their names,

65% had one for their description, 35% had one for their

brand, and less than 10% had one for their category. Such

product markup data can be potentially useful as language

resources to benefit various product data mining tasks, par-

ticularly in the current trend towards employing neural net-

work models in developing large language models that prove

to be effective for a wide range of NLP tasks [6–10]. How-

ever, we identify a gap in existing studies in this area. While

there have been a limited number of sporadic studies [4, 5,

11] towards this direction in the product domain, the data

sources used, the processes applied to use these data sources,

and the findings have been inconsistent. This has made it

difficult to properly compare or evaluate the usefulness of

such data, or even answer the question ‘to what extent can

we, and how can we, exploit this gigantic semantic markup

data for product data mining tasks’.

To address this gap, in this work, we explore a series of

questions in the context of the product domain, which is

chosen for two reasons. First, it is one of the most promising

domains where a ‘critical mass’ of such resources has been

created. Second, it is a domain that continues to garner inter-

est from both researchers and practitioners, as evidenced by

a series of workshops and shared tasks sponsored by indus-

tries [11, 12]. We study the following questions:

• How can we transform such semantic markup data to

potentially useful language resources?

• How useful are these language resources for downstream

NLP tasks in the product domain?

To answer these questions in this work, we aim to achieve

the following objectives:

• To investigate and develop different methods for building

language resources out of the semantic markup data;

• To evaluate the created language resources on a num-

ber of product-related NLP tasks using state-of-the-art

(SoTA) benchmarks;

• To develop an understanding of if and how quality issues

in the semantic markup data may impact on the language

resource creation;

• To outline the implications of our study and future

research directions that may help advance research and

practice in this area.

Methodologically, we start with processing the semantic

markup data to transform them into different types of lan-

guage resources that can be used for downstream NLP tasks.

For this, we review SoTA research in the area of product data

mining and identify three ways: training word-embedding

models (e.g. [11]), continued pre-training of BERT-like

language models (e.g. [9]), and training machine transla-

tion models (e.g. [13]) that are used as a proxy to generate

product-related keywords. Next, we apply these language

resources to three product-related NLP tasks and evaluate

them using SoTA methods on current benchmarks: prod-

uct classification, product linking, and fake product review

detection. The exact methods are dependent on the task and

the language resources used, and therefore, will be explained

in detail later.

The novelty and originality of this work lies in that, it

is the first study that systematically studies and evaluates

the use of semantic markup data for multiple product data

mining tasks. Therefore, our findings serve as useful refer-

ences for future research in this direction. First, we report

that among the three methods, only word embeddings are

the most consistent method to improve the accuracy on all

three tasks. The BERT language models and the MT-based

product keywords on the other hand, do not bring consistent

improvements, even though there have been many studies

that successfully developed in-domain BERT models follow-

ing the simple principle of continued pre-training a generic

BERT using large domain-specific corpora. Thus our results

serve a lesson that this method may not be as easy as it

seems. Second, we conduct a number of analyses of the data 6 https:// schema. org/.

5 https:// www. w3. org/ TR/n- quads/.

4 https:// commo ncrawl. org/.

https://schema.org/
https://www.w3.org/TR/n-quads/
https://commoncrawl.org/

SN Computer Science (2023) 4:15 Page 3 of 27 15

SN Computer Science

and show that the biased domain representation in the data

and lack of vocabulary coverage may have been attributing

factors. In particular, methods such as BERT language mod-

elling and machine translation may be potentially more sus-

ceptible to such ‘data quality’ issues than word-embedding

modelling. Finally, we discuss how these findings can inform

future research and practice, and we contribute our data as

public resources which can be obtained upon request.7

We organise the remainder of this paper as follows. The

next section reviews related work. Then, the Sects. “Product

Classification” to “Fake product review detection” present

our exploration on each of the three tasks. Each section will

introduce our methodology, experiments, and presents the

results. The “Further analysis” section looks at potential

quality issues of the data. In the “Discussion” section, we

discusses our findings and their implications, and this is fol-

lowed by a conclusion in the last section.

Related Work

While our work belongs to the general field of data mining

[14–16], to avoid stretching our literature review too thinly,

here we define our criteria of literature selection. More gen-

erally, semantic markup data is a type of LOD resources

and there have been a large number of studies [17, 18] and

organised events8 on the creation and consumption of LOD.

However, previous studies have predominantly looked at

LOD resources that are published as a graph database such

as the DBpedia and Wikidata, while very few focussed on

the LOD published as semantic markup data embedded

within web pages. The fundamental difference between the

two is quality, which underpins the approaches that one can

take to use such resources. Most of the LOD graph databases

are well-curated, documented and maintained. Semantic

markup data however, can be highly heterogeneous, noisy,

and unbalanced [19]. There are also a blend of studies that

focussed on creating further LOD resources out of existing

ones [20], compared to those that actually use LOD as lan-

guage resources for downstream language processing tasks.

Our literature review therefore has a specific focus on the

following areas: (1) work that uses semantic markup data to

create language resources, and (2) work on the three tasks

we focus on, i.e, product classification, linking, and fake

product review detection. While our work is also broadly

related to the use of neural networks in creating domain-

specific language models, such as the BioBERT [6], Clini-

cal BERT [7], SciBERT[8], E-Bert[9], and SMedBERT[10],

these studies did not use semantic markup data and there-

fore, we do not expand our literature review to this broad

area as that would significantly increase the scope of our

discussion. However, in Section 8, we discuss our results

with respect to the findings of these earlier studies.

Semantic Markup Data as Language Resources

Research on using semantic markup data for downstream

language processing tasks has just taken off in the recent

years and therefore, studies addressing the creation of

language resources from such data are limited. Primpeli

et al. [21] adopted an unsupervised approach to create a

very large training dataset for product entity linking using

semantic markup data extracted from the 2017 Common-

Crawl corpus. The process started with extracting product

offers that contain product identifiers annotated using the

schema.org vocabulary. Then offers with the same identi-

fiers are placed in the same cluster, followed by a cleaning

process to eliminate potentially noisy clusters. The end clus-

ters are considered to be product offers referring to the same

product entity, and are used to train entity linking models.

The work is further extended in later studies by [4, 22, 23],

and it was shown that this automatically created training

dataset has a high quality and can be used to effectively train

product entity matchers at high accuracy. While these studies

investigated ad-hoc usages of semantic markup data as train-

ing data for specific tasks, our work explores possibilities

of utilising such data to create language resources that are

usable by a wider range of tasks.

The same authors also used a product corpus to train a

domain-specific word-embedding model in [22] using the

fastText model. Specifically, they extracted the brand, name

and description properties annotated by schema.org from

the same corpus above, to create a text corpus that is used to

train fastText embeddings. This domain-specific embedding

model gained minor improvement over a generic fastText

embedding model on some product linking tasks. In compar-

ison, our work also explores using product related corpora

to train word-embedding models. However, we study if this

can generalise to other product data mining related tasks.

Work that uses semantic markup data to train embed-

ding models can be traced back to [24], where authors used

schema.org annotations (names and descriptions) of product

entities to train entity embeddings using the paragraph2vec

model [25]. This approach suffers similar limitations as the

above, where the embeddings learned in such a way are ad-

hoc and can only be used for entities found in the training

process of the embedding models. Our study explores more

generic ways of learning word embeddings.

In the 2020 Semantic Web Challenge on product data

mining (MWPD2020, [11]), a corpus of 1.9 billion words

extracted from the descriptions of product entities annotated

by schema.org vocabulary was used to train word-embed-

ding models. Compared to generic word embedding models,

7 https:// bit. ly/ 2MGpB R2.
8 http:// events. linke ddata. org/ ldow2 018/, https:// ld4ie. github. io/.

https://bit.ly/2MGpBR2
http://events.linkeddata.org/ldow2018/
https://ld4ie.github.io/

 SN Computer Science (2023) 4:15 15 Page 4 of 27

SN Computer Science

such models contributed to better results on the product clas-

sification task when used with a fastText baseline [12]. How-

ever, they were not used by any of the participating teams

of the shared task. This study fills this gap by thoroughly

evaluating them on several product data mining tasks.

Product Classification

Product classification is typically treated as an entity clas-

sification task. The process involves extracting product

metadata for feature representation, then train a supervised

algorithm that learns to assign category labels (i.e. classes)

to product instances based on their features. Since most

existing methods follow a similar process by mainly differ

in terms of the metadata used, feature representation meth-

ods, and machine learning algorithms, below we summarise

related work from these angles and highlight their similari-

ties and differences instead of discussing each individual

method in detail.

Metadata To classify products, features must be extracted

from certain product metadata. Rich, structured metadata

are often not available. Therefore, the majority of literature

have only used product names, such as [26–29] and all of

those participated in the 2018 Rakuten Data Challenge [12].

Several studies used both names and product descriptions

[13, 30–35], while a few used other metadata such as model,

brand, maker, etc., which need to be extracted from product

specification web pages by an Information Extraction pro-

cess [24, 36]. In addition, [24] also used product images. The

work by [5, 37] used product categories allocated by the ven-

dors and embedded as semantic markup data within the web

pages. To differentiate these from the classification targets in

such tasks, we refer to these as ‘site-specific product labels’

or ‘categories’. The authors noted that despite the highly

heterogeneous nature of such site-specific labels across

different websites, they are still very useful for supervised

classification. In comparison, this work explores a ‘new’

type of metadata - product-related keywords generated by a

machine translation model trained on the massive product

corpora. Compared to product metadata already existing in a

dataset and are comparatively better quality, such keywords

may be very noisy. Our work will be first to explore if these

keywords generated in such a way can be useful for product

classification.

Feature representation Generally speaking, for text-

based metadata, there are three types of feature representa-

tion. The first is based on Bag-of-Words (BoW) or N-gram

models, where texts are represented based on the presence

of vocabulary in the dataset using either 1-hot encoding or

some weighting scheme such as TF-IDF [27, 29, 30, 36].

This often creates high-dimensional sparse feature vectors.

The second uses pre-trained word embeddings or Language

Models (LM) to create a relatively low-dimensional, dense

feature vector of the input text.

Certain techniques will need to be applied in order to

compose embeddings for long text passages based on sin-

gle words, such as [26, 32] that computed text embeddings

based its composing words, and [38] (non-product domain)

and [37] that joined word-embedding vectors to create a 2D

tensor to represent the text. In the more recent work that uses

pre-trained LMs such as BERT (e.g. in [39]), the construc-

tion of text passage embeddings is taken care of dynami-

cally by passing the input text through the language models

directly, which will take into account the context of words.

The third applies a separate learning process to learn a con-

tinuous distributional representation of the text directly from

the downstream training datasets [24, 31, 32]. Our work will

make use of feature representation methods from the second

and the third types. However, studies by [26, 32, 37, 39]

used general purpose, pre-trained word embeddings while

we study the effects of embeddings purposefully trained

on product-related corpora. Studies by [24, 31, 32] created

ad-hoc representations of product entities discovered in the

training set, while such representations cannot be general-

ised to other data or tasks, our study explores more generic,

data-agnostic methods for composing such representations.

Algorithms The large majority of work has used super-

vised machine learning methods. These include those that

use traditional machine learning algorithms [5, 24, 27,

30–32], and those that apply DNN-based algorithms [12,

28, 36, 37]usually based on CNN or RNN. These include the

majority of the participating systems in the 2018 Rakuten

Data Challenge. Besides, [5] also explored unsupervised

methods based on the similarity between the feature rep-

resentations of a product and target classes. [29] studied

product clustering, which does not label the resulting prod-

uct groups. These represent unsupervised methods. Fur-

ther, [13] studied the problem as a machine translation task,

where the goal is to learn the mapping between a sequence

of words from product names, to a sequence of product cat-

egories. MWPD2020 [11] showed a trend towards using

the pre-trained LMs for classification, such as those based

on the BERT model [40]. All participants but one at the

product classification task at MWPD2020 used LM-based

classification methods. The work by [39] for example, used

an ensemble model combining 17 different variants of the

BERT model to achieve the best result on this task.

This study does not focus on developing novel algorithms

but instead, reuse existing ones such as the fastText base-

line in [12] and the DNN structure in [37]. It may however,

reveal which algorithms are more susceptible to the different

language resources created by this study.

SN Computer Science (2023) 4:15 Page 5 of 27 15

SN Computer Science

Product Linking

Product linking or matching is the task of determining if

multiple product offers found from different websites (some-

times even from the same website) refer to the same, identi-

cal product entity. Product linking can be achieved by one of

the three approaches: classification (e.g. [11]), where prod-

uct offer pairs are created a priori and are classified to match

or non-match; clustering, where a dataset of product offers

are split into groups and members within the same group

are considered to be about the same product; or retrieval

(e.g. [34]) where the goal is to find the matching product

entity from an existing database for a given product offer. In

both classification and retrieval, often a ‘blocking’ process

is applied to reduce the search space. All three approaches

depend on the calculation of ‘similarities’ between product

offers and this makes use of product metadata. A good lit-

erature review on product linking can be found in [24]. Here,

we summarise them in terms of metadata, feature representa-

tion, and algorithms in a similar fashion as before.

Metadata Similar to product classification, typically

product linking will make use of product names (e.g. [34,

41–46]) and descriptions (e.g. [24, 34, 47]). The differ-

ence however, is that the task also makes use of a diverse

range of structured product attributes (e.g. [34, 44, 45, 48]),

often defined as ‘key-value’ pairs such as those that can

be extracted from product specifications (e.g. product ID,

model, brand, manufacturer). Intuitively, offers that have

the similar sets of key-value pairs are more likely to match.

Since such structured key-value attributes are often unavail-

able, many studies focussed on how to extract them from

the descriptions of an offer [41, 49], or from the specifi-

cation table of the source web page [24]. A small number

of studies [24, 50, 51] also used product images. Similar

to product classification, we will explore the usefulness of

product-related keywords generated by a machine translation

model trained on the product semantic markup data. This has

not been explored before.

Feature representation Again, similar to product clas-

sification, broadly speaking, transforming textual metadata

into feature representations is typically based on BoW (e.g.

[43, 44]), pre-trained word embeddings or language mod-

els (e.g. [23, 24, 34, 45, 46, 52]), or learning word embed-

dings on the spot from the downstream task datasets (e.g.

