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EEG-Based Graph Neural Network
Classification of Alzheimer’s Disease:
An Empirical Evaluation of Functional

Connectivity Methods
Dominik Klepl , Graduate Student Member, IEEE, Fei He , Member, IEEE,

Min Wu , Senior Member, IEEE, Daniel J. Blackburn , and Ptolemaios Sarrigiannis

Abstract— Alzheimer’s disease (AD) is the leading form1

of dementia worldwide. AD disrupts neuronal pathways2

and thus is commonly viewed as a network disorder. Many3

studies demonstrate the power of functional connectivity4

(FC) graph-basedbiomarkers for automated diagnosis of AD5

using electroencephalography (EEG). However, various FC6

measures are commonly utilised, as each aims to quantify7

a unique aspect of brain coupling. Graph neural networks8

(GNN) provide a powerful framework for learning on graphs.9

While a growing number of studies use GNN to classify10

EEG brain graphs, it is unclear which method should be11

utilised to estimate the brain graph. We use eight FC12

measures to estimate FC brain graphs from sensor-level13

EEG signals. GNN models are trained in order to compare14

the performance of the selected FC measures. Additionally,15

three baseline models based on literature are trained for16

comparison. We show that GNN models perform signif-17

icantly better than the other baseline models. Moreover,18

using FC measures to estimate brain graphs improves the19

performance of GNN compared to models trained using a20

fixed graph based on the spatial distance between the EEG21

sensors. However, no FC measure performs consistently22

better than the other measures. The best GNN reaches23

0.984 area under sensitivity-specificitycurve (AUC) and 92%24
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accuracy, whereas the best baseline model, a convolutional 25

neural network, has 0.924 AUC and 84.7% accuracy. 26

Index Terms— Alzheimer’s disease, graph neural net- 27

work, classification, EEG, functional connectivity. 28

I. INTRODUCTION 29

A
LZHEIMER’S disease (AD), a neurodegenerative dis- 30

ease, is the most common form of dementia. AD patients 31

exhibit progressive deterioration of memory and other cogni- 32

tive functions. From a neuroscience perspective, AD leads to 33

synaptic loss and cellular death, which progressively occurs 34

over multiple brain regions [1]. Disruption of communication 35

pathways amongst brain regions is observed in AD [2], [3], [4]. 36

Due to this distributed nature of AD, it can be recognised 37

as a network disorder. Thus, graph theory is well suited 38

for analysing and classifying AD, as it provides a general 39

framework to study the interactions of various pathological 40

processes across multiple spatiotemporal scales. 41

Functional connectivity (FC) is one of the methods to 42

construct and study brain graphs. The edges of FC graphs 43

represent the statistical dependencies between brain regions 44

rather than the physical connectome, i.e. structural con- 45

nectivity. FC brain graphs can be constructed from any 46

functional brain imaging modality, such as EEG, magnetoen- 47

cephalography (MEG), functional magnetic resonance imaging 48

(fMRI), or positron emission tomography (PET). In this paper, 49

we focus on EEG. EEG has been shown to be an effective tool 50

for studying the changes in brain activity in AD cases [5], 51

[6], [7]. Compared to other modalities, EEG is economical, 52

non-invasive, easy to administer, and has a superior temporal 53

resolution. On the other hand, it suffers from a low spatial 54

resolution as the activity is measured by electrodes placed on 55

the subject’s scalp. 56

Emerging evidence shows large-scale alterations in func- 57

tional connectivity (FC) in AD, such as increased connectivity 58

in the low-frequency bands [8], [9], [10]. Graph-based studies 59

show that AD is characterised by reduced complexity [6] and 60

loss of small-world organisation, assessed by the clustering 61

coefficient and characteristic path length [11], [12], [13], [14]. 62

However, there are multiple FC methods commonly used 63

within the literature. Furthermore, each FC method may 64
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quantify a different aspect of brain coupling. There are both65

