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Abstract

The Linked Open Data practice has led to a significant growth of structured data on the Web. While this has created an 

unprecedented opportunity for research in the field of Natural Language Processing, there is a lack of systematic studies on 

how such data can be used to support downstream NLP tasks. This work focuses on the e-commerce domain and explores 

how we can use such structured data to create language resources for product data mining tasks. To do so, we process bil-

lions of structured data points in the form of RDF n-quads, to create multi-million words of product-related corpora that are 

later used in three different ways for creating language resources: training word-embedding models, continued pre-training 

of BERT-like language models, and training machine translation models that are used as a proxy to generate product-related 

keywords. These language resources are then evaluated in three downstream tasks, product classification, linking, and fake 

review detection using an extensive set of benchmarks. Our results show word embeddings to be the most reliable and con-

sistent method to improve the accuracy on all tasks (with up to 6.9% points in macro-average F1 on some datasets). Contrary 

to some earlier studies that suggest a rather simple but effective approach such as building domain-specific language models 

by pre-training using in-domain corpora, our work serves a lesson that adapting these methods to new domains may not be 

as easy as it seems. We further analyse our datasets and reflect on how our findings can inform future research and practice.
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Introduction

Recent years have seen significant increase in the adoption 

of the Linked Open Data practice [1] by data publishers on 

the Web. LOD refers to the practice of describing structured 

data using standard markup languages (e.g. RDFa1) and uni-

versal vocabularies (e.g. schema.org) that allow defining 

properties and relations of data, and publishing and inter-

linking such data on the open Web (hence ‘semantic markup 

data’). While early LOD datasets primarily took form of a 

graph database such as DBpedia,2 an increasingly popular 

decentralised approach has been the embedding of seman-

tic markup data within HTML pages. The Web Data Com-

mons3 (WDC) project extracts such markup data from the 

http://orcid.org/0000-0002-8587-8618
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01415-3&domain=pdf
https://www.w3.org/TR/rdfa-primer/
https://wiki.dbpedia.org/
http://webdatacommons.org
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CommonCrawl4 as RDF n-quads,5 and release them on an 

annual basis. As by October 2021, its statistics showed that 

over 60% of web pages, or over 50% of websites contained 

semantic markups, amounting to over 82 billion quads—

more than doubled that from 2019.

Such semantic markup data allow the ‘machine read-

ing’ of the Web. It has not only driven the development of 

new products and data integration services, but also created 

unprecedented opportunities for research in the areas of Nat-

ural Language Processing (NLP, e.g. [2, 3]). This is because 

the RDF n-quads extracted from such data are described by 

universal vocabularies that define concepts, their properties 

and relationships. One of the most popular vocabularies is 

schema.org, which currently contains nearly 800 concepts 

and 1400 properties, and is used by over 10 million web-

sites.6 Studies have shown that such data can be used to train 

models for various NLP tasks, such as event extraction [2] 

and entity linking [4].

A particular domain that is witnessing the boom of 

semantic markup data is e-commerce, where online shops 

are increasingly embedding product markup data described 

using schema.org vocabularies into their web pages in order 

to improve content accessibility. Among the over 82 bil-

lion RDF n-quads mentioned above, nearly 17% are related 

to products, and are described by schema.org vocabularies. 

As examples, previous studies [4, 5] showed that among all 

product offers, 95% had an n-quad related to their names, 

65% had one for their description, 35% had one for their 

brand, and less than 10% had one for their category. Such 

product markup data can be potentially useful as language 

resources to benefit various product data mining tasks, par-

ticularly in the current trend towards employing neural net-

work models in developing large language models that prove 

to be effective for a wide range of NLP tasks [6–10]. How-

ever, we identify a gap in existing studies in this area. While 

there have been a limited number of sporadic studies [4, 5, 

11] towards this direction in the product domain, the data 

sources used, the processes applied to use these data sources, 

and the findings have been inconsistent. This has made it 

difficult to properly compare or evaluate the usefulness of 

such data, or even answer the question ‘to what extent can 

we, and how can we, exploit this gigantic semantic markup 

data for product data mining tasks’.

To address this gap, in this work, we explore a series of 

questions in the context of the product domain, which is 

chosen for two reasons. First, it is one of the most promising 

domains where a ‘critical mass’ of such resources has been 

created. Second, it is a domain that continues to garner inter-

est from both researchers and practitioners, as evidenced by 

a series of workshops and shared tasks sponsored by indus-

tries [11, 12]. We study the following questions:

• How can we transform such semantic markup data to 

potentially useful language resources?

• How useful are these language resources for downstream 

NLP tasks in the product domain?

To answer these questions in this work, we aim to achieve 

the following objectives:

• To investigate and develop different methods for building 

language resources out of the semantic markup data;

• To evaluate the created language resources on a num-

ber of product-related NLP tasks using state-of-the-art 

(SoTA) benchmarks;

• To develop an understanding of if and how quality issues 

in the semantic markup data may impact on the language 

resource creation;

• To outline the implications of our study and future 

research directions that may help advance research and 

practice in this area.

Methodologically, we start with processing the semantic 

markup data to transform them into different types of lan-

guage resources that can be used for downstream NLP tasks. 

For this, we review SoTA research in the area of product data 

mining and identify three ways: training word-embedding 

models (e.g. [11]), continued pre-training of BERT-like 

language models (e.g. [9]), and training machine transla-

tion models (e.g. [13]) that are used as a proxy to generate 

product-related keywords. Next, we apply these language 

resources to three product-related NLP tasks and evaluate 

them using SoTA methods on current benchmarks: prod-

uct classification, product linking, and fake product review 

detection. The exact methods are dependent on the task and 

the language resources used, and therefore, will be explained 

in detail later.

The novelty and originality of this work lies in that, it 

is the first study that systematically studies and evaluates 

the use of semantic markup data for multiple product data 

mining tasks. Therefore, our findings serve as useful refer-

ences for future research in this direction. First, we report 

that among the three methods, only word embeddings are 

the most consistent method to improve the accuracy on all 

three tasks. The BERT language models and the MT-based 

product keywords on the other hand, do not bring consistent 

improvements, even though there have been many studies 

that successfully developed in-domain BERT models follow-

ing the simple principle of continued pre-training a generic 

BERT using large domain-specific corpora. Thus our results 

serve a lesson that this method may not be as easy as it 

seems. Second, we conduct a number of analyses of the data 6 https:// schema. org/.

5 https:// www. w3. org/ TR/n- quads/.

4 https:// commo ncrawl. org/.

https://schema.org/
https://www.w3.org/TR/n-quads/
https://commoncrawl.org/
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and show that the biased domain representation in the data 

and lack of vocabulary coverage may have been attributing 

factors. In particular, methods such as BERT language mod-

elling and machine translation may be potentially more sus-

ceptible to such ‘data quality’ issues than word-embedding 

modelling. Finally, we discuss how these findings can inform 

future research and practice, and we contribute our data as 

public resources which can be obtained upon request.7

We organise the remainder of this paper as follows. The 

next section reviews related work. Then, the Sects. “Product 

Classification” to “Fake product review detection” present 

our exploration on each of the three tasks. Each section will 

introduce our methodology, experiments, and presents the 

results. The “Further analysis” section looks at potential 

quality issues of the data. In the “Discussion” section, we  

discusses our findings and their implications, and this is fol-

lowed by a conclusion in the last section.

Related Work

While our work belongs to the general field of data mining 

[14–16], to avoid stretching our literature review too thinly, 

here we define our criteria of literature selection. More gen-

erally, semantic markup data is a type of LOD resources 

and there have been a large number of studies [17, 18] and 

organised events8 on the creation and consumption of LOD. 

However, previous studies have predominantly looked at 

LOD resources that are published as a graph database such 

as the DBpedia and Wikidata, while very few focussed on 

the LOD published as semantic markup data embedded 

within web pages. The fundamental difference between the 

two is quality, which underpins the approaches that one can 

take to use such resources. Most of the LOD graph databases 

are well-curated, documented and maintained. Semantic 

markup data however, can be highly heterogeneous, noisy, 

and unbalanced [19]. There are also a blend of studies that 

focussed on creating further LOD resources out of existing 

ones [20], compared to those that actually use LOD as lan-

guage resources for downstream language processing tasks. 

Our literature review therefore has a specific focus on the 

following areas: (1) work that uses semantic markup data to 

create language resources, and (2) work on the three tasks 

we focus on, i.e, product classification, linking, and fake 

product review detection. While our work is also broadly 

related to the use of neural networks in creating domain-

specific language models, such as the BioBERT [6], Clini-

cal BERT [7], SciBERT[8], E-Bert[9], and SMedBERT[10], 

these studies did not use semantic markup data and there-

fore, we do not expand our literature review to this broad 

area as that would significantly increase the scope of our 

discussion. However, in Section 8, we discuss our results 

with respect to the findings of these earlier studies.

Semantic Markup Data as Language Resources

Research on using semantic markup data for downstream 

language processing tasks has just taken off in the recent 

years and therefore, studies addressing the creation of 

language resources from such data are limited. Primpeli 

et al. [21] adopted an unsupervised approach to create a 

very large training dataset for product entity linking using 

semantic markup data extracted from the 2017 Common-

Crawl corpus. The process started with extracting product 

offers that contain product identifiers annotated using the 

schema.org vocabulary. Then offers with the same identi-

fiers are placed in the same cluster, followed by a cleaning 

process to eliminate potentially noisy clusters. The end clus-

ters are considered to be product offers referring to the same 

product entity, and are used to train entity linking models. 

The work is further extended in later studies by [4, 22, 23], 

and it was shown that this automatically created training 

dataset has a high quality and can be used to effectively train 

product entity matchers at high accuracy. While these studies 

investigated ad-hoc usages of semantic markup data as train-

ing data for specific tasks, our work explores possibilities 

of utilising such data to create language resources that are 

usable by a wider range of tasks.

The same authors also used a product corpus to train a 

domain-specific word-embedding model in [22] using the 

fastText model. Specifically, they extracted the brand, name 

and description properties annotated by schema.org from 

the same corpus above, to create a text corpus that is used to 

train fastText embeddings. This domain-specific embedding 

model gained minor improvement over a generic fastText 

embedding model on some product linking tasks. In compar-

ison, our work also explores using product related corpora 

to train word-embedding models. However, we study if this 

can generalise to other product data mining related tasks.

Work that uses semantic markup data to train embed-

ding models can be traced back to [24], where authors used 

schema.org annotations (names and descriptions) of product 

entities to train entity embeddings using the paragraph2vec 

model [25]. This approach suffers similar limitations as the 

above, where the embeddings learned in such a way are ad-

hoc and can only be used for entities found in the training 

process of the embedding models. Our study explores more 

generic ways of learning word embeddings.

In the 2020 Semantic Web Challenge on product data 

mining (MWPD2020, [11]), a corpus of 1.9 billion words 

extracted from the descriptions of product entities annotated 

by schema.org vocabulary was used to train word-embed-

ding models. Compared to generic word embedding models, 

7 https:// bit. ly/ 2MGpB R2.
8 http:// events. linke ddata. org/ ldow2 018/, https:// ld4ie. github. io/.

https://bit.ly/2MGpBR2
http://events.linkeddata.org/ldow2018/
https://ld4ie.github.io/
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such models contributed to better results on the product clas-

sification task when used with a fastText baseline [12]. How-

ever, they were not used by any of the participating teams 

of the shared task. This study fills this gap by thoroughly 

evaluating them on several product data mining tasks.

