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Abstract

In this paper, we provide empirical evidence that real wage rigidity is not a major cause of

unemployment volatility. We argue that there is a disconnect between the theoretical and empir-

ical literatures on this topic. While theoretical studies define real wage rigidity as the response

of wages to changes in unemployment following productivity shocks, the empirical literature

measures real wage rigidity as the estimated semi-elasticity of wages with respect to unemploy-

ment, averaged over all shocks. We show that averaging over shocks gives a biased measure of

real wage rigidity, as the impact of other shocks confounds the response to productivity shocks.

Our results indicate that the estimated semi-elasticity with respect to productivity shocks is

twice as large as the estimated semi-elasticity averaged over all shocks. This implies that one

cannot attribute unemployment volatility to real wage rigidity.
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1 Introduction

The link between unemployment and real wages is central to debates on business cycles. The

real wage rigidity hypothesis is a leading candidate to explain the lack of movement in real wages

relative to unemployment which prior studies show is evident within the data. New Keynesian

DSGE models widely use real wage rigidity, including models using labour market frictions (e.g.

Gertler and Trigari, 2009; Blanchard and Gali, 2010; Gertler et al., 2020). Real wage rigidity also

appears in the new generation of heterogeneous agent New Keynesian (HANK) models (e.g. Broer

et al., 2020), as well as the Diamond-Mortensen-Pissarides models of equilibrium unemployment

to account for the volatility of unemployment and vacancies (see e.g. Shimer, 2005; Hall, 2005;

Christiano et al., 2015).

In this paper, we argue that there is a disconnect between the theoretical and empirical lit-

eratures on real wage rigidity. The empirical literature uses a regression approach to estimate

the semi-elasticities of real wages with respect to unemployment (see e.g. Pissarides, 2009; Gertler

et al., 2020), with a stronger response of wages to unemployment implying lower values of real wage

rigidity1. There are alternative approaches to real wage rigidity in the theoretical literature2. In

this paper, we use the inverse of the semi-elasticity of real wages with respect to unemployment,

since this allows us to compare measures of rigidity across the empirical and theoretical literatures.

The theoretical literature assigns a prominent role to productivity shocks in driving business cycle

fluctuations, focusing on the role of real wage rigidity in generating a large volatility of unem-

ployment in response to productivity shocks. The disconnect arises because the semi-elasticities

estimated in the empirical literature reflects the impact of all shocks, not just productivity shocks.

This implies that evidence from the empirical literature cannot currently be used to inform the

debate in the theoretical literature. In order to address this, one requires an empirical estimate

of the semi-elasticity of real wages with respect to unemployment in response to different shocks,

especially productivity shocks.

In this paper, we provide this. We present estimates of the semi-elasticities of real wages with

respect to unemployment in response to productivity and other shocks. We find that the estimated

semi-elasticity in response to productivity shocks is large. This implies a lower value of real wage

rigidity thereby suggesting a lack of support for the real wage rigidity hypothesis. We show that

the measure used in the current literature overstates the degree of real wage rigidity because it

confounds the impact of productivity shocks by averaging over all identified shocks, including

1The value of this semi-elasticity is controversial. Much of the debate concerns which measure of wages one should
use. In the data, the response of average wages to unemployment is small, suggesting a high degree of real wage
rigidity. Skeptics argue that it is more appropriate to use the wages of newly hired workers, since these wages are
more relevant for job creation. Many studies, including Pissarides (2009), find that the wages of new hires are more
flexible than the wages of incumbent workers. This suggests a low degree of wage rigidity. Gertler et al. (2020)
challenges this view and argues that the relevant margin of adjustment is the wages of workers newly hired from
unemployment, rather than the wages of all new hires. The latter includes the wages of workers upgrading to a better
job match. After controlling for these composition effects, they find that the wages of new hires are no more cyclical
than those of existing workers.

2As discussed by Hall (2005) and Christoffel and Linzert (2010), among others.
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shocks that move real wages and unemployment in the same direction. By correcting for this

confounding effect, we show that the underlying response of real wages relative to unemployment

following productivity shocks is much larger than the values used in the current empirical literature.

In order to do this, we depart from the regression approach used by the existing literature to

measure real wage rigidity. We estimate a structural time-varying parameter VAR model with

stochastic volatility (TVP VAR) in order to track temporal evolutions in the relationships among

US productivity, real wages, vacancies, the unemployment rate, and inflation. We identify four

transitory structural shocks using robust sign restrictions that stem from a DSGE model with search

frictions (DSGE-SF) (similar to Mumtaz and Zanetti, 2012) following the procedure in Canova and

Paustian (2011). We calculate the semi-elasticities of real wages with respect to unemployment for:

a productivity shock; an aggregate demand shock; a job destruction shock; and a wage bargaining

power shock. The latter is crucial to our analysis since it moves unemployment and wages in the

same direction. The impact of the wage bargaining power shock in the data reduces the average

semi-elasticity, thereby making this a biased estimate of the response of real wages to unemployment

following productivity shocks. Evidence on the importance of this shock is in, among others, Fujita

and Ramey (2007), Pizzinelli et al. (2020), Drautzburg et al. (2021) and Ellington et al. (2021).

Our results quantify the size of the bias. We calculate the average semi-elasticity of real wages

with respect to unemployment, averaging over all shocks. This is consistent with the existing

literature; and coherent with substantial real wage rigidity. But the semi-elasticity with respect to

productivity shocks is over twice as large, implying that the degree of real wage rigidity in response

to productivity shocks, the focus of the theoretical literature, is far smaller than the values this

literature widely uses.

Our paper proceeds as follows. Section 2) describes our data and outlines our econometric

model. Section 3) contains our structural analysis, including our strategy for identifying structural

shocks and our estimates of the semi-elasticities of real wages to unemployment following different

shocks. Finally, in Section 4) we conclude and consider options for future work.

2 Data and Econometric Model

We use quarterly US data from 1954Q3 to 2019Q4 on productivity, real wages, the vacancy rate,

the unemployment rate, and inflation3. Our measures of US productivity and real wages are

Nonfarm Business Sector: Real Output Per Hour of all Persons, and Nonfarm Business Sector:

Real Compensation Per Hour4. The vacancy rate is the Help Wanted Index in Barnichon (2010)

and the unemployment rate is from the Bureau of Labor Statistics (BLS). For inflation, we take the

Nonfarm Business Sector: Implicit Price Deflator5. We take the natural logarithm of productivity,

real wages and the implicit price deflator before applying the Hamilton (2018) filter to every variable.

