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Acoustic Modelling from Raw Source and Filter

Components for Dysarthric Speech Recognition

Zhengjun Yue† (Member, IEEE) , Erfan Loweimi† (Member, IEEE) , Heidi Christensen (Member, IEEE) ,

Jon Barker (Member, IEEE) , Zoran Cvetkovic (Senior Member, IEEE)

Abstract—Acoustic modelling for automatic dysarthric speech
recognition (ADSR) is a challenging task. Data deficiency is a
major problem and substantial differences between typical and
dysarthric speech complicate the transfer learning. In this paper,
we aim at building acoustic models using the raw magnitude
spectra of the source and filter components for ADSR. The
proposed multi-stream models consist of convolutional, recurrent
and fully-connected layers allowing for pre-processing various
information streams and fusing them at an optimal level of
abstraction. We demonstrate that such a multi-stream processing
leverages information encoded in the vocal tract and excitation
components and leads to normalising nuisance factors such as
speaker attributes and speaking style. This leads to a better
handling of dysarthric speech that exhibits large inter- and
intra-speaker variabilities and results in a notable performance
gain. Furthermore, we analyse the learned convolutional filters
and visualise the outputs of different layers after dimensionality
reduction to demonstrate how the speaker-related attributes are
normalised along the pipeline. We also compare the proposed
multi-stream model with various systems based on MFCC,
FBank, raw waveform and i-vector, and, study the training
dynamics as well as usefulness of the feature normalisation and
data augmentation via speed perturbation. On the widely used
TORGO and UASpeech dysarthric speech corpora, the proposed
approach leads to a competitive performance of up to 35.3% and
30.3% WERs for dysarthric speech, respectively.

Index Terms—Dysarthric automatic speech recognition, multi-
stream acoustic modelling, source-filter separation and fusion

I. INTRODUCTION

DYSARTHRIA is a common speech disorder stemming

from damage to the central or peripheral nervous system

[1] that causes the muscles involved in the speech production

process to get weak or uncoordinated. The produced speech

is often characterised by heavily slurred articulation, slower

speaking rate, abnormal pauses, false starts and repetitions

[2]. As a result, the intelligibility of dysarthric speech is low.

People with dysarthria can be difficult to understand and those

with severe dysarthria are often only intelligible to their close

friends and family. This can negatively affect a person’s social

interaction, employment, education and other aspects of life.

People with dysarthria also typically have other physical

disabilities, manifested by constrained or involuntary body
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movements such as stroke survivors or people with cerebral

palsy. This limits their ability to interact with physical devices

such as switches, keyboards and touch screens. As such, devel-

oping a speech-driven assistive technology to facilitate a reli-

able human-machine interaction is highly desirable. Automatic

speech recognition (ASR) plays a key role in implementing

such interfaces because other pipeline modules such as natural

language understanding reside in its downstream. Therefore,

developing ASR systems with satisfactory performance on

dysarthric speech is a crucial step towards enabling a reliable

human-machine interaction. Such technology has the potential

to greatly improve the quality of life and well-being of people

with dysarthria by helping them to communicate effectively

with others and live more independently.

Commercial ASR systems, although capable of achiev-

ing a high performance for typical speech, perform poorly

on dysarthric speech. The large acoustic mismatch between

dysarthric and typical speech, reduced speaking rate [3], less

distinctive phone classes and boundary position shifts [4], all

hinder achieving good performance by the mainstream ASR

systems trained with typical speech [5], [6]. High inter- and

intra-speaker variabilities are also inherent to the dysarthric

speech [7] and pose further challenge for the speech recog-

niser. In [8], [9] speaker adaptive training (SAT) has been used

to address this issue.

To handle the mismatch and variability, a large amount of

training data is required to learn an adequate model. However,

there are only a few publicly available dysarthric datasets

[10]–[13] and each has only a limited amount of data. Such

data scarcity restricts the performance of the mainstream

ASR systems which heavily rely on the data-demanding feed-

forward deep neural networks (DNNs) [14], convolutional

neural networks (CNNs) [15] and recurrent neural networks

(RNNs) [16]. This highlights the need for developing partic-

ular approaches functional in the domain of dysarthria.