Product Classification

Product classification is typically treated as an entity clas-

sification task. The process involves extracting product 

metadata for feature representation, then train a supervised 

algorithm that learns to assign category labels (i.e. classes) 

to product instances based on their features. Since most 

existing methods follow a similar process by mainly differ 

in terms of the metadata used, feature representation meth-

ods, and machine learning algorithms, below we summarise 

related work from these angles and highlight their similari-

ties and differences instead of discussing each individual 

method in detail.

Metadata To classify products, features must be extracted 

from certain product metadata. Rich, structured metadata 

are often not available. Therefore, the majority of literature 

have only used product names, such as [26–29] and all of 

those participated in the 2018 Rakuten Data Challenge [12]. 

Several studies used both names and product descriptions 

[13, 30–35], while a few used other metadata such as model, 

brand, maker, etc., which need to be extracted from product 

specification web pages by an Information Extraction pro-

cess [24, 36]. In addition, [24] also used product images. The 

work by [5, 37] used product categories allocated by the ven-

dors and embedded as semantic markup data within the web 

pages. To differentiate these from the classification targets in 

such tasks, we refer to these as ‘site-specific product labels’ 

or ‘categories’. The authors noted that despite the highly 

heterogeneous nature of such site-specific labels across 

different websites, they are still very useful for supervised 

classification. In comparison, this work explores a ‘new’ 

type of metadata - product-related keywords generated by a 

machine translation model trained on the massive product 

corpora. Compared to product metadata already existing in a 

dataset and are comparatively better quality, such keywords 

may be very noisy. Our work will be first to explore if these 

keywords generated in such a way can be useful for product 

classification.

Feature representation Generally speaking, for text-

based metadata, there are three types of feature representa-

tion. The first is based on Bag-of-Words (BoW) or N-gram 

models, where texts are represented based on the presence 

of vocabulary in the dataset using either 1-hot encoding or 

some weighting scheme such as TF-IDF [27, 29, 30, 36]. 

This often creates high-dimensional sparse feature vectors. 

The second uses pre-trained word embeddings or Language 

Models (LM) to create a relatively low-dimensional, dense 

feature vector of the input text.

Certain techniques will need to be applied in order to 

compose embeddings for long text passages based on sin-

gle words, such as [26, 32] that computed text embeddings 

based its composing words, and [38] (non-product domain) 

and [37] that joined word-embedding vectors to create a 2D 

tensor to represent the text. In the more recent work that uses 

pre-trained LMs such as BERT (e.g. in [39]), the construc-

tion of text passage embeddings is taken care of dynami-

cally by passing the input text through the language models 

directly, which will take into account the context of words. 

The third applies a separate learning process to learn a con-

tinuous distributional representation of the text directly from 

the downstream training datasets [24, 31, 32]. Our work will 

make use of feature representation methods from the second 

and the third types. However, studies by [26, 32, 37, 39] 

used general purpose, pre-trained word embeddings while 

we study the effects of embeddings purposefully trained 

on product-related corpora. Studies by [24, 31, 32] created 

ad-hoc representations of product entities discovered in the 

training set, while such representations cannot be general-

ised to other data or tasks, our study explores more generic, 

data-agnostic methods for composing such representations.

Algorithms The large majority of work has used super-

vised machine learning methods. These include those that 

use traditional machine learning algorithms [5, 24, 27, 

30–32], and those that apply DNN-based algorithms [12, 

28, 36, 37]usually based on CNN or RNN. These include the 

majority of the participating systems in the 2018 Rakuten 

Data Challenge. Besides, [5] also explored unsupervised 

methods based on the similarity between the feature rep-

resentations of a product and target classes. [29] studied 

product clustering, which does not label the resulting prod-

uct groups. These represent unsupervised methods. Fur-

ther, [13] studied the problem as a machine translation task, 

where the goal is to learn the mapping between a sequence 

of words from product names, to a sequence of product cat-

egories. MWPD2020 [11] showed a trend towards using 

the pre-trained LMs for classification, such as those based 

on the BERT model [40]. All participants but one at the 

product classification task at MWPD2020 used LM-based 

classification methods. The work by [39] for example, used 

an ensemble model combining 17 different variants of the 

BERT model to achieve the best result on this task.

This study does not focus on developing novel algorithms 

but instead, reuse existing ones such as the fastText base-

line in [12] and the DNN structure in [37]. It may however, 

reveal which algorithms are more susceptible to the different 

language resources created by this study.
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Product Linking

Product linking or matching is the task of determining if 

multiple product offers found from different websites (some-

times even from the same website) refer to the same, identi-

cal product entity. Product linking can be achieved by one of 

the three approaches: classification (e.g. [11]), where prod-

uct offer pairs are created a priori and are classified to match 

or non-match; clustering, where a dataset of product offers 

are split into groups and members within the same group 

are considered to be about the same product; or retrieval 

(e.g. [34]) where the goal is to find the matching product 

entity from an existing database for a given product offer. In 

both classification and retrieval, often a ‘blocking’ process 

is applied to reduce the search space. All three approaches 

depend on the calculation of ‘similarities’ between product 

offers and this makes use of product metadata. A good lit-

erature review on product linking can be found in [24]. Here, 

we summarise them in terms of metadata, feature representa-

tion, and algorithms in a similar fashion as before.

Metadata Similar to product classification, typically 

product linking will make use of product names (e.g. [34, 

41–46]) and descriptions (e.g. [24, 34, 47]). The differ-

ence however, is that the task also makes use of a diverse 

range of structured product attributes (e.g. [34, 44, 45, 48]), 

often defined as ‘key-value’ pairs such as those that can 

be extracted from product specifications (e.g. product ID, 

model, brand, manufacturer). Intuitively, offers that have 

the similar sets of key-value pairs are more likely to match. 

Since such structured key-value attributes are often unavail-

able, many studies focussed on how to extract them from 

the descriptions of an offer [41, 49], or from the specifi-

cation table of the source web page [24]. A small number 

of studies [24, 50, 51] also used product images. Similar 

to product classification, we will explore the usefulness of 

product-related keywords generated by a machine translation 

model trained on the product semantic markup data. This has 

not been explored before.

Feature representation Again, similar to product clas-

sification, broadly speaking, transforming textual metadata 

into feature representations is typically based on BoW (e.g. 

[43, 44]), pre-trained word embeddings or language mod-

els (e.g. [23, 24, 34, 45, 46, 52]), or learning word embed-

dings on the spot from the downstream task datasets (e.g. 

[45]). However, depending on the types of metadata, dif-

ferent methods may be adopted and then combined [49]. 

For example, structured key-value attributes are often kept 

as-is and compared as a BoW, particularly if the values are 

short (e.g. product IDs). In [44], a concept of ‘q-gram’ was 

introduced to represent short texts (especially key-value 

pairs) as a set of character n-grams. Longer texts such as 

descriptions are better represented using word embeddings 

or through LMs. In this direction, similar sets of methods to 

product classification are used. For image data, typical pixel-

based image representation approach is widely used [24, 50, 

51]. Same as product classification, in terms of novelty, our 

work focuses on evaluating the word embeddings purpose-

fully trained on product-related corpora while many earlier 

studies used generic word embeddings. We also use more 

generic methods for composing feature representations for 

product linking while previous models tried to learn ‘ad-

hoc’ representations.

Algorithms Since the prediction of linking/matching of 

product offers depends on a notion of ‘similarity’, some 

methods will have an ‘intermediary’ step that converts prod-

uct metadata features to similarity features [34, 43, 48]. This 

is typically done by applying similarity metrics—usually 

based on string form, or word/character distribution—to the 

textual feature representations of two offers. Again, depend-

ing on the metadata, different similarity metrics may be 

applied [34, 43, 44, 49]. This ‘intermediary’ process creates 

a feature vector consisting of similarity scores computed by 

different measures, or using different features. The vector is 

then subject to another process to determine if the two offers 

should match. However, as mentioned before, some methods 

[45, 48] do not require such an intermediary step, as the 

similarity computation is embedded as part of the method 

that tackles the task in an ‘end-to-end’ fashion.

In terms of the method to the end-task, most studies are 

based on supervised binary classification, which aims to 

determine if a pair of offers should match or not. Following 

a similar pattern to product classification, the classification 

algorithms have evolved from the traditional [34, 41, 47], to 

DNN-based [34, 45], to LM-based [23, 33, 46, 52]. Depend-

ing on the classification algorithm, the input could be the 

similarity feature vector of a pair (e.g. [41]) computed by 

the intermediary step, or directly the feature vectors derived 

from the metadata of each offer [23, 45, 52]. In the study by 

[23] which extends their earlier work in [52], the authors 

proposed a multi-task learning neural network based on the 

BERT model, tailored for the product linking task. In addi-

tion to learning to predict if two pairs of product offers refer 

to the same entity (binary classification), the model at the 

same times learns to predict the shared product identifier by 

the two offers (multi-classification). Additionally, one can 

also make use of cutoff thresholds of similarity to determine 

match/non-match [42].

Clustering is used in a number of studies, such as [44] 

that clustered offers based on the ‘q-grams’ derived from 

their names and key-value pairs; and [53] where a ‘strength 

of ties’ style of clustering was applied to a ‘network’ of 

important words derived from a pair of product offers to 

determine if they form a cohesive ‘community’ and there-

fore, should match.

Methods that require offer pairs as input will often require 

a ‘blocking’ pre-process that aims to reduce the search space 
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for pairs, to create a minimal set of pairs for classification. 

Blocking strategies are varied and often lightweight, such as 

[49] that is based on matching manufacturers and categories, 

and [42] that is based on string prefix.

A unique direction of research in product linking looks 

into automated expansion of training data, either in terms of 

training instances, or metadata that can be used for feature 

extraction. For example, [42] enriched the name of prod-

uct offers with tokens retrieved using a web search engine. 

[33] used product offer names to fetch similar entities from 

Wikidata, to create additional training instances.

Compared to state-of-the-art, we focus on the sub-task of 

supervised, binary classification of match/non-match, while 

ignoring the ‘blocking’ process. Our method will use state-

of-the-art algorithms, as our research focus is on evaluat-

ing the impact of the language resources created from the 

semantic markup data on existing algorithms.

Fake Product Review Detection

Fake reviews, as per [54], generally refer to reviews created 

in an attempt to mislead consumers (either in a positive or 

negative way). They are also known as deceptive opinions, 

spam opinions, or spam reviews [55]. Fake online reviews in 

e-commerce significantly affect consumers, merchants, and 

market dynamics. In extreme cases, they led to financial loss 

for companies and legal cases [56]. While traditionally, fake 

reviewers are written by humans, with the advancement of 

Natural Language Generation technology, it has been shown 

that fake reviews automatically generated by programs are 

even more difficult for human annotators to detect [57]. 

There is an extensive amount of studies on automated fake 

review detection and for that reason, we refer readers to the 

surveys by [54] while below we present a brief overview of 

this field, highlighting the novelty of our work. Further, in 

addition to studies focussing on detecting the content, there 

are work (e.g. [58, 59]) that detect spammers (users) and 

spammer groups (network) which we do not cover here.