3We end our sample in 2019, to avoid the turbulence of the Covid-19 pandemic.
4Both series are available from the Federal Reserve Bank of St. Louis (FRED) database with codes OPHNFB and

COMPRNFB for productivity and wages respectively.
5Also from the FRED database with code: IPDNBS.

3



These data are plotted in the Online Appendix.

We work with the following TVP VAR model, with p = 2 lags and N = 5 variables:

Yt = β0,t + β1,tYt−1 + · · · + βp,tYt−2 + ǫt ≡ X
′

tθt + ǫt (1)

where Yt ≡ [yt, wt, vt, ut, πt]
′

is a vector of endogenous variables. Here yt is the filtered value

of labour productivity, wt is the filtered value of real wages, vt, ut, and πt are filtered values of

the unemployment rate, the vacancy rate and the implicit price deflator respectively. X
′

t contains

lagged values of Yt and a constant.

Stacking the VAR’s time-varying parameters in the vector θt, they evolve as a driftless random

walk

θt = θt−1 + γt (2)

with γt ≡ [γ1,t, : γ2,t, ..., : γN ·(Np+1),t]
′. We consider two specifications for the variance of γt. The

first case is where γt ∽ N(0, Q), with Q is a full matrix containing parameter innovation variances

and covariances (Primiceri (2005)). The second is where γt ∽ N(0, Qt) with Qt being a diagonal

matrix where such diagonal elements of Qt follow independent log-stochastic volatility processes as

in Baumeister and Benati (2013). Bayesian DIC statistics suggest that the Primiceri (2005) model

fits our data best and we proceed in this case. Results using the specification in Baumeister and

Benati (2013) have the same conclusions as we report here and are available upon request.

The innovations in (1) follow ǫt ∽ N(0,Ωt). Ωt is the time–varying covariance matrix which is

factored as

Ωt = A−1
t Ht(A

−1
t )

′

(3)

with At being a lower triangular matrix with ones along the main diagonal, and the elements

below the diagonal contain the contemporaneous relations. Ht is a diagonal matrix containing the

stochastic volatility innovations. Collecting the diagonal elements of Ht and the non-unit non-zero

elements of At in the vectors ht ≡ [h1,t, : h2,t, ..., hN,t]
′, αt ≡ [α21,t, : α31,t, . . . , αNN−1,t]

′ respectively,

they evolve as

ln hi,t = ln hi,t−1 + ηt (4)

αt = αt−1 + ζt (5)

where ηt ∽ N(0, Zh), and ζt ∽ N(0, S). The innovations in the model are jointly Normal, and

the structural shocks, ψt are such that ǫt ≡ A−1
t H

1
2
t ψt. Similar to Primiceri (2005), S is a block

diagonal matrix; this implies the non-zero and non-unit elements of At evolve independently. The

specification of the priors of our model are similar to Baumeister and Benati (2013). To calibrate the

initial conditions of the model, we use the point estimates of the coefficients and covariance matrix

from a time-invariant VAR model using the first 10 years of data. Therefore the estimation sample
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of our results span 1964Q2–2019Q4. We estimate the model using Bayesian methods allowing

for 20,000 runs of the Gibbs sampler. Upon discarding the initial 10,000 iterations as burn-in,

we sample every 10th draw to reduce autocorrelation which leaves 1000 draws from the posterior

distribution. The Online Appendix contains details of our prior specification, and an outline of the

posterior simulation algorithm as well as estimates of the total prediction variation of our model,

the stochastic volatilities of each variable and the reduced form correlations between our variables.

3 Structural Analysis

In this section we outline structural identification and analysis of our model. Our identification

strategy follows Canova and Paustian (2011) and Mumtaz and Zanetti (2015). We simulate a the-

oretical model using a range of alternative calibrations, based on randomly sampling parameter

values within a specified range, constructing a distribution of impulse responses of our endogenous

variables to a variety of shocks. We identify structural shocks for which the sign of the impulse

responses on impact is unambiguous across this distribution. In this way, we ensure that our iden-

tifying sign restrictions are credible, robust to alternative calibrations of the structural parameters.

Our identifying restrictions are based on a standard New Keynesian DSGE model without capital

but with search frictions in the labour market, similar to Faia (2008), Krause and Lubik (2007),

Blanchard and Gali (2010), Mumtaz and Zanetti (2012) and others. Details of our procedure and

the model used are contained in the Online Appendix6.

Table 1: Contemporaneous Impact of Short-run Shocks on Labour Market Variables
Notes: This table shows the contemporaneous sign restrictions imposed on variable x = {yt, vt, ut, wt} to
a productivity shock, ψProd

t ; a job separation shock, ψJS
t ; a shock to workers bargaining power, ψW

t ; and a
demand shock, ψD

t , respectively. yt is the log-level of productivity; wt is the log-level of real wages; vt is the
vacancy rate; ut is the unemployment rate; and πt is inflation. x denotes no restriction.

yt wt vt ut πt

ψProd
t + + + − −

ψJS
t x − + + x

ψW
t x + − + x

ψD
t x + + − +

We identify four temporary structural shocks within our empirical model as in Table 1). We

identify: a productivity shock, ψProd
t ; a job separation shock, ψJS

t ; a shock to workers’ bargaining

power, ψW
t ; and a demand shock ψD

t . The productivity shock increases productivity, wages and

vacancies, while reducing unemployment and inflation. The demand shock increases wages, inflation

and vacancies but reduces unemployment; we are agnostic as to its impact on productivity. The

job separation shock increases unemployment and vacancies, thus shifting out the Beveridge Curve.

6This approach is similar to Ellington et al. (2021). That paper works with permanent productivity shocks and
focuses on structural change in the labour market. By contrast, this paper addresses issues around real wage rigidity
using a model that, in line with the literature, examines responses to temporary productivity shocks.
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It also reduces wages; we are agnostic about its impact on productivity and inflation. The shock to

wage bargaining increases wages and unemployment but reduces vacancies; we are again agnostic

about its impact on productivity and inflation. As noted above, the positive relationship between

wages and unemployment implied by this shock is important for our results.
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Figure 1: Variance Decomposition of the One-Period Ahead Forecast Error Variances
of Wages and Unemployment
Notes: This figure plots the contribution of (i) productivity shocks (red); (ii) wage bargaining power shocks
(brown); (iii) demand shocks (blue) and (iv) job destruction shocks (green) in explaining the volatility of
the one-period ahead forecast error variances of wages (top panel) and unemployment (lower panel) across
our sample.