linear and nonlinear FC methods that quantify the coupling of66

signals’ phases, amplitudes, and even cross-frequency inter-67

actions. For simplicity, we do not consider cross-frequency68

interactions and focus on FC measures quantifying brain69

coupling between two signals within the same frequency70

range, i.e. frequency band. Moreover, there is an uncertainty71

on the reproducibility of some FC methods [15], and the72

robustness to volume conduction effects [16]. In this paper,73

we select and evaluate a number of commonly used methods74

to quantify FC from EEG data.75

The most common and simplest FC measure is Pearson’s76

correlation coefficient (corr) [17]. The phase coupling of a pair77

of signals is commonly measured by coherence (coh) [13],78

[14], imaginary part of coherency (iCOH) [15], [18],79

phase lagged index (PLI) and its weighted version (wPLI),80

and phase locking value (PLV) [15]. The correlation of81

amplitude envelopes of two signals can also be measured82

(amp-corr) [15]. Finally, information-theoretic measures are83

commonly used as measure FC, such as mutual information84

(MI) [19]. We exclude the directed (i.e. causal) connectivity85

measures from this comparative study since these are generally86

not considered FC measures but rather effective connectivity87

measures.88

Graph-based features were also successfully used to train89

machine learning classifiers to diagnose brain disorders using90

EEG automatically. Manually engineered graph features, such91

as node strength [20] and vectorised adjacency matrix [21],92

could be promising graph-based biomarkers of AD, as both93

approaches achieve high classification accuracy. Additionally,94

there were some attempts to utilise deep learning, convo-95

lutional neural network (CNN), for automatic graph-based96

feature extraction. Specifically, CNN was trained to clas-97

sify AD and schizophrenia using adjacency matrices, which98

are image-like representations of FC graphs [22]. How-99

ever, an image representation of a graph cannot effectively100

capture all the properties, as a graph is a non-euclidean101

object.102

Graph neural network (GNN) extends the logic of convo-103

lution operation to graphs by aggregating information from104

linked nodes, based on the assumption that nodes connected105

by an edge are similar. However, there is a limited number106

of GNN applications for EEG brain graph classification.107

Moreover, it is unclear which method should be used to infer108

the graph structure for the GNN application. A fully connected109

graph is commonly used in the literature [23]. However, such110

an approach does not leverage any information encoded by FC111

brain graphs. A second option is using the distances between112

spatial positions of EEG electrodes to define the graph struc-113

ture [23], [24]. Furthermore, Demir et al. [23] utilise distance114

thresholding and k-nearest-neighbours methods to filter-out115

unimportant edges. Such edge-filtering can be important,116

as some edges might be redundant or even introduce additional117

noise, thus hindering the model from learning the optimal118

solution. Only a handful of studies use FC measures, such as119

coherence [24] and wPLI [25]. Additionally, Liu et al. [25]120

use a minimum spanning tree algorithm (MST) to produce121

sparse brain graphs. This is in contrast to threshold-based edge122

filtering, as MST can select edges with various edge weights 123

and ensures that the resulting graph is connected. Additionally, 124

Zhong et al. [26] utilise a learnable mask in order to learn 125

the optimal graph structure for a specific classification task 126

without relying on any FC measure. 127

In this study, we systematically evaluate the effects of using 128

various FC methods to infer EEG brain graphs in training 129

GNN for the classification of AD patients. Two types of 130

edge filtering are used to induce graph-sparsity in order to 131

improve the performance of GNN. To compare and evaluate 132

the classification performance of various FC-based GNNs, 133

a GNN-based baseline is trained using a fixed graph structure 134

for all brain graphs, represented by the euclidean distance 135

between spatial positions of EEG sensors. Three additional 136

baseline models are established: two SVM baselines fitted 137

on node strength (SVM-NS) and vectorised adjacency matrix 138

(SVM-vector), respectively, and a CNN trained on images of 139

adjacency matrices. Fig. 1 illustrates the model architectures 140

employed for comparative study in this work. 141

II. DATA AND PRE-PROCESSING 142

The EEG dataset consists of 20 AD patients and 20 healthy 143

control participants (HC) below 70 years. A subset of this 144

dataset has been previously used in Blackburn et al. [5]. All 145

AD participants were recruited in the Sheffield Teaching Hos- 146

pital memory clinic. AD participants were diagnosed between 147

one month and two years before data collection, and all were 148

in the mild to moderate stage of the disease at the time of 149

recording. Age and gender-matched HC participants with nor- 150

mal neuropsychological tests and structural MRI scans were 151

recruited. The EEG data used in this study was approved by 152

the Yorkshire and The Humber (Leeds West) Research Ethics 153

Committee (reference number 14/YH/1070). All participants 154

gave their informed written consent. 155

EEG was acquired using an XLTEK 128-channel headbox, 156

Ag/AgCL electrodes with a sampling frequency of 2 kHz using 157

a modified 10-10 overlapping a 10-20 international electrode 158

placement system with a referential montage with a linked 159

earlobe reference. The recordings lasted 30 minutes, during 160

which the participants were instructed to rest and not to think 161

about anything specific. Within each recording, there were 162