Detecting fake review is predominantly treated as a super-

vised, binary text classification task. Thus similar to product 

classification, it involves extracting features of the review 

text (metadata), representing them in a machine processable 

format (feature representation), and training a model that 

is able to generalise patterns using the features and apply 

the patterns to unseen data (algorithm). In terms of features 

(metadata), [57] broadly categorised them into ‘lexical’ and 

‘non-lexical’. Lexical features are attributes derived from 

text, such as words, n-grams, punctuations and latent top-

ics. Non-lexical features are metadata related to the reviews 

(e.g. ratings, stars) or their authors (ID, location, number 

of reviews generated). In terms of feature representation 

and algorithms, same patterns to that of product classifica-

tion are noticed due to the two tasks been handled by text 

classification approaches. Briefly, research has evolved from 

early methods that use manually engineered features in a 

1-hot encoding (e.g. [60]) to pre-trained word embeddings 

(e.g. [61, 62]), and learning representations of the target 

dataset as part of the model, on the spot (e.g. [63]). The use 

of machine learning algorithms also evolved from the earlier 

classic algorithms such as SVM and logistic regression (e.g. 

[60]), to deep neural networks (e.g. [61, 62]), to using very 

large LMs such as BERT (e.g. [57]).

Compared to the previous studies, our work does not aim 

to introduce new features or algorithms. Instead, we explore 

the usefulness of the feature representations learned from 

massive product-related semantic markup data on the task 

of fake review detection. Earlier work such as [62, 64] used 

word embeddings pre-trained on general purpose corpora, 

and [61] trained domain-specific word embeddings using 

an Amazon product review corpus. In contrast, our work is 

the first that explores if a corpus of product details (instead 

of their reviews) can be used to learn word embeddings for 

this task. Compared to [57] who also used LMs, our work 

explores the effect of continued pre-training of LM using 

in-domain corpus, while [57] did not.

Reflection

Summarising related work above, our study addresses two 

limitations of state-of-the-art. First, despite the abundance 

of semantic markup data on the Web, there are only a very 

small number of studies that explored the use of such data 

to create language resources for downstream language pro-

cessing tasks. Among them, the typical approach is training 

embedding models using such data [11, 24, 52]. However, 

these methods and/or resources are often ad-hoc, and their 

effects have not been compared on the same tasks.

Second, despite the continued interest in the research of 

product classification, linking, and fake review detection, 

the use of language resources to support such tasks has been 

highly inconsistent, ranging from no-use at all to using a 

diverse set of word-embedding models (e.g. [26, 33, 37]). It 

is unclear for example, if earlier success of building domain-

specific LMs by continued pre-training of BERT models 

using in-domain corpora can be replicated in this domain. 

Adding to this complexity is the use of different datasets, 

and diverse use of machine learning models ranging from 

traditional algorithms (e.g. SVM, logistic regression), to 

deep neural networks, to pre-trained language models. The 

implication of this is that it is extremely difficult to compare 

the effect of using certain language resources on such tasks.

Motivated by these issues, our work in the following will 

explore three different ways of creating language resource 

using semantic markup data, and systematically evaluate 

them under uniform settings on the three different down-

stream tasks mentioned above.
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Building Language Resources

In this section, we describe our method for the creation and 

evaluation of the language resources for product data min-

ing. We begin with introducing the data sources we use to 

create the language resources (“Data sources”). We then 

discuss three different ways of using these data sources to 

create different types of language resources: training word-

embedding models, continued pre-training of BERT-like 

LMs, and training machine translation models that are used 

as a proxy to generate product-related keywords. These lan-

guage resources will be later used in the three downstream 

tasks, to be detailed in “Product classification”, “Product 

linking” and “Fake product review detection”.

Data Sources

In order to create language resources using semantic markup 

data for the product domain, we used the 2017 release of the 

structured data crawled by the WDC project. Specifically, we 

only downloaded and processed the class-specific subsets of 

the schema.org data related to sg:Product.9 This con-

tains nearly 5 billion RDF n-quads, extracted from over 267 

million web pages and over 812 thousand hosts. Each n-quad 

contains a subject, predicate, object, and a graph label which 

in this case, denotes the source URL of the n-quad.

Next, we parse this dataset to identify product offer 

instances, and build a Solr10 index of product offers with 

their attributes found in the n-quads. This is done by first 

searching for ‘definition n-quads’ that define a product offer 

instance with http://www.w3.org/1999/02/22-

rdf-syntax-ns#type as the predicate, and either 

sg:Product or sg:Offer as the object (i.e. where 

an n-quad defines an instance of an sg:Product or 

sg:Offer), and then parsing other n-quads containing the 

same subject as the definition n-quad to create property-

value pairs for each offer. Only data that are potentially Eng-

lish are retained. This is achieved by automatically check-

ing if the source URL (i.e. graph label) contains a top-level 

domain that clearly indicates non-English websites (e.g. .fr, 

.cn). This Solr index is further processed to create two cor-

pora: a product description corpus, and a product category 

corpus.

The product description corpus contains descriptions of 

product offers. These are extracted from the sg:Product/

description property of each product offer. A light 

cleaning process is applied to ensure that only descrip-

tions containing between 50 and 250 words are selected. 

This restriction is to reduce content that is likely to be very 

noisy. For example, we noticed that sometimes product 

descriptions contain only a handful of generic words; while 

other times they are too long and can include the entire web 

page content. These texts are also normalised to keep only 

alpha-numeric characters. If a token contains digits only, it 

is replaced with a symbolic token to indicate a digit-only 

token. The resulting product description corpus contains 

over 1.9 billion tokens, extracted from over 34 million prod-

uct offers.

The product category corpus contains over 700 thousands 

of product name—site-specific category pairs. These are 

selected from offer instances that have both an n-quad defin-

ing their name and site-specific labels. Product names are 

extracted from sg:Product/name or sg:Offer/name 

properties, while site-specific labels are extracted from 

sg:Product/category or sg:Offer/category. 

Both product names and site-specific labels are subject to 

a light cleaning process where only alpha-numeric charac-

ters are retained, and those containing more than 10 tokens 

(delimited by white space characters) or less than 2 tokens 

are removed. These restrictions are for the same reason—to 

reduce noise in the data. In addition, digit-only tokens are 

replaced with the same universal symbol. Further, a stop 

word list is used to filter out generic site-specific labels, 

such as Home and Product, and only pairs extracted from 

the top 100 largest hosts (as measured by the number of 

product offer instances found from each host) are kept. This 

is to focus on hosts that are potentially large e-commerce 

vendors and therefore, have defined relatively good quality 

site-specific categorisation schemata.

We will explain how we use these corpora to build lan-

guage resources below.

Training Word‑Embedding Models

The first approach to utilising the above corpora is training 

word embedding models. As discussed before, only a cou-

ple of studies [11, 24] used semantic markup data to train 

embedding models. However, [24] trained product embed-

dings that are ad-hoc, while our earlier work [11] developed 

word-embedding models that were not thoroughly evalu-

ated. Here, following our previous work, we simply use the 

Gensim11 implementation of the Word2Vec algorithm [65] 

to train word-embedding models using the product descrip-

tion corpus. We use the skip-gram algorithm for training, 

as it was shown to better represent infrequent words [65]. 

This fits our data well, as a notable fraction of words in our 

product classification and linking datasets (see Appendix 1) 

are not represented by the most frequent words found in the 

product description corpus.

9 http:// webda tacom mons. org/ struc tured data/ 2018- 12/ stats/ schema_ 

org_ subse ts. html.
10 https:// lucene. apache. org/ solr. 11 https:// radim rehur ek. com/ gensim/.

http://webdatacommons.org/structureddata/2018-12/stats/schema_org_subsets.html
http://webdatacommons.org/structureddata/2018-12/stats/schema_org_subsets.html
https://lucene.apache.org/solr
https://radimrehurek.com/gensim/
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We use a sliding window of 10, minimum frequency 

threshold of 5 and text lower casing, then keeping the 

remaining parameters as default. The word embeddings 

have 300 dimensions. We refer to this as ‘product word 

embeddings’.

Continued Pre‑training of BERT Language Models

The second approach explores the continued pre-training 

of large LMs. The principle of ‘continued pre-training’ of 

LMs has been introduced in the recent research. The idea is 

to take an existing LM such as BERT, and further training 

it on large, in-domain, unlabelled corpora (e.g. [66, 67]).

We explore the benefits of continued pre-training the 

BERT model on our product description corpus, and refer 

to the resulting LM as ‘ BERTprod ’. Specifically, we take the 

‘bert-base-uncased’ model12 and run the masked 

language modelling task on our product description corpus, 

keeping all hyperparameters as the default.13

However, pre-training LMs is an extremely resource-

demanding process, and due to our limited access to HPC 

resources, we had to split our product description corpus to 

small segments, and create different versions of BERTprod 

models. Specifically, we randomly sampled 8% (or approx. 

570 MB, which is the maximum size of a corpus we can fit 

with the pre-training process on our hardware) of our corpus 

for 7 times ensuring no overlap of selected product descrip-

tions, thus creating 7 smaller corpora to continue to pre-train 

the BERT model. This creates 7 BERTprod models, and the 

total size of data used for continued-pre-training represents 

50% of the original product description corpus.

Training Machine Translation Models

The third approach to utilising the product corpora is 

inspired by the work of [13]. The authors cast product clas-

sification as an MT task, whose goal is to learn the mapping 

between the sequence of words in a product name, to the 

sequence of category labels that form a hierarchical path. In 

this sense, the product names and their category label paths 

are treated as two different languages.

However, an important difference of Li’s work from ours 

is that the dataset they used for training the MT models is 

arguably, much better quality. This is because it is collected 

from a single vendor website, hence there is only one catego-

risation scheme and the naming and categorisation of prod-

ucts are generally consistent. In contrary, our product cat-

egory corpus contains data from hundreds of different hosts, 

potentially selling very different products, and therefore used 

highly different and inconsistent categorisation schemata, 

which will have different levels of hierarchies. Further, our 

goal of product classification is to assign category labels 

from a universal schema to products from different vendors. 

Therefore, the site-specific categories cannot be directly 

used as classification targets.

Therefore, instead of using this corpus to directly train 

a product classifier, we use it to train MT models that map 

a sequence of words in the product name, to the sequence 

of words in the product’s site-specific category. Then given 

a product name in the downstream task data, we apply the 

MT model to generate a sequence of words, which although 

will unlikely to map to the end classification labels, may 

still be indicative of the product’s ‘type’ or ’category’ and 

therefore, become useful features for the downstream tasks. 

We will refer to these words as ‘product related keywords’ 

(denoted as ‘pk’).

To train the MT model, we apply off-the-shelf MT toolkit 

OpenNMT [68] to the product category corpus. The encoder 

and decoder are 2-layer LSTM with 500 hidden units. We 

use all default settings of the hyperparameters in the distrib-

uted implementation.

Product Classification

In this section, we explore the usage of the different lan-

guage resources created in “Building language resources” in 

the task of product classification. We show the datasets used 

for this study, and configure a number of models and com-

pare them to evaluate the impact of these language resources 

on these datasets. We then present the results, which will be 

further discussed later in  the “Discussion” section together 

with results from other tasks.