[45]). However, depending on the types of metadata, dif-

ferent methods may be adopted and then combined [49].

For example, structured key-value attributes are often kept

as-is and compared as a BoW, particularly if the values are

short (e.g. product IDs). In [44], a concept of ‘q-gram’ was

introduced to represent short texts (especially key-value

pairs) as a set of character n-grams. Longer texts such as

descriptions are better represented using word embeddings

or through LMs. In this direction, similar sets of methods to

product classification are used. For image data, typical pixel-

based image representation approach is widely used [24, 50,

51]. Same as product classification, in terms of novelty, our

work focuses on evaluating the word embeddings purpose-

fully trained on product-related corpora while many earlier

studies used generic word embeddings. We also use more

generic methods for composing feature representations for

product linking while previous models tried to learn ‘ad-

hoc’ representations.

Algorithms Since the prediction of linking/matching of

product offers depends on a notion of ‘similarity’, some

methods will have an ‘intermediary’ step that converts prod-

uct metadata features to similarity features [34, 43, 48]. This

is typically done by applying similarity metrics—usually

based on string form, or word/character distribution—to the

textual feature representations of two offers. Again, depend-

ing on the metadata, different similarity metrics may be

applied [34, 43, 44, 49]. This ‘intermediary’ process creates

a feature vector consisting of similarity scores computed by

different measures, or using different features. The vector is

then subject to another process to determine if the two offers

should match. However, as mentioned before, some methods

[45, 48] do not require such an intermediary step, as the

similarity computation is embedded as part of the method

that tackles the task in an ‘end-to-end’ fashion.

In terms of the method to the end-task, most studies are

based on supervised binary classification, which aims to

determine if a pair of offers should match or not. Following

a similar pattern to product classification, the classification

algorithms have evolved from the traditional [34, 41, 47], to

DNN-based [34, 45], to LM-based [23, 33, 46, 52]. Depend-

ing on the classification algorithm, the input could be the

similarity feature vector of a pair (e.g. [41]) computed by

the intermediary step, or directly the feature vectors derived

from the metadata of each offer [23, 45, 52]. In the study by

[23] which extends their earlier work in [52], the authors

proposed a multi-task learning neural network based on the

BERT model, tailored for the product linking task. In addi-

tion to learning to predict if two pairs of product offers refer

to the same entity (binary classification), the model at the

same times learns to predict the shared product identifier by

the two offers (multi-classification). Additionally, one can

also make use of cutoff thresholds of similarity to determine

match/non-match [42].

Clustering is used in a number of studies, such as [44]

that clustered offers based on the ‘q-grams’ derived from

their names and key-value pairs; and [53] where a ‘strength

of ties’ style of clustering was applied to a ‘network’ of

important words derived from a pair of product offers to

determine if they form a cohesive ‘community’ and there-

fore, should match.

Methods that require offer pairs as input will often require

a ‘blocking’ pre-process that aims to reduce the search space

 SN Computer Science (2023) 4:15 15 Page 6 of 27

SN Computer Science

for pairs, to create a minimal set of pairs for classification.

Blocking strategies are varied and often lightweight, such as

[49] that is based on matching manufacturers and categories,

and [42] that is based on string prefix.

A unique direction of research in product linking looks

into automated expansion of training data, either in terms of

training instances, or metadata that can be used for feature

extraction. For example, [42] enriched the name of prod-

uct offers with tokens retrieved using a web search engine.

[33] used product offer names to fetch similar entities from

Wikidata, to create additional training instances.

Compared to state-of-the-art, we focus on the sub-task of

supervised, binary classification of match/non-match, while

ignoring the ‘blocking’ process. Our method will use state-

of-the-art algorithms, as our research focus is on evaluat-

ing the impact of the language resources created from the

semantic markup data on existing algorithms.

Fake Product Review Detection

Fake reviews, as per [54], generally refer to reviews created

in an attempt to mislead consumers (either in a positive or

negative way). They are also known as deceptive opinions,

spam opinions, or spam reviews [55]. Fake online reviews in

e-commerce significantly affect consumers, merchants, and

market dynamics. In extreme cases, they led to financial loss

for companies and legal cases [56]. While traditionally, fake

reviewers are written by humans, with the advancement of

Natural Language Generation technology, it has been shown

that fake reviews automatically generated by programs are

even more difficult for human annotators to detect [57].

There is an extensive amount of studies on automated fake

review detection and for that reason, we refer readers to the

surveys by [54] while below we present a brief overview of

this field, highlighting the novelty of our work. Further, in

addition to studies focussing on detecting the content, there

are work (e.g. [58, 59]) that detect spammers (users) and

spammer groups (network) which we do not cover here.

Detecting fake review is predominantly treated as a super-

vised, binary text classification task. Thus similar to product

classification, it involves extracting features of the review

text (metadata), representing them in a machine processable

format (feature representation), and training a model that

is able to generalise patterns using the features and apply

the patterns to unseen data (algorithm). In terms of features

(metadata), [57] broadly categorised them into ‘lexical’ and

‘non-lexical’. Lexical features are attributes derived from

text, such as words, n-grams, punctuations and latent top-

ics. Non-lexical features are metadata related to the reviews

(e.g. ratings, stars) or their authors (ID, location, number

of reviews generated). In terms of feature representation

and algorithms, same patterns to that of product classifica-

tion are noticed due to the two tasks been handled by text

classification approaches. Briefly, research has evolved from

early methods that use manually engineered features in a

1-hot encoding (e.g. [60]) to pre-trained word embeddings

(e.g. [61, 62]), and learning representations of the target

dataset as part of the model, on the spot (e.g. [63]). The use

of machine learning algorithms also evolved from the earlier

classic algorithms such as SVM and logistic regression (e.g.

[60]), to deep neural networks (e.g. [61, 62]), to using very

large LMs such as BERT (e.g. [57]).

Compared to the previous studies, our work does not aim

to introduce new features or algorithms. Instead, we explore

the usefulness of the feature representations learned from

massive product-related semantic markup data on the task

of fake review detection. Earlier work such as [62, 64] used

word embeddings pre-trained on general purpose corpora,

and [61] trained domain-specific word embeddings using

an Amazon product review corpus. In contrast, our work is

the first that explores if a corpus of product details (instead

of their reviews) can be used to learn word embeddings for

this task. Compared to [57] who also used LMs, our work

explores the effect of continued pre-training of LM using

in-domain corpus, while [57] did not.

Reflection

Summarising related work above, our study addresses two

limitations of state-of-the-art. First, despite the abundance

of semantic markup data on the Web, there are only a very

small number of studies that explored the use of such data

to create language resources for downstream language pro-

cessing tasks. Among them, the typical approach is training

embedding models using such data [11, 24, 52]. However,

these methods and/or resources are often ad-hoc, and their

effects have not been compared on the same tasks.

Second, despite the continued interest in the research of

product classification, linking, and fake review detection,

the use of language resources to support such tasks has been

highly inconsistent, ranging from no-use at all to using a

diverse set of word-embedding models (e.g. [26, 33, 37]). It

is unclear for example, if earlier success of building domain-

specific LMs by continued pre-training of BERT models

using in-domain corpora can be replicated in this domain.

Adding to this complexity is the use of different datasets,

and diverse use of machine learning models ranging from

traditional algorithms (e.g. SVM, logistic regression), to

deep neural networks, to pre-trained language models. The

implication of this is that it is extremely difficult to compare

the effect of using certain language resources on such tasks.

Motivated by these issues, our work in the following will

explore three different ways of creating language resource

using semantic markup data, and systematically evaluate

them under uniform settings on the three different down-

stream tasks mentioned above.

SN Computer Science (2023) 4:15 Page 7 of 27 15

SN Computer Science

Building Language Resources

In this section, we describe our method for the creation and

evaluation of the language resources for product data min-

ing. We begin with introducing the data sources we use to

create the language resources (“Data sources”). We then

discuss three different ways of using these data sources to

create different types of language resources: training word-

embedding models, continued pre-training of BERT-like

LMs, and training machine translation models that are used

as a proxy to generate product-related keywords. These lan-

guage resources will be later used in the three downstream

tasks, to be detailed in “Product classification”, “Product

linking” and “Fake product review detection”.

Data Sources

In order to create language resources using semantic markup

data for the product domain, we used the 2017 release of the

structured data crawled by the WDC project. Specifically, we

only downloaded and processed the class-specific subsets of

the schema.org data related to sg:Product.9 This con-

tains nearly 5 billion RDF n-quads, extracted from over 267

million web pages and over 812 thousand hosts. Each n-quad

contains a subject, predicate, object, and a graph label which

in this case, denotes the source URL of the n-quad.

Next, we parse this dataset to identify product offer

instances, and build a Solr10 index of product offers with

their attributes found in the n-quads. This is done by first

searching for ‘definition n-quads’ that define a product offer

instance with http://www.w3.org/1999/02/22-

rdf-syntax-ns#type as the predicate, and either

sg:Product or sg:Offer as the object (i.e. where

an n-quad defines an instance of an sg:Product or

sg:Offer), and then parsing other n-quads containing the

same subject as the definition n-quad to create property-

value pairs for each offer. Only data that are potentially Eng-

lish are retained. This is achieved by automatically check-

ing if the source URL (i.e. graph label) contains a top-level

domain that clearly indicates non-English websites (e.g. .fr,

.cn). This Solr index is further processed to create two cor-

pora: a product description corpus, and a product category

corpus.

The product description corpus contains descriptions of

product offers. These are extracted from the sg:Product/

description property of each product offer. A light

cleaning process is applied to ensure that only descrip-

tions containing between 50 and 250 words are selected.

This restriction is to reduce content that is likely to be very

noisy. For example, we noticed that sometimes product

descriptions contain only a handful of generic words; while

other times they are too long and can include the entire web

page content. These texts are also normalised to keep only

alpha-numeric characters. If a token contains digits only, it

is replaced with a symbolic token to indicate a digit-only

token. The resulting product description corpus contains

over 1.9 billion tokens, extracted from over 34 million prod-

uct offers.

The product category corpus contains over 700 thousands

of product name—site-specific category pairs. These are

selected from offer instances that have both an n-quad defin-

ing their name and site-specific labels. Product names are

extracted from sg:Product/name or sg:Offer/name

properties, while site-specific labels are extracted from

sg:Product/category or sg:Offer/category.

Both product names and site-specific labels are subject to

a light cleaning process where only alpha-numeric charac-

ters are retained, and those containing more than 10 tokens

(delimited by white space characters) or less than 2 tokens

are removed. These restrictions are for the same reason—to

reduce noise in the data. In addition, digit-only tokens are

replaced with the same universal symbol. Further, a stop

word list is used to filter out generic site-specific labels,

such as Home and Product, and only pairs extracted from

the top 100 largest hosts (as measured by the number of

product offer instances found from each host) are kept. This

is to focus on hosts that are potentially large e-commerce

vendors and therefore, have defined relatively good quality

site-specific categorisation schemata.

We will explain how we use these corpora to build lan-

guage resources below.

Training Word‑Embedding Models

The first approach to utilising the above corpora is training

word embedding models. As discussed before, only a cou-

ple of studies [11, 24] used semantic markup data to train

embedding models. However, [24] trained product embed-

dings that are ad-hoc, while our earlier work [11] developed

word-embedding models that were not thoroughly evalu-

ated. Here, following our previous work, we simply use the

Gensim11 implementation of the Word2Vec algorithm [65]

to train word-embedding models using the product descrip-

tion corpus. We use the skip-gram algorithm for training,

as it was shown to better represent infrequent words [65].

This fits our data well, as a notable fraction of words in our

product classification and linking datasets (see Appendix 1)

are not represented by the most frequent words found in the

product description corpus.

9 http:// webda tacom mons. org/ struc tured data/ 2018- 12/ stats/ schema_

org_ subse ts. html.
10 https:// lucene. apache. org/ solr. 11 https:// radim rehur ek. com/ gensim/.

http://webdatacommons.org/structureddata/2018-12/stats/schema_org_subsets.html
http://webdatacommons.org/structureddata/2018-12/stats/schema_org_subsets.html
https://lucene.apache.org/solr
https://radimrehurek.com/gensim/

 SN Computer Science (2023) 4:15 15 Page 8 of 27

SN Computer Science

We use a sliding window of 10, minimum frequency

threshold of 5 and text lower casing, then keeping the

remaining parameters as default. The word embeddings

have 300 dimensions. We refer to this as ‘product word

embeddings’.

Continued Pre‑training of BERT Language Models

The second approach explores the continued pre-training

of large LMs. The principle of ‘continued pre-training’ of

LMs has been introduced in the recent research. The idea is

to take an existing LM such as BERT, and further training

it on large, in-domain, unlabelled corpora (e.g. [66, 67]).

We explore the benefits of continued pre-training the

BERT model on our product description corpus, and refer

to the resulting LM as ‘ BERTprod ’. Specifically, we take the

‘bert-base-uncased’ model12 and run the masked

language modelling task on our product description corpus,

keeping all hyperparameters as the default.13

However, pre-training LMs is an extremely resource-

demanding process, and due to our limited access to HPC

resources, we had to split our product description corpus to

small segments, and create different versions of BERTprod

models. Specifically, we randomly sampled 8% (or approx.

570 MB, which is the maximum size of a corpus we can fit

with the pre-training process on our hardware) of our corpus

for 7 times ensuring no overlap of selected product descrip-

tions, thus creating 7 smaller corpora to continue to pre-train

the BERT model. This creates 7 BERTprod models, and the

total size of data used for continued-pre-training represents

50% of the original product description corpus.

Training Machine Translation Models

The third approach to utilising the product corpora is

inspired by the work of [13]. The authors cast product clas-

sification as an MT task, whose goal is to learn the mapping

between the sequence of words in a product name, to the

sequence of category labels that form a hierarchical path. In

this sense, the product names and their category label paths

are treated as two different languages.

However, an important difference of Li’s work from ours

is that the dataset they used for training the MT models is

arguably, much better quality. This is because it is collected

from a single vendor website, hence there is only one catego-

risation scheme and the naming and categorisation of prod-

ucts are generally consistent. In contrary, our product cat-

egory corpus contains data from hundreds of different hosts,

potentially selling very different products, and therefore used

highly different and inconsistent categorisation schemata,

which will have different levels of hierarchies. Further, our

goal of product classification is to assign category labels

from a universal schema to products from different vendors.