two-minute-long epochs during which the participants had 163

their eyes closed (alternating with equal duration eyes-open 164

epochs, not used in this work). 165

All the recordings were reviewed by an experienced neuro- 166

physiologist on the XLTEK review station with time-locked 167

video recordings (Optima Medical LTD). For each partici- 168

pant, three 12-second-long artefact-free epochs were isolated. 169

Finally, the following 23 bipolar channels were created: 170

F8–F4, F7–F3, F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ, 171

T4–C4, T3–C3, C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–P3, 172

T4–T6, T3–T5, P4–PZ, P3–PZ, T6–O2, T5–O1, P4–O2, 173

P3–O1 and O1–O2 [5]. 174

A. EEG Pre-Processing 175

First, a zero-phase 5th order Butterworth filter is employed 176

to remove frequencies below 0.1 Hz and above 100 Hz; a 177



KLEPL et al.: EEG-BASED GNN CLASSIFICATION OF AD: AN EMPIRICAL EVALUATION OF FC METHODS 2653

Fig. 1. Overview of model architectures developed for classification of AD from EEG-FC-based graphs. (A) A graph neural network (GNN) takes
weighted featured brain graphs with N nodes represented by a weighted adjacency matrix and a node feature matrix (RN×D,D = 100) where
the node features consist of power spectral densities (PSD, 0 − 100Hz). The N-GCN hyper-parameter controls the number of graph convolutional
layers. (B) Support vector machine trained using the node strengths (i.e. the sum of edge weights of neighbouring nodes) as input features (SVM-
NS). (C) Convolutional neural network (CNN) trained on the brain graphs represented by weighted adjacency matrices. Alternatively, the weighted
adjacency matrix is flattened and used as input to a support vector machine (SVM-AM). (D) Node feature matrix (RN×D) with power spectral densities
across all EEG channels is used to train a multilayer perceptron (MLP).

zero-phase 4th order Butterworth stop-band filter is used to178

remove frequencies between 49 and 51 Hz related to power-179

noise. The EEG data were then down sampled to 250 Hz using180

an 8th order Chebyshev type I filter and scaled to zero mean181

and unit standard deviation.182

In order to increase the sample size and to demonstrate183

that the classification performance is epoch independent,184

the 12-seconds-long epochs were split into 3-second-long185

non-overlapping segments. Thus, for each subject, there186

are 12 EEG segments. Finally, frequency bands are created187

from each EEG segment using a zero-phase 5th order Butter-188

worth filter. Six frequency bands are considered: δ (0.5−4H z),189

θ (4 − 7H z), α (7 − 15H z), β (15 − 31H z), γ (31 − 100H z)190

and full (0.5 − 100H z).191

III. METHODS192

A. Functional-Connectivity-Based Brain Graph Inference193

In this paper, we selected eight commonly used methods194

for constructing brain graphs from EEG signals, namely: the195

absolute value of Pearson’s correlation (corr), spectral coher-196

ence (coh), the imaginary part of coherency (iCOH), phase197

lagged index (PLI), weighted phase lagged index (wPLI),198

phase locking value (PLV), mutual information (MI) and199

amplitude envelope correlation (AEC).200

We estimate FC brain graphs for each EEG segment and201

frequency band separately. Thus, for each subject, we obtain202

72 brain graphs (12 segments × 6 frequency bands). A brain 203

graph G can be represented by an N × N adjacency matrix A 204

where N = 23. As we consider only FC measures, all edges 205

are undirected, and thus the number of inferred edges can be 206

reduced from N2 to [N ×(N −1)/2]. However, for simplicity, 207

we keep the N2 edges in the N ×N adjacency matrix A. Thus, 208

each entry of the adjacency matrix AFC
xy represents the edge 209

weight between nodes, i.e. the dependency of EEG signals 210

x ∈ R
T and y ∈ R

T are measured by the connectivity measure 211

FC where T is the signal length. All of the selected measures 212

are normalised to [0, 1] where 0 indicates no coupling and 1 213

indicates a perfect coupling. 214

The adjacency matrix using the absolute values of Pearson’s 215

correlation coefficients between nodes x and y is given by: 216

Acorr
xy =

∣

∣

∣

∣

∣

∣

∑

t (x(t) − x̄)(y(t) − ȳ)
√

∑

t (x(t) − x̄)2

√

∑

t (y(t) − ȳ)2

∣

∣

∣

∣

∣

∣

, (1) 217

where x(t) is the value of signal x at time t , and x̄ is the mean 218

of x . The absolute value is calculated as we are only interested 219

in the coupling magnitude. Next, the adjacency matrix of 220

coherence is given by: 221

Acoh
xy ( f ) =

|C Sxy( f )|2

C Sx x ( f )C Syy( f )
, (2) 222
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where C Sxy and C Sx x are cross-spectral and auto-spectral223

densities respectively at frequency f . The coherence within a224

frequency band B is then calculated as the mean of Gcoh
xy ( f )225

where f ∈ B .226

The imaginary part of coherency (iCOH) measures phase227

consistency similar to coh and accounts for volume conduction228

effects. The adjacency matrix using iCOH is computed as:229

AiC O H
xy ( f ) =

ℑ(C Sxy( f ))
√

C Sx x( f )C Syy( f )
, (3)230

where ℑ denotes the imaginary component. The iCOH within a231

frequency band B is then calculated as the mean of GiC O H
xy ( f )232

where f ∈ B233

The phase and amplitude of an EEG signal at time t can be234

calculated from the analytic representation z of signal x235

z(t) = x(t) + i x̃(t), (4)236

where i is the imaginary component and x̃(t) is the correspond-237

ing Hilbert transform. Then the phase and amplitude can be238

obtained from z(t) as239

φ(t) = arctan

(

x̃(t)

x(t)

)

, (5)240

and241

amp(t) =
√

[x(t)]2 + [x̃(t)]2. (6)242

Phase lag index (PLI) quantifies the asymmetry in phase243

distributions of two signals and measures only non-zero phase244

locking [27]. The adjacency matrix using PLI is defined as:245

AP L I
xy =

∣

∣

∣

∣

∣

1

T

T
∑

t=1

sign sin(φx (t) − φy(t))