Datasets

We use four datasets listed in Table 1. The Rakuten dataset 

is the one used in the Rakuten Data Challenge [12]. This 

contains one million product offers crawled from Rakuten.

com, an online e-commerce marketplace. Each product offer 

only has one type of metadata, i.e. its name. The IceCat 

dataset is released under the WDC project,14 and contains 

over 760k product offers crawled from IceCat.de, a world-

wide publisher and syndicator of multilingual, standard-

ised product data from various domains. Each offer has 

three types of metadata: name, description and brand. The 

WDC-25 dataset is also released by the WDC project,15 

14 http:// data. dws. infor matik. uni- mannh eim. de/ large scale produ ctcor 

pus/ categ oriza tion/.
15 http:// webda tacom mons. org/ categ oriza tion/ index. html.

12 https:// huggi ngface. co/ bert- base- uncas ed.
13 Using the implementation at https:// github. com/ huggi ngface/ trans 

forme rs/ tree/ master/ examp les/ langu age- model ing.

http://data.dws.informatik.uni-mannheim.de/largescaleproductcorpus/categorization/
http://data.dws.informatik.uni-mannheim.de/largescaleproductcorpus/categorization/
http://webdatacommons.org/categorization/index.html
https://huggingface.co/bert-base-uncased
https://github.com/huggingface/transformers/tree/master/examples/language-modeling
https://github.com/huggingface/transformers/tree/master/examples/language-modeling
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and contains around 24k product offers randomly sampled 

from over 79k websites. These are classified into a flat cat-

egorisation scheme of 25 different labels, developed with 

reference to the Amazon, Google and UNSPSC16 product 

catalogue taxonomies. This is split into a training set of over 

20k offers and a test set of around 5000 offers. Each offer 

has a large number of metadata but only the following are 

selected for this work: name, description, brand, and manu-

facturer. The MWPD-PC dataset is the product classifica-

tion dataset released in the MWPD2020 challenge [11]. It 

contains around 16k product offers randomly sampled from 

the structured product data (described by the schema.org 

vocabulary) crawled by the WDC project. These are classi-

fied into three levels of classification (lvl1 to lvl3) following 

the GS1 Global Product Classification standard (GPC).17 

Each offer has the following metadata: name, description, 

and site-specific label.

The product metadata are of various word lengths from 

different datasets. However, neural network based classifica-

tion models require text input to be of a fixed length. The 

normal practice is that if a real input text is shorter than 

this fixed length, it is padded with ‘arbitrary’ tokens. If it 

is longer, it is truncated. We configure the lengths accord-

ing to Table 2, based on the longest input observed on the 

datasets and the corresponding metadata used. All the train-

ing, validation, and test splits are based on the original data 

releases. Our selection of datasets represents a significant 

degree of diversity, containing data sourced from single 

vendors (Rakuten and IceCat), as well as a heterogeneous 

range of websites (WDC-25, MWPD-PC). Table 1 shows the 

statistics of these datasets.

Model Configurations

Models are configured based on the variations of the input 

product metadata, feature representation methods, and the 

machine learning algorithms. Figure 1 lists these models that 

will be discussed in detail below.

Using Word Embeddings

Shown in Fig. 1a (Part (a) Experiments), the baseline and 

their corresponding comparative models differ in terms of 

word-embedding representations (shaded in grey). Given a 

product, each model takes input all of its metadata avail-

able in a dataset, and passes them through the different 

word embeddings to construct a feature representation for 

the product. An ML algorithm then learns to classify the 

products based on these features.

In terms of the word embeddings that are key for com-

parison, we compare our product word embeddings (prod) 

against the generic, pre-trained Word2Vec embedding model 

trained using Google News (ggl).18 In terms of ML algo-

rithms, we test a simple linear SVM (SVM), the fastText 

baseline used in the MWPD2020 shared task for product 

classification [11] (FT.MWPD), and the ‘GN-DeepCN’ 

structure proposed in [37] with either a biLSTM (GND.biL-

STM) or HAN (GND.HAN) as its sub-structure. For SVM 

and fastText, different product metadata are concatenated 

into a single text and treated indifferently. For GND.biLSTM 

and GND.HAN, each specific type of product metadata is 

fed into a sub-structure (biLSTM or HAN) that learns sepa-

rate feature representations for them. The implementation 

and specifications of these algorithms are as follows:

• SVM: implemented in Scikit-Learn 0.19, with the param-

eters set as follows: regularisation (c) parameter of 0.01, 

Table 1  Summary of datsets for product classification

Dataset Train Validation Test Classes Metadata

Rakuten 800k n/a 200k 3008 Name (n)

IceCat 489,902 122,476 153,095 370 Name, description (d), brand (b)

WDC-25 20,205 n/a 4884 25 Name, description, brand, manufacturer (m)

MWPD-PC 10,012 3000 3107 lvl1=37, lvl2=76, 

lvl3=281

Name, description, site-specific label/category (c)

Table 2  Configuration of input word length for neural network based 

classification models

‘All’ refers to concatenating all product metadata detailed in Table 1 

as a single text input

Dataset Product metadata 

and fixed length 

(tokens)

Rakuten Name (32)

IceCat All (256); name (32)

WDC-25 All (256); name (32)

MWPD-PC All (256); name (32)

16 https:// www. unspsc. org/.
17 https:// www. gs1. org/ stand ards/ gpc. 18 https:// code. google. com/ archi ve/p/ word2 vec/.

https://www.unspsc.org/
https://www.gs1.org/standards/gpc
https://code.google.com/archive/p/word2vec/
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one-vs-rest multi-classification training, balanced class 

weight, L2 penalisation and squared hing loss.

• fastText: default implementation as in [11]

• GND.biLSTM and GND.HAN: default implementation 

by [37], using an epoch of 20 and a batch size of 128. All 

other hyperparameters remain unchanged.

Following this, a model using the product word embeddings 

will be compared against itself when using the generic word 

embeddings. E.g. SVMprod against SVMggl , or GND.HANprod 

against GND.HANggl.

Using Language Models

Shown in Fig. 1b (Part (b) Experiments), the baseline and 

their corresponding comparative models differ in terms of 

the underlying language models (LM) used. Given a prod-

uct, each LM takes input all of its metadata available in a 

dataset, and passes them into the different LM (shaded in 

grey), which produces its feature representation and learns 

classification patterns in an end-to-end fashion.

In terms of the LM, we compare a generic BERT model 

( BERT
default

 ) against the ones created following our method 

in “Training machine translation models” ( BERTprod ). As 

mentioned before, we had to create 7 different LMs. Here, 

BERTprod refers to the average performance recorded for all 

these LMs. For both BERT
default

 and BERTprod , classifica-

tion is achieved through stacking a linear layer on top of the 

corresponding language model. In the case of BERT-based 

LMs, the output of the first token from the final hidden state 

of the model is used in the final classification. Same as SVM 

and FT.MWPD, product metadata are concatenated into a 

single piece of text. The implementation and specifications 

of are as follows:

• Implemented based on PyTorch 1.7.0,19 with a batch size 

of 32, learning rate of 2e− 5, epochs of 10 and using the 

Adam algorithm with weight decay for optimisation. All 

other hyperparameters remain unchanged from the dis-

tribution.

• For BERT
default

 , the ‘bert-base-uncased’ model from the 

generic distribution is used.

Using Machine Translation Models

Shown in Fig. 1c (Part (c) Experiments), the baseline and 

their corresponding comparative models differ in terms of 

the product metadata used (shaded in grey). As discussed 

before, we apply the MT model trained in “Training machine 

translation models” to product names from each dataset to 

generate product-related keywords (pk), and use these key-

words as another type of metadata for each product.

For each model described above in “Using word embed-

dings” and “Using language models”, we first replace the 

product metadata with only product names, then create two 

variants that are compared against each other: one that uses 

Fig. 1  Configurations of differ-

ent models for comparison for 

the product classification task. 

The shaded box represents the 

components of a model to be 

changed for comparison

19 https:// pytor ch. org/.

https://pytorch.org/
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Table 3  Product classification results comparing the use of word-embedding models (MWPD-PC dataset)

Boldfaced text suggests the results are better than the baseline when the language resources are used

 Product classification experiments: using word-embedding models, MWPDC-PC

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

MWPD-

PC (lvl1)

SVMggl 61.2 61.5 60.5 80.4 80.3 80.2 SVMprod 68.6 66.6 66.5 83.0 82.8 82.7

GND.biLSTMggl 60.6 54.5 55.9 81.3 81.4 80.8 GND.biLSTMprod 68.5 63.2 64.9 85.5 85.6 85.3

GND.HANggl 66.4 63.0 63.0 84.6 83.7 83.5 GND.HANprod 71.2 70.2 69.9 86.5 85.9 86.0

FT.MWPDggl 73.3 68.3 69.0 86.9 86.5 86.4 FT.MWPDprod 76.9 70.4 72.3 87.2 87.5 87.1

MWPD-

PC (lvl2)

SVMggl 58.2 57.8 56.0 80.7 80.3 80.2 SVMprod 62.4 60.2 58.2 82.6 82.2 82.0

GND.biLSTMggl 53.7 49.9 49.4 80.6 80.6 80.1 GND.biLSTMprod 60.1 55.2 56.5 85.3 85.4 85.0

GND.HANggl 57.2 55.0 53.5 82.5 82.2 81.6 GND.HANprod 61.6 56.7 57.0 86.4 85.9 85.5

FT.MWPDggl 59.5 56.0 55.4 85.7 85.0 84.8 FT.MWPDprod 69.4 60.9 62.3 86.9 86.8 86.4

MWPD-

PC (lvl3)

SVMggl 47.4 47.1 45.2 74.1 73.6 72.8 SVMprod 47.0 47.6 47.0 77.0 75.8 75.3

GND.biLSTMggl 37.9 37.7 35.5 72.0 72.7 71.3 GND.biLSTMprod 44.1 43.5 41.6 77.4 77.1 76.2

GND.HANggl 41.9 41.8 39.0 76.7 75.6 74.9 GND.HANprod 47.5 48.9 45.7 79.1 78.1 77.4

FT.MWPDggl 41.2 40.1 38.5 78.6 75.8 76.1 FT.MWPDprod 49.4 46.8 45.7 80.1 79.0 78.5
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the product name only, the other using the name (n) plus the 

product-related keywords (n,pk, in this case the fixed length 

for input text is set to double that of name, i.e. 64). In addi-

tion, each model only uses the generic language resources 

(i.e. the generic word embeddings, or the BERT LM). This 

is to exclude the effects from all other factors, thus allowing 

the results to focus on the use of product related keywords.

As examples, SVM
n
 is compared against SVMn,pk , both 

using the generic Google News word embeddings; while 

BERT
n
 is compared against BERTn,pk , both using the bert-

base-uncased generic LM.