Figure 1) shows the forecast error variance decompositions of wages and unemployment that

emerge from our structural estimates. Movements in wages and unemployment across our sam-

ple reflect the impact of all the shocks, with no single shock accounting for more than 35% of

the variance of unemployment and more than 30% of the variance of wages. Productivity and

wage bargaining shocks make the largest contribution to explaining the volatility of both variables

across our sample. Productivity shocks have the strongest impact on unemployment until around

2000. Thereafter, wage bargaining shocks become more prominent. Productivity shocks have the

strongest impact on wages until 1975 and in 1995-2010. Wage bargaining shocks make a larger con-

tribution in 1975-1995; the two shocks have roughly equal importance in recent years. The relative
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importance of the shock to worker wage bargaining power in Figure 1) is consistent with evidence

in Fujita and Ramey (2007), Pizzinelli et al. (2020), Drautzburg et al. (2021) and Ellington et al.

(2021)7.

Using our structural estimates, we estimate impulse response functions for wages and unem-

ployment in response to each of the structural shocks, for every data point in our sample and for

each of K periods after the incidence of the shock as

ζ
w,s
t+k,t =

∂logwt+k

∂ψs
t

(6)

and

ζ
u,s
t+k,t =

∂ut+k

∂ψs
t

(7)

for s ∈ {Prod, JS,W,D} and for k = 1, ....,K. From these, we construct estimates of semi-elasticities

of wages with respect to unemployment, for all four structural shocks as8

ses
t+k,t =

ζ
w,s
t+k,t

ζ
u,s
t+k,t

(8)

for s ∈ {Prod, JS,W,D}

To compare our estimates to the existing literature, we calculate a weighted average of the four

semi-elasticities as

s̄et+k,t =
∑

s∈{Prod,JS,W,D}

φs
t+k,tse

s
t+k,t (9)

where φs
t+k,t is the share of shock s in the Forecast Error Variance Decomposition, as shown in

Figure 1), so that a shock that explains a larger share of the FEVD has a larger weight. The average

value of this statistic across our sample corresponds to the point estimate of the semi-elasticity of

wages with respect to unemployment in the existing literature, and so allow us to compare our

estimates with previous results.

Table 2 contains sample averages of the estimated average semi-elasticity and the estimated

semi-elasticities with respect to our four structural shocks, for different values of k. Several features

are worth noting. First, our estimates of the average value semi-elasticity, s̄e, are within the range

of estimates in the existing literature. Our average semi-elasticity lies between −1.259 and −0.613,

depending on the value of k. By comparison, Gertler et al. (2020) estimate a continuing worker

semi-elasticity of −0.46; the same semi-elasticities are estimated as −0.6 in Bils (1985) and as

−2.6 in Barlevy (2001). Second, underlying the average semi-elasticity are very different responses

to different shocks. In particular, our estimates of semi-elasticities in response to productivity

shocks are substantially larger than the average semi-elasticity. For example, our estimates of

7For example, Drautzburg et al. (2021) find that bargaining power shocks account for 28% of aggregate fluctuations.
This is consistent with the evidence we present in Figure 1).

8Our approach is similar to Barnichon and Mesters (2019), who estimate a “Phillips Multiplier” showing the
cumulated response of inflation to a demand shock relative to the cumulated response of unemployment, ie P M =∑

K

k=0
ζ

π,D
t+k,t∑

K

k=0
ζ

u,D
t+k,t
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semi-elasticities with respect to productivity shocks are −2.416 for k = 0 and −2.165 for k = 1.

These are approximately twice as large as the corresponding average semi-elasticities. Third, the

weak average response of wages to unemployment stems from a strong positive semi-elasticity

of wages with respect to unemployment following shocks to wage bargaining power. Finally, the

estimated semi-elasticity in response to job destruction shocks is more volatile than the responses to

other structural shocks. The impact of this on our results is limited, since shocks to job destruction

explain much less of the variation in unemployment and wages than do productivity and wage

bargaining power shocks.

Table 2: Sample Averages of Semi-Elasticities of Wages With Respect to Unemployment
Notes: This table presents estimated semi-elasticities of real wages with respect to unemployment, calculated
as the ratios of the estimated impulse response functions as in (8), for different values of k and averaged
across 1964Q2–2019Q4. The first row shows the value of s̄et+k,t, calculated using (9). The second row shows
the value of sePROD

t+k,t , calculated using (8). The other rows show the values of seW
t+k,t, se

D
t+k,t and seJS

t+k,t,
also calculated using (8).

k = 0 k = 1 k = 2 k = 4

s̄e −1.259 −1.025 −0.818 −0.613
sePROD −2.416 −2.165 −1.598 −1.031
seW 2.273 1.808 1.848 1.020
seD −2.2207 −1.531 −1.406 −1.289
seJS −3.387 0.020 0.632 −0.182

Summarising these results, we note that our average semi-elasiticities are in line with the ex-

isting literature. As such, they show a weak response of wages to unemployment which indicates

substantial real wage rigidity. However, as we show above, these results are misleading, because of

the influence of the strong positive response of wages to unemployment following shocks to worker

wage bargaining power. The object of interest to the theoretical literature is the response of wages

to unemployment following productivity shocks. As shown in Figure 2), we find this to be far

larger than the average semi-elasticity. Overall, this implies that the degree of real wage rigidity

in response to productivity shocks, the focus of the theoretical literature, is much smaller than the

values the empirical literature widely use9.