∣

∣

∣

∣

∣

, (7)246

where φx is obtained using Eq. 5. Weighted phase lag index247

(wPLI) is an extension of PLI, which aims to remove the248

effects of amplitude and volume conduction by maximally249

weighting the ±90 deg phase differences and thus omitting250

uniformly driven differences [28]. The adjacency matrix using251

wPLI is computed as252

AwP L I
xy =

∣

∣

∣

∣

∣

1

T

T
∑

t=1

| sin(φx(t) − φy(t))|

sin(φx(t) − φy(t))

∣

∣

∣

∣

∣

. (8)253

Phase locking value (PLV) is another approach to quantify254

the consistency of phase differences between signals, and its255

associated adjacency matrix is computed as256

AP LV
xy =

∣

∣

∣

∣

∣

1

T

T
∑

t=1

e− i(φx (t)−φy(t)

∣

∣

∣

∣

∣

. (9)257

Amplitude envelope correlation (AEC) aims to quantify the258

coupling based on the amplitudes of the signals. The adjacency259

matrix using AEC is computed with Eq. 1 where x and y are260

the amplitudes of respective signals computed using Eq. 6.261

Mutual information (MI) quantifies the amount of known262

information about a second signal after observing the first263

signal. The adjacency matrix using MI is calculated as:264

AM I
xy =

∑

xi ,y j

PXY (xi , y j ) log

(

PXY (xi , y j )

PX (xi )PY (y j )

)