Therefore, the site-specific categories cannot be directly

used as classification targets.

Therefore, instead of using this corpus to directly train

a product classifier, we use it to train MT models that map

a sequence of words in the product name, to the sequence

of words in the product’s site-specific category. Then given

a product name in the downstream task data, we apply the

MT model to generate a sequence of words, which although

will unlikely to map to the end classification labels, may

still be indicative of the product’s ‘type’ or ’category’ and

therefore, become useful features for the downstream tasks.

We will refer to these words as ‘product related keywords’

(denoted as ‘pk’).

To train the MT model, we apply off-the-shelf MT toolkit

OpenNMT [68] to the product category corpus. The encoder

and decoder are 2-layer LSTM with 500 hidden units. We

use all default settings of the hyperparameters in the distrib-

uted implementation.

Product Classification

In this section, we explore the usage of the different lan-

guage resources created in “Building language resources” in

the task of product classification. We show the datasets used

for this study, and configure a number of models and com-

pare them to evaluate the impact of these language resources

on these datasets. We then present the results, which will be

further discussed later in the “Discussion” section together

with results from other tasks.

Datasets

We use four datasets listed in Table 1. The Rakuten dataset

is the one used in the Rakuten Data Challenge [12]. This

contains one million product offers crawled from Rakuten.

com, an online e-commerce marketplace. Each product offer

only has one type of metadata, i.e. its name. The IceCat

dataset is released under the WDC project,14 and contains

over 760k product offers crawled from IceCat.de, a world-

wide publisher and syndicator of multilingual, standard-

ised product data from various domains. Each offer has

three types of metadata: name, description and brand. The

WDC-25 dataset is also released by the WDC project,15

14 http:// data. dws. infor matik. uni- mannh eim. de/ large scale produ ctcor

pus/ categ oriza tion/.
15 http:// webda tacom mons. org/ categ oriza tion/ index. html.

12 https:// huggi ngface. co/ bert- base- uncas ed.
13 Using the implementation at https:// github. com/ huggi ngface/ trans

forme rs/ tree/ master/ examp les/ langu age- model ing.

http://data.dws.informatik.uni-mannheim.de/largescaleproductcorpus/categorization/
http://data.dws.informatik.uni-mannheim.de/largescaleproductcorpus/categorization/
http://webdatacommons.org/categorization/index.html
https://huggingface.co/bert-base-uncased
https://github.com/huggingface/transformers/tree/master/examples/language-modeling
https://github.com/huggingface/transformers/tree/master/examples/language-modeling

SN Computer Science (2023) 4:15 Page 9 of 27 15

SN Computer Science

and contains around 24k product offers randomly sampled

from over 79k websites. These are classified into a flat cat-

egorisation scheme of 25 different labels, developed with

reference to the Amazon, Google and UNSPSC16 product

catalogue taxonomies. This is split into a training set of over

20k offers and a test set of around 5000 offers. Each offer

has a large number of metadata but only the following are

selected for this work: name, description, brand, and manu-

facturer. The MWPD-PC dataset is the product classifica-

tion dataset released in the MWPD2020 challenge [11]. It

contains around 16k product offers randomly sampled from

the structured product data (described by the schema.org

vocabulary) crawled by the WDC project. These are classi-

fied into three levels of classification (lvl1 to lvl3) following

the GS1 Global Product Classification standard (GPC).17

Each offer has the following metadata: name, description,

and site-specific label.

The product metadata are of various word lengths from

different datasets. However, neural network based classifica-

tion models require text input to be of a fixed length. The

normal practice is that if a real input text is shorter than

this fixed length, it is padded with ‘arbitrary’ tokens. If it

is longer, it is truncated. We configure the lengths accord-

ing to Table 2, based on the longest input observed on the

datasets and the corresponding metadata used. All the train-

ing, validation, and test splits are based on the original data

releases. Our selection of datasets represents a significant

degree of diversity, containing data sourced from single

vendors (Rakuten and IceCat), as well as a heterogeneous

range of websites (WDC-25, MWPD-PC). Table 1 shows the

statistics of these datasets.

Model Configurations

Models are configured based on the variations of the input

product metadata, feature representation methods, and the

machine learning algorithms. Figure 1 lists these models that

will be discussed in detail below.

Using Word Embeddings

Shown in Fig. 1a (Part (a) Experiments), the baseline and

their corresponding comparative models differ in terms of

word-embedding representations (shaded in grey). Given a

product, each model takes input all of its metadata avail-

able in a dataset, and passes them through the different

word embeddings to construct a feature representation for

the product. An ML algorithm then learns to classify the

products based on these features.

In terms of the word embeddings that are key for com-

parison, we compare our product word embeddings (prod)

against the generic, pre-trained Word2Vec embedding model

trained using Google News (ggl).18 In terms of ML algo-

rithms, we test a simple linear SVM (SVM), the fastText

baseline used in the MWPD2020 shared task for product

classification [11] (FT.MWPD), and the ‘GN-DeepCN’

structure proposed in [37] with either a biLSTM (GND.biL-

STM) or HAN (GND.HAN) as its sub-structure. For SVM

and fastText, different product metadata are concatenated

into a single text and treated indifferently. For GND.biLSTM

and GND.HAN, each specific type of product metadata is

fed into a sub-structure (biLSTM or HAN) that learns sepa-

rate feature representations for them. The implementation

and specifications of these algorithms are as follows:

• SVM: implemented in Scikit-Learn 0.19, with the param-

eters set as follows: regularisation (c) parameter of 0.01,

Table 1 Summary of datsets for product classification

Dataset Train Validation Test Classes Metadata

Rakuten 800k n/a 200k 3008 Name (n)

IceCat 489,902 122,476 153,095 370 Name, description (d), brand (b)

WDC-25 20,205 n/a 4884 25 Name, description, brand, manufacturer (m)

MWPD-PC 10,012 3000 3107 lvl1=37, lvl2=76,

lvl3=281

Name, description, site-specific label/category (c)

Table 2 Configuration of input word length for neural network based

classification models

‘All’ refers to concatenating all product metadata detailed in Table 1

as a single text input

Dataset Product metadata

and fixed length

(tokens)

Rakuten Name (32)

IceCat All (256); name (32)

WDC-25 All (256); name (32)

MWPD-PC All (256); name (32)

16 https:// www. unspsc. org/.
17 https:// www. gs1. org/ stand ards/ gpc. 18 https:// code. google. com/ archi ve/p/ word2 vec/.

https://www.unspsc.org/
https://www.gs1.org/standards/gpc
https://code.google.com/archive/p/word2vec/

 SN Computer Science (2023) 4:15 15 Page 10 of 27

SN Computer Science

one-vs-rest multi-classification training, balanced class

weight, L2 penalisation and squared hing loss.

• fastText: default implementation as in [11]

• GND.biLSTM and GND.HAN: default implementation

by [37], using an epoch of 20 and a batch size of 128. All

other hyperparameters remain unchanged.

Following this, a model using the product word embeddings

will be compared against itself when using the generic word

embeddings. E.g. SVMprod against SVMggl , or GND.HANprod

against GND.HANggl.

Using Language Models

Shown in Fig. 1b (Part (b) Experiments), the baseline and

their corresponding comparative models differ in terms of

the underlying language models (LM) used. Given a prod-

uct, each LM takes input all of its metadata available in a

dataset, and passes them into the different LM (shaded in

grey), which produces its feature representation and learns

classification patterns in an end-to-end fashion.

In terms of the LM, we compare a generic BERT model

(BERT
default

) against the ones created following our method

in “Training machine translation models” (BERTprod). As

mentioned before, we had to create 7 different LMs. Here,

BERTprod refers to the average performance recorded for all

these LMs. For both BERT
default

 and BERTprod , classifica-

tion is achieved through stacking a linear layer on top of the

corresponding language model. In the case of BERT-based

LMs, the output of the first token from the final hidden state

of the model is used in the final classification. Same as SVM

and FT.MWPD, product metadata are concatenated into a

single piece of text. The implementation and specifications

of are as follows:

• Implemented based on PyTorch 1.7.0,19 with a batch size

of 32, learning rate of 2e− 5, epochs of 10 and using the

Adam algorithm with weight decay for optimisation. All

other hyperparameters remain unchanged from the dis-

tribution.

• For BERT
default

 , the ‘bert-base-uncased’ model from the

generic distribution is used.

Using Machine Translation Models

Shown in Fig. 1c (Part (c) Experiments), the baseline and

their corresponding comparative models differ in terms of

the product metadata used (shaded in grey). As discussed

before, we apply the MT model trained in “Training machine

translation models” to product names from each dataset to

generate product-related keywords (pk), and use these key-

words as another type of metadata for each product.

For each model described above in “Using word embed-

dings” and “Using language models”, we first replace the

product metadata with only product names, then create two

variants that are compared against each other: one that uses

Fig. 1 Configurations of differ-

ent models for comparison for

the product classification task.

The shaded box represents the

components of a model to be

changed for comparison

19 https:// pytor ch. org/.

https://pytorch.org/

SN
 C

o
m

p
u

ter Scien
ce (2

0
2

3
) 4

:1
5

P

ag
e 1

1
 o

f 2
7

 1

5

S
N

 C
o
m

p
u

te
r
 S

c
ie

n
c
e

Table 3 Product classification results comparing the use of word-embedding models (MWPD-PC dataset)

Boldfaced text suggests the results are better than the baseline when the language resources are used

 Product classification experiments: using word-embedding models, MWPDC-PC

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

MWPD-

PC (lvl1)

SVMggl 61.2 61.5 60.5 80.4 80.3 80.2 SVMprod 68.6 66.6 66.5 83.0 82.8 82.7

GND.biLSTMggl 60.6 54.5 55.9 81.3 81.4 80.8 GND.biLSTMprod 68.5 63.2 64.9 85.5 85.6 85.3

GND.HANggl 66.4 63.0 63.0 84.6 83.7 83.5 GND.HANprod 71.2 70.2 69.9 86.5 85.9 86.0

FT.MWPDggl 73.3 68.3 69.0 86.9 86.5 86.4 FT.MWPDprod 76.9 70.4 72.3 87.2 87.5 87.1

MWPD-

PC (lvl2)

SVMggl 58.2 57.8 56.0 80.7 80.3 80.2 SVMprod 62.4 60.2 58.2 82.6 82.2 82.0

GND.biLSTMggl 53.7 49.9 49.4 80.6 80.6 80.1 GND.biLSTMprod 60.1 55.2 56.5 85.3 85.4 85.0

GND.HANggl 57.2 55.0 53.5 82.5 82.2 81.6 GND.HANprod 61.6 56.7 57.0 86.4 85.9 85.5

FT.MWPDggl 59.5 56.0 55.4 85.7 85.0 84.8 FT.MWPDprod 69.4 60.9 62.3 86.9 86.8 86.4

MWPD-

PC (lvl3)

SVMggl 47.4 47.1 45.2 74.1 73.6 72.8 SVMprod 47.0 47.6 47.0 77.0 75.8 75.3

GND.biLSTMggl 37.9 37.7 35.5 72.0 72.7 71.3 GND.biLSTMprod 44.1 43.5 41.6 77.4 77.1 76.2

GND.HANggl 41.9 41.8 39.0 76.7 75.6 74.9 GND.HANprod 47.5 48.9 45.7 79.1 78.1 77.4

FT.MWPDggl 41.2 40.1 38.5 78.6 75.8 76.1 FT.MWPDprod 49.4 46.8 45.7 80.1 79.0 78.5

 SN Computer Science (2023) 4:15 15 Page 12 of 27

SN Computer Science

the product name only, the other using the name (n) plus the

product-related keywords (n,pk, in this case the fixed length

for input text is set to double that of name, i.e. 64). In addi-

tion, each model only uses the generic language resources

(i.e. the generic word embeddings, or the BERT LM). This

is to exclude the effects from all other factors, thus allowing

the results to focus on the use of product related keywords.

As examples, SVM
n
 is compared against SVMn,pk , both

using the generic Google News word embeddings; while

BERT
n
 is compared against BERTn,pk , both using the bert-

base-uncased generic LM.