Evaluation Metrics

In terms of evaluation metrics, we use the standard Precision 

(P), Recall (R) and F1 scores for classification tasks. These 

are calculated using Eqs. (1)–(3), where TP denotes True 

Positives, FP denotes False Positives, and FN denotes False 

Table 4  Product classification results comparing the use of word-embedding models (other datasets)

Boldfaced text suggests the results are better than the baseline when the language resources are used

Product classification experiments: Using word-embedding models, other datasets

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

IceCat SVMggl 92.5 95.1 93.7 99.0 98.8 98.9 SVMprod 94.8 95.0 94.6 99.1 99.1 99.1

GND.biLSTMggl 94.4 94.3 94.1 99.2 99.2 99.2 GND.biLSTMprod 95.2 94.4 94.5 99.3 99.3 99.3

GND.HANggl 95.0 92.8 93.5 99.1 99.0 99.0 GND.HANprod 95.6 94.1 94.4 99.2 99.2 99.2

FT.MWPDggl 93.3 94.7 93.7 99.3 99.27 99.29 FT.MWPDprod 93.9 95.1 94.2 99.4 99.31 99.33

WDC-25 SVMggl 72.8 73.5 72.2 81.8 80.3 80.2 SVMprod 74.3 74.9 73.9 82.7 82.0 81.8

GND.biLSTMggl 70.6 70.2 69.5 79.1 78.5 78.1 GND.biLSTMprod 75.3 76.0 74.5 84.0 82.6 82.5

GND.HANggl 69.1 68.3 67.7 77.9 76.7 76.5 GND.HANprod 74.3 74.1 73.1 83.2 81.2 81.4

FT.MWPDggl 77.3 77.6 76.5 84.7 84.2 83.7 FT.MWPDprod 78.2 78.6 77.5 86.0 85.4 85.0

Rakuten SVMggl 22.5 42.8 26.5 72.1 59.4 61.2 SVMprod 27.8 44.0 31.6 74.2 64.7 66.7

GND.biLSTMggl 39.8 35.3 35.7 74.9 75.1 74.4 GND.biLSTMprod 41.1 37.9 37.8 76.9 76.7 76.3

GND.HANggl 42.3 37.7 37.8 76.2 76.2 75.5 GND.HANprod 42.0 37.7 37.7 76.5 76.4 75.8

FT.MWPDggl 38.6 44.7 39.9 81.8 80.6 80.9 FT.MWPDprod 40.1 45.7 41.2 81.8 80.9 81.1

Table 5  Product classification results comparing the use of continued pre-training of the BERT language model

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product classification experiments: continued pre-training of language models

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

MWPD-

PC 

(lvl1)

BERT
default

71.3 68.6 68.7 88.4 88.4 88.2 BERTprod 73.6 71.8 71.8 89.4 89.4 89.2

MWPD-

PC 

(lvl2)

BERT
default

56.7 55.5 54.4 86.5 87.1 86.4 BERTprod 57.3 58.1 56.6 87.3 88.2 87.4

MWPD-

PC 

(lvl3)

BERT
default

28.1 29.4 26.9 71.1 76.4 72.4 BERTprod 31.0 32.0 29.7 73.1 78.0 74.3

IceCat BERT
default

97.0 96.8 96.8 99.6 99.5 99.5 BERTprod 97.2 96.8 96.8 99.6 99.6 99.6

WDC-25 BERT
default

80.5 79.7 79.1 86.8 85.6 85.5 BERTprod 77.1 77.8 76.3 84.4 83.6 83.2

Rakuten BERT
default

36.8 34.8 34.4 82.0 82.9 82.2 BERTprod 36.5 34.6 34.1 81.8 82.8 82.0
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Negatives. As some of our datasets contain highly unbalanced 

classes (e.g. MWPD-PC), we report macro-averages across all 

classes (arithmetic mean of individual classes’ P, R, F1 scores) 

in order to analyse a classifier’s performance on small classes, 

as well as weighted macro-averages (similar to macro-averages 

but weighs the score of each class label by the number of true 

instances when calculating the average) which was used in [11] 

for ranking all participating systems.

Result Summary

In terms of the effects of using word embedding models, 

Tables 3 and 4 show that our skip-gram word-embedding 

model trained on the product description corpus is able to 

bring consistent improvement on all datasets, with all clas-

sifiers. This improvement is noticed for Precision, Recall, 

and F1 (macro- and weighted macro-average), with only 

a handful of exceptions where the results were very close 

to the baseline. For example, on the Rakuten dataset, the 

GND.HANskip−all obtains a macro-F1 of 37.7, which is 

lower but still comparable to the corresponding baseline 

GND.HANggl ’s 37.8. The improvement can be significant 

in many cases, such as 9.0 in macro-F1 by GND.biLSTMprod 

against GND.biLSTMggl on the MWPD-PC (lvl1) dataset 

(row 5 Table 4), and 6.9 in macro-F1 by FT.MWPDprod 

against FT.MWPDggl on the MWPD-PC (lvl2) dataset (row 

11 Table 3). The improvement on the IceCat is the smallest, 

but consistent. The baselines on this dataset already achieved 

very high F1.

In terms of the effects of continued pre-training of the 

LM, Table 5 shows less promising results. We are una-

ble to obtain consistent improvement on all datasets, but 

only on MWPD-PC and the IceCat datasets, where the 

improvement is very small. One may argue that a potential 

reason for the better results on the MWPD-PC dataset is 

the possible similarity between the corpus used to cre-

ate this gold standard, and the corpus used to continue 

pre-training the BERT LM. Both are based on the n-quad 

corpora released by the WDC project. However, we expect 

such impact to be minimal. On the one hand, we ensured 

that different releases were used (Nov 2017 release for the 

product description corpus, and a mixture of Nov 2018 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F1 =(
2 ∗ Precision ∗ Recall)

Precision + Recall

and pre-2014 releases for the MWPD-PC goldstandard20). 

On the other hand, the releases were based on random 

crawls of the Web. Interestingly, BERT-based classifiers 

have achieved better results than SVM, GND based struc-

tures, or FT.MWPD on all datasets except MWPD-PC lvl3, 

which is harder due to more fine-grained classes.

In terms of the effects of MT-based product keywords, 

Tables 6 and 7 show that they do not bring consistent ben-

efits, regardless of datasets or classifiers. Although there 

are cases where such keywords bring improvements in the 

results, in the majority of cases, they caused classifier accu-

racy to decrease. The SVM classifier is the only one that 

benefited in most cases from such keywords on all datasets. 

Nevertheless, we cannot conclude such keywords as useful 

for product classification task.

Product Linking

In this section, we explore the usage of the different lan-

guage resources created in “Building language resources” in 

the task of product linking. Following a similar structure to 

“Product classification”, we present the datasets used, con-

figuration of models, and their evaluation results.

Datasets

As shown in Table 8, we use a total of 9 datasets from 

two main sources: the WDC project and the DeepMatcher 

project. All datasets includes pairs of product offers and a 

binary label indicating if the offers match or not. The WDC 

project released several product linking datasets by parsing 

and annotating samples of the CommonCrawl corpus. These 

are used in later studies such as [22]. We use the ‘small’ 

dataset as reported in [22] for a number of reasons. First, 

the ‘small’, ‘medium’, ‘large’ and ‘extra large’ datasets all 

have the same test set. The only difference is the size of the 

training set, which contains a different number of instances 

created in a distantly supervised manner. Second, our choice 

is also limited by our computation resources. Each offer has 

the following metadata: name, description, price, brand, 

specification table as a text, specification key-value pairs, 

and site-specific label.

The DeepMatcher project released 13 datasets for evalu-

ating entity linking while not all of them are related to the 

product domain. These were further split into three groups: 

‘structured’ where product metadata are defined as key-value 

pairs, with values being atomic, i.e. short and pure, and not a 

composition of multiple values that should appear separately; 

‘textual’ where product metadata are long textual blobs (e.g. 

long title, short description); and ‘dirty’ where product 

20 For details, see [11].
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metadata are structured, but the values for some attributes 

could be misplaced, or empty. We selected 8 datasets that are 

arguably product-related, containing 5 structured datasets, 1 

textual and 2 dirty datasets. Each dataset is split into train, 

test and validation sets with a ratio of 3:1:1.

Similar to the product classification datasets, the product 

metadata are of various word lengths and for neural network-

based classification models, we need to set a fixed length for them 

when they are used as input texts. These are configured according 

to Table 9. All the training, validation, and test splits are based on 

the original data releases. Similar to the classification task, our 

selection of datasets is very diverse, as shown in Table 3.

Model Configurations

Again, since our focus is evaluating the effect of different 

language resources on this task, we use ‘out of the box’ 

state-of-the-art solutions to configure different models using 

different language resources for comparison. Specifically, we 

use DeepMatcher [69] and the Natural Language Inference 

(NLI) model based on BERT [70].

DeepMatcher (DM) is a software package21 implementing 

state-of-the-art entity linking algorithms using DNNs. It splits 

the matching process into three modules: the attribute embed-

ding module transforms input textual data of an entity mention 

into word embedding-based representations; the similarity 

representation module learns a representation that captures 

the similarity of two entity mentions using their embedding 

representations; and the classifier module that takes as input 

the similarity representations to determine if the two entity 

mentions should match or not. The similarity representation 

module has two key components: attribute summarisation 

that implements different DNN structures for interpreting 

the embedding representations of input entities; and attribute 

comparison that implements different measures for comparing 

the ‘summary vectors’ generated by the summarisation com-

ponent. In this work, we configure DeepMatcher as follows:

• Similarity representation module: we use a ‘hybrid’ 

attribute summariser and the ‘element-wise absolute dif-

ference’ attribute comparator, as these were found to be 

the optimal settings for a wide range of scenarios

• Classifier module: we use the multi-layer NN, which is 

the only option available

• Attribute embedding module: this is a factor for compari-

son and is detailed in the section below.

Other hyperparameters of DM remain unchanged from the 

default software distribution.

For the BERT-based NLI model (BERT), we simply use 

a state-of-the-art implementation by Keras.22 The model 

consists of two channels, each taking one sentence as input 

to learn a representation vector. These vectors are then con-

catenated and passed to a simple linear structure for clas-

sification, which determines if the two sentences entail 

each other or not. We simply consider each product entity 

as a ‘sentence’ and construct a textual representation that 

fits the model. All specification and configurations remain 

unchanged from the implementation above.

Next, using different language resources and/or product 

metadata, Fig. 2 lists variants of DM and BERT to be dis-

cussed in detail below.

Using Word Embeddings

Shown in Fig. 2a (Part (a) Experiments), DM using a built-in 

generic word-embedding model ( DM
default

 baseline) is com-

pared with DM using the product word-embedding model 

( DMprod ). Given a product, all of its metadata are concat-

enated into a single text input.

Using Language Models

Shown in Fig. 2b (Part (b) Experiments), the BERT NLI 

model either uses the default, generic LM ‘bert-base-

uncased’ ( BERT
default

 baseline), or the product LMs 

( BERTprod ). Same as product classification, BERTprod refers 

to the average performance recorded for all the seven prod-

uct LMs. Product metadata are also concatenated as a single 

text input.

Using Machine Translation Models

Shown in Fig. 5.2.2c (Part (c) Experiments), the base-

line and their corresponding comparative models differ 

in terms of the product metadata used. Following the 

same way as product classification experiments, the MT 

model is applied to product names from each dataset to 

generate product related keywords (pk), which are used 

as another type of metadata for each product. Then DM 

and BERT (each using their generic word embeddings 

and LM respectively) will use either only product names 

as input (n), or product name plus product keywords as 

input (n,pk, in this case the fixed length for input text is 

set to 64).

Evaluation Metrics

Since all datasets treat the task as binary classification, we 

use the same evaluation metrics as product classification. 