To address the data scarcity issue, data augmentation tech-

niques have been extensively deployed in developing auto-

matic dysarthric speech recognition (ADSR) systems. Moti-

vated by the spectral and temporal differences between the

dysarthric and typical speech, recent studies have been mainly

focused on tempo adjustments [9], speed perturbation [17],

[18] and vocal tract length perturbation [19]. In [20], [21],

adversarial training along with voice conversion was applied

to transform typical speech towards dysarthric speech. The

out-of-domain typical speech data has also been exploited to

address data scarcity [22]–[24].

Most of the studies in ADSR have been focused on building



SUBMITTED TO IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2

acoustic models using handcrafted features such as MFCCs

[25] and filterbank energies (FBank). Previous studies have

also demonstrated the benefit of utilising other representations

such as articulatory [23], [26]–[28] and bottleneck features

[29] to improve the acoustic modelling for dysarthric speech.

These magnitude spectrum based handcrafted features are,

however, lossy representations and discard the signal infor-

mation without considering the downstream task.

The raw magnitude spectrum is a richer representation and

includes both vocal tract (VT) and excitation (Exc) compo-

nents. Acoustic modelling using the raw magnitude [30] and

raw phase [31] spectra of the source and filter components in

ASR has been recently explored for typical speech, leading

to significant performance gains. However, the usefulness of

such an approach in the context of ADSR is under-explored.

In this paper, we build on [30] and our previous work

[32] and construct multi-stream acoustic models from the

raw magnitude spectra of the source and filter components

for the ADSR task. In this framework, the raw magnitude

spectra of the VT and Exc components are first pre-processed

individually via convolutional layers. After fusion, they are

further post-processed through recurrent and fully-connected

(FC) layers. This approach offers several advantages: the

source and filter components are pre-processed based on their

contribution to the task and by considering how they encode

information. Moreover, it allows these information streams to

be fused at an optimal level of abstraction.

Although this framework is generic and applicable in any

speech recognition/classification task, it offers some special

advantages in the context of ADSR. When the model is fed by

inputs characterising the lingual content and speaker attributes,

it learns to normalise the speaker-associated variabilities cap-

tured by the source component while extracting the lingual

content from the filter part. Such implicit speaker normalisa-

tion is highly desirable when recognising dysarthric speech

given that it has high inter- and intra-speaker variabilities.

The main contributions of this paper are summarised below:

• Acoustic modelling using the raw magnitude spectra of

the signal, source and filter components for ADSR;

• Effect of information fusion at various abstraction levels

in the proposed multi-stream model is investigated;

• An analysis of the learned filters in the first convolutional

layer is presented;

• The output of different layers is analysed to demonstrate

how speaker attributes are normalised along the pipeline.

The rest of this paper is organised as follows. In Section II,

the source-filter modelling and separation are briefly reviewed

and some spectral properties of the dysarthric and typical

speech are compared. The source and filter components are

recombined via the proposed multi-stream architectures in

Section III and the potential advantages of such separation and

recombination are discussed. The experimental setup, results

and discussion are presented in Section IV. Section V is

dedicated to understanding and visualising some aspects of

the learned models. Finally, Section VI concludes the paper.

II. SOURCE-FILTER MODELLING

A. Source-filter separation

Cepstral liftering [33] offers a straightforward framework

to dissociate the vocal tract and excitation elements. These

two speech components are assumed to be convolved in the

time domain; therefore, they are multiplied in the frequency

domain. After taking the log from the magnitude spectrum,

they become additive and remain additive in the cepstral

domain. The log of the magnitude spectrum as a curve can

be interpreted as a superposition of two components with

different changing rates. That is, it is composed of a rapidly

oscillating element modulated by a slowly varying envelope.

It can be shown that (approximately) the former is associated

with the excitation component and the latter reflects the vocal

tract. Applying a low-pass lifter in the cepstral domain returns

the VT component. Taking advantage of the additivity of the

source and filter in the cepstral domain, the Exc component

can be extracted via subtraction.

One particular parameter of the low-pass lifter which should

be adjusted is the high cut-off quefrency (L0). It is related

to the fundamental frequency (F0) and this requires tracking

F0 per frame. In [30], it was argued that tracking F0 can be

bypassed, if L0 is chosen based on the minimum possible

fundamental periodicity T
Min
0

(or equivalently F
Max
0

). This

design choice ensures the extracted filter component is devoid

of any source information, although it leads to some erroneous

VT leakage to the Exc component. It highly simplifies the

workflow whilst the VT residues in the Exc component,

extracted in this way, were shown to be insignificant [30].