Evaluation Metrics

In terms of evaluation metrics, we use the standard Precision

(P), Recall (R) and F1 scores for classification tasks. These

are calculated using Eqs. (1)–(3), where TP denotes True

Positives, FP denotes False Positives, and FN denotes False

Table 4 Product classification results comparing the use of word-embedding models (other datasets)

Boldfaced text suggests the results are better than the baseline when the language resources are used

Product classification experiments: Using word-embedding models, other datasets

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

IceCat SVMggl 92.5 95.1 93.7 99.0 98.8 98.9 SVMprod 94.8 95.0 94.6 99.1 99.1 99.1

GND.biLSTMggl 94.4 94.3 94.1 99.2 99.2 99.2 GND.biLSTMprod 95.2 94.4 94.5 99.3 99.3 99.3

GND.HANggl 95.0 92.8 93.5 99.1 99.0 99.0 GND.HANprod 95.6 94.1 94.4 99.2 99.2 99.2

FT.MWPDggl 93.3 94.7 93.7 99.3 99.27 99.29 FT.MWPDprod 93.9 95.1 94.2 99.4 99.31 99.33

WDC-25 SVMggl 72.8 73.5 72.2 81.8 80.3 80.2 SVMprod 74.3 74.9 73.9 82.7 82.0 81.8

GND.biLSTMggl 70.6 70.2 69.5 79.1 78.5 78.1 GND.biLSTMprod 75.3 76.0 74.5 84.0 82.6 82.5

GND.HANggl 69.1 68.3 67.7 77.9 76.7 76.5 GND.HANprod 74.3 74.1 73.1 83.2 81.2 81.4

FT.MWPDggl 77.3 77.6 76.5 84.7 84.2 83.7 FT.MWPDprod 78.2 78.6 77.5 86.0 85.4 85.0

Rakuten SVMggl 22.5 42.8 26.5 72.1 59.4 61.2 SVMprod 27.8 44.0 31.6 74.2 64.7 66.7

GND.biLSTMggl 39.8 35.3 35.7 74.9 75.1 74.4 GND.biLSTMprod 41.1 37.9 37.8 76.9 76.7 76.3

GND.HANggl 42.3 37.7 37.8 76.2 76.2 75.5 GND.HANprod 42.0 37.7 37.7 76.5 76.4 75.8

FT.MWPDggl 38.6 44.7 39.9 81.8 80.6 80.9 FT.MWPDprod 40.1 45.7 41.2 81.8 80.9 81.1

Table 5 Product classification results comparing the use of continued pre-training of the BERT language model

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product classification experiments: continued pre-training of language models

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

MWPD-

PC

(lvl1)

BERT
default

71.3 68.6 68.7 88.4 88.4 88.2 BERTprod 73.6 71.8 71.8 89.4 89.4 89.2

MWPD-

PC

(lvl2)

BERT
default

56.7 55.5 54.4 86.5 87.1 86.4 BERTprod 57.3 58.1 56.6 87.3 88.2 87.4

MWPD-

PC

(lvl3)

BERT
default

28.1 29.4 26.9 71.1 76.4 72.4 BERTprod 31.0 32.0 29.7 73.1 78.0 74.3

IceCat BERT
default

97.0 96.8 96.8 99.6 99.5 99.5 BERTprod 97.2 96.8 96.8 99.6 99.6 99.6

WDC-25 BERT
default

80.5 79.7 79.1 86.8 85.6 85.5 BERTprod 77.1 77.8 76.3 84.4 83.6 83.2

Rakuten BERT
default

36.8 34.8 34.4 82.0 82.9 82.2 BERTprod 36.5 34.6 34.1 81.8 82.8 82.0

SN Computer Science (2023) 4:15 Page 13 of 27 15

SN Computer Science

Negatives. As some of our datasets contain highly unbalanced

classes (e.g. MWPD-PC), we report macro-averages across all

classes (arithmetic mean of individual classes’ P, R, F1 scores)

in order to analyse a classifier’s performance on small classes,

as well as weighted macro-averages (similar to macro-averages

but weighs the score of each class label by the number of true

instances when calculating the average) which was used in [11]

for ranking all participating systems.

Result Summary

In terms of the effects of using word embedding models,

Tables 3 and 4 show that our skip-gram word-embedding

model trained on the product description corpus is able to

bring consistent improvement on all datasets, with all clas-

sifiers. This improvement is noticed for Precision, Recall,

and F1 (macro- and weighted macro-average), with only

a handful of exceptions where the results were very close

to the baseline. For example, on the Rakuten dataset, the

GND.HANskip−all obtains a macro-F1 of 37.7, which is

lower but still comparable to the corresponding baseline

GND.HANggl ’s 37.8. The improvement can be significant

in many cases, such as 9.0 in macro-F1 by GND.biLSTMprod

against GND.biLSTMggl on the MWPD-PC (lvl1) dataset

(row 5 Table 4), and 6.9 in macro-F1 by FT.MWPDprod

against FT.MWPDggl on the MWPD-PC (lvl2) dataset (row

11 Table 3). The improvement on the IceCat is the smallest,

but consistent. The baselines on this dataset already achieved

very high F1.

In terms of the effects of continued pre-training of the

LM, Table 5 shows less promising results. We are una-

ble to obtain consistent improvement on all datasets, but

only on MWPD-PC and the IceCat datasets, where the

improvement is very small. One may argue that a potential

reason for the better results on the MWPD-PC dataset is

the possible similarity between the corpus used to cre-

ate this gold standard, and the corpus used to continue

pre-training the BERT LM. Both are based on the n-quad

corpora released by the WDC project. However, we expect

such impact to be minimal. On the one hand, we ensured

that different releases were used (Nov 2017 release for the

product description corpus, and a mixture of Nov 2018

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F1 =(
2 ∗ Precision ∗ Recall)

Precision + Recall

and pre-2014 releases for the MWPD-PC goldstandard20).

On the other hand, the releases were based on random

crawls of the Web. Interestingly, BERT-based classifiers

have achieved better results than SVM, GND based struc-

tures, or FT.MWPD on all datasets except MWPD-PC lvl3,

which is harder due to more fine-grained classes.

In terms of the effects of MT-based product keywords,

Tables 6 and 7 show that they do not bring consistent ben-

efits, regardless of datasets or classifiers. Although there

are cases where such keywords bring improvements in the

results, in the majority of cases, they caused classifier accu-

racy to decrease. The SVM classifier is the only one that

benefited in most cases from such keywords on all datasets.

Nevertheless, we cannot conclude such keywords as useful

for product classification task.

Product Linking

In this section, we explore the usage of the different lan-

guage resources created in “Building language resources” in

the task of product linking. Following a similar structure to

“Product classification”, we present the datasets used, con-

figuration of models, and their evaluation results.

Datasets

As shown in Table 8, we use a total of 9 datasets from

two main sources: the WDC project and the DeepMatcher

project. All datasets includes pairs of product offers and a

binary label indicating if the offers match or not. The WDC

project released several product linking datasets by parsing

and annotating samples of the CommonCrawl corpus. These

are used in later studies such as [22]. We use the ‘small’

dataset as reported in [22] for a number of reasons. First,

the ‘small’, ‘medium’, ‘large’ and ‘extra large’ datasets all

have the same test set. The only difference is the size of the

training set, which contains a different number of instances

created in a distantly supervised manner. Second, our choice

is also limited by our computation resources. Each offer has

the following metadata: name, description, price, brand,

specification table as a text, specification key-value pairs,

and site-specific label.

The DeepMatcher project released 13 datasets for evalu-

ating entity linking while not all of them are related to the

product domain. These were further split into three groups:

‘structured’ where product metadata are defined as key-value

pairs, with values being atomic, i.e. short and pure, and not a

composition of multiple values that should appear separately;

‘textual’ where product metadata are long textual blobs (e.g.

long title, short description); and ‘dirty’ where product

20 For details, see [11].

 SN Computer Science (2023) 4:15 15 Page 14 of 27

SN Computer Science

metadata are structured, but the values for some attributes

could be misplaced, or empty. We selected 8 datasets that are

arguably product-related, containing 5 structured datasets, 1

textual and 2 dirty datasets. Each dataset is split into train,

test and validation sets with a ratio of 3:1:1.

Similar to the product classification datasets, the product

metadata are of various word lengths and for neural network-

based classification models, we need to set a fixed length for them

when they are used as input texts. These are configured according

to Table 9. All the training, validation, and test splits are based on

the original data releases. Similar to the classification task, our

selection of datasets is very diverse, as shown in Table 3.

Model Configurations

Again, since our focus is evaluating the effect of different

language resources on this task, we use ‘out of the box’

state-of-the-art solutions to configure different models using

different language resources for comparison. Specifically, we

use DeepMatcher [69] and the Natural Language Inference

(NLI) model based on BERT [70].

DeepMatcher (DM) is a software package21 implementing

state-of-the-art entity linking algorithms using DNNs. It splits

the matching process into three modules: the attribute embed-

ding module transforms input textual data of an entity mention

into word embedding-based representations; the similarity

representation module learns a representation that captures

the similarity of two entity mentions using their embedding

representations; and the classifier module that takes as input

the similarity representations to determine if the two entity

mentions should match or not. The similarity representation

module has two key components: attribute summarisation

that implements different DNN structures for interpreting

the embedding representations of input entities; and attribute

comparison that implements different measures for comparing

the ‘summary vectors’ generated by the summarisation com-

ponent. In this work, we configure DeepMatcher as follows:

• Similarity representation module: we use a ‘hybrid’

attribute summariser and the ‘element-wise absolute dif-

ference’ attribute comparator, as these were found to be

the optimal settings for a wide range of scenarios

• Classifier module: we use the multi-layer NN, which is

the only option available

• Attribute embedding module: this is a factor for compari-

son and is detailed in the section below.

Other hyperparameters of DM remain unchanged from the

default software distribution.

For the BERT-based NLI model (BERT), we simply use

a state-of-the-art implementation by Keras.22 The model

consists of two channels, each taking one sentence as input

to learn a representation vector. These vectors are then con-

catenated and passed to a simple linear structure for clas-

sification, which determines if the two sentences entail

each other or not. We simply consider each product entity

as a ‘sentence’ and construct a textual representation that

fits the model. All specification and configurations remain

unchanged from the implementation above.

Next, using different language resources and/or product

metadata, Fig. 2 lists variants of DM and BERT to be dis-

cussed in detail below.

Using Word Embeddings

Shown in Fig. 2a (Part (a) Experiments), DM using a built-in

generic word-embedding model (DM
default

 baseline) is com-

pared with DM using the product word-embedding model

(DMprod). Given a product, all of its metadata are concat-

enated into a single text input.

Using Language Models

Shown in Fig. 2b (Part (b) Experiments), the BERT NLI

model either uses the default, generic LM ‘bert-base-

uncased’ (BERT
default

 baseline), or the product LMs

(BERTprod). Same as product classification, BERTprod refers

to the average performance recorded for all the seven prod-

uct LMs. Product metadata are also concatenated as a single

text input.

Using Machine Translation Models

Shown in Fig. 5.2.2c (Part (c) Experiments), the base-

line and their corresponding comparative models differ

in terms of the product metadata used. Following the

same way as product classification experiments, the MT

model is applied to product names from each dataset to

generate product related keywords (pk), which are used

as another type of metadata for each product. Then DM

and BERT (each using their generic word embeddings

and LM respectively) will use either only product names

as input (n), or product name plus product keywords as

input (n,pk, in this case the fixed length for input text is

set to 64).

Evaluation Metrics

Since all datasets treat the task as binary classification, we

use the same evaluation metrics as product classification.

22 https:// keras. io/ examp les/ nlp/ seman tic_ simil arity_ with_ bert/.21 https:// github. com/ anhai dgroup/ deepm atcher.

https://keras.io/examples/nlp/semantic_similarity_with_bert/
https://github.com/anhaidgroup/deepmatcher

SN Computer Science (2023) 4:15 Page 15 of 27 15

SN Computer Science

Table 6 Product classification results comparing the use of MT-generated product keywords (MWPD-PC dataset)

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product classification experiments: using machine translation models, MWPD-PC

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

MWPD-PC

(lvl1)

SVM
n

54.7 63.7 57.9 79.3 77.3 77.9 SVMn,pk 60.7 66.7 62.8 80.8 79.9 80.0

GND.biLSTM
n

59.9 59.8 59.1 81.6 81.0 80.8 GND.biLSTMn,pk 64.2 59.8 60.8 81.6 81.3 81.0

GND.HAN
n

66.2 62.5 63.1 81.8 81.2 81.1 GND.HANn,pk 65.2 63.8 63.8 82.7 82.7 82.4

FT.MWPD
n

73.6 68.1 69.5 87.0 86.8 86.6 FT.MWPDn,pk 67.5 63.3 64.6 84.7 83.9 84.0

BERT
n

68.6 67.4 67.0 86.9 87.2 86.9 BERTn,pk 68.3 64.7 64.6 86.2 86.2 85.9

MWPD-PC

(lvl2)

SVM
n

57.2 67.6 59.6 79.8 77.3 78.0 SVMn,pk 58.2 66.2 59.8 80.5 79.2 79.4

GND.biLSTM
n

59.9 55.0 54.8 81.1 80.2 80.1 GND.biLSTMn,pk 54.1 49.1 49.7 81.0 80.5 80.2

GND.HAN
n

61.7 59.4 57.6 81.7 80.8 80.6 GND.HANn,pk 54.8 51.8 51.1 80.7 80.4 80.0

FT.MWPD
n

67.4 61.7 62.4 86.0 85.5 85.3 FT.MWPDn,pk 58.7 54.6 53.9 83.7 82.5 82.6

BERT
n

49.4 48.7 47.3 84.0 84.8 84.0 BERTn,pk 48.9 47.1 45.4 83.3 84.3 83.3

MWPD-PC

(lvl3)

SVM
n

50.1 59.0 51.9 77.5 73.2 74.0 SVMn,pk 51.4 57.7 52.2 77.3 74.3 74.6

GND.biLSTM
n

45.2 43.9 42.5 73.3 73.1 72.3 GND.biLSTMn,pk 42.5 40.8 39.3 72.7 72.6 71.5

GND.HAN
n

49.4 47.9 46.1 77.2 76.0 75.3 GND.HANn,pk 48.0 46.0 44.9 74.8 75.0 74.0

FT.MWPD
n

54.3 53.5 51.6 82.7 80.6 80.8 FT.MWPDn,pk 44.5 43.8 41.9 78.7 74.9 75.8

BERT
n

23.0 26.8 23.4 66.3 73.6 68.6 BERTn,pk 23.4 20.2 23.1 63.9 71.4 66.0

Table 7 Product classification results comparing the use of MT-generated product keywords (other datasets)

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product classification eperiments: using machine translation models, other datasets

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

IceCat SVM
n

79.1 91.0 83.4 96.9 96.1 96.4 SVMn,pk 81.6 91.0 85.1 97.1 96.5 96.7

GND.biLSTM
n

91.3 88.2 89.1 98.1 98.0 98.0 GND.biLSTMn,pk 90.7 88.4 89.0 98.2 98.1 98.1

GND.HAN
n

90.7 86.8 88.0 98.0 97.9 97.9 GND.HANn,pk 90.9 87.4 88.4 98.1 97.9 97.92

FT.MWPD
n

91.7 93.0 92.1 98.8 98.7 98.8 FT.MWPDn,pk 89.8 91.9 90.5 98.7 98.6 98.6

BERT
n

94.1 93.2 93.4 98.9 98.9 98.9 BERTn,pk 94.1 93.2 93.4 98.9 98.9 98.9

WDC-25 SVM
n

63.7 65.5 63.3 76.3 73.6 74.1 SVMn,pk 62.5 63.8 61.9 73.7 72.4 72.3

GND.biLSTM
n

63.5 63.3 62.6 74.5 73.3 73.2 GND.biLSTMn,pk 63.8 60.6 60.7 72.2 71.9 70.8

GND.HAN
n

62.1 63.0 61.2 73.1 71.6 71.3 GND.HANn,pk 60.1 60.5 58.3 71.0 69.4 68.9

FT.MWPD
n

69.7 69.1 67.5 79.9 78.6 77.8 FT.MWPDn,pk 65.8 65.0 63.5 77.9 74.5 75.0

BERT
n

70.6 71.0 69.5 80.8 78.6 78.7 BERTn,pk 71.4 72.3 70.7 81.8 79.9 80.0

Rakuten SVM
n

22.5 42.5 26.5 72.1 59.4 61.2 SVMn,pk 24.1 41.9 28.0 74.2 67.4 66.7

GND.biLSTM
n

39.8 35.3 35.7 74.9 75.1 74.4 GND.biLSTMn,pk 38.7 34.8 35.0 74.7 75.0 74.4

GND.HAN
n

42.3 37.7 37.8 76.2 76.2 75.5 GND.HANn,pk 39.3 34.5 34.9 74.6 74.6 73.9

FT.MWPD
n

38.6 44.7 39.9 81.8 80.6 80.9 FT.MWPDn,pk 36.1 40.8 36.8 80.8 79.3 79.8

BERT
n

36.8 34.8 34.4 82.0 82.9 82.2 BERTn,pk 36.3 34.2 33.8 81.6 82.6 81.8

 SN Computer Science (2023) 4:15 15 Page 16 of 27

SN Computer Science

Ta
b

le
 8

 S

u
m

m
ar

y
 o

f
d
at

as
et

s
fo

r
p
ro

d
u
ct

 l
in

k
in

g

S
 s

tr
u
ct

u
re

d
,
T

 t
ex

tu
al

,
D

 d
ir

ty

D
at

as
et

T
ra

in
V

al
id

at
io

n
T

es
t

D
o
m

ai
n

M
et

ad
at

a

W
D

C
-s

m
al

l
7
2
3
0

1
8
0
8

4
4
0
0

C
am

er
a,

 c
o
m

p
u
te

r,
 s

h
o
es

,

w
at

ch
es

N
am

e,
 d

es
cr

ip
ti

o
n
,
b
ra

n
d
 e

tc
.