, (10)265

where PXY and PX are the joint and marginal probability 266

distributions, respectively. 267

1) Edge Filtering Methods: It is worth noting that we did not 268

use any corrections for false positives. Thus, the true brain 269

graph structure might be masked by noise due to spurious 270

coupling. Traditionally, a surrogate threshold might be used 271

to control such spurious edges. However, such a procedure 272

is computationally expensive, as it requires re-computing the 273

connectivity measure on multiple random surrogate versions 274

of the original signals, to estimate a null surrogate distrib- 275

ution. Instead, we implement two edge-filtering methods to 276

select only important edges and thus produce sparse graphs. 277

Compared to the surrogate threshold method, edge-filtering is 278

a fast and efficient, albeit naive method to deal with potentially 279

noisy brain graphs. We also utilise the fully-connected graphs, 280

i.e. without any edge selection, in the classification models in 281

order to test the effect of edge-filtering. 282

The first edge-filtering method is an FC-strength-based top- 283

k% filter (k ∈ {10, 20, 30}), which selects only the top k% 284

strongest edges of the given graph and removes the rest. 285

This approach assumes that edge weight, i.e. the connectivity 286

strength, is directly related to the importance of an edge. 287

However, this assumption might not be valid. 288

A minimum-spanning-tree-based filter (MST-k), also an 289

orthogonal minimum spanning tree [29], addresses this con- 290

cern as it selects a mix of edge weights and always produces 291

a connected graph, i.e. a path exists among all nodes. Briefly, 292

the MST algorithm [30] aims to extract a backbone of a graph 293

with N nodes by selecting N − 1 edges, such that the sum of 294

weights is minimised. We use Prim’s algorithm for computing 295

MST [30]. In the case of brain graphs, a stronger edge weight 296

implies a higher degree of coupling; thus, we use an inverted 297

MST algorithm which maximises the sum of weights instead. 298

When k = 1, MST-k is equal to a single iteration of the 299

MST algorithm. For k > 1, the edges selected by the previous 300

iterations are removed from the graph, and the MST algorithm 301

is re-run. Thus, MST-k filter selects k(N − 1) edges. 302

B. Graph Neural Network Classification 303

A graph neural network (GNN) is an extension of an 304

artificial neural network that is capable of learning on graph- 305

structured data. Specifically, we implement a graph convolu- 306

tional network (GCN) for a graph classification task (Fig. 1A). 307

The input to the GCN classifier is in the form of a graph: 308

G = {N, E, F}, where N , E , and F are sets of nodes, edges 309

and node features, respectively. The nodes are fixed in our 310

case, as this is the number of EEG electrodes. The set of 311

edges E is given by the adjacency matrix A computed by 312

the FC measures introduced in the previous section. Finally, 313

the node feature matrix F is an N × D matrix where each 314

row encodes a D-dimensional feature for the corresponding 315

node. Specifically, power spectral density (PSD) is computed 316

over 1 Hz increments in an interval between 0 and 100 Hz, 317

forming a 100-dimensional node feature vector (i.e. D = 100). 318

GCN is based on the message-passing framework, which 319

assumes that neighbouring nodes should have similar node 320

features. Briefly, a GCN layer updates the node features 321



KLEPL et al.: EEG-BASED GNN CLASSIFICATION OF AD: AN EMPIRICAL EVALUATION OF FC METHODS 2655

TABLE I

POSSIBLE VALUES FOR HYPER-PARAMETERS OF GNN, SVM-NS, SVM-AM, CNN AND MLP

(i.e. messages) using the optionally transformed messages322

collected from neighbouring nodes. On a node level, a single323

GCN layer effectively aggregates information from the 1-hop324

neighbourhood of each node. Thus, stacking L GCN layers325

represents aggregation from L-hop neighbourhood. Formally,326

the GCN layer is implemented on a node-level as follows [31]:327

x l
i = �1x l−1

i + �2 max
j∈G i

ei j x l−1
j , (11)328

where x l
i is the node features of node i at the l th layer, x0

i329

is the i th row of the input node feature matrix F, and �330

is a learnable linear transformation, which maps the node331

features from shape [1, D] to [1, GCN-hidden]. Gi and332

ei j are the neighbourhood of node i and the edge weight333

connecting nodes i and j given by the set of edges E334

respectively. The GCN-hidden is a tunable hyper-parameter of335

the GCN architecture. A rectified-linear-unit (ReLU) activation336

is applied to the output of GCN, and batch normalisation is337

performed [32]. We refer to the node-wise outputs of GCN as338

node embeddings.339

After L GCN layers are applied, the output is constructed340

by node embeddings in the form of a N × H matrix, where H341

is the hidden size given by GCN-hidden. In order to produce a342

graph-level embedding, a maximum readout layer is applied,343

resulting in an H-dimensional graph embedding r for each344

graph g.345

rg =
N

max
i=1

x L
i , (12)346

where x L
i is the output of the L th GCN layer for the i th

347

node. Following the readout layer, two linear layers are applied348

to produce the final classification with output dimensions349

H/2 and 2 (number of classes), respectively. Two linear layers350

were used to allow for further refining of the graph embedding351

before outputting the predicted class probabilities.352

Additionally, in order to improve the generalisability and353

reduce the risk of overfitting, dropout layers are utilised354

(1A). Briefly, the dropout layer randomly zeroes elements of355

the input tensor with p probability drawn from a binomial356

distribution, where p is a hyper-parameter. A dropout is357

applied to the graph embeddings, i.e. after the readout layer358

and after the first linear layer. Furthermore, an edge dropout is359

implemented, which randomly removes edges from the input 360

graph. The inclusion of the edge dropout in the model is 361

controlled by a hyper-parameter. 362

In summary, the GNN used in this study has several hyper- 363

parameters, as shown in Table I, which control (1) the model 364

architecture, (2) the form of input data, and (3) the training 365

process to prevent overfitting. In particular, (1) is enabled by 366

the number of GCN layers (N-GCN) and the inclusion of edge 367

dropout (DropEdge); (2) is enabled by frequency band and 368

edge filter; and finally, (3) is enabled by dropout probability 369

(drop-p), learning rate, gamma and batch size. 370

C. Baseline Models 371

In order to enable a fair assessment of the advantages 372

of using graph-based learning (i.e. the GNN), four baseline 373

classifiers are trained and compared. These baseline models 374

utilise the same graph-structured input data extracted using 375

different FC measures, frequency bands and edge filters, and 376

the same evaluation process. Thus, we argue this to be a fair 377

comparison of models. 378

The three selected baseline models are based on previously 379

used classifier strategies for learning on FC brain graphs: 380

SVM trained on node strength (SVM-NS) [20], SVM trained 381

on vectorised adjacency matrix (SVM-AM) [21], and CNN 382

trained on image of adjacency matrix (CNN) [22], [33]. 383

Additionally, we train a multilayer perceptron (MLP) on the 384

flattened node feature matrix that was previously used to train 385

the GNN models. 386

1) Support Vector Machine Baseline Models: The SVM-NS 387

and SVM-AM are both trained using an SVM classifier. SVM 388

has only one hyper-parameter, namely the cost, as shown 389

in Table I. Additionally, in order to select an appropriate 390

kernel for SVM, we include two kinds of kernels as hyper- 391

parameters: radial and polynomial (up to 3rd order). Both 392

of the SVM-based baseline models are trained on manually 393

extracted features. All features are first normalised to zero 394

mean and unit standard deviation. 395

The SVM-NS is trained on node strengths (Fig. 1B). Node 396

strength is defined as the sum of edge weights of one node 397

and can be interpreted as a measure of node importance. Thus, 398

each brain graph is represented by an 23-dimensional feature 399
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vector N S = (ns1, ns2, . . . , nsN ), where N is the number of400