We use the same configuration and set L0 to 50, equivalent to

F
Max
0

of 320 Hz when the sampling rate is 16 kHz.

Figs. 1 and 2 illustrate the separated source and filter

components using cepstral liftering for a severely dysarthric

speech sample and a typical speech sample, respectively, from

the TORGO database. As seen, both the fine and coarse

structures of the magnitude spectrum, which are respectively

associated with the Exc and VT components, are notably

distorted in the dysarthric speech.

B. Spectral differences between dysarthric and typical speech

To study the spectral differences of the typical and

dysarthric speech, we computed the mean and standard devi-

ation (STD) of the magnitude spectra of a randomly selected

sample of one hundred typical and one hundred dysarthric

speech signals from the TORGO database [13]. Fig. 3 illus-

trates the average raw magnitude spectra of the signals, filter

and source components along with the corresponding STD.

As seen, on average, the dysarthric speech has lower energy

and higher STD at high-frequency components. The higher

STD implies larger variability which makes the learning pro-

cess more challenging. Another interesting observation is that

contrary to the average VT, the average Exc components for

the dysarthric and typical speech are very similar. This could

imply the source component is less affected than the filter part

in the dysarthric speech. This point, however, warrants further

investigation before drawing a firm conclusion.
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Fig. 1: Source-filter separation via cepstral liftering for a

dysarthric speech. (a) Spectrogram, (b) Raw magnitude spec-

trum, VT and Exc components for a frame, (c) VT, (d) Exc.
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Fig. 2: Source-filter separation via cepstral liftering for a

typical speech. (a) Spectrogram, (b) Raw magnitude spectrum,

VT and Exc components for a frame, (c) VT, (d) Exc.

III. MULTI-STREAM ACOUSTIC MODELLING

We aim to construct multi-stream acoustic models using the

raw magnitude spectra of the source and filter components.

Unlike the MFCC and filterbank features, which are lossy

representations for the VT component, the raw magnitude

spectrum provides the model with a more informative rep-

resentation, preserving both VT and Exc elements. It is also

devoid of potentially suboptimal information loss that inad-

vertently occurs along typical engineered front-end pipelines.

However, one shortcoming of feeding the model with the

raw magnitude spectrum is that it implicitly fuses the source

and filter components at the input level, whereas these two

orthogonal components carry complementary information, en-

code this information differently, and are not equally important

to a given task. As such, the optimal pre-processing pipeline

for each stream is different. To address this issue, one needs

a multi-stream system which allows for bespoke individual

pre-processing, fusion at an optimal level of abstraction, and

finally post-processing of the recombined streams.
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Fig. 3: Spectral mean and standard deviation (STD) of the

dysarthric and typical speech extracted using randomly se-

lected 100 signals for each speech type (The dysarthric

samples are equally distributed over the severity levels: 33

severe, 33 moderate, and 34 mild samples). Mean of the raw

magnitude spectra of (a) signals, (c) VT, (e) Exc. STD of the

raw magnitude spectra of (b) signals, (d) VT, (f) Exc.

An optimal information processing system should only

allow the task-relevant information to pass through while

filtering out that which is irrelevant. In the context of ASR, ap-

plying speaker-invariant representations is desirable. However,

using seemingly task-irrelevant information such as the Exc

part, which essentially captures speech’s speaker-correlated

characteristics, can also be helpful. That is, this component

informs the model about the speaker and thus allows it to

normalise out the speaker-related attributes. Such normali-

sation is instrumental in recognising dysarthric speech with

its large inter- and intra-speaker variabilities and, potentially

contributes towards enhancing the robustness of the model.

One issue in the multi-stream processing is ensuring fusion

occurs at an optimal level of abstraction. The fusion level

should be high enough to allocate enough layers to the per-

stream pre-processing while being sufficiently low to leave

enough layers for post-processing the recombined streams.