22 https:// keras. io/ examp les/ nlp/ seman tic_ simil arity_ with_ bert/.21 https:// github. com/ anhai dgroup/ deepm atcher.

https://keras.io/examples/nlp/semantic_similarity_with_bert/
https://github.com/anhaidgroup/deepmatcher
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Table 6  Product classification results comparing the use of MT-generated product keywords (MWPD-PC dataset)

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product classification experiments: using machine translation models, MWPD-PC

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

MWPD-PC 

(lvl1)

SVM
n

54.7 63.7 57.9 79.3 77.3 77.9 SVMn,pk 60.7 66.7 62.8 80.8 79.9 80.0

GND.biLSTM
n

59.9 59.8 59.1 81.6 81.0 80.8 GND.biLSTMn,pk 64.2 59.8 60.8 81.6 81.3 81.0

GND.HAN
n

66.2 62.5 63.1 81.8 81.2 81.1 GND.HANn,pk 65.2 63.8 63.8 82.7 82.7 82.4

FT.MWPD
n

73.6 68.1 69.5 87.0 86.8 86.6 FT.MWPDn,pk 67.5 63.3 64.6 84.7 83.9 84.0

BERT
n

68.6 67.4 67.0 86.9 87.2 86.9 BERTn,pk 68.3 64.7 64.6 86.2 86.2 85.9

MWPD-PC 

(lvl2)

SVM
n

57.2 67.6 59.6 79.8 77.3 78.0 SVMn,pk 58.2 66.2 59.8 80.5 79.2 79.4

GND.biLSTM
n

59.9 55.0 54.8 81.1 80.2 80.1 GND.biLSTMn,pk 54.1 49.1 49.7 81.0 80.5 80.2

GND.HAN
n

61.7 59.4 57.6 81.7 80.8 80.6 GND.HANn,pk 54.8 51.8 51.1 80.7 80.4 80.0

FT.MWPD
n

67.4 61.7 62.4 86.0 85.5 85.3 FT.MWPDn,pk 58.7 54.6 53.9 83.7 82.5 82.6

BERT
n

49.4 48.7 47.3 84.0 84.8 84.0 BERTn,pk 48.9 47.1 45.4 83.3 84.3 83.3

MWPD-PC 

(lvl3)

SVM
n

50.1 59.0 51.9 77.5 73.2 74.0 SVMn,pk 51.4 57.7 52.2 77.3 74.3 74.6

GND.biLSTM
n

45.2 43.9 42.5 73.3 73.1 72.3 GND.biLSTMn,pk 42.5 40.8 39.3 72.7 72.6 71.5

GND.HAN
n

49.4 47.9 46.1 77.2 76.0 75.3 GND.HANn,pk 48.0 46.0 44.9 74.8 75.0 74.0

FT.MWPD
n

54.3 53.5 51.6 82.7 80.6 80.8 FT.MWPDn,pk 44.5 43.8 41.9 78.7 74.9 75.8

BERT
n

23.0 26.8 23.4 66.3 73.6 68.6 BERTn,pk 23.4 20.2 23.1 63.9 71.4 66.0

Table 7  Product classification results comparing the use of MT-generated product keywords (other datasets)

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product classification eperiments: using machine translation models, other datasets

Baselines Comparators

Macro W.Macro Macro W.Macro

Dataset P R F1 P R F1 P R F1 P R F1

IceCat SVM
n

79.1 91.0 83.4 96.9 96.1 96.4 SVMn,pk 81.6 91.0 85.1 97.1 96.5 96.7

GND.biLSTM
n

91.3 88.2 89.1 98.1 98.0 98.0 GND.biLSTMn,pk 90.7 88.4 89.0 98.2 98.1 98.1

GND.HAN
n

90.7 86.8 88.0 98.0 97.9 97.9 GND.HANn,pk 90.9 87.4 88.4 98.1 97.9 97.92

FT.MWPD
n

91.7 93.0 92.1 98.8 98.7 98.8 FT.MWPDn,pk 89.8 91.9 90.5 98.7 98.6 98.6

BERT
n

94.1 93.2 93.4 98.9 98.9 98.9 BERTn,pk 94.1 93.2 93.4 98.9 98.9 98.9

WDC-25 SVM
n

63.7 65.5 63.3 76.3 73.6 74.1 SVMn,pk 62.5 63.8 61.9 73.7 72.4 72.3

GND.biLSTM
n

63.5 63.3 62.6 74.5 73.3 73.2 GND.biLSTMn,pk 63.8 60.6 60.7 72.2 71.9 70.8

GND.HAN
n

62.1 63.0 61.2 73.1 71.6 71.3 GND.HANn,pk 60.1 60.5 58.3 71.0 69.4 68.9

FT.MWPD
n

69.7 69.1 67.5 79.9 78.6 77.8 FT.MWPDn,pk 65.8 65.0 63.5 77.9 74.5 75.0

BERT
n

70.6 71.0 69.5 80.8 78.6 78.7 BERTn,pk 71.4 72.3 70.7 81.8 79.9 80.0

Rakuten SVM
n

22.5 42.5 26.5 72.1 59.4 61.2 SVMn,pk 24.1 41.9 28.0 74.2 67.4 66.7

GND.biLSTM
n

39.8 35.3 35.7 74.9 75.1 74.4 GND.biLSTMn,pk 38.7 34.8 35.0 74.7 75.0 74.4

GND.HAN
n

42.3 37.7 37.8 76.2 76.2 75.5 GND.HANn,pk 39.3 34.5 34.9 74.6 74.6 73.9

FT.MWPD
n

38.6 44.7 39.9 81.8 80.6 80.9 FT.MWPDn,pk 36.1 40.8 36.8 80.8 79.3 79.8

BERT
n

36.8 34.8 34.4 82.0 82.9 82.2 BERTn,pk 36.3 34.2 33.8 81.6 82.6 81.8
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The only difference is that, same as the literature, these are 

computed for true positives only (i.e. true matches).

Result Summary

In terms of the word-embedding model (Table 10), our skip-

gram-based word embeddings can further improve F1 on six 

out of nine datasets. However, on the other three datasets they 

caused significant decline in F1. Referring to Table 3, we 

would argue that the three datasets where the decline is noted 

may be either too small (BeerAdvo-RateBeer (S)), or less rel-

evant to the conventional ‘product’ domain (Fodors-Zagats (S), 

restaurant; Amazon-Google (S), software).

In terms of the continued pre-training of LM and MT-based 

product keywords, based on results in Tables 11 and 12, we 

are unable to conclude either to be useful for this task. Positive 

improvements can be noticed on some datasets, but these have 

been very inconsistent.

Fake Product Review Detection

While the previous two tasks concern data that are typi-

cally properties of products, fake product review detec-

tion concerns data that is rather indirectly connected to 

products. For this task, we only experiment with the use 

of word-embedding models and in-domain LMs, not the 

MT model. This is because the typical review datasets do 

not contain product names which we require as input to the 

MT model. Using the review text as input will not make 

sense because the MT model is trained to learn mappings 

between short sequences of words. In addition, the vocabu-

laries used during training are very different.

Datasets

We use the dataset from [57], which were created using 

a Natural Language Generation model and contains over 

40,000 reviews of products from 10 broad categories (e.g. 

Books, Electronics), each labelled as either a fake review, 

or genuine. For neural network-based classifiers that require 

a fixed input text length, this is set to 512. Although the 

reviews are automatically generated by algorithms, the 

authors showed that these proved to be harder for human 

annotators to differentiate. We do not expand our experi-

ments to other fake review datasets, because as we shall 

show later, we have observed same patterns as those in the 

other two tasks and we do not expect adding more datasets 

to add further values to our findings.
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Model Configurations and Evaluation Metrics

Since fake review detection is a binary text classification 

task, our model configurations will follow those from the 

product classification task (“Model configurations”). The 

dataset only has one source of text input, namely, the review 

text. Therefore, the models only vary in terms of the underly-

ing language resources used. Figure 3 lists these models that 

will be briefly covered below.

In terms of using word-embedding models, shown in Fig.  

3a (Part (a) Experiments), the baseline and their correspond-

ing comparative models differ in terms of word embedding 

representations (shaded in grey). Same as product classifi-

cation, we compare our product word embeddings (prod) 

against the generic, pre-trained Word2Vec embedding 

model (ggl). We combine all algorithms listed in “Using 

word embeddings” with each of the two options of word-

embedding models. The same configuration and specifica-

tions are used.

In terms of using in-domain LMs, shown in Fig. 3b 

(Part (b) Experiments), the baseline and their correspond-

ing comparative models differ in terms of the underlying 

LMs used. Again we use the same model variants from 

“Using language models”, but on the different dataset. The 

same configuration and specifications are retained.

In terms of evaluation, the same metrics for product 

classification explained in “Evaluation Metrics” are used 

here.

Result Summary

Overall(see Table 13), we observe same patterns as product 

classification and linking tasks. On the one hand, product 

word embeddings trained on the product description corpus 

led to consistent improvement in F1 on this task over the 

generic word-embedding model, with the highest noted with 

the SVM classifier and the lowest noted with the fastText 

classifer. Compared to the product classification task, it is 

worth highlighting that the text content in the two datasets 

can be notably different. This suggests that the ‘knowledge’ 

Table 9  Configuration of input word length for neural network-based 

models. ‘all’ refers to concatenating all product metadata detailed in 

Table 3 as a single text input

Dataset Product metadata 

and fixed length 

(tokens)

WDC-small All (512); n (32)

BeerAdvo-RateBeer (S) All (64); n (32)

iTunes-Amazon
1

All (128); n (32)

Fodors-Zagats (S) All (64); n (32)

Amazon-Google (S) All (64); n (32)

Walmart-Amazon
1
 (S) All (64); n (32)

Abt-Buy (T) All (128); n (32)

iTunes-Amazon
2
 (D) All (128); n (32)

Walmart-Amazon
2
 (D) All (64); n (32)

Fig. 2  Configurations of dif-

ferent models for comparison 

for the product linking task. 

The shaded box represents the 

components of a model to be 

changed for comparison
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captured by the product word embeddings can be potentially 

transferable to more general product data mining tasks. On 

the other hand, continued pre-training of BERT still led to 

detrimental effects.

Further Analysis

In this section, we conduct further analysis of our datasets in 

order to better understand the potential contributing factors 

to the overall negative results.

Data Provenance

One potential cause of a less good quality training dataset 

is unbalanced data distribution. To understand if this could 

have been an issue in our study, we analysed the dominating 

hosts that contributed to the product description and the 

product category corpora in order to discover if there exist 

certain dominating hosts selling a restricted range of prod-

ucts. To do this, we manually inspected the top 100 largest 

hosts as measured by the number of product offer instances 

found from each host, and classified them based on the types 

of products they sell.