nodes (N = 23).401

The SVM-AM is trained on vectorised weighted adjacency402

matrices (Fig. 1D). As we use only undirected FC measures,403

the N × N adjacency matrix of a brain graph is symmetric.404

Thus, we can use the upper triangular matrix only and flatten405

it to form a 253-dimensional feature vector (N × (N − 1)/2).406

Principal component analysis (PCA) is optionally employed407

for dimensionality reduction with the number of components408

selected, such that 95% of the variance is captured. The409

inclusion of the PCA step is controlled by a hyper-parameter.410

2) ConvolutionalNeural Network: CNN classifiers are trained411

on the weighted adjacency matrices of the brain graphs. As the412

adjacency matrix is a square matrix, it is simple to convert it413

to an image on which a CNN can be trained.414

The CNN architecture consists of two convolutional blocks415

and a final classifier, as shown in Fig. 1C. Each convolution416

block contains two convolutional layers (stride = 3), followed417

by a maximum pooling layer and a dropout layer. The final418

classifier consists of two linear layers with a dropout between419

them. We created several hyper-parameters to control the420

CNN. The number of convolutional filters within each block421

is controlled by the Conv1 and Conv2 hyper-parameters.422

Similarly, the hidden size of the linear layers is controlled423

by the Linear-hidden hyper-parameter. Additionally, there424

are hyper-parameters controlling the dropout probability, the425

choice of the activation function (ReLU or Tanh), and the426

batch size as shown in Table I.427

3) Multilayer Perceptron: MLP classifiers are trained using428

the flattened node feature matrix F ∈ R
N×D , where D is the429

PSD computed over the range 1-100 Hz. Thus the entry Fi j430

corresponds to PSD of the i th node at frequency j . The MLP431

is thus trained on the input used to train the GNN models, but432

without leveraging the topological information provided by the433

FC graph. The MLP architecture is controlled by the following434

hyper-parameters: N-Linear (number of layers), Linear-hidden435

(hidden size). Additionally, there are hyper-parameters con-436

trolling the dropout probability, the choice of the activation437

function (ReLU or Tanh), and the batch size as shown in438

Table I.439

D. Model Evaluation and Implementation440

The EEG preprocessing, brain graph construction, and441

model evaluation are implemented in R 4.1.2 [34] using in-442

house scripts, and caret [35] for SVM training. The training443

of CNN and GNN classifiers is implemented using PyTorch444

1.10 [36] and PyTorch Geometric 2.0.2 [37].445

The models are trained and evaluated based on repeated446

20-fold cross-validation (CV). A 5 times repeated CV is used447

in order to identify the best combination of hyper-parameters448

for all models and FC measures. The folds used for CV449

are created, such that samples from the same subject are450

kept within a single fold in order to prevent information451

leakage. We use a smaller number of repetitions in order to452

reduce the computational cost of training CNN and GNN453

models. Hyper-parameter values are selected using random454

optimisation, where the values of all hyper-parameters are455

TABLE II

AUC OF GNN, SVM-NS, SVM-AM AND CNN MODELS ACROSS

DIFFERENT FC MEASURES MEASURED BY 50-REPEATED 20-FOLD

CROSS-VALIDATION. THE ‘EUCLID’ ENTRY REFERS TO THE BASELINE

GNN MODEL WITH A FIXED GRAPH STRUCTURE BASED ON THE

SPATIAL DISTANCE OF EEG ELECTRODES

selected randomly. 200 iterations of random optimisation are 456

performed for each combination of FC measure and model 457

type. The hyper-parameters of all three model types and their 458

possible values are summarised in Table I. 459

The best-performing models are selected using the area 460

under the sensitivity-specificity curve (AUC), i.e. one model 461

per each combination of FC measure and model type. In order 462

to assess the stability of the selected models, 50 times repeated 463

CV is performed. The performance errors are computed using 464

the maximum difference between the mean and 5th and 95th
465

quantiles. This approach does not assume a normal distribution 466

and results in conservative error estimates. 467

The CNN and GNN models are trained using an Adam opti- 468

miser with an exponential learning rate decay (controlled by 469

the gamma hyper-parameter) and cross-entropy loss function. 470

The models are trained for 300 epochs with an early stopping 471

after 15 epochs if the loss stops decreasing. 472

IV. RESULTS 473

Brain graphs were inferred for each 3-second-long EEG 474

segment by using several commonly used FC measures, which 475

aim to quantify both the linear and nonlinear coupling between 476

pairs of brain signals. The brain graphs were then used as an 477

input to train the GNN brain-graph classifier. Moreover, four 478

baseline models were trained on these brain graphs in order to 479

demonstrate which type of classifier performs the best. AUC 480

is used to select the best model. 481

Table II reports the AUC values and the 95% confidence 482

intervals of the SVM-NS, SMV-AM and CNN baseline 483

models and GNN across the 8 FC measures. Note that 484

the MLP baseline is not included here, since it does not 485

utilise the FC brain graphs. Additionally, the performance of 486

the baseline GNN using Euclidean distance between spatial 487

positions of EEG (GNN-euclid) is reported in Table II as 488

well. The hyper-parameter values of the best models from 489

their respective categories are reported in Table IV. The aver- 490

aged sensitivity-specificity curves of these models are shown 491

in Fig. 2. 492

All baseline models perform worse than all of the GNN 493

models across all FC measures as shown in Table II. Even 494

the best baseline model, MLP (AUC = 0.95), achieves 495
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TABLE III

DETAILED PERFORMANCE METRICS OF BEST PERFORMING MODELS (SELECTED BASED ON AUC) OF EACH MODEL TYPE

Fig. 2. Averaged Sensitivity-Specificity curves of the best models of their
respective categories with 95% confidence intervals (ribbon).