7
 t

y
p
es

B
ee

rA
d
v
o
-R

at
eB

ee
r

(S
)

2
6
8

9
1

9
1

B
ee

r
N

am
e,

 b
re

w
er

,
st

y
le

,
A

B
V

iT
u
n
es

-A
m

az
o
n

1
 (

S
)

3
2
1

1
0
9

1
0
9

M
u
si

c
N

am
e,

 a
rt

is
t,

 a
lb

u
m

 e
tc

.
8
 t

y
p
es

F
o
d
o
rs

-Z
ag

at
s

(S
)

5
6
7

1
9
0

1
9
0

R
es

ta
u
ra

n
t

N
am

e,
 a

d
d
re

ss
,
ci

ty
 e

tc
.
6
 t

y
p
es

A
m

az
o
n
-G

o
o
g
le

 (
S

)
6
8
7
4

2
2
9
3

2
2
9
3

S
o
ft

w
ar

e
N

am
e,

 m
an

u
fa

ct
u
re

r,
 p

ri
ce

W
al

m
ar

t-
A

m
az

o
n

1
 (

S
)

6
1
4
4

2
0
4
9

2
0
4
9

E
le

ct
ro

n
ic

s
N

am
e,

 c
at

eg
o
ry

,
b
ra

n
d
 e

tc
.
5

ty
p
es

A
b
t-

B
u
y
 (

T
)

5
7
4
3

1
9
1
6

1
9
1
6

P
ro

d
u
ct

N
am

e,
 d

es
cr

ip
ti

o
n
,
p
ri

ce

iT
u
n
es

-A
m

az
o
n

2
 (

D
)

3
2
1

1
0
9

1
0
9

M
u
si

c
S

am
e

as
 i

T
u
n
es

-A
m

az
o
n

1
 b

u
t

m
is

p
la

ce
d

W
al

m
ar

t-
A

m
az

o
n

2
 (

D
)

6
8
7
4

2
2
9
3

2
2
9
3

S
o
ft

w
ar

e
S

am
e

as
 W

al
m

ar
t-

A
m

az
o
n

1
 b

u
t

m
is

p
la

ce
d

The only difference is that, same as the literature, these are

computed for true positives only (i.e. true matches).

Result Summary

In terms of the word-embedding model (Table 10), our skip-

gram-based word embeddings can further improve F1 on six

out of nine datasets. However, on the other three datasets they

caused significant decline in F1. Referring to Table 3, we

would argue that the three datasets where the decline is noted

may be either too small (BeerAdvo-RateBeer (S)), or less rel-

evant to the conventional ‘product’ domain (Fodors-Zagats (S),

restaurant; Amazon-Google (S), software).

In terms of the continued pre-training of LM and MT-based

product keywords, based on results in Tables 11 and 12, we

are unable to conclude either to be useful for this task. Positive

improvements can be noticed on some datasets, but these have

been very inconsistent.

Fake Product Review Detection

While the previous two tasks concern data that are typi-

cally properties of products, fake product review detec-

tion concerns data that is rather indirectly connected to

products. For this task, we only experiment with the use

of word-embedding models and in-domain LMs, not the

MT model. This is because the typical review datasets do

not contain product names which we require as input to the

MT model. Using the review text as input will not make

sense because the MT model is trained to learn mappings

between short sequences of words. In addition, the vocabu-

laries used during training are very different.

Datasets

We use the dataset from [57], which were created using

a Natural Language Generation model and contains over

40,000 reviews of products from 10 broad categories (e.g.

Books, Electronics), each labelled as either a fake review,

or genuine. For neural network-based classifiers that require

a fixed input text length, this is set to 512. Although the

reviews are automatically generated by algorithms, the

authors showed that these proved to be harder for human

annotators to differentiate. We do not expand our experi-

ments to other fake review datasets, because as we shall

show later, we have observed same patterns as those in the

other two tasks and we do not expect adding more datasets

to add further values to our findings.

SN Computer Science (2023) 4:15 Page 17 of 27 15

SN Computer Science

Model Configurations and Evaluation Metrics

Since fake review detection is a binary text classification

task, our model configurations will follow those from the

product classification task (“Model configurations”). The

dataset only has one source of text input, namely, the review

text. Therefore, the models only vary in terms of the underly-

ing language resources used. Figure 3 lists these models that

will be briefly covered below.

In terms of using word-embedding models, shown in Fig.

3a (Part (a) Experiments), the baseline and their correspond-

ing comparative models differ in terms of word embedding

representations (shaded in grey). Same as product classifi-

cation, we compare our product word embeddings (prod)

against the generic, pre-trained Word2Vec embedding

model (ggl). We combine all algorithms listed in “Using

word embeddings” with each of the two options of word-

embedding models. The same configuration and specifica-

tions are used.

In terms of using in-domain LMs, shown in Fig. 3b

(Part (b) Experiments), the baseline and their correspond-

ing comparative models differ in terms of the underlying

LMs used. Again we use the same model variants from

“Using language models”, but on the different dataset. The

same configuration and specifications are retained.

In terms of evaluation, the same metrics for product

classification explained in “Evaluation Metrics” are used

here.

Result Summary

Overall(see Table 13), we observe same patterns as product

classification and linking tasks. On the one hand, product

word embeddings trained on the product description corpus

led to consistent improvement in F1 on this task over the

generic word-embedding model, with the highest noted with

the SVM classifier and the lowest noted with the fastText

classifer. Compared to the product classification task, it is

worth highlighting that the text content in the two datasets

can be notably different. This suggests that the ‘knowledge’

Table 9 Configuration of input word length for neural network-based

models. ‘all’ refers to concatenating all product metadata detailed in

Table 3 as a single text input

Dataset Product metadata

and fixed length

(tokens)

WDC-small All (512); n (32)

BeerAdvo-RateBeer (S) All (64); n (32)

iTunes-Amazon
1

All (128); n (32)

Fodors-Zagats (S) All (64); n (32)

Amazon-Google (S) All (64); n (32)

Walmart-Amazon
1
 (S) All (64); n (32)

Abt-Buy (T) All (128); n (32)

iTunes-Amazon
2
 (D) All (128); n (32)

Walmart-Amazon
2
 (D) All (64); n (32)

Fig. 2 Configurations of dif-

ferent models for comparison

for the product linking task.

The shaded box represents the

components of a model to be

changed for comparison

 SN Computer Science (2023) 4:15 15 Page 18 of 27

SN Computer Science

captured by the product word embeddings can be potentially

transferable to more general product data mining tasks. On

the other hand, continued pre-training of BERT still led to

detrimental effects.

Further Analysis

In this section, we conduct further analysis of our datasets in

order to better understand the potential contributing factors

to the overall negative results.

Data Provenance

One potential cause of a less good quality training dataset

is unbalanced data distribution. To understand if this could

have been an issue in our study, we analysed the dominating

hosts that contributed to the product description and the

product category corpora in order to discover if there exist

certain dominating hosts selling a restricted range of prod-

ucts. To do this, we manually inspected the top 100 largest

hosts as measured by the number of product offer instances

found from each host, and classified them based on the types

of products they sell.

As Table 14 shows, a significant portion of the dominat-

ing hosts sell fashion related products, typically clothing,

footwear, accessories and so on. Therefore we expect that

our product description and category corpora to contain a

significant portion of data related to these domains. Notice

that products from other domains such as software, beer,

and restaurant are under-represented, which may help

explain the observation that our word embeddings were

not useful on the three datasets mentioned before in the

product linking task. However, this analysis does not help

explain why other language resources, i.e.e the language

Table 10 Product linking results

comparing the use of word

embedding models

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product linking experiment: using word-embedding models

Baseline (DM
default

) Comparator (DMprod)

Dataset P R F1 P R F1

WDC-small 57.3 63.5 60.3 66.2 65.2 65.7

BeerAdvo-RateBeer (S) 66.7 71.4 69.0 57.1 57.1 57.1

iTunes-Amazon
1
 (S) 86.2 92.6 89.3 96.0 88.9 92.3

Fodors-Zagats (S) 100.0 95.5 96.7 90.9 90.9 90.9

Amazon-Google (S) 58.8 60.3 59.5 51.0 41.9 46.0

Walmart-Amazon
1
 (S) 33.9 20.2 25.3 40.5 23.3 29.6

Abt-Buy (T) 26.7 18.9 22.2 25.5 23.3 24.4

iTunes-Amazon
2
 (D) 57.6 70.4 63.3 72.7 59.3 65.3

Walmart-Amazon
2
 (D) 23.6 17.1 19.8 28.3 24.4 26.2

Table 11 Product linking results

comparing the use of language

models

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product linking experiments: using language models

Baseline Comparator

(BERT
default

) (BERTprod)

Dataset P R F1 P R F1

WDC-small 64.2 83.5 72.3 63.2 85.0 72.1

BeerAdvo-RateBeer (S) 63.3 91.4 73.7 62.5 88.4 71.1

iTunes-Amazon
1
 (S) 82.5 86.7 84.4 81.6 85.0 82.9

Fodors-Zagats (S) 89.0 99.1 93.6 88.7 97.8 92.7

Amazon-Google (S) 68.6 68.6 68.0 64.3 70.5 66.3

Walmart-Amazon
1
 (S) 66.3 76.0 70.5 58.9 72.4 64.4

Abt-Buy (T) 83.4 69.0 75.3 74.3 72.8 72.9

iTunes-Amazon
2
 (D) 87.0 81.5 84.0 81.5 80.4 80.4

Walmart-Amazon
2
 (D) 66.3 69.2 67.6 55.2 71.6 61.2

SN Computer Science (2023) 4:15 Page 19 of 27 15

SN Computer Science

model and MT-based product keywords are not as useful

as word embeddings.

Vocabulary Coverage

Here, we study the extent to which the vocabulary of the

corpus we used to build the language resources well-repre-

sents those from the target tasks. Taking the product clas-

sification and linking datasets as examples, we calculate a

number of statistics on the training set of each dataset, and

show them in Table 15. Avg tok is the average number of

tokens (separated by the white space character) per instance

(concatenating all metadata available) within a dataset. Avg

% non-digit tok is the ratio between the average number of

tokens excluding tokens containing only digits and the aver-

age number of tokens per instance. Avg % non-digit toks

in PDC is the ratio between the average number of non-

digit tokens found in the vocabulary of the product descrip-

tion corpus (PDC) and the average number of tokens per

instance. In other words, Avg % toks in PDC indicates how

much training data are covered by the vocabulary of the

product description corpus.

Comparing the product classification datasets against the

linking datasets, there is obvious pattern that the product

linking datasets contain a much larger percentage of non-

alphabetic tokens (Avg % non-digit tok), and a much smaller

percentage of alphabetic tokens are covered by the product

description corpus (Avg % non-digit toks in PDC). We argue

that this difference could explain why our word embeddings

and fine-tuned BERT language model are found to be less

effective on the product linking task.

Among the product linking dataset, recall that in Table 11

showing the results of using word embeddings, BeerAdvo-

RateBeer (S), Fodors-Zagats (S) and Amazon-Google (S)

are the three datasets where our word-embedding model

caused the baseline performance to decline. Inspecting these

datasets in Table 15, we find them to share the following

three patterns: the text content is short (Avg tok), having

a large percentage of non-alphabetic tokens (e.g. 58% for

Fodors-Zagats (S), 29% for BeerAdvo-RateBeer), and hav-

ing a relatively small percentage of vocabulary coverage by

the product description corpus (e.g. Avg % non-digit toks

in PDC for Fodors-Zagats (S) is only 43%). The extreme

example is the Fodors-Zagats (S) dataset. Each instance con-

tains an average of 19 tokens, where only 8 are alphabetic

words, and out of which only 3 or 4 are covered by the prod-

uct description corpus. As a result, the learning algorithms

could have been very sensitive to those very few number

of words which are covered by the vocabulary. Adding to

this the potential problem of under-representation of these

domains as discussed in the previous section, the combi-

nation of these factors could explain the decline in perfor-

mance when those word embeddings are used.