Our approach enables us to go beyond the literature by examining movements in semi-elasticities

over time. Figure 2) shows estimates of the semi-elasticity of wages with respect to unemployment

following productivity shocks and the semi-elasticity of wages with respect to unemployment wage

averaged over shocks. Table 3) shows the average values of these semi-elasticies for the periods

1964Q2-1979Q4; 1980Q1-2008Q4 and post-2008. We note that the average semi-elasticity has

remained stable over time. This suggests that the existing literature would find no evidence of

changes to wage rigidity over time. By contrast, the absolute value of the semi-elasticity in response

to productivity shocks has risen across our sample. This implies that the degree of real wage rigidity

9As further evidence against wage rigidity, we note that the estimated semi-elasticities in Table 2) decline as k

increases; this reflects the fact that real wages respond more quickly than unemployment to shocks.
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has fallen throughout our sample.
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Figure 2: Variation in Estimated Semi-Elasticities Over Time
Notes: This figure plots estimated semi-elasticities of real wages with respect to unemployment, calculated as
the ratios of the estimated impulse response functions, using k = 1. The figure plots (i) the estimated semi-
elasticity of wages with respect to unemployment following productivity shocks (red), calculated using (8),
with associated credibility bands; (ii) the estimated semi-elasticity of wages with respect to unemployment
wage averaged across all shocks (9) (black), calculated using (9).

Table 3: Estimated Sample Averages of Semi-Elasticities of Wages With Respect to
Unemployment At Different Dates
Notes: This table presents estimated semi-elasticities of real wages with respect to unemployment, calculated
as the ratios of the estimated impulse response functions as in (8), for k = 1 and averaged across 1964Q2-
1979Q4; 1980Q1-2008Q4 and 2009Q1-2019Q4. The first row shows the values of s̄et+k,t, calculated using
(9). The second row shows the values of sePROD

t+k,t , calculated using (8).

1964Q2 − 1979Q4 1980Q1 − 2008Q4 2009Q1 − 2019Q4

s̄e −1.006 −1.009 −1.105
sePROD −1.764 −2.171 −2.781

We explore the robustness of these findings in two ways. First, we use the alternative measure of

productivity constructed by Fernald (2014), which adjusts for variations in factor utilisation. Sec-

ond, we use an alternative empirical identification strategy, which combines the maximum forecast

error variance procedure of Uhlig (2004) with our sign restrictions that stem from the theoretical

model. This is in a similar vein to Pizzinelli et al. (2020). As the Online Appendix documents, both

experiments yield similar conclusions to those we report in the main text. Productivity and wage
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bargaining shocks account for the majority of wage and unemployment variation with an increasing

relative importance of wage bargaining shocks as we move through our sample. The absolute value

of the semi-elasticity in response to productivity shocks has risen throughout the sample while the

semi-elasticity averaged over all shocks remains relatively stable.

3.1 Implications

Our results imply that many arguments in the existing theoretical literature rely on implausibly

large values for real wage rigidity, as measured by the responsiveness of real wages to unemployment

in the context of productivity shocks. To assess the implications of this, we calibrate a workhorse

New Keynesian model with matching frictions in two scenarios. In the first, we calibrate the model

in order to match the semi-elasticity of wages with respect to unemployment that is used in the

current empirical literature. In the other, we calibrate in order to match the larger value of the

semi-elasticity of wages with respect to unemployment that we estimate in this paper. We then

calculate key business cycle statistics under these alternative scenarios.

To do this, we adapt the model used to derive credible identifying restrictions in section 3)10.

In scenario 1), we calibrate the opportunity cost of employment (b) and the average value of worker

bargaining power (z) in order to match a semi-elasticity of wages with respect to productivity

shocks of sePROD = −0.46 (the value obtained by Gertler et al. (2020)); in scenario 2), we target a

semi-elasticity of sePROD = −2.17 (the value estimated in this paper). The other parameters are

the same as those used in our identification exercise. For scenario 1), this implies a high value for

the opportunity cost and a small value for bargaining power (b = 0.71 and z = 0.085). For scenario

2), this implies a lower opportunity cost and much higher bargaining power (b = 0.4 and z = 0.88).

Table 4: Simulation Results

Parameter Interpretation Scenario 1 Scenario 2

σu Volatility of Unemployment 0.031 0.01
σw Volatility of the Wage 0.014 0.02
ρw,u Correlation Between Wage and Unemployment −0.987 -0.983
ψw First-Order Autocorrelation of the Wage 0.878 0.878
ψu First-Order Autocorrelation of unemployment 0.935 0.935

Our results are summarised in Table 4). We find similar values for the correlation between wages

and unemployment, and for the first-order auto-correlations of wages and unemployment. But the

volatility of unemployment, relative to the volatility of wages, is three times larger with scenario

1). Although our simple DSGE model is not designed to replicate the high value of unemployment

volatility that is observed in the data, it is clear from this that our finding of a low value for

wage rigidity challenges existing models that are able to generate a high value for unemployment

volatility.

10The Online Appendix contains details.
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To explore this further, we used a calibration similar to that of Hagedorn and Manovskii (2008),

a well known paper that is able to generate a large volatility of unemployment. In particular, we

set b = 0.955 and z = 0.052. The resultant semi-elasticity of wages with respect to unemployment

is only sePROD = −0.05, much lower than any estimate in the literature. We also used a calibration

similar to that of Shimer (2005), whose calibration does not generate a large unemployment volatil-

ity. In this case, we set b = 0.4 and z = 0.72; the resultant semi-elasticity is sePROD = −1.56,

which is consistent with existing evidence, although somewhat lower than our estimate. These

experiments highlight how our results create a challenge to the theoretical literature, since it is not

clear whether any existing model can match the high value of unemployment volatility in the data

while also matching the small value for real wage rigidity that we estimate in this paper.

4 Conclusions

This paper argues there is a disconnect between the theoretical and empirical literatures on real

wage rigidity. The theoretical literature assigns a prominent role to productivity shocks in driving

business cycle fluctuations, focusing on the role of real wage rigidity in generating a large volatility

of unemployment in response to productivity shocks. The empirical literature uses estimates of the

semi-elasticity of wages with respect to unemployment to measure real wage rigidity. We point out

that this measure is not specific to productivity shocks because it reflects the impact of the different

shocks that drive the economy. The impact of other shocks therefore induce bias into estimates of

the object of interest; namely the semi-elasticity of wages with respect to unemployment following

a productivity shock. This issue is important since the data reflect the impact of shocks to the wage

bargaining power of workers as a main driver of unemployment and wage variation. This shock

drives wages and unemployment in the same direction and therefore leads to a semi-elasticity one

averages over all shocks that indicates substantial wage rigidity.