lower performance than the worst GNN model, GNN-euclid496

(AUC = 0.978).497

From Table II, we can also see that the GNN models trained498

using FC-based brain graphs perform better than GNN-euclid,499

which was trained using a static graph structure.500

Furthermore, we report the effect of frequency bands and501

edge filtering methods on the performance of the trained502

models in the supplementary materials. Figure S3 and tables503

S1-S3 report these effects of frequency bands. Figure S4 and504

Tables S4-S6 report these effects of edge filtering methods.505

V. DISCUSSION506

We trained GNN models over several commonly used FC507

measures. For comparison, we trained four baseline models.508

The results suggest that the GNN outperforms all baseline509

models across all FC measures (Table II). Moreover, neural-510

network-based models (GNN, CNN and MLP), which perform511

automatic feature extraction, perform decisively better than512

the classical machine learning approaches (SVM-AM and513

SVM-NS) that rely on manually engineered features.514

We argue that the relatively low performance of the machine515

learning approaches is caused by the inability to remove516

noise-contaminated information from the input features. This517

is likely exacerbated by the lack of false positives control518

during the brain graph inference, which would limit the519

number of edges caused by spurious coupling. We suggest520

that the neural network-based models can solve this issue by521

using weight regularisation and dropout layers, designed to 522

learn generalisable features insensitive to noise. 523

It could be argued that the GNN models perform better 524

than CNN and MLP because they are trained using two input 525

information sources, i.e. the FC weighted brain graph and the 526

node feature matrix with power spectral density. This is a 527

unique property of GNN as it can aggregate information from 528

both inputs. Moreover, to the best of our knowledge, GNN is 529

the only model architecture that can process these two inputs 530

simultaneously. 531

The CNN and MLP baseline models offer an interesting 532

comparison to the GNN since each is trained using one 533

of the two input information sources. The CNN and MLP 534

baselines show the individual predictive power of the FC-based 535

brain graph and node feature matrix, respectively. The results 536

suggest that the node feature matrix provides a slightly better 537

source of information in the classification task (Table III). 538

However, GNN performs significantly better, and we argue that 539

the comparison with the CNN and MLP baselines highlights 540

the power of GNN in brain-graph classification. 541

The relatively poor performance of CNN also demonstrates 542

the shortcomings of treating the adjacency matrix of a brain 543

graph as an image. Each pixel of an image has an equal 544

number of neighbouring pixels, and the content of the image 545

depends on the specific spatial ordering of its pixels. There- 546

fore, convolution can be applied to patches of pixels to extract 547

features automatically. This assumption is invalid for a graph 548

where each node can be connected to an arbitrary number 549

of neighbours, and no meaningful ordering of nodes exists. 550

In contrast, graph convolution generalises the convolution 551

to efficiently solve this issue by utilising order invariant 552

operations to aggregate information from neighbouring nodes. 553

Moreover, the hyper-parameter optimisation has identified a 554

GNN model with two graph convolutional layers as the opti- 555

mal GNN architecture (Table IV). This means that the GNN 556

aggregates information not only from the nodes connected by 557

an edge directly (i.e., the 1-hop neighbours) but also from 558

the 2-hop neighbours. This suggests the importance of global 559

graph properties in diagnosing AD accurately, in addition to 560

the local properties, which could likely be learned with a single 561

layer. This is in line with the reported loss of small-world 562

properties of AD brain graphs [11], [12], [13], [14]. 563

Next, the results demonstrate that the FC-based GNNs also 564

outperform the GNN-euclid model, which utilises a static 565

graph structure (Table II). This suggests that it is preferable 566

to utilise FC-based brain graphs rather than the distance-based 567

static graphs previously used for EEG-GNN tasks [23], [24]. 568

However, it seems that no FC measure offers clearly superior 569
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Fig. 3. Averaged adjacency matrices of AD and HC cases measured with various functional connectivity measures in A) θ (best in CNN, SVM-NS
and SVM-AM models), and B) α (best in GNN model) frequency bands.