As Table 14 shows, a significant portion of the dominat-

ing hosts sell fashion related products, typically clothing, 

footwear, accessories and so on. Therefore we expect that 

our product description and category corpora to contain a 

significant portion of data related to these domains. Notice 

that products from other domains such as software, beer, 

and restaurant are under-represented, which may help 

explain the observation that our word embeddings were 

not useful on the three datasets mentioned before in the 

product linking task. However, this analysis does not help 

explain why other language resources, i.e.e the language 

Table 10  Product linking results 

comparing the use of word 

embedding models

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product linking experiment: using word-embedding models

Baseline ( DM
default

) Comparator ( DMprod)

Dataset P R F1 P R F1

WDC-small 57.3 63.5 60.3 66.2 65.2 65.7

BeerAdvo-RateBeer (S) 66.7 71.4 69.0 57.1 57.1 57.1

iTunes-Amazon
1
 (S) 86.2 92.6 89.3 96.0 88.9 92.3

Fodors-Zagats (S) 100.0 95.5 96.7 90.9 90.9 90.9

Amazon-Google (S) 58.8 60.3 59.5 51.0 41.9 46.0

Walmart-Amazon
1
 (S) 33.9 20.2 25.3 40.5 23.3 29.6

Abt-Buy (T) 26.7 18.9 22.2 25.5 23.3 24.4

iTunes-Amazon
2
 (D) 57.6 70.4 63.3 72.7 59.3 65.3

Walmart-Amazon
2
 (D) 23.6 17.1 19.8 28.3 24.4 26.2

Table 11  Product linking results 

comparing the use of language 

models

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product linking experiments: using language models

Baseline Comparator

(BERT
default

) (BERTprod)

Dataset P R F1 P R F1

WDC-small 64.2 83.5 72.3 63.2 85.0 72.1

BeerAdvo-RateBeer (S) 63.3 91.4 73.7 62.5 88.4 71.1

iTunes-Amazon
1
 (S) 82.5 86.7 84.4 81.6 85.0 82.9

Fodors-Zagats (S) 89.0 99.1 93.6 88.7 97.8 92.7

Amazon-Google (S) 68.6 68.6 68.0 64.3 70.5 66.3

Walmart-Amazon
1
 (S) 66.3 76.0 70.5 58.9 72.4 64.4

Abt-Buy (T) 83.4 69.0 75.3 74.3 72.8 72.9

iTunes-Amazon
2
 (D) 87.0 81.5 84.0 81.5 80.4 80.4

Walmart-Amazon
2
 (D) 66.3 69.2 67.6 55.2 71.6 61.2
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model and MT-based product keywords are not as useful 

as word embeddings.

Vocabulary Coverage

Here, we study the extent to which the vocabulary of the 

corpus we used to build the language resources well-repre-

sents those from the target tasks. Taking the product clas-

sification and linking datasets as examples, we calculate a 

number of statistics on the training set of each dataset, and 

show them in Table 15. Avg tok is the average number of 

tokens (separated by the white space character) per instance 

(concatenating all metadata available) within a dataset. Avg 

% non-digit tok is the ratio between the average number of 

tokens excluding tokens containing only digits and the aver-

age number of tokens per instance. Avg % non-digit toks 

in PDC is the ratio between the average number of non-

digit tokens found in the vocabulary of the product descrip-

tion corpus (PDC) and the average number of tokens per 

instance. In other words, Avg % toks in PDC indicates how 

much training data are covered by the vocabulary of the 

product description corpus.

Comparing the product classification datasets against the 

linking datasets, there is obvious pattern that the product 

linking datasets contain a much larger percentage of non-

alphabetic tokens (Avg % non-digit tok), and a much smaller 

percentage of alphabetic tokens are covered by the product 

description corpus (Avg % non-digit toks in PDC). We argue 

that this difference could explain why our word embeddings 

and fine-tuned BERT language model are found to be less 

effective on the product linking task.

Among the product linking dataset, recall that in Table 11 

showing the results of using word embeddings, BeerAdvo-

RateBeer (S), Fodors-Zagats (S) and Amazon-Google (S) 

are the three datasets where our word-embedding model 

caused the baseline performance to decline. Inspecting these 

datasets in Table 15, we find them to share the following 

three patterns: the text content is short (Avg tok), having 

a large percentage of non-alphabetic tokens (e.g. 58% for 

Fodors-Zagats (S), 29% for BeerAdvo-RateBeer), and hav-

ing a relatively small percentage of vocabulary coverage by 

the product description corpus (e.g. Avg % non-digit toks 

in PDC for Fodors-Zagats (S) is only 43%). The extreme 

example is the Fodors-Zagats (S) dataset. Each instance con-

tains an average of 19 tokens, where only 8 are alphabetic 

words, and out of which only 3 or 4 are covered by the prod-

uct description corpus. As a result, the learning algorithms 

could have been very sensitive to those very few number 

of words which are covered by the vocabulary. Adding to 

this the potential problem of under-representation of these 

domains as discussed in the previous section, the combi-

nation of these factors could explain the decline in perfor-

mance when those word embeddings are used.

Table 12  Product linking 

results comparing the use of 

machine translation models for 

generating product keywords

Boldfaced text suggests the results are better than thebaseline when the language resources are used

Product linking experiments: using machine translation models

Baselines Comparators

Dataset P R F1 P R F1

WDC-small DM
n

55.6 59.9 57.7 DMn,pk 51.3 55.5 53.3

BERT
n

67.1 89.2 76.4 BERTn,pk 66.5 87.1 75.3

BeerAdvo-RateBeer (S) DM
n

75.0 21.4 33.3 DMn,pk 83.3 35.7 50.0

BERT
n

76.2 68.6 68.8 BERTn,pk 60.0 70.0 64.4

iTunes-Amazon
1
 (S) DM

n
86.2 92.6 89.3 DMn,pk 100.0 85.2 92.0

BERT
n

86.9 92.6 89.5 BERTn,pk 87.8 88.9 88.2

Fodors-Zagats (S) DM
n

80.0 72.7 76.2 DMn,pk 76.2 72.7 74.4

BERT
n

91.3 88.2 89.5 BERTn,pk 87.6 90.0 88.8

Amazon-Google (S) DM
n

59.5 57.7 58.6 DMn,pk 58.5 54.7 56.5

BERT
n

62.5 69.3 64.9 BERTn,pk 57.7 64.8 60.6

Walmart-Amazon
1

DM
n

36.6 36.8 36.7 DMn,pk 37.2 18.1 24.4

BERT
n

61.5 55.2 56.5 BERTn,pk 63.0 49.7 54.8

Abt-Buy (T) DM
n

33.3 27.2 30.0 DMn,pk 33.2 30.1 31.2

BERT
n

76.3 79.8 77.9 BERTn,pk 81.9 75.6 78.4

iTunes-Amazon
2
 (D) DM

n
63.6 51.9 57.1 DMn,pk 70.0 51.9 59.6

BERT
n

81.9 69.6 74.3 BERTn,pk 87.7 74.8 80.4

Walmart-Amazon
2

DM
n

34.7 34.7 34.7 DMn,pk 28.2 24.9 26.5

BERT
n

62.5 55.4 56.8 BERTn,pk 64.6 51.6 56.1
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Product Keywords Analysis

Here, we focus on understanding the failure of the MT-gen-

erated product keywords. Our idea of MT-based product 

keywords is inspired by the work of [13], who cast product 

classification as a MT task that aims to learn the mapping 

between product names and their category classes. They suc-

cessfully tested this approach on the Rakuten dataset. There-

fore we compare the Rakuten dataset against the product 

category corpus (PCC) to understand if there exists any dif-

ference between the two datasets that have been used to train 

MT models. For each instance in a dataset, we count the 

number of tokens in its product name, and also the number 

of tokens in the classification label. For the Rakuten dataset, 

product classifications are pseudonymised by an ID number, 

such as 1608 ⟩ 2320 ⟩ 2173 ⟩ 2878. Li et al. [13] treated 

them as a sequence of tokens. Therefore, we count the num-

ber of tokens separated by ‘ ⟩ ’. For the PCC, the equivalent 

product classifications are those site-specific product cat-

egories/labels, which we used to train the MT model. We 

compare the distribution of the numbers of words in Fig. 4. 

Further, we also count the number of unique tokens found in 

the product name and classification/site-specific categories 

from each dataset, and calculate a ratio as ‘name/category 

unique word ratio’. This number is 116 for Rakuten, and 4 

for PCC.

Figure 4 shows that while the numbers of words in the 

product classifications from both datasets appear to be gen-

erally comparable, the Rakuten dataset however, contains 

generally longer product names than the PCC. The name/

category unique word ratio of Rakuten is also orders of mag-

nitude higher than that of the PCC. We say that the PCC as 

Fig. 3  Configurations of dif-

ferent models for comparison 

for the fake product review 

detection task. The shaded box 

represents the components 

of a model to be changed for 

comparison

Table 13  Fake product review 

detection results comparing the 

use of word-embedding models 

and language models

Boldfaced text suggests the results are better than the baseline when the language resources are used

Macro W.Macro

P R F1 P R F1

Part (a) Experiments: using word-embedding models

 Baselines

 SVMggl 85.1 85.1 85.1 85.1 85.1 85.1

 GND.biLSTMggl 94.8 94.7 94.7 94.8 94.7 94.7

 GND.HANggl 95.0 95.0 95.0 95.0 95.0 95.0

 FT.MWPDggl 93.9 93.9 93.9 93.9 93.9 93.9

Comparators

 SVMprod 87.1 87.0 87.0 87.1 87.0 87.0

 GND.biLSTMprod 95.5 95.5 95.4 95.5 95.5 95.4

 GND.HANprod 95.8 95.8 95.8 95.8 95.8 95.8

 FT.MWPDprod 94.1 94.1 94.1 94.1 94.1 94.1

Part (b) Experiments: using language models

 Baseline

 BERT
default

97.3 97.2 97.2 97.3 97.2 97.2

Comparator

 BERTprod 97.1 97.0 97.0 97.1 97.0 97.0
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training data for MT is much ‘sparser’ than the Rakuten 

dataset. Intuitively, it would have been easier to generalise 

on the Rakuten dataset, as a significantly larger number of 

tokens in the product names would be mapped to the same 

token in the product classification. On the contrary, there 

are significantly fewer examples to learn this mapping on 

the PCC.

We conclude here that the reason behind the failure of 

the MT-based product keywords is the inconsistent quality 

of the generated keywords. And this could have been due to 

the sparsity in the product category corpus that we used to 

train the MT model.

Discussion

With the growing amount and availability of semantic 

markup data on the Web, research has started looking at how 

such a gigantic data resource can be used to support various 

data mining tasks [4, 5, 11]. However, there has been a sig-

nificant variation in terms of the data sources used, the tasks 

addressed, the processes applied, and the findings reported. 

In this section, we discuss our work from four perspectives: 

(1) research question 1; (2) research question 2); and (3) 

how to interpret the generally negative results of pre-training 

language models.

Table 14  The numbers of the largest hosts (top 100 ranked by the number of product offer instances found in product description and category 

corpora) by types of products sold online

Note that the number will add up above 100, as there are several websites classified under multiple product types

Type #Hosts Notes

Auto parts/accessories 5 E.g. car parts, car audio

Automobile 7 E.g. cars, motorcycles

B2B marketplace for exporter/importers 1

Books 2 Incl. conventional and audio books

Business catalogues 1 E.g. yellow pages

Camera 1

Chemical products 1

Educational resources 1 E.g., posters, exercise books

Farming equipment 1 E.g. tractors, seeds, clothing

Fashion 26 E.g. clothing, footwear, accessories

Finance 1 E.g. credit card shopping

Food 1

Gardening 1 Incl. equipment, plants, decoration etc.

Healthy supplements 1

Hobbies/handcrafting 1 E.g. knitting supplies

Holiday making 4 E.g. hotels, flights, package holidays

Home furnishing/furniture 4

Information consultancy 4 E.g. news, drug patent consultancy, DIY

Jewellery/watch 7

Lighting equipment 1

Music 1

Office supply 2

Pet supply 1

Power tools 1

E-commerce integration/comparison platforms 5 E.g. groupon, gumtree

Properties 2

Restaurant equipment/hardware supply 2

Speciality clothing 7 All hosts are for bridal wear

Sports equipment 4 E.g. golf, baseball

Sports fan shop 2 E.g. baseball team fan shops selling anything ranging 

from clothing to decoration items

Visual content 4 Typically online photo/gallery shops, e.g. vectorstock.com
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In terms of 1) our first research question, (also objec-

tive 1), we processed the markup data from the 2017 

WDC release and extracted all n-quads related to products. 