Using a structural time-varying parameter VAR with stochastic volatility, we estimate the semi-

elasticity of wages with respect to unemployment for four structural shocks, including productivity

shocks and wage bargaining power shocks. We find that the semi-elasticity with respect to pro-

ductivity shocks is twice as large as the semi-elasticity one averages over all shocks. This implies a

much lower value for real wage rigidity, providing evidence against the hypothesis that real wage

rigidity is a major cause of unemployment volatility.

Although we obtain these results using a specific DSGE model with search frictions, our con-

clusions about the lack of real wage rigidity in the data are more general and not restricted to this

type of model. It is also possible to identify the most important structural shocks in our analysis

using a model without search frictions in the labour market. This shows that our results apply in

a wider set of models than those considered in this paper.
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Figure 1: US Macroeconomic data from 1954Q3 to 2019Q4
Notes: This figure plots US labour market data from 1954Q3 to 2019Q4. The top left panel plots the
log-levels of productivity, yt; the top right panel plots the vacancy rate, vt; the middle left panel plots the
unemployment rate, ut; the middle right panel plots the log-levels of the real wage, wt; the bottom left panel
plots the annual inflation rate, πt. Grey bars indicate NBER recession dates. All variables have been filtered
using the Hamilton (2018) filter.
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2 Econometric Methodology

Our prior specification involves estimating a Bayesian fixed coefficient VAR (BVAR) model over the

training sample. The priors imposed on this BVAR model combine the traditional Minnesota prior

of Doan et al. (1984) and Litterman (1986) on the coefficient matrices with an inverse-Wishart prior

on the BVAR’s covariance matrix. In our specification, the prior mean on the coefficient matrix

sets all elements equal zero, except those corresponding to the own first lag of each dependent

variable which are set to 0.9. This imposes the prior belief that our variables exhibit persistence

whilst simultaneously ensuring shrinkage of the other VAR coefficients to zero. The prior variance

of the coefficient matrix is set similar to Litterman (1986). Our prior for the BVAR’s covariance

matrix follows an inverse-Wishart distribution with the prior scale matrix and degrees of freedom

set to an N-dimensional identity matrix and 1+N respectively.

We estimate the BVAR using a standard Gibbs sampler. For the sake of brevity, we do not

explicitly outline our algorithm since it is well documented; see e.g. Koop and Korobilis (2010).

Our alternative prior specification essentially replaces the conventional Cogley and Sargent (2005)

prior with the posterior means from the draws of an estimated BVAR over the training sample

θ̄BVAR =
1

M

M
∑

i=1

θi, (1)

V(θ)BVAR =
1

M

M
∑

i=1

V(θi), (2)

Σ̄BVAR =
1

M

M
∑

i=1

Σi (3)

respectively. Here M denotes the number of saved draws from the estimated BVAR which we

set to 20,000. θi and V(θi) denote the ith draw of the coefficient matrix and the variance of the

coefficient matrix respectively. Σi denotes the ith draw of the BVAR’s covariance matrix. From

these estimates, the initial conditions of the time-varying coefficient models, θ0, a0, h0 are Normal

and independent of one another, and the distributions of the hyperparameters. We set

θ0 ∽ N
[

θ̄BVAR, 4 · V(θ)BVAR

]

(4)

for α0, h0, let Σ̄BVAR be the estimated covariance matrix of the residuals from the time–invariant

BVAR. Let C be the lower–triangular Choleski factor such that CC
′

= Σ̄BVAR. The prior for the

stochastic volatilities are

ln h0 ∽ N(lnµ0, 10 × I5) (5)

where µ0 collects the logarithms of the squared elements along the diagonal of C. Each column of

C is divided by the corresponding element on the diagonal; call this matrix C̃. The prior for the

2



contemporaneous relations is

α0 ∽ N
[

α̃0, Ṽ (α̃0)
]

(6)

with α̃0 ≡ [α̃0,11, α̃0,21, . . . , α̃0,51]
′

which is a vector collecting all the elements below the diagonal of

C̃−1. Ṽ (α̃0) is diagonal with each element equal to 10 times the absolute value of the corresponding

element of α̃0. This is an arbitrary prior but correctly scales the variance of each element of α0 to

account for their respective magnitudes.

For the time-varying coefficient model assuming Qt = Q, we set Q to follow an inverse Wishart

distribution.

Q ∽ IW (Q−1,T0) (7)

where Q = (1 + dim(θt)) · V(θ̄BVAR) · 3.4 × 10−4. The prior degrees of freedom, (1 + dim(θt)), are

the minimum allowed for the prior to be proper. Our choice of scaling parameter of 3.4 × 10−4

is consistent with Cogley and Sargent (2005). We have also estimated our models using different

priors, we allowed for a more restrictive scaling parameter of 1.0×10−4 and have also set the degrees

of freedom to be the length of the training sample; in our case this is 80. The scaling parameter

essentially sets the amount of drift within the θ matrices.

With regards to the hyperparameters under the assumption Qt = Qt, the diagonal elements

of Qt follow a geometric random walk, let C
V(θ̄BVAR)

be the lower-triangular Choleski factor such

that C
V(θ̄BVAR)

C
′

V(θ̄BVAR)
= 3.4 × 10−4V(θ̄BVAR). We then set

ln q0 ∽ N
[

lnµq0,0, 10 × Idim(θt)

]

(8)

with lnµq0,0 collecting the logarithmic squared diagonal elements of 3.4×10−4θ̄BVAR). The variances

of these stochastic volatility innovations follow an inverse-Gamma distribution for the elements of

Zq,

Zq,i,i ∽ IG(
10−4

2
,

1

2
) (9)

The blocks of S are also assumed to follow inverse–Wishart distributions with prior degrees of

freedom equal to the minimum allowed (i.e. 1 + dim(Si)).

S1 ∽ IW (S−1
1 , 2) (10)

S2 ∽ IW (S−1
2 , 3) (11)

S3 ∽ IW (S−1
3 , 4) (12)

S4 ∽ IW (S−1
4 , 5) (13)

we set S1, S2, S3 in accordance with α̃0 such that S1 = 10−3×|α̃0,21|, S2 = 10−3×diag([|α̃0,31|, |α̃0,32|]
′

), S3 =
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10−3× diag([|α̃0,41|, |α̃0,42|, |α̃0,43|]
′

), S4 = 10−3× diag([|α̃0,51|, |α̃0,52|, |α̃0,53|, |α̃0,54|]
′

). This cal-

ibration is consistent with setting S1, S2, S3, S4 to 10−4 times the corresponding diagonal block

of Ṽ (α̃0). The variances for the stochastic volatility innovations, as in Cogley and Sargent (2005),

follow an inverse–Gamma distribution for the elements of W ,

Wi,i ∽ IG(
10−4

2
,

1

2
) (14)

In order to simulate the posterior distribution of the hyperparameters and states, conditional

on the data, we implement the following MCMC that combines elements from Primiceri (2005) and

Cogley and Sargent (2005).