It should be also noted that an excessively deep structure,

although allows for allocating many layers to both pre- and

post-processing, will have too many parameters and conse-

quently will be difficult to train, particularly in scenarios

with limited training data. According to findings in [30]–[32],

[34], [35], fusion after pre-processing each stream via multiple

convolutional layers appears to be a reasonable design choice.

Fig. 4 illustrates the proposed multi-stream acoustic models

along with a baseline single-stream system. In the proposed

systems, the source and filter components are first pre-

processed via three convolutional layers. Then, they are fused

via a multi-layer perceptron (MLP-1) and post-processed by a
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Fig. 4: The proposed multi-stream models vs. single-stream

baseline, consisting of convolutional, MLP and recurrent lay-

ers. A, B and C represent various input features.

stack of five layers of bidirectional Light-gated recurrent units

(LiGRU) [36] and a fully-connected network (MLP-2). These

components play complementary roles: the convolutional lay-

ers represent the input via learned feature maps, MLP-1 fuses

the pre-processed streams, recurrent layers conduct sequential

modelling and MLP-2 provides further post-processing to

make the data linearly separable just before the softmax layer.

IV. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

A. Dataset, architecture and front-end configuration

Acoustic models are built using the TORGO [13] dysarthric

speech dataset. It contains 21 hours (7.3 hours for dysarthric

and 13.7 hours for typical speech) of acoustic recordings col-

lected from 15 speakers. Eight of the speakers have dysarthria

ranging in degree from mild to severe, while others are non-

dysarthric typical speakers. The acoustic data is simultane-

ously recorded by a head-mounted microphone and a single

directional microphone. TORGO consists of both word and

sentence prompts: 615 unique words as well as 354 unique

sentences with a total vocabulary size of 1573 tokens.

An N -fold cross-training setup, as proposed in [37], is

applied for training and evaluating the systems. The total

dataset is divided into five folds1 with allocating 70% of data

to training, 10% to validation (dev) and 20% for testing. This

maximises the use of the available training and test data while

maintaining the need for disjoint training and test sets. Table I

summarises the amount of train/test data per fold.

As shown in Fig. 4, the pre-fusion CNNs are cascades of

three 1D convolutional layers with 128, 60 and 60 feature

maps of kernel sizes of 129, 5 and 5 samples along with max

pooling of length 3 for all layers. In all of the convolutional

layers ReLU activation [38], layer normalisation [39] and

1The pre-defined training and test partition sets are available at
https://github.com/zhengjunyue/bntg.

TABLE I: Duration (hours) of the training and test data per

fold in the employed 5-fold cross-training setup.

Subset fold 1 fold 2 fold 3 fold 4 fold 5 Mean±STD

Train+Dev 10.71 10.69 10.71 10.83 10.57 10.70±0.09
Test 2.71 2.73 2.72 2.59 2.67 2.68±0.06

dropout [40] (0.15) were applied. The post-fusion sub-network

consists of one fully-connected layer (MLP-1) with 1024

nodes and a stack of five bidirectional [41] LiGRU [36]

layers with 550 units per direction, followed by another fully-

connected layer with 1024 nodes and a softmax classifier.

Dropout (0.15) and batch normalisation [42] were used in all

the post-processing layers (except for the softmax layer). The

batch size was set to 8 and the network was trained using an

RMSProp optimiser [43]. For training and decoding we used

PyTorch-Kaldi [44]–[46].

The dimensions of MFCC, FBank and raw waveform and

raw spectral features (per frame) are 39 (including delta and

delta-delta), 83 (80 log-FBank + 3 pitch-related [47]), 400 and

257, respectively. Mag0.1, VT and Exc correspond to the 10th

root of the raw magnitude spectra of the signal, vocal tract and

excitation components, respectively. All features are extracted

with 25 ms frame length and 10 ms shift size. Unless men-

tioned otherwise, mean-variance normalisation (MVN) at the

speaker level is applied to all features. An independent 200k

vocabulary size Librispeech [48] trigram language model, as

proposed in [49], was employed for decoding.

We also investigate the usefulness of the data augmentation

via speed perturbation. The training data is augmented by

changing the articulation speed with the following factors:

0.9 (slower), 1.0 (original) and 1.1 (faster). This expands the

training data by a factor of three. In addition, we examine

the effect of speed perturbation with and without keeping the

fundamental frequency (F0) fixed which are referred to as sp-

FixedF0 and sp, respectively.