Table 12 Product linking

results comparing the use of

machine translation models for

generating product keywords

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product linking experiments: using machine translation models

Baselines Comparators

Dataset P R F1 P R F1

WDC-small DM
n

55.6 59.9 57.7 DMn,pk 51.3 55.5 53.3

BERT
n

67.1 89.2 76.4 BERTn,pk 66.5 87.1 75.3

BeerAdvo-RateBeer (S) DM
n

75.0 21.4 33.3 DMn,pk 83.3 35.7 50.0

BERT
n

76.2 68.6 68.8 BERTn,pk 60.0 70.0 64.4

iTunes-Amazon
1
 (S) DM

n
86.2 92.6 89.3 DMn,pk 100.0 85.2 92.0

BERT
n

86.9 92.6 89.5 BERTn,pk 87.8 88.9 88.2

Fodors-Zagats (S) DM
n

80.0 72.7 76.2 DMn,pk 76.2 72.7 74.4

BERT
n

91.3 88.2 89.5 BERTn,pk 87.6 90.0 88.8

Amazon-Google (S) DM
n

59.5 57.7 58.6 DMn,pk 58.5 54.7 56.5

BERT
n

62.5 69.3 64.9 BERTn,pk 57.7 64.8 60.6

Walmart-Amazon
1

DM
n

36.6 36.8 36.7 DMn,pk 37.2 18.1 24.4

BERT
n

61.5 55.2 56.5 BERTn,pk 63.0 49.7 54.8

Abt-Buy (T) DM
n

33.3 27.2 30.0 DMn,pk 33.2 30.1 31.2

BERT
n

76.3 79.8 77.9 BERTn,pk 81.9 75.6 78.4

iTunes-Amazon
2
 (D) DM

n
63.6 51.9 57.1 DMn,pk 70.0 51.9 59.6

BERT
n

81.9 69.6 74.3 BERTn,pk 87.7 74.8 80.4

Walmart-Amazon
2

DM
n

34.7 34.7 34.7 DMn,pk 28.2 24.9 26.5

BERT
n

62.5 55.4 56.8 BERTn,pk 64.6 51.6 56.1

 SN Computer Science (2023) 4:15 15 Page 20 of 27

SN Computer Science

Product Keywords Analysis

Here, we focus on understanding the failure of the MT-gen-

erated product keywords. Our idea of MT-based product

keywords is inspired by the work of [13], who cast product

classification as a MT task that aims to learn the mapping

between product names and their category classes. They suc-

cessfully tested this approach on the Rakuten dataset. There-

fore we compare the Rakuten dataset against the product

category corpus (PCC) to understand if there exists any dif-

ference between the two datasets that have been used to train

MT models. For each instance in a dataset, we count the

number of tokens in its product name, and also the number

of tokens in the classification label. For the Rakuten dataset,

product classifications are pseudonymised by an ID number,

such as 1608 ⟩ 2320 ⟩ 2173 ⟩ 2878. Li et al. [13] treated

them as a sequence of tokens. Therefore, we count the num-

ber of tokens separated by ‘ ⟩ ’. For the PCC, the equivalent

product classifications are those site-specific product cat-

egories/labels, which we used to train the MT model. We

compare the distribution of the numbers of words in Fig. 4.

Further, we also count the number of unique tokens found in

the product name and classification/site-specific categories

from each dataset, and calculate a ratio as ‘name/category

unique word ratio’. This number is 116 for Rakuten, and 4

for PCC.

Figure 4 shows that while the numbers of words in the

product classifications from both datasets appear to be gen-

erally comparable, the Rakuten dataset however, contains

generally longer product names than the PCC. The name/

category unique word ratio of Rakuten is also orders of mag-

nitude higher than that of the PCC. We say that the PCC as

Fig. 3 Configurations of dif-

ferent models for comparison

for the fake product review

detection task. The shaded box

represents the components

of a model to be changed for

comparison

Table 13 Fake product review

detection results comparing the

use of word-embedding models

and language models

Boldfaced text suggests the results are better than the baseline when the language resources are used

Macro W.Macro

P R F1 P R F1

Part (a) Experiments: using word-embedding models

 Baselines

 SVMggl 85.1 85.1 85.1 85.1 85.1 85.1

 GND.biLSTMggl 94.8 94.7 94.7 94.8 94.7 94.7

 GND.HANggl 95.0 95.0 95.0 95.0 95.0 95.0

 FT.MWPDggl 93.9 93.9 93.9 93.9 93.9 93.9

Comparators

 SVMprod 87.1 87.0 87.0 87.1 87.0 87.0

 GND.biLSTMprod 95.5 95.5 95.4 95.5 95.5 95.4

 GND.HANprod 95.8 95.8 95.8 95.8 95.8 95.8

 FT.MWPDprod 94.1 94.1 94.1 94.1 94.1 94.1

Part (b) Experiments: using language models

 Baseline

 BERT
default

97.3 97.2 97.2 97.3 97.2 97.2

Comparator

 BERTprod 97.1 97.0 97.0 97.1 97.0 97.0

SN Computer Science (2023) 4:15 Page 21 of 27 15

SN Computer Science

training data for MT is much ‘sparser’ than the Rakuten

dataset. Intuitively, it would have been easier to generalise

on the Rakuten dataset, as a significantly larger number of

tokens in the product names would be mapped to the same

token in the product classification. On the contrary, there

are significantly fewer examples to learn this mapping on

the PCC.

We conclude here that the reason behind the failure of

the MT-based product keywords is the inconsistent quality

of the generated keywords. And this could have been due to

the sparsity in the product category corpus that we used to

train the MT model.

Discussion

With the growing amount and availability of semantic

markup data on the Web, research has started looking at how

such a gigantic data resource can be used to support various

data mining tasks [4, 5, 11]. However, there has been a sig-

nificant variation in terms of the data sources used, the tasks

addressed, the processes applied, and the findings reported.

In this section, we discuss our work from four perspectives:

(1) research question 1; (2) research question 2); and (3)

how to interpret the generally negative results of pre-training

language models.

Table 14 The numbers of the largest hosts (top 100 ranked by the number of product offer instances found in product description and category

corpora) by types of products sold online

Note that the number will add up above 100, as there are several websites classified under multiple product types

Type #Hosts Notes

Auto parts/accessories 5 E.g. car parts, car audio

Automobile 7 E.g. cars, motorcycles

B2B marketplace for exporter/importers 1

Books 2 Incl. conventional and audio books

Business catalogues 1 E.g. yellow pages

Camera 1

Chemical products 1

Educational resources 1 E.g., posters, exercise books

Farming equipment 1 E.g. tractors, seeds, clothing

Fashion 26 E.g. clothing, footwear, accessories

Finance 1 E.g. credit card shopping

Food 1

Gardening 1 Incl. equipment, plants, decoration etc.

Healthy supplements 1

Hobbies/handcrafting 1 E.g. knitting supplies

Holiday making 4 E.g. hotels, flights, package holidays

Home furnishing/furniture 4

Information consultancy 4 E.g. news, drug patent consultancy, DIY

Jewellery/watch 7

Lighting equipment 1

Music 1

Office supply 2

Pet supply 1

Power tools 1

E-commerce integration/comparison platforms 5 E.g. groupon, gumtree

Properties 2

Restaurant equipment/hardware supply 2

Speciality clothing 7 All hosts are for bridal wear

Sports equipment 4 E.g. golf, baseball

Sports fan shop 2 E.g. baseball team fan shops selling anything ranging

from clothing to decoration items

Visual content 4 Typically online photo/gallery shops, e.g. vectorstock.com

 SN Computer Science (2023) 4:15 15 Page 22 of 27

SN Computer Science

In terms of 1) our first research question, (also objec-

tive 1), we processed the markup data from the 2017

WDC release and extracted all n-quads related to products.

Then following the work of [6, 11, 13], we transformed

the n-quads to three different types of language resources

respectively: word embeddings, a refined BERT LM, and a

machine translation model for generating product keywords

given their names. Our choice of methods represent the most

popular options in product NLP, but to the best of our knowl-

edge, our work is the first that utilises and compares these

different methods in a single study.

In terms of 2) our second research question (also objec-

tive 2), we conducted a wide range of experiments including

three tasks and 10 datasets of different sizes, that are used to

evaluate different SoTA models using the created language

resources. In terms of the scope of our experimental studies,

to the best of our knowledge, there were no previous studies

of a comparable scale. On the whole, we found that only

word embeddings led to the most consistent improvement

over all tasks. In this direction, we noted before that the ear-

lier work by [22] used the fastText algorithm to train word

embeddings using a product-related corpus collected from

the semantic markup data (so called ‘self-trained embed-

dings’). They showed that this domain-specific embedding

model marginally increased the performance of product link-

ing on some product categories, but overall did not offer

significant value. In comparison, our Word2Vec skip-gram

word-embedding model gained notable improvement over

the generic embedding model on the WDC-small dataset

(Table 11), which was also used by [22]. To explain this

difference, we suspect that the size of the training corpora

and the different pre-processing in the two studies could

have been the reason. The corpus used in [22] focussed on

product linking, and therefore, filtered the underlying data

based on if a product offer contains useful product identi-

fies. This process could have eliminated a significant pro-

portion of the data that may have been useful as less than

10% of product offers contain such information. Our product

description corpus on the other hand, is much larger. This

seems to suggest that using a larger, more diverse set of

product markup data is more beneficial for training word

embeddings.

In terms of 3) the negative results from pre-training lan-

guage models, we notice that, although this is generally

inconsistent with the wider literature on training in-domain

LMs [6–10], similar observations were also reported previ-

ously in the literature [6, 7]. We believe there can be many

reasons to this, but we speculate that the primary ones being

the size and quality of the data used for in-domain pre-train-

ing. Compared to the E-BERT model [9] that is the most

similar to ours, we note significant difference in terms of

the pre-training process. While we used the ‘out of the box’

BERT configuration without much change, E-BERT modi-

fied the pre-training process in many ways using high qual-

ity external resources and complex process algorithms. All

these modifications allowed E-BERT to learn product related

knowledge in a more effective way. Similarly, SMedBERT

[10] changed the pre-training process by incorporating struc-

tured information such as knowledge graphs.

At the same time, it is worth noting studies that also

used a simple ‘out of the box’ BERT pre-training process

(same to ours) with an in-domain corpus and obtained

better results on downstream tasks, such as BioBERT

[6], SciBERT [8], and Clinical BERT [7]. It is possible

that the main differentiating factor could be the size and

Table 15 Vocabulary analysis of each dataset

Dataset Avg tok Avg % non-

digit tok

Avg % non-

digit toks in

PDC

MWPD-PC 80 94 88

WDC-25 49 98 94

Rakuten 10 91 84

IceCat 46 99 85

WDC-small 12 83 79

BeerAdvo-RateBeer (S) 17 71 71

iTunes-Amazon
1
 (S) 41 63 59

Fodors-Zagats (S) 19 42 43

Amazon-Google (S) 11 64 63

Walmart-Amazon
1
 (S) 17 76 66

Abt-Buy (T) 35 80 74

iTunes-Amazon
2
 (D) 45 64 63

Walmart-Amazon
2
 (D) 19 74 69

Fig. 4 Comparison of the distributions of text length in the product

names from the Rakuten dataset and that from the product category

corpus (PCC); and comparison of the distributions of word frequency

in the product classification labels from the Rakuten dataset and the

word frequency in the site-specific categories of PCC

SN Computer Science (2023) 4:15 Page 23 of 27 15

SN Computer Science

quality of the underlying corpora used for pre-training.

All these earlier studies used resources that are arguably

higher quality and are of a larger quantity. For example,

SMedBERT, E-BERT and Clinical BERT used well-

curated vocabularies, knowledge graphs or corpora.

SciBERT and BioBERT used scientific publications that

are well-written and follow a generally consistent struc-

ture. The unstructured in-domain corpus is typically of a

comparable size to the original corpus used for training

BERT, or much larger (BioBERT). In contrast, our cor-

pora are much noisier as they are collected from hetero-

geneous websites and there are no standardisations on

how the content should be written. Our corpora are also

much smaller, due to having to split the entire dataset into

smaller chunks to meet the computational restrictions.

One question that remains unanswered is that while

both our word embedding model and the BERT LM are

trained on the same corpus, why are the word embed-

dings more useful than the BERT model? On the one

hand, the corpus used to pre-train BERT is much smaller,

as we were unable to use the entire product description

corpus as we did for the word-embedding model. On

the other hand, our word embeddings are trained using

the Word2Vec skip-gram algorithm, which learns word

embeddings through a task of predicting the context of

a given word. The BERT LM pre-training followed the

Masked Language Modelling (MLM) task, which tries to

predict a word given its context. This rationale is similar

to Word2Vec’s Continuous Bag-of-Words (CBOW) algo-

rithm that was shown to be less effective on modelling

infrequent words [65]. As Appendix 1 shows, some of

the tasks we evaluated may contain many words that are

under-represented in the product description corpus. As

a result. This might have had an impact on the continued

in-domain pre-training of BERT.

Beyond these analysis from a theoretical point of view,

we also conducted further analysis of the data quality

(objective 3) and this to some extent, confirmed several

points made in the above discussion. We noticed that the

semantic markup data are highly unbalanced in terms of

the domains, with data related to fashion dominating a

significant percentage. This could have led to noticeable

vocabulary ‘gaps’, which could be detrimental to datasets

containing short texts falling into such ‘gaps’, or algo-

rithms that are sensitive to ‘infrequent’ words. Although

previous work such as [4, 5] reported similar findings,

they did not evaluate the impact of such problems on tasks

that use such data. Our work therefore, serves first evi-

dence of how such data quality issues impact NLP tasks.

Conclusion

In this work, we conducted an exploratory study of using

structured linked data embedded within HTML webpages

for the creation of language resources for downstream NLP

tasks. Despite the generally negative results, we can draw

important lessons that may inform future research and

practice (objective 4).

From a theoretical point of view, our results serve a les-

son to researchers looking to develop novel methods that

exploit the growing semantic markup data on the Web.

While the data has reached a ‘critical mess’, the sheer size

does not seem to outweigh certain ‘quality’ aspects of the

data and this may impact on downstream tasks that exploit

such data. To address this, a useful task would be develop-

ing an approach to ‘assess’ the quality a semantic markup

dataset, or identify a ‘quality subset’. However, there can

be many challenges such as the notion of ‘quality’ may be

task and data dependent.