1) Draw elements of θt Conditional on Y T , αT and HT , the observation equation (1) is linear

with Gaussian innovations with a known covariance matrix. Factoring the density of θt, p(θt)

in the following manner

p(θT |yT , AT , HT , V ) = p(θT |Y T , AT , HT , V )
T −1
∏

t=1

p(θt|θt+1, Y
t, AT , HT , V ) (15)

the Kalman filter recursions pin down the first element on the right hand side of the above

in the following manner: p(θT |Y T , AT , HT , V ) ∽ N(θT , PT ), PT is the precision matrix of

θT from the Kalman filter. The remaining elements in the factorisation are obtained via

backward recursions as in Cogley and Sargent (2005). Since θt is conditionally Normal

θt|t+1 = Pt|tP
−1
t+1|t(θt+1 − θt) (16)

Pt|t+1 = Pt|t − Pt|tP
−1
t+1|tPt|t (17)

which yields, for every t from T − 1 to 1, the remaining elements in the observation equa-

tion (1). More precisely, the backward recursion begins with a draw, θ̃T from N(θT , PT ).

Conditional on θ̃T , the above produces θT −1|T and PT −1|T . This permits drawing θ̃T −1 from

N(θT −1|T , PT −1|T ) until t=1.

2) Drawing elements of αt Conditional on Y T , θT and HT we follow Primiceri (2005) and note

that (1) can be written as

AtỸt ≡ At(Yt −X
′

tθt) = Atǫt ≡ ψt (18)

V ar(ψt) = Ht (19)
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with Ỹt ≡ [Ỹ1,t, Ỹ2,t, Ỹ3,t, Ỹ4,t]
′

and

Ỹ1,t = ψ1,t (20)

Ỹ2,t = −α21,tỸ1,t + ψ2,t (21)

Ỹ3,t = −α31,tỸ1,t − α32,tỸ2,t + ψ3,t (22)

Ỹ4,t = −α41,tỸ1,t − α42,tỸ2,t − α43,tỸ3,t + ψ4,t (23)

These observation equations and the state equation permit drawing the elements of αt equa-

tion by equation using the same algorithm as above; assuming S is block diagonal.

3) Drawing elements of Ht Conditional on Y T , θT and αT , the orthogonal innovations ut,

V ar(ψt) = Ht are observable. Following Jacquier et al. (2002) the stochastic volatilities,

hi,t’s, are sampled element by element; Cogley and Sargent (2005) provide details in Ap-

pendix B.2.5 of their paper.

4) Drawing the hyperparameters Conditional on Y T , θT , Ht and αT , the innovations in θt, αt

and hi,t’s are observable, which allows one to draw the elements of Qt = Q, S1, S2, S3 and

the Wi,i.

Note that for the model allowing for stochastic volatility in the innovation variances of the time-

varying coefficients, Qt being a diagonal matrix, we add an extra block into the MCMC algorithm.

3a) Drawing the elements of Qt Conditional on θt, the innovations κt = θt − θt−1, with Var(κt) =

Qt are observable. Therefore we sample the diagonal elements of Qt applying the Jacquier

et al. (2002) algorithm element by element. Following this, we can then sample the Zq,i,i from

the inverse-Gamma distribution in step 4 of the above algorithm.
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3 Reduced-Form Results

The upper panel of Figure 2 plots the posterior median and 80% highest posterior density intervals

for the logarithmic determinant of the time-varying covariance matrices. The lower panel of Figure

2 plots the stochastic volatilities of each variable. Figure 3) contains the reduced-form correlations

between our variables
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Figure 2: Total Prediction Variation, ln|Ωt|T |, and Stochastic Volatilities of US Labour
Market Variables from 1964Q3 to 2016Q4
Notes: The upper panel plots the posterior median, and 80% posterior credible intervals of logarithmic
determinant of the time-varying reduced-form covariance matrices, ln|Ωt|T |, from 1964Q3–2016Q4. The
lower panel plots the posterior median, and 80% posterior credible intervals of the reduced-from stochastic
volatility innovations of productivity, yt (top left panel); real wages, wt (top middle panel); the vacancy rate,
vt (top right panel); the unemployment rate, ut (bottom left panel); and inflation, πt (bottom middle panel)
from 1964Q3–2016Q4. Grey bars indicate NBER recession dates.
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Figure 3: Reduced-form correlations from 1964Q3 to 2019Q4
Notes: This figure plots the posterior median, and 80% posterior credible intervals of the reduced-from model
implied correlations of variables within the TVP VAR model from 1962Q1–2019Q4. ρ̂it,jt

denotes the model
implied correlation of variable i and j at time t respectively. yt, wt vt, ut, πt denote productivity, real wages,
the vacancy rate, the unemployment rate, and inflation, respectively. Grey bars indicate NBER recession
dates.
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4 Strategy for Identification of Structural Shocks

In this section we outline our identification strategy, which follows Canova and Paustian (2011)

and Mumtaz and Zanetti (2015). We simulate a theoretical model using a range of alternative

calibrations, based on randomly sampling parameter values within a specified range, constructing

a distribution of impulse responses of our endogenous variables to a variety of shocks. We identify

structural shocks for which the sign of the impulse responses on impact is unambiguous across

this distribution. In this way, we ensure that our identifying sign restrictions are credible, robust

to alternative calibrations of the structural parameters. Our identifying restrictions are based on

a standard New Keynesian DSGE model without capital but with search frictions in the labour

market, similar to Mumtaz and Zanetti (2012) and others.