B. Performance of various input features

Table II reports the recognition results for various features.

Beginning with the handcrafted 39D MFCCs and 83D FBanks

features, MFCC outperforms FBank by a noticeable margin in

this task, for both dysarthric and typical scenarios.

The second part of this table is dedicated to the single-

stream raw magnitude and raw waveform acoustic models.

Although these representations are more informative than

MFCC, their performance is significantly poorer. Note that

more informative sequences can potentially lead to higher per-

formance, but only when an adequate architecture is employed

and sufficient training data is available.

The third part of Table II displays the WERs when the

source and filter components are applied individually and

jointly (VT+Exc). The raw VT representation outperforms

Mag0.1 by 1.6% (absolute) for dysarthric speech and 1.6%

for typical speech. Using only the Exc component leads to

very poor performance for both dysarthric and typical speech.

However, compared with the single-stream VT system, better

performance is achieved when this seemingly task-irrelevant
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TABLE II: Mean±STD of WER in the 5-fold training setup

for various models (MVN at speaker level). ’+’ indicates

concatenation at the multi-stream processing.

Average
Feature Dysarthric Typical

MFCC 49.0±3.5 16.3±2.7
FBank 51.3±2.1 19.6±1.6

Raw-wave 57.2±3.3 23.6±2.3

Mag0.1 54.4±5.9 21.3±3.9

VT 52.8±4.6 19.7±3.7
Exc 96.8±3.3 94.8±2.5
VT+Exc 47.4±1.9 15.7±1.1

Mag0.1+VT 48.5±3.8 16.4±1.6

Mag0.1+Exc 48.8±4.5 16.8±2.0

Mag0.1+VT+Exc 48.0±2.4 16.0±0.7

representation is employed jointly with the VT within the

proposed multi-stream architecture.

This interesting observation illustrates that although Exc

does not carry information directly applicable to ASR, it

informs the model about the speaker, allowing it to better

normalise out the speaker-related attributes, returning the best

performance for both typical and dysarthric speech. Factoring

the raw magnitude spectrum into the VT and Exc components

outperforms MFCC by 1.6% and 0.6% (absolute) in terms of

WER for dysarthric and typical speech, respectively, in spite

of the data scarcity problem.

The last part of this table displays the WERs when the Exc

and VT components are applied jointly with the magnitude

spectrum. As seen, the best performance is still achieved by

the VT+Exc system. It is also observed that the combination

of the magnitude spectrum and VT or Exc or both improves

the performance (relative to Mag0.1). However, adding Mag0.1

to the VT+Exc system worsens the performance.

To investigate the statistical significance of the WER im-

provements, we applied the Matched-Pair Sentence-Segment

Word Error (MAPSSWE) [50] which compares the recognition

errors made by the two systems. Computing the p-value of the

test between WERs of the FBank and VT+Exc systems returns

0.045, which shows the gain is statistically significant.

Table III reports the results after utterance-level mean-

variance normalisation along with the relative gain w.r.t. the

speaker-level normalisation results shown in Table II. It is

observed that the utterance level mean-variance normalisation

leads to higher performance for the handcrafted features

(MFCC and FBank) whilst decreasing the performance on

the raw waveform and raw magnitude-based representations.

Quantitatively, maximum gains occur when using the FBank

features with improvements of up to 10% (relative) while the

biggest performance drop occurs for the VT feature, with a

WER increase of more than 93% relative.

The last two rows in Table III show the effect of applying

only utterance-level mean normalisation. As seen, skipping the

variance normalisation is notably beneficial for both FBank

and VT+Exc features. This is owing to the fact that some

of the utterances in TORGO are very short and this hinders

TABLE III: WER after MVN at the utterance level

(gains(+)/losses(-) relative to the speaker level MVN, Table II).

* refers to applying only utterance level mean normalisation.