Then following the work of [6, 11, 13], we transformed 

the n-quads to three different types of language resources 

respectively: word embeddings, a refined BERT LM, and a 

machine translation model for generating product keywords 

given their names. Our choice of methods represent the most 

popular options in product NLP, but to the best of our knowl-

edge, our work is the first that utilises and compares these 

different methods in a single study.

In terms of 2) our second research question (also objec-

tive 2), we conducted a wide range of experiments including 

three tasks and 10 datasets of different sizes, that are used to 

evaluate different SoTA models using the created language 

resources. In terms of the scope of our experimental studies, 

to the best of our knowledge, there were no previous studies 

of a comparable scale. On the whole, we found that only 

word embeddings led to the most consistent improvement 

over all tasks. In this direction, we noted before that the ear-

lier work by [22] used the fastText algorithm to train word 

embeddings using a product-related corpus collected from 

the semantic markup data (so called ‘self-trained embed-

dings’). They showed that this domain-specific embedding 

model marginally increased the performance of product link-

ing on some product categories, but overall did not offer 

significant value. In comparison, our Word2Vec skip-gram 

word-embedding model gained notable improvement over 

the generic embedding model on the WDC-small dataset 

(Table 11), which was also used by [22]. To explain this 

difference, we suspect that the size of the training corpora 

and the different pre-processing in the two studies could 

have been the reason. The corpus used in [22] focussed on 

product linking, and therefore, filtered the underlying data 

based on if a product offer contains useful product identi-

fies. This process could have eliminated a significant pro-

portion of the data that may have been useful as less than 

10% of product offers contain such information. Our product 

description corpus on the other hand, is much larger. This 

seems to suggest that using a larger, more diverse set of 

product markup data is more beneficial for training word 

embeddings.

In terms of 3) the negative results from pre-training lan-

guage models, we notice that, although this is generally 

inconsistent with the wider literature on training in-domain 

LMs [6–10], similar observations were also reported previ-

ously in the literature [6, 7]. We believe there can be many 

reasons to this, but we speculate that the primary ones being 

the size and quality of the data used for in-domain pre-train-

ing. Compared to the E-BERT model [9] that is the most 

similar to ours, we note significant difference in terms of 

the pre-training process. While we used the ‘out of the box’ 

BERT configuration without much change, E-BERT modi-

fied the pre-training process in many ways using high qual-

ity external resources and complex process algorithms. All 

these modifications allowed E-BERT to learn product related 

knowledge in a more effective way. Similarly, SMedBERT 

[10] changed the pre-training process by incorporating struc-

tured information such as knowledge graphs.

At the same time, it is worth noting studies that also 

used a simple ‘out of the box’ BERT pre-training process 

(same to ours) with an in-domain corpus and obtained 

better results on downstream tasks, such as BioBERT 

[6], SciBERT [8], and Clinical BERT [7]. It is possible 

that the main differentiating factor could be the size and 

Table 15  Vocabulary analysis of each dataset

Dataset Avg tok Avg % non-

digit tok

Avg % non-

digit toks in 

PDC

MWPD-PC 80 94 88

WDC-25 49 98 94

Rakuten 10 91 84

IceCat 46 99 85

WDC-small 12 83 79

BeerAdvo-RateBeer (S) 17 71 71

iTunes-Amazon
1
 (S) 41 63 59

Fodors-Zagats (S) 19 42 43

Amazon-Google (S) 11 64 63

Walmart-Amazon
1
 (S) 17 76 66

Abt-Buy (T) 35 80 74

iTunes-Amazon
2
 (D) 45 64 63

Walmart-Amazon
2
 (D) 19 74 69

Fig. 4  Comparison of the distributions of text length in the product 

names from the Rakuten dataset and that from the product category 

corpus (PCC); and comparison of the distributions of word frequency 

in the product classification labels from the Rakuten dataset and the 

word frequency in the site-specific categories of PCC
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quality of the underlying corpora used for pre-training. 

All these earlier studies used resources that are arguably 

higher quality and are of a larger quantity. For example, 

SMedBERT, E-BERT and Clinical BERT used well-

curated vocabularies, knowledge graphs or corpora. 

SciBERT and BioBERT used scientific publications that 

are well-written and follow a generally consistent struc-

ture. The unstructured in-domain corpus is typically of a 

comparable size to the original corpus used for training 

BERT, or much larger (BioBERT). In contrast, our cor-

pora are much noisier as they are collected from hetero-

geneous websites and there are no standardisations on 

how the content should be written. Our corpora are also 

much smaller, due to having to split the entire dataset into 

smaller chunks to meet the computational restrictions.

One question that remains unanswered is that while 

both our word embedding model and the BERT LM are 

trained on the same corpus, why are the word embed-

dings more useful than the BERT model? On the one 

hand, the corpus used to pre-train BERT is much smaller, 

as we were unable to use the entire product description 

corpus as we did for the word-embedding model. On 

the other hand, our word embeddings are trained using 

the Word2Vec skip-gram algorithm, which learns word 

embeddings through a task of predicting the context of 

a given word. The BERT LM pre-training followed the 

Masked Language Modelling (MLM) task, which tries to 

predict a word given its context. This rationale is similar 

to Word2Vec’s Continuous Bag-of-Words (CBOW) algo-

rithm that was shown to be less effective on modelling 

infrequent words [65]. As Appendix 1 shows, some of 

the tasks we evaluated may contain many words that are 

under-represented in the product description corpus. As 

a result. This might have had an impact on the continued 

in-domain pre-training of BERT.

Beyond these analysis from a theoretical point of view, 

we also conducted further analysis of the data quality 

(objective 3) and this to some extent, confirmed several 

points made in the above discussion. We noticed that the 

semantic markup data are highly unbalanced in terms of 

the domains, with data related to fashion dominating a 

significant percentage. This could have led to noticeable 

vocabulary ‘gaps’, which could be detrimental to datasets 

containing short texts falling into such ‘gaps’, or algo-

rithms that are sensitive to ‘infrequent’ words. Although 

previous work such as [4, 5] reported similar findings, 

they did not evaluate the impact of such problems on tasks 

that use such data. Our work therefore, serves first evi-

dence of how such data quality issues impact NLP tasks.

Conclusion

In this work, we conducted an exploratory study of using 

structured linked data embedded within HTML webpages 

for the creation of language resources for downstream NLP 

tasks. Despite the generally negative results, we can draw 

important lessons that may inform future research and 

practice (objective 4).

From a theoretical point of view, our results serve a les-

son to researchers looking to develop novel methods that 

exploit the growing semantic markup data on the Web. 

While the data has reached a ‘critical mess’, the sheer size 

does not seem to outweigh certain ‘quality’ aspects of the 

data and this may impact on downstream tasks that exploit 

such data. To address this, a useful task would be develop-

ing an approach to ‘assess’ the quality a semantic markup 

dataset, or identify a ‘quality subset’. However, there can 

be many challenges such as the notion of ‘quality’ may be 

task and data dependent.

Leading from this, we argue there is also an implication 

on the increasingly popular research on developing large 

domain-specific LMs. While many successful studies have 

been reported in different domains, our study shows that 

language modelling using very large unstructured corpora 

may not be as straightforward as the literature indicates. 

Crucially, there is a lack of understanding of the ‘condi-

tions for success’, e.g.: how much data would be sufficient 

for training a domain-specific LM, how ‘balanced’ the data 

needs to be, and in what ways? We believe that this is an 

important question to be further investigated, given the 

increasing popularity and importance of using domain-

specific LMs in NLP.

From a practical point of view, our study shows that, 

pre-training BERT appears to be more susceptible to noise 

and size of datasets, while training word embeddings 

appears to be more robust. This can inform practitioners 

when making a choice between these popular approaches: 

although BERT-based methods are taking the mainstream 

in research, earlier methods like training word embed-

dings may perform just as well or even better in certain 

scenarios.

Further, we also call for further effort from data pub-

lishers that adopt the semantic markup practice. Although 

there has been remarkable progress in terms of the quan-

tity of semantic markup data, it may now be the time to 

place more emphasis on quality in order to allow a wider 

community to benefit from such data.

Our work, however, is limited in a number of ways. 

First, partly due to the limited space of this article, we 

did not compare all available options of each method 

for creating language resources. For example, instead of 

Word2Vec, there are other alternatives for training word 
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embeddings [71]. The same can be said for pre-training 

LMs. Second, due to limited computing resources, we 

were unable to pre-train our BERT LM using the full prod-

uct description corpus. This could have affected our results 

to some extent.

Reflecting on the above points, we highlight a few future 

research directions. First, as already discussed above, there 

can be significant value in researching the quality aspects 

of semantic markup data, and ultimately developing metrics 

and processes to identify and select the right subset of the 

dataset optimised for different tasks. This could be broadly 

considered an issue of quality of such linked data, but many 

research questions arise: how to define such quality metrics, 

how generic/task-specific can they be, how to use them to 

guide the dataset sub-selection, and what impact will it have 

on the language resources created using this dataset, and the 

downstream tasks using such resources?

Second, it may be worth to explore the use of these struc-

tured data in less domain-agnostic tasks. As an example, 

structured data embedded within specific HTML elements 

could be used as annotations on that web page, and the cor-

responding HTML formatting properties may be useful and 

more generalisable features for automatically tagging con-

tent from different web pages but formatted with similar 

properties. The idea here is how different types of content 

are formatted ‘relative to each other’ on a product listing 

web page can be consistent across many different domains 

and websites. This has been validated in different contexts 

such as [72]. The abundance of already annotated product 

listing pages in the form of semantic markup data can create 

an opportunity to train such taggers in a self-supervised way.

Our future work will explore some of the above questions 

and research directions.

Appendix 1: Additional Data Analysis

A.1 Product Classification: Word Frequency Analysis 
for Word‑Embedding Model Training

As discussed in “Training word-embedding models”, we 

choose to use the Word2Vec skip-gram model instead of 

the continuous bag-of-words model for training the word-

embedding models from our product description corpus. The 

reason is that the skip-gram model is shown to better repre-

sent infrequent words in the training corpus. We conducted 

a word frequency analysis of the training datasets for product 

classification, and discovered that a fair percentage of words 

belong to the relatively infrequent segment of words in the 

product description corpus. We present this part of analysis 

here.

First, we start with extracting and normalising (same pro-

cess as that used for building the word-embedding model) all 

unique words from the product description corpus. Second, 

we count the frequency of these words and rank them in the 

descending order of frequency. This list of words is then 

binned into 100 segments. Third, we extract unique words 

from each product classification training dataset (from the 

concatenation of all product metadata), and count for each 

bin, the number of words found in that bin. Finally, we cal-

culate the percentage of words belonging to each bin.

Our results show that, the highest frequency bin (#1) con-

tains roughly 71%, 72%, 55% and 63% of words found in the 

IceCat, Rakuten, MWPD-PC and WDC-25 training sets. In 

other words, between 28% and 45% of words from these 

datasets are not the most frequent words found in the word-

embedding training corpus. In fact, summing up the words 

under bin #11 and further, these are 3%, 6%, 21% and 17% 

for IceCat, Rakuten, MWPD-PC and WDC-25 training sets. 

Based on these findings, we opted for using the skip-gram 

model for training word embeddings.
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