TABLE IV

HYPER-PARAMETER VALUES OF THE BEST PERFORMING GNN,

SVM-NS, SVM-AM, CNN AND MLP MEASURED BY AUC

performance compared to the others. Thus, we suggest that570

future studies need to carefully consider which FC measure to571

use based on the type of brain coupling they might wish to572

focus on. However, we do not claim that the brain graphs573

inferred from various FC measures are necessarily similar574

from a graph-theoretic perspective. This is supported by the575

performance differences of the baseline models where some576

of the FC measures, such as MI, perform consistently well.577

Surprisingly, the GNN-euclid model achieves relatively high 578

accuracy despite utilising a fixed graph structure (Table III). 579

The Euclidean brain-graph structure highlights the spatially 580

local relationships between the EEG channels. In contrast, 581

long-range edges have only a low weight. Therefore, we argue 582

that the Euclidean brain graph biases the GNN model to 583

learn local graph features predominantly. On the other hand, 584

the FC-based brain graphs may contain both local and long- 585

range relationships. Previous research suggests that AD-related 586

differences are observed in long-range pathways and global 587

graph properties [10], [11], [13]. In our opinion, the FC-based 588

GNNs outperform GNN-euclid since they can better capture 589

both the local and global differences on the graph level. 590

To further investigate the differences between FC measures 591

on the graph level, we compute an average adjacency matrix 592

for each FC measure across both groups and frequency bands 593

(Figure S1). In Figure 3, we show these matrices for α and θ 594

frequency bands as these are utilised by the best performing 595

models (Table IV). The brain graphs are relatively similar 596

across the FC measures. In the θ band, increased connectivity 597

can be observed in AD compared to HC. In contrast, the 598

connectivity seems to be decreased in AD in the α band. These 599

differences are well documented in the literature [8], [9], [10]. 600

Interestingly, all FC measures detect a well-defined cluster 601

containing mostly parietal and occipital EEG channels. The 602

strength of this cluster distinguishes AD from HC consistently 603
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across FC measures. We speculate that this cluster contributes604

most of the predictive information for the classification mod-605

els. However, since the GNN architecture is a block-box606

model, it would be difficult to confirm our speculation.607

Next, the optimised model architectures suggest that using608

edge-filtering and filtering the EEG signal within a frequency609

band improve the model performance. A detailed report of610

differences between the edge-filtering methods and frequency611

bands across the FC measures and model types is included in612

the supplements (Figures S3-S4 and Tables S1-S6). Briefly,613

the best GNN model utilises the α frequency band, and614

CNN, SVM-AM and SVM-NS utilise the θ frequency band615

(Table IV), suggesting that frequency-centred brain graphs616

should be preferred over the full-frequency-range brain graphs.617

The selection of these frequency bands is not surprising,618

as they are both well known to be altered in patients with619

AD [8], [9], [10]. In contrast, the effect of edge-filtering is620

not so apparent as only the GNN and SVM-NS models use621

edge-filtering with top-20% and MST-3, respectively. On the622

other hand, CNN and SVM-AM use unfiltered brain graphs.623

We expect that a sparse graph is preferable for GNN since624

there are fewer messages to aggregate while updating the625

node embeddings. These messages are also less likely to be626

a product of false-positive brain interaction, thus leading to627

better node and graph embeddings.628

Furthermore, it is worth noting that although GNN accepts629

two inputs, the relative contribution of each input information630

is largely unclear. The results suggest that the node feature631

matrix should contribute slightly more since the MLP baseline632

outperforms the CNN (Table III). It could be argued that the633

GNN uses only the topological information provided by the634

graph structure to enable message-passing, but the FC is not635

fully reflected in the node embeddings and graph embeddings,636

by extension. Nevertheless, we believe that the FC information637

is utilised to some extent by the GNNs since these models638

perform better than the GNN-euclid, which arguably utilises639

merely the topological information (Table II). However, the640

extent to which the information provided by the FC measures641

is contained within the learned graph embedding remains642

unclear. One can merely speculate without introducing an643

additional mechanism into the GNN architecture, which is644

beyond the scope of this paper.645

Finally, the GNN architecture utilised in this study is646

relatively simple as one of the simplest GCNs was used, and647

the readout layer merely computes the maximum of the node648

embeddings. Previous EEG-GNN applications demonstrated649

the advantages of using more complex graph convolutional650

layers and edge pooling mechanisms [23]. We hypothesise that651

exploiting a learnable edge-filtering mechanism akin to that652

utilised by Zhong et al. [26] might improve the classification653

compared to the edge-filtering methods used in this study.654

VI. CONCLUSION655

GNN is an effective model for learning on graph-structured656

data, such as FC-EEG brain graphs. However, in the absence657

of consent about the ideal FC measure for estimating EEG658

brain graphs, the effect of an FC measure on the performance659

of GNN classifiers is unclear. In this paper, we have selected 660

eight common FC measures to investigate this effect. 661

First, we demonstrated that GNN models are superior to 662

classical machine learning and CNN models for brain graph 663

classification. Unfortunately, the utilised GNN architecture 664

is a black-box model. Thus, future work should focus on 665

implementing interpretable GNN architectures that achieve 666

similar performance but additionally offer interpretability, such 667

as which nodes, i.e. brain regions, drive the prediction. Besides 668

providing an opportunity for experts to validate such models, 669

interpretable predictions might also serve in the development 670

of GNN-informed targeted treatment. 671

Finally, we showed that utilising FC measures to define 672

the brain graph results in improved performance of GNN 673

models compared to a fixed graph structure (i.e. the Euclidean 674

distance between EEG electrodes). While using an FC measure 675

improves the performance, no concrete FC measure can be 676

recommended as the ideal choice. Thus, in future research, the 677

choice of suitable FC measure should be carefully evaluated 678

in the context of the given research question. Alternatively, 679

focusing on fusion methods might lead to developing a novel 680

composite measure of FC. 681
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