Average
Feature Dysarthric Typical

MFCC 47.0 (+4.1%) 15.9 (+2.2%)
FBank 50.4 (+1.8%) 17.7 (+9.7%)

Raw-wave 62.7 (-9.6%) 27.5 (-16.8%)

Mag0.1 65.0 (-19.5%) 35.9 (-68.7%)

VT 64.3 (-21.9%) 38.1 (-93.5%)
Exc 103.5 (-6.9%) 96.0 (-1.3%)
VT+Exc 56.2 (-18.6%) 22.6 (-43.9%)

FBank* 48.3 (+5.8%) 16.3 (+16.8%)
VT+Exc* 47.6 (-0.4%) 15.8 (-0.6%)

reliably estimating the variance owing to data deficiency. In

case of the speaker-level normalisation, since the data is pooled

across all utterances belonging to each speaker, the variances

are estimated using more data and therefore, are more reliable.

C. Data augmentation via speed perturbation

We augment the data via a speed perturbation (sp) scheme

with 0.9 (slower), 1.0 (original) and 1.1 (faster) speed change

factors, increasing the training data by three times. The speed

perturbation can be carried out with and without keeping

the fundamental frequency (F0) fixed, referred to as sp-

F0Fixed and sp, respectively. The difference between these

two approaches is substantial: the former keeps the pitch (F0)

of the speaker fixed and only simulates various articulation

speeds while the latter simulates speakers of different identities

(different F0s) speaking with various speeds which renders

richer training data [51]. The results of the two speed per-

turbation methods are reported in Table IV along with Fig. 5

which demonstrates the relative gain for each feature.

As seen, perturbing the articulation speed while keeping

F0 fixed, barely provides any performance gain (relative to

Table II) despite increasing the training data by three folds.

However, allowing F0 to vary offers a notable performance

gain for both handcrafted and raw feature representations. As

mentioned earlier, the sp scheme allows for simulating many

speakers during training which in turn, helps the model to

normalise the speaker attributes while sp-F0Fixed only helps

the model to normalise the articulation speed. When the sp

data augmentation scheme is used, VT+Exc results in the best

performance with a WER of 36.1% (23.8% relative gain with

respect to Table II) for the dysarthric speech. The best WER

for the typical speech is 11.2%, achieved by Mag0.1+VT and

Mag0.1+VT+Exc. It slightly outperforms VT+Exc with 11.3%

WER (28% relative gain with respect to Table II).

Another important observation is the performance gap be-

tween the VT and Mag0.1 features. Although without data

augmentation VT outperforms Mag0.1, after applying the sp

scheme, Mag0.1 results in a lower WER than VT with a

notable margin. Their performance is comparable in case the

sp-FixedF0 approach is applied. When the model is fed with
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TABLE IV: Mean±STD of WER for dysarthric (Dys) and

typical (Typ) speech after data augmentation via speed pertur-

bation without (sp) and with (sp-F0Fixed) keeping F0 fixed.

Setup sp sp-FixedF0
Feature Dys Typ Dys Typ

MFCC 42.3±3.2 12.3±1.2 50.6 18.1
FBank 47.6±1.4 14.2±0.6 56.9 21.7

Raw-wave 46.0±3.4 17.5±1.5 56.5 25.7

Mag0.1 40.6±3.7 11.8±2.6 53.2 18.8

VT 42.8±2.7 12.7±1.1 52.9 20.0
VT+Exc 36.1±2.2 11.3±1.2 53.7 20.9

Mag0.1+VT 37.1±2.2 11.2±1.1 51.0 20.2

Mag0.1+Exc 39.2±3.1 12.2±1.5 52.3 19.3

Mag0.1+VT+Exc 36.4±2.0 11.2±1.7 50.6 19.0
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Fig. 5: The relative performance gain(+)/loss(-) after data aug-

mentation via speed perturbation. (a) Dysarthric, (b) Typical.

VT, the speaker-related attributes encapsulated in the Exc

are already discarded. This, to a great extent, nullifies the

variability induced by the sp scheme in terms of speaker

identities and subsequently limits the model’s capability in

learning the speakers’ attributes for normalisation purposes.

That is why the VT model benefits the least from the speech

perturbation, as depicted in Fig. 5.

D. Training dynamics

Now, we explore the training dynamics of the single-stream

Mag0.1 and VT acoustic models along with the multi-stream

VT+Exc system. By training dynamics we mean the evolution

of some performance metrics such as cross entropy (CE) loss

or WER vs. training epochs.