Leading from this, we argue there is also an implication

on the increasingly popular research on developing large

domain-specific LMs. While many successful studies have

been reported in different domains, our study shows that

language modelling using very large unstructured corpora

may not be as straightforward as the literature indicates.

Crucially, there is a lack of understanding of the ‘condi-

tions for success’, e.g.: how much data would be sufficient

for training a domain-specific LM, how ‘balanced’ the data

needs to be, and in what ways? We believe that this is an

important question to be further investigated, given the

increasing popularity and importance of using domain-

specific LMs in NLP.

From a practical point of view, our study shows that,

pre-training BERT appears to be more susceptible to noise

and size of datasets, while training word embeddings

appears to be more robust. This can inform practitioners

when making a choice between these popular approaches:

although BERT-based methods are taking the mainstream

in research, earlier methods like training word embed-

dings may perform just as well or even better in certain

scenarios.

Further, we also call for further effort from data pub-

lishers that adopt the semantic markup practice. Although

there has been remarkable progress in terms of the quan-

tity of semantic markup data, it may now be the time to

place more emphasis on quality in order to allow a wider

community to benefit from such data.

Our work, however, is limited in a number of ways.

First, partly due to the limited space of this article, we

did not compare all available options of each method

for creating language resources. For example, instead of

Word2Vec, there are other alternatives for training word

 SN Computer Science (2023) 4:15 15 Page 24 of 27

SN Computer Science

embeddings [71]. The same can be said for pre-training

LMs. Second, due to limited computing resources, we

were unable to pre-train our BERT LM using the full prod-

uct description corpus. This could have affected our results

to some extent.

Reflecting on the above points, we highlight a few future

research directions. First, as already discussed above, there

can be significant value in researching the quality aspects

of semantic markup data, and ultimately developing metrics

and processes to identify and select the right subset of the

dataset optimised for different tasks. This could be broadly

considered an issue of quality of such linked data, but many

research questions arise: how to define such quality metrics,

how generic/task-specific can they be, how to use them to

guide the dataset sub-selection, and what impact will it have

on the language resources created using this dataset, and the

downstream tasks using such resources?

Second, it may be worth to explore the use of these struc-

tured data in less domain-agnostic tasks. As an example,

structured data embedded within specific HTML elements

could be used as annotations on that web page, and the cor-

responding HTML formatting properties may be useful and

more generalisable features for automatically tagging con-

tent from different web pages but formatted with similar

properties. The idea here is how different types of content

are formatted ‘relative to each other’ on a product listing

web page can be consistent across many different domains

and websites. This has been validated in different contexts

such as [72]. The abundance of already annotated product

listing pages in the form of semantic markup data can create

an opportunity to train such taggers in a self-supervised way.

Our future work will explore some of the above questions

and research directions.

Appendix 1: Additional Data Analysis

A.1 Product Classification: Word Frequency Analysis
for Word‑Embedding Model Training

As discussed in “Training word-embedding models”, we

choose to use the Word2Vec skip-gram model instead of

the continuous bag-of-words model for training the word-

embedding models from our product description corpus. The

reason is that the skip-gram model is shown to better repre-

sent infrequent words in the training corpus. We conducted

a word frequency analysis of the training datasets for product

classification, and discovered that a fair percentage of words

belong to the relatively infrequent segment of words in the

product description corpus. We present this part of analysis

here.

First, we start with extracting and normalising (same pro-

cess as that used for building the word-embedding model) all

unique words from the product description corpus. Second,

we count the frequency of these words and rank them in the

descending order of frequency. This list of words is then

binned into 100 segments. Third, we extract unique words

from each product classification training dataset (from the

concatenation of all product metadata), and count for each

bin, the number of words found in that bin. Finally, we cal-

culate the percentage of words belonging to each bin.

Our results show that, the highest frequency bin (#1) con-

tains roughly 71%, 72%, 55% and 63% of words found in the

IceCat, Rakuten, MWPD-PC and WDC-25 training sets. In

other words, between 28% and 45% of words from these

datasets are not the most frequent words found in the word-

embedding training corpus. In fact, summing up the words

under bin #11 and further, these are 3%, 6%, 21% and 17%

for IceCat, Rakuten, MWPD-PC and WDC-25 training sets.

Based on these findings, we opted for using the skip-gram

model for training word embeddings.

Author Contributions Ziqi Zhang contributed 80% of the work (design,

development, and writing); Xingyi Song contributed 20%.

Funding This work is not funded.

Availability of data and materials https:// drive. google. com/ drive/ folde

rs/ 1BgA4 iedPO FtjjA eku7c 4i1c2 TUu7A AHp? usp= shari ng

Code availability Yes, upon request.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing, adapta-

tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons licence, and indicate if changes

were made. The images or other third party material in this article are

included in the article's Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not included in

the article's Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://drive.google.com/drive/folders/1BgA4iedPOFtjjAeku7c4i1c2TUu7AAHp?usp=sharing
https://drive.google.com/drive/folders/1BgA4iedPOFtjjAeku7c4i1c2TUu7AAHp?usp=sharing
http://creativecommons.org/licenses/by/4.0/

SN Computer Science (2023) 4:15 Page 25 of 27 15

SN Computer Science

References

 1. Bizer C. The emerging web of linked data. IEEE Intell Syst.

2009;24(5):87–92. https:// doi. org/ 10. 1109/ MIS. 2009. 102.

 2. Foley J, Bendersky M, Josifovski V. Learning to extract local

events from the web. In: Proceedings of the 38th international

ACM SIGIR conference on research and development in informa-

tion retrieval. SIGIR ’15. Association for Computing Machinery,

New York; 2015. p. 423–432. https:// doi. org/ 10. 1145/ 27664 62.

27677 39.

 3. Vagliano I, Monti D, Scherp A, Morisio M. Content recommenda-

tion through semantic annotation of user reviews and linked data.

In: Proceedings of the knowledge capture conference. K-CAP

2017. Association for Computing Machinery, New York; 2017.

https:// doi. org/ 10. 1145/ 31480 11. 31480 35.

 4. Bizer C, Primpeli A, Peeters R. Using the semantic web as a

source of training data. Datenbank Spektrum. 2019;19:127–35.

 5. Meusel R, Primpeli A, Meilicke C, Paulheim H, Bizer C.

Exploiting microdata annotations to consistently categorize

product offers at web scale. In: International conference on

electronic commerce and web technologies. Springer; 2015. p.

83–99.

 6. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT:

a pre-trained biomedical language representation model for bio-

medical text mining. Bioinformatics. 2019;36(4):1234–40. https://

doi. org/ 10. 1093/ bioin forma tics/ btz682.

 7. Alsentzer E, Murphy J, Boag W, Weng W-H, Jindi D, Naumann

T, McDermott M. Publicly available clinical BERT embeddings.

In: Proceedings of the 2nd clinical natural language processing

workshop. Association for Computational Linguistics, Minne-

apolis, Minnesota; 2019. p. 72–78. https:// doi. org/ 10. 18653/ v1/

W19- 1909.

 8. Beltagy I, Lo K, Cohan A. SciBERT: a pretrained language

model for scientific text. In: Proceedings of the 2019 conference

on empirical methods in natural language processing and the 9th

international joint conference on natural language processing

(EMNLP-IJCNLP). Association for Computational Linguistics,

Hong Kong, China; 2019. p. 3615–3620. https:// doi. org/ 10. 18653/

v1/ D19- 1371.

 9. Zhang D, Yuan Z, Liu Y, Fu Z, Zhuang F, Wang P, Chen H, Xiong

H. E-BERT: a phrase and product knowledge enhanced language

model for e-commerce. CoRR. 2020. arXiv: 2009. 02835.

 10. Zhang T, Cai Z, Wang C, Qiu M, Yang B, He X. SMedBERT: a

knowledge-enhanced pre-trained language model with structured

semantics for medical text mining. In: Proceedings of the 59th

annual meeting of the association for computational linguistics

and the 11th international joint conference on natural language

processing (volume 1: Long Papers). Association for Computa-

tional Linguistics, Online; 2021. p. 5882–5893. https:// doi. org/

10. 18653/ v1/ 2021. acl- long. 457. https:// aclan tholo gy. org/ 2021.

acl- long. 457

 11. Zhang Z, Bizer C, Peeters R, Primpeli A. Mwpd2020: seman-

tic web challenge on mining the web of html-embedded product

data. In: Proceedings of the semantic web challenge on mining the

web of HTML-embedded product data co-located with the 19th

international semantic web conference, vol. 2720. CEUR-WS.org;

2020.

 12. Lin Y-C, Das P, Datta A. Overview of the sigir 2018 ecom rakuten

data challenge. In: eCOM at the 41st international ACM SIGIR

conference on research and development in information retrieval.

CEUR-WS.org; 2018.

 13. Li MY, Kok S, Tan L. Don’t classify, translate: multi-level e-com-

merce product categorization via machine translation. CoRR.

2018. arXiv: 1812. 05774.

 14. Yun Y, Ma D, Yang M. Human–computer interaction-based

decision support system with applications in data mining. Future

Gener Comput Syst. 2021;114:285–9. https:// doi. org/ 10. 1016/j.

future. 2020. 07. 048.

 15. Saura JR, Palacios-Marqués D, Ribeiro-Soriano D. Using data

mining techniques to explore security issues in smart living envi-

ronments in twitter. Comput Commun. 2021;179:285–95. https://

doi. org/ 10. 1016/j. comcom. 2021. 08. 021.

 16. Saura JR, Palacios-Marqués D, Ribeiro-Soriano D. Exploring the

boundaries of open innovation: evidence from social media min-

ing. Technovation. 2022. https:// doi. org/ 10. 1016/j. techn ovati on.

2021. 102447.

 17. Mountantonakis M, Tzitzikas Y, et al. Lodsyndesisie: entity

extraction from text and enrichment using hundreds of linked

datasets. Lecture notes in computer science. In: Harth A, et al.,

editors. The semantic web: ESWC 2020 satellite events. Berlin:

Springer; 2020.

 18. Rama-Maneiro E, Vidal JC, Lama M. Collective disambiguation

in entity linking based on topic coherence in semantic graphs.

Knowl Based Syst. 2020. https:// doi. org/ 10. 1016/j. knosys. 2020.

105967.

 19. Kiran Selvam R, Kejriwal M. On using product-specific schema.

org from web data commons: an empirical set of best practices.

arXiv e-prints. 2020.

 20. Chortaras A, Stamou G. D2rml: integrating heterogeneous data

and web services into custom rdf graphs. In: Workshop on Linked

Data on the Web. 2018.

 21. Primpeli A, Peeters R, Bizer C. The wdc training dataset and

gold standard for large-scale product matching. In: Companion

proceedings of the 2019 world wide web conference. WWW

’19. Association for Computing Machinery, New York; 2019. p.

381–386. https:// doi. org/ 10. 1145/ 33085 60. 33166 09.

 22. Peeters R, Primpeli A, Wichtlhuber B, Bizer C. Using schema.

org annotations for training and maintaining product matchers.

In: Proceedings of the 10th international conference on web intel-

ligence, mining and semantics. WIMS 2020. Association for Com-

puting Machinery, New York; 2020. p. 195–204. https:// doi. org/

10. 1145/ 34059 62. 34059 64.

 23. Peeters R, Bizer C. Dual-objective fine-tuning of bert for entity

matching. Proc VLDB Endow. 2021;14(10):1913–21. https:// doi.

org/ 10. 14778/ 34678 61. 34678 78.

 24. Ristoski P, Petrovski P, Mika P, Paulheim H. A machine learning

approach for product matching and categorization. Semant Web.

2018;9(5):707–28.

 25. Le Q, Mikolov T. Distributed representations of sentences and

documents. In: Proceedings of the 31st international conference

on international conference on machine learning-volume 32.

ICML’14. JMLR.org; 2014. p. 1188–1196.

 26. Kozareva Z. Everyone likes shopping! multi-class product cat-

egorization for e-commerce. In: Proceedings of the conference of

the North American chapter of the association for computational

linguistics: human language technologies (NAACL). ACL; 2015.

p. 1329–1333.

 27. Chavaltada C, Pasupa K, Hardoon D. A comparative study of

machine learning techniques for automatic product categorisa-

tion. In: Proceedings of the international symposium on neural

networks. Springer; 2017. p. 10–17.

 28. Xia Y, Levine A, Das P, Di Fabbrizio G, Shinzato K, Datta A.

Large-scale categorization of Japanese product titles using neural

attention models. In: Proceedings of the 15th conference of the

European chapter of the association for computational linguistics

(EACL): volume 2, short papers. Association for Computational

Linguistics; 2017. p. 663–668.

 29. Akritidis L, Fevgas A, Bozanis P. Effective unsupervised matching

of product titles with k-combinations and permutations. In: IEEE

https://doi.org/10.1109/MIS.2009.102
https://doi.org/10.1145/2766462.2767739
https://doi.org/10.1145/2766462.2767739
https://doi.org/10.1145/3148011.3148035
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
http://arxiv.org/abs/2009.02835
https://doi.org/10.18653/v1/2021.acl-long.457
https://doi.org/10.18653/v1/2021.acl-long.457
https://aclanthology.org/2021.acl-long.457
https://aclanthology.org/2021.acl-long.457
http://arxiv.org/abs/1812.05774
https://doi.org/10.1016/j.future.2020.07.048
https://doi.org/10.1016/j.future.2020.07.048
https://doi.org/10.1016/j.comcom.2021.08.021
https://doi.org/10.1016/j.comcom.2021.08.021
https://doi.org/10.1016/j.technovation.2021.102447
https://doi.org/10.1016/j.technovation.2021.102447
https://doi.org/10.1016/j.knosys.2020.105967
https://doi.org/10.1016/j.knosys.2020.105967
https://doi.org/10.1145/3308560.3316609
https://doi.org/10.1145/3405962.3405964
https://doi.org/10.1145/3405962.3405964
https://doi.org/10.14778/3467861.3467878
https://doi.org/10.14778/3467861.3467878

 SN Computer Science (2023) 4:15 15 Page 26 of 27

SN Computer Science

30th international conference on tools with artificial intelligence;

2018. p. 213–220.