We summarise the model and structural parameters in the upper panel of Table 1. Equations

(T.1)–(T.6) outline the structure of the labour market. Equation T.1 defines the sum of employment

(N) and unemployment (u) as the labour force, which is normalised to 1. Equation T.2 outlines

employment dynamics and relates employment to hires (h). Equation T.3 defines labour market

tightness (θ) as the ratio of vacancies (v) to unemployment. T.4 contains a standard constant

returns matching function, while T.5 and T.6 define the vacancy filling rate (q) and the job finding

rate (f) respectively. Equation T.7 contains the production function. T.8 defines the marginal cost

of hiring labour. Equation T.9 gives the wage, where we have assumed simple Nash bargaining.

Equation T.10 defines marginal cost, while T.11 relates price to marginal cost. Equation T.12 is

the Euler equation; a summary of these values are in the lower panel of Table 1.

We analyse the impact of four structural shocks. We identify a productivity shock, assuming

At = eǫP

t . We include a demand shock, ǫDt . We also include a shock to worker relative bargaining

power, assuming zt = zeǫz

t , where ǫzt is a bargaining power shock. And there is a shock to the

rate of job destruction, assuming τt = τeǫτ

t , where ǫτt is a job separations shock. We use impulse

response functions to these shocks to impose impact sign restrictions on our structural model.

We specify ranges of values for parameter calibrations and assume that parameters are uni-

formally distributed within this range. We assume that values of α are uniformally distributed

between 0.3−0.7; this is somewhat wider than the range of credible values suggested by Petrongolo

and Pissarides (2001). We also consider a wide range of values for matching efficiency, assuming

that values of m are uniformally distributed between 0.3−1.5. For the rate of job destruction, Hall

and Milgrom (2008) use τ = 0.03, while Pissarides (2009) uses τ = 0.036. These calibrations are

designed for monthly data, whereas we use a quarterly frequency, consistent with our data. We

therefore consider values between 0.087 − 0.104. The value of the opportunity cost of employment

is also contentious; Shimer (2005) assumes b = 0.4, Hall and Milgrom (2008) assume b = 0.71. We

assume that b is uniformally distributed between 0.4 and 0.8. For the bargaining power of workers,

we consider values between z = 0.1, so workers have little power to z = 0.8, where workers are able

to extract most of the surplus from a job match in the form of higher wages. We consider a wide

range of values for the probability that prices are fixed, considering values in the range θπ = 0 to

θπ = 0.9, encompassing the cases where there is little nominal rigidity and where prices are highly

9



Table 1: Contemporaneous Impact of Short-run Shocks on Labour Market Variables
Notes: Panel a) of this table shows the theoretical model that we simulate. Panel b) shows the range of
parameter values from which we sample in our simulations

a) Model Summary

Nt + ut = 1 (T.1)

Nt = (1 − τt)Nt−1 + ht−1 (T.2)

θt =
vt

ut
(T.3)

ht = muα
t v

(1−α)
t (T.4)

qt = mθ−α
t (T.5)

ft = qtθt (T.6)

Yt = AtNt (T.7)

λt =
κ

qt
− βEt

κ(1 − τt+1)

qt+1
(T.8)

wt = (1 − zt)b+ zt(At + κθt) (T.9)

mct =
wt + λt

At
(T.10)

P ∗
t

Pt
=

η

1 − η
(1 − βω)Et

∞
∑

k=0

(βω)kmct+k (T.11)

Y
−η

t = βeǫD

t EtY
−η

t+1

(1 + it)

1 + πt+1
(T.12)

(1 + it) = (1 + πt)
ρπ (T.13)

b) Credible Calibration Ranges

Parameter Interpretation Range

β Discount Factor 0.996
α Elasticity of Matching wrt Unemployment 0.3 − 0.7
m Efficiency of Job Matching 0.3 − 1.5
b Opportunity Cost of Employment 0.4 − 0.8
τ Rate of Job Destruction 0.087 − 0.104
z Worker Relative Bargaining Power 0.1 − 0.8
θp Probability Prices Are Fixed 0.− 0.9
ρπ Monetary Policy Response to Inflation 1.35 − 2.0
η Intertemporal Elasticity of Substitution 1
κ Cost of Vacancy Posting 0.2
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sticky. For the monetary policy response to inflation, we consider values between ρπ = 1.35 and

ρπ = 2.0, encompassing the different estimated values for this parameter in the post-1979 period.

We use η = 1 and set κ = 0.2.

We simulate our model by randomly selecting a set of calibration values from the distributions

we outline above. We calculate the steady-state solution for our model implied by this calibration

and construct impulse responses from a log linear expansion of the model around this steady-state.

We repeat this process 1000 times, building a distribution of impulse responses. These distributions

are shows in Figures 4)-7). We use these to construct the sign restrictions documented in Table 1)

of the main paper. In that table, + indicates that all values for the impulse response on impact

within the credible range were positive, − indicates that all values for the impulse response on

impact within the credible range were negative, and x indicates that the credible range for the

impulse response on impact included zero.

Figure 4: Median and 10%-90% Bounds of Impulse Responses to Productivity Shocks
Notes: This figure plots the distribution of impulse response functions following productivity shocks, based
on 1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter values
outlined in that table.
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Figure 5: Median and 10%-90% Bounds of Impulse Responses to Job Separation Shocks
Notes: This figure plots the distribution of impulse response functions following job separations shocks, based
on 1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter values
outlined in that table.

Figure 6: Median and 10%-90% Bounds of Impulse Responses to Bargaining Power
Shocks
Notes: This figure plots the distribution of impulse response functions following bargaining power shocks,
based on 1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter
values outlined in that table.
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Figure 7: Median and 10%-90% Bounds of Impulse Responses to Demand Shocks
Notes: This figure plots the distribution of impulse response functions following demand shocks, based on
1000 replications of the model outlined in Table 1 and sampling from the distribution of parameter values
outlined in that table.

5 Robustness Analysis

5.1 An Alternative Productivity Series

To assess the robustness of our main findings, we now replace our original productivity series with

that of Fernald (2014). We re-run our baseline model exactly as before and implement the same

sign restrictions. Figures 8 and 9 report our results analogous to Figures 1 and 2 in the main text.