Fig. 6 depicts the training dynamics of various models in

terms of the CE loss on the validation set in three training con-

ditions: without data augmentation (original training data) and

with data augmentation via the sp and sp-FixedF0 schemes.

Comparing the results shows that using sp-FixedF0 leads to

the highest CE loss. This is in agreement with the WER results

reported in Table IV where it led to the highest WERs.

Furthermore, the convergence rate for this scheme is the

fastest compared with the models using the original data and

sp data augmentation. Except for Mag0.1, in all other features

the training converges (reaches a plateau) by 10 epochs. This

could be explained by considering the fact that the sp-FixedF0

training set simulates various speaking rates for the same set
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Fig. 6: Training dynamics in terms of CE loss vs. epoch on

the validation set for four different inputs in three training

conditions. (a) Mag0.1, (b) VT, (c) VT+Exc, (d) Mag0.1+VT.

of speakers. This helps the model to only normalise the data

variability along the speaking rate dimension which is not

helpful in this task. Therefore, there is not much to learn from

such extra information, leading to relatively fast convergence.

On the other hand, the sp scheme leads to the lowest loss

value at all epochs compared with training with the original

training data and, of course, sp-FixedF0. The only exception

to this is the VT feature where the loss after 30 epochs is equal

for both the original and sp training conditions (Fig. 6 (b)).

As explained earlier, the VT feature benefits the least from the

sp scheme as the excitation part is already removed. Another

observation is that the sp scheme results in a persistent loss

reduction even at high epochs. As seen, even after 30 epochs

the loss is still slowly decreasing, implying that more epochs

can further improve the performance. Compared with the

single-stream systems (Fig. 6 (a) and (b)), this slope is larger

for the multi-stream systems (Fig. 6 (c) and (d)), demonstrating

that the latter require more epochs to be well trained.

The CE loss is a general criterion used in training the

DNNs. It, however, may not strongly correlate with the task-

specific performance metrics such as WER. To better study the

training dynamics, we computed the WER evolution during

training, too. Fig. 7 shows the WER vs. epoch on the test set

for the dysarthric and typical speech, with and without data

augmentation via the sp scheme. Since the dynamic range of

the WER during training is large, we have zoomed in on the

results for the last epochs to better highlight the differences.

As seen, data augmentation significantly improves the WER

for both dysarthric and typical speech and in all epochs.

Comparing the training dynamics of the dysarthric and typ-

ical speech also shows that the dysarthric speech requires

more epochs and has a slower rate of convergence. This is

explainable considering the fact that the dysarthric speech

is more complicated than the typical speech (involves more

variability); hence, the learning process is slower and demands

more training epochs.
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Fig. 7: Training dynamics in terms of WER vs. epoch on the

test set for various features. (a) Dysarthric, (b) Typical.

For both dysarthric and typical speech, the overall trend of

the WER evolution vs. epoch for the models fed with the raw

Mag, VT and VT+Exc features is similar. However, VT+Exc

further benefits from extra training epochs and its advantages

relative to the single-stream models become more pronounced

in the later epochs. Also note that in the Mag-sp and VT+Exc-

sp models, around epoch 25, performance jumps out of a local

optimum reached around epoch 17 and falls into a better local

optimum – in terms of having a lower WER.

E. Speech recognition error analysis

Table V presents the insertion (Ins), deletion (Del) and

substitution (Sub) errors along with the corresponding WER

for each system. Fig. 8 compares the normalised2 Ins, Del and

Sub errors for the Mag, VT and VT+Exc systems.

It is observed that for the dysarthric speech and without

speed perturbation, the Mag system has the fewest Ins errors

whilst the VT+Exc system results in the fewest Del and Sub

errors. The speed perturbation technique (without keeping F0

fixed) although increasing the number of Ins errors for all three

systems, leads to a substantial reduction in the number of dele-

tion and substitution errors. The recognition performance gain

achieved by using the speed perturbation technique primarily

comes from the reduction in the substitution error. Compared

with the sp data augmentation scheme, the sp-FixedF0 method

increases all three error types.

Fig. 9 illustrates the evolution of the Ins, Del and Sub

errors vs. epoch for the dysarthric and typical speech. It

is observed that the Del error converges faster than other

errors for both dysarthric and typical speech. The Ins error

continuously decreases for the