 30. Cevahir A, Murakami K. Large-scale multi-class and hierarchical

product categorization for an e-commerce giant. In: Proceedings

the 26th international conference on computational linguistics

(COLING): technical papers. The COLING 2016 Organizing

Committee; 2016. p. 525–535.

 31. Gupta V, Karnick H, Bansal A, Jhala P. Product classification in

e-commerce using distributional semantics. In: Proceedings of

COLING2016: technical papers. The COLING 2016 Organizing

Committee; 2016. p. 536–546.

 32. Lee H, Yoon Y. Engineering doc2vec for automatic classification

of product descriptions on o2o applications. Electron Commer

Res. 2018;18(3):433–56.

 33. Borst J, Körner E, Opasjumruskit K, Niekler A. Language model

cnn-driven similarity matching and classification for html-embed-

ded product data. In: Proceedings of the semantic web challenge

on mining the web of HTML-embedded product data co-located

with the 19th international semantic web conference. CEUR

Workshop Proceedings, vol. 2720. CEUR-WS.org; 2020.

 34. Li J, Dou Z, Zhu Y, Zuo X, Wen J-R. Deep cross-platform product

matching in e-commerce. Inf Retr J. 2020;23:136–58.

 35. Zahera H, Sherif M. Probert: product data classification with fine-

tuning bert model. In: Proceedings of the semantic web challenge

on mining the web of HTML-embedded product data co-located

with the 19th international semantic web conference. CEUR

Workshop Proceedings, vol. 2720. CEUR-WS.org; 2020.

 36. Ha J-W, Pyo H, Kim J. Large-scale item categorization in e-com-

merce using multiple recurrent neural networks. In: Proceedings

of the international conference on knowledge discovery and data

mining (KDD). ACM; 2016. p. 107–115.

 37. Zhang Z, Paramita M. Product classification using microdata

annotations. In: Ghidini C, Hartig O, Maleshkova M, Svátek V,

Cruz I, Hogan A, Song J, Lefrançois M, Gandon F, editors. The

semantic web-ISWC 2019. Cham: Springer; 2019. p. 716–32.

 38. Kim Y. Convolutional neural networks for sentence classification.

In: Proceedings of the conference on empirical methods in natural

language processing (EMNLP). Association for Computational

Linguistics (ACL); 2014. p. 1746–1751.

 39. Yang L, E S, Xu S, Xiang Y. Bert with dynamic masked softmax

and pseudo labeling for hierarchical product classification. In:

Proceedings of the semantic web challenge on mining the web of

HTML-embedded product data co-located with the 19th interna-

tional semantic web conference. CEUR Workshop Proceedings,

vol. 2720. CEUR-WS.org; 2020.

 40. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training of

deep bidirectional transformers for language understanding. 2018.

arXiv preprint arXiv: 1810. 04805.

 41. Kannan A, Givoni IE, Agrawal R, Fuxman A. Matching unstruc-

tured product offers to structured product specifications. In: Pro-

ceedings of the 17th ACM SIGKDD international conference on

knowledge discovery and data mining. KDD ’11. Association for

Computing Machinery, New York; 2011. p. 404–412. https:// doi.

org/ 10. 1145/ 20204 08. 20204 74.

 42. Gopalakrishnan V, Iyengar SP, Madaan A, Rastogi R, Sengamedu

S. Matching product titles using web-based enrichment. In: Pro-

ceedings of the 21st ACM international conference on information

and knowledge management. CIKM ’12. Association for Comput-

ing Machinery, New York; 2012. p. 605–614. https:// doi. org/ 10.

1145/ 23967 61. 23968 39.

 43. Vandic D, van Dam J-W, Frasincar F. Faceted product search pow-

ered by the semantic web. Decis Support Syst. 2012;53(3):425–

37. https:// doi. org/ 10. 1016/j. dss. 2012. 02. 010.

 44. van Bezu R, Borst S, Rijkse R, Verhagen J, Vandic D, Frasincar

F. Multi-component similarity method for web product duplicate

detection. In: Proceedings of the 30th annual ACM symposium on

applied computing. SAC ’15. Association for Computing Machin-

ery, New York; 2015. p. 761–768. https:// doi. org/ 10. 1145/ 26956

64. 26958 18.

 45. Shah K, Kopru S, Ruvini J-D. Neural network based extreme clas-

sification and similarity models for product matching. In: Pro-

ceedings of the 2018 conference of the North American chapter

of the association for computational linguistics: human language

technologies, vol. 3 (Industry Papers). Association for Computa-

tional Linguistics, New Orleans-Louisiana; 2018. p. 8–15. https://

doi. org/ 10. 18653/ v1/ N18- 3002.

 46. Tracz J, Wójcik PI, Jasinska-Kobus K, Belluzzo R, Mroczkowski

R, Gawlik I. BERT-based similarity learning for product match-

ing. In: Proceedings of workshop on natural language processing

in e-commerce. Association for Computational Linguistics, Bar-

celona; 2020. p. 66–75.

 47. Petrovski P, Bryl V, Bizer C. Integrating product data from

websites offering microdata markup. In: Proceedings of the

23rd international conference on world wide web. WWW ’14

companion. Association for Computing Machinery, New York;

2014. p. 1299–1304. https:// doi. org/ 10. 1145/ 25679 48. 25797 04.

 48. Petrovski P, Bizer C. Learning expressive linkage rules from

sparse data. Semant Web. 2020;11(3):549–69.

 49. Köpcke H, Thor A, Thomas S, Rahm E. Tailoring entity reso-

lution for matching product offers. In: Proceedings of the 15th

international conference on extending database technology.

EDBT ’12. Association for Computing Machinery, New York;

2012. p. 545–550. https:// doi. org/ 10. 1145/ 22475 96. 22476 62.

 50. Kiapour MH, Han X, Lazebnik S, Berg AC, Berg TL. Where to

buy it: matching street clothing photos in online shops. In: 2015

IEEE international conference on computer vision (ICCV),

2015; p. 3343–3351. https:// doi. org/ 10. 1109/ ICCV. 2015. 382.

 51. Wang X, Sun Z, Zhang W, Zhou Y, Jiang Y-G. Matching user

photos to online products with robust deep features. In: Pro-

ceedings of the 2016 ACM on international conference on

multimedia retrieval. ICMR ’16. Association for Computing

Machinery, New York; 2016. p. 7–14. https:// doi. org/ 10. 1145/

29119 96. 29120 02.

 52. Peeters R, Bizer C, Glavaš G. Intermediate training of BERT

for product matching. In: Proceedings of the 2nd international

workshop on challenges and experiences from data integration to

knowledge graphs co-located with 46th international conference

on very large data bases; 2020.

 53. Londhe N, Gopalakrishnan V, Zhang A, Ngo HQ, Srihari R.

Matching titles with cross title web-search enrichment and com-

munity detection. Proc VLDB Endow. 2014;7(12):1167–78.

https:// doi. org/ 10. 14778/ 27329 77. 27329 90.

 54. Wu Y, Ngai EWT, Wu P, Wu C. Fake online reviews: literature

review, synthesis, and directions for future research. Decis Sup-

port Syst. 2020;132:113280. https:// doi. org/ 10. 1016/j. dss. 2020.

113280.

 55. Mandhula T, Pabboju S, Gugulotu N. Predicting the customer’s

opinion on amazon products using selective memory archi-

tecture-based convolutional neural network. J Supercomput.

2020;75:5923–47.

 56. Gani A. Amazon sues 1,000 ’fake reviewers’ 2015. https:// www.

thegu ardian. com/ techn ology/ 2015/ oct/ 18/ amazon- sues- 1000-

fake- revie wers. Accessed 12 Oct 2021.

 57. Salminen J, Kandpal C, Kamel AM, Jung S-G, Jansen BJ. Creat-

ing and detecting fake reviews of online products. J Retail Consum

Serv. 2022;64:102771. https:// doi. org/ 10. 1016/j. jretc onser. 2021.

102771.

 58. Xu Y, Yang Y, Han J, Wang E, Ming J, Xiong H. Slanderous

user detection with modified recurrent neural networks in recom-

mender system. Inf Sci. 2019;505:265–81.

http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/2020408.2020474
https://doi.org/10.1145/2020408.2020474
https://doi.org/10.1145/2396761.2396839
https://doi.org/10.1145/2396761.2396839
https://doi.org/10.1016/j.dss.2012.02.010
https://doi.org/10.1145/2695664.2695818
https://doi.org/10.1145/2695664.2695818
https://doi.org/10.18653/v1/N18-3002
https://doi.org/10.18653/v1/N18-3002
https://doi.org/10.1145/2567948.2579704
https://doi.org/10.1145/2247596.2247662
https://doi.org/10.1109/ICCV.2015.382
https://doi.org/10.1145/2911996.2912002
https://doi.org/10.1145/2911996.2912002
https://doi.org/10.14778/2732977.2732990
https://doi.org/10.1016/j.dss.2020.113280
https://doi.org/10.1016/j.dss.2020.113280
https://www.theguardian.com/technology/2015/oct/18/amazon-sues-1000-fake-reviewers
https://www.theguardian.com/technology/2015/oct/18/amazon-sues-1000-fake-reviewers
https://www.theguardian.com/technology/2015/oct/18/amazon-sues-1000-fake-reviewers
https://doi.org/10.1016/j.jretconser.2021.102771
https://doi.org/10.1016/j.jretconser.2021.102771

SN Computer Science (2023) 4:15 Page 27 of 27 15

SN Computer Science

 59. Zhang L, Wu Z, Cao J. Detecting spammer groups from prod-

uct reviews: a partially supervised learning model. IEEE Access.

2018;6:2559–68. https:// doi. org/ 10. 1109/ ACCESS. 2017. 27843 70.

 60. Ball L, Elworthy J. Fake or real? the computational detection of

online deceptive text. J Market Anal. 2014;2:187–201. https:// doi.

org/ 10. 1057/ jma. 2014. 15.

 61. Ren Y, Zhang Y. Deceptive opinion spam detection using neural

network. In: Proceedings of COLING 2016, the 26th international

conference on computational linguistics: technical papers. The

COLING 2016 Organizing Committee, Osaka; 2016. p. 140–150.

https:// aclan tholo gy. org/ C16- 1014.

 62. Yuan S, Wu X, Xiang Y. Task-specific word identification from

short texts using a convolutional neural network. Intell Data Anal.

2018;22(3):533–50.

 63. Liu Y, Pang B, Wang X. Opinion spam detection by incorporating

multimodal embedded representation into a probabilistic review

graph. Neurocomputing. 2019;366:276–83. https:// doi. org/ 10.

1016/j. neucom. 2019. 08. 013.

 64. Liu Y, Ott M, Goyal N, Du J, Joshi M, et al. RoBERTa: a robustly

optimized BERT pretraining approach. 2019. arXiv: 1907. 11692.

 65. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed

representations of words and phrases and their compositionality.

In: Proceedings of the 26th international conference on neural

information processing systems-vol. 2. NIPS’13. Red Hook: Cur-

ran Associates Inc.; 2013. p. 3111–3119.

 66. Beltagy I, Lo K, Cohan A. Scibert: a pretrained language model

for scientific text. arXiv preprint 2019. arXiv: 1903. 10676.

 67. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. Biobert:

a pre-trained biomedical language representation model for bio-

medical text mining. Bioinformatics. 2020;36(4):1234–40.

 68. Klein G, Kim Y, Deng Y, Nguyen V, Senellart J, Rush AM. Open-

nmt: neural machine translation toolkit. 2018. arXiv preprint

arXiv: 1805. 11462.

 69. Mudgal S, Li H, Rekatsinas T, Doan A, Park Y, Krishnan G, Deep

R, Arcaute E, Raghavendra V. Deep learning for entity matching:

a design space exploration. In: Proceedings of the 2018 interna-

tional conference on management of data. SIGMOD ’18. Associa-

tion for Computing Machinery, New York; 2018. p. 19–34. https://

doi. org/ 10. 1145/ 31837 13. 31969 26.

 70. Jiang N, de Marneffe M-C. Evaluating BERT for natural language

inference: a case study on the CommitmentBank. In: Proceedings

of the 2019 conference on empirical methods in natural language

processing and the 9th international joint conference on natural

language processing (EMNLP-IJCNLP). Association for Com-

putational Linguistics, Hong Kong, China; 2019. p. 6086–6091.

https:// doi. org/ 10. 18653/ v1/ D19- 1630. https:// www. aclweb. org/

antho logy/ D19- 1630.

 71. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word

vectors with subword information. 2016. arXiv preprint arXiv:

1607. 04606.

 72. Potvin B, Villemaire R. Robust web data extraction based on

unsupervised visual validation. In: Nguyen NT, Gaol FL, Hong

T-P, Trawiński B, editors. Intelligent information and database

systems. Cham: Springer; 2019. p. 77–89.

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ACCESS.2017.2784370
https://doi.org/10.1057/jma.2014.15
https://doi.org/10.1057/jma.2014.15
https://aclanthology.org/C16-1014
https://doi.org/10.1016/j.neucom.2019.08.013
https://doi.org/10.1016/j.neucom.2019.08.013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/1805.11462
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.1145/3183713.3196926
https://doi.org/10.18653/v1/D19-1630
https://www.aclweb.org/anthology/D19-1630
https://www.aclweb.org/anthology/D19-1630
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606

	An Exploratory Study on Utilising the Web of Linked Data for Product Data Mining
	Abstract
	Introduction
	Related Work
	Semantic Markup Data as Language Resources
	Product Classification
	Product Linking
	Fake Product Review Detection
	Reflection

	Building Language Resources
	Data Sources
	Training Word-Embedding Models
	Continued Pre-training of BERT Language Models
	Training Machine Translation Models

	Product Classification
	Datasets
	Model Configurations
	Using Word Embeddings
	Using Language Models
	Using Machine Translation Models

	Evaluation Metrics
	Result Summary

	Product Linking
	Datasets
	Model Configurations
	Using Word Embeddings
	Using Language Models
	Using Machine Translation Models

	Evaluation Metrics
	Result Summary

	Fake Product Review Detection
	Datasets
	Model Configurations and Evaluation Metrics
	Result Summary

	Further Analysis
	Data Provenance
	Vocabulary Coverage
	Product Keywords Analysis

	Discussion
	Conclusion
	References