Overall, it is clear that replacing our original productivity series with that of Fernald (2014)

yields qualitatively similar conclusions to those we report in the main text. Productivity and wage

bargaining shocks account for the majority of wage and unemployment variation with an increasing

relative importance of wage bargaining shocks as we move through our sample. This provides

further evidence supporting Fujita and Ramey (2007), Theodoridis and Zanetti (2020), Drautzburg

et al. (2021) and Ellington et al. (2021). We can also see that while the average semi elasticity

across all shocks remains stable over the sample, the absolute value of the semi-elasticity in response

to productivity shocks has risen.
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Figure 8: Variance Decomposition of Wages and Unemployment using Fernald (2014)
Productivity
Notes: This figure plots the contribution of (i) productivity shocks (red); (ii) wage bargaining power shocks
(brown); (iii) demand shocks (blue) and (iv) job destruction shocks (green) in explaining the 1-period ahead
variation in wages (top panel) and unemployment (lower panel) across our sample.

5.2 An Alternative Identification Strategy

We now focus on an alternative empirical identification strategy. We combine the maximum forecast

error variance procedure of Uhlig (2004) with our sign restrictions that stem from the theoretical

model. This is in a similar vein to Pizzinelli et al. (2020). In doing so, we impose the restriction that

the productivity shock explains the majority of the forecast error variance of labour productivity at

business cycle frequencies (i.e. from horizons 0 to 40)1. To ease computational burden because we

have a TVP VAR model, we compute simple impulse responses and sample every fourth quarter.

Figures 10 and 11 report our results analogous to Figures 1 and 2 in the main text.

Again on the whole, using an alternative identification scheme results in similar conclusions to

our baseline analysis. Productivity and wage bargaining shocks account for the majority of wage

and unemployment variation with an increasing relative importance of wage bargaining shocks as

we move through our sample. However, note that the absolute value of the forecast error variance

1For technical details on this procedure, see Appendix B.2 in Pizzinelli et al. (2020).
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Figure 9: Variation in Estimated Semi-Elasticities Over Time using Fernald (2014)
Productivity
Notes: This figure plots estimated semi-elasticities of real wages with respect to unemployment, calculated
as the ratios of the estimated impulse response functions, using k = 1. The figure plots (i) the estimated
semi-elasticity of wages with respect to unemployment following productivity shocks (red), with associated
credibility bands; (ii) the estimated semi-elasticity of wages with respect to unemployment averaged across
all shocks using forecast error variance decompositions to weight shocks.
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Figure 10: Variance Decomposition of Wages and Unemployment; An Alternative Iden-
tification Scheme
Notes: This figure plots the contribution of (i) productivity shocks (red); (ii) wage bargaining power shocks
(brown); (iii) demand shocks (blue) and (iv) job destruction shocks (green) in explaining the 1-period ahead
variation in wages (top panel) and unemployment (lower panel) across our sample.

shares associated to wage bargaining shocks is slightly lower than our baseline analysis. Turning

to the semi-elasticity plots in Figure 11 it is clear that the absolute value of the semi-elasticity in

response to productivity shocks has risen throughout the sample while the semi-elasticity averaged

over all shocks remains relatively stable.

In general these robustness checks further substantiate our main findings and provides additional

empirical evidence that one cannot attribute unemployment volatility to real wage rigidity.
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Figure 11: Variation in Estimated Semi-Elasticities Over Time; An Alternative Identi-
fication Scheme
Notes: This figure plots estimated semi-elasticities of real wages with respect to unemployment, calculated
as the ratios of the estimated impulse response functions, using k = 1. The figure plots (i) the estimated
semi-elasticity of wages with respect to unemployment following productivity shocks (red), with associated
credibility bands; (ii) the estimated semi-elasticity of wages with respect to unemployment averaged across
all shocks using forecast error variance decompositions to weight shocks.
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6 Alternative Calibrations

In this section we explore the consequences of differing values for wage rigidity for macroeconomic

modelling. We calibrate a workhorse New Keynesian model with matching frictions in two scenarios.

In the first, we calibrate the model in order to match the value for the wage rigidity in response

to productivity shocks that we use in the current literature. In the other, we calibrate in order to

match the smaller value of wage rigidity that we find in this paper.

To do this, we use the model outlined and used to derive credible sign restrictions, in section 4).

We set α = 0.5, m = 1.7, τ = 0.1, θp = 0.5, ρπ = 1.5 and η = 1. We also target an unemployment

rate of 5.2%. Given these, we solve for the values of w, κ and λ that satisfy (T.8)-(T.10) in Table

1) above and calibrate z and b to give the desired value of the semi-elasticty of wages with respect

to unemployment. In secenario 1), we target a semi-elasticity of wages with respect to productivity

shocks of seProd
t+1,t = −0.46, the value obtained by Gertler et al (2020); in scenario 2), we target

seProd
t+1,t = −2.17. For scenario 1), we obtain b = 0.71, and z = 0.085; for scenario 2), we obtain

b = 0.4 and z = 0.88.

Table 2: Simulation Results

Parameter Interpretation Scenario 1 Scenario 2

σu Volatility of Unemployment 0.031 0.01
σw Volatility of the Wage 0.014 0.02
ρw,u Correlation Between Wage and Unemployment −0.987 -0.983
ψw First-Order Autocorrelation of the Wage 0.878 0.878
ψu First-Order Autocorrelation of unemployment 0.935 0.935

Our results are summarised in Table 2). As we might expect, the volatility of unemployment

relative to the volatility of wages is higher with the values of real wage rigidity used in the existing

literature which are reflected in Scenario 1), compared to our estimated lower value for real wage

rigidity, reflected in Scenario 2). Although our simple DSGE model is not designed to replicate the

high value of unemployment volatility that is observed in the data, it is clear that our finding of

a low value for wage rigidity challenges existing models that are able to generate a high value for

unemployment volatility.

To explore this further, we used a calibration similar to that of Hagedorn and Manovskii (2008),

a well-known paper that is able to generate a large volatility of unemployment. In particular, we

set b = 0.955 and z = 0.052. The resultant semi-elasticity of wages with respect to unemployment

is only −0.05, much lower than any estimate in the literature. We also used a calibration similar to

that of Shimer (2005), whose calibration does not generate a large unemployment volatility. In this

case, we set b = 0.4 and z = 0.72; the resultant semi-elasticity is −1.56, which is consistent with

existing evidence, although somewhat lower than our estimate. These experiments highlight how

our results create a challenge to the theoretical literature, since it is not clear whether any existing

model can match the high value of unemployment volatility in the data while also matching the

small value for real wage rigidity that we estimate in this paper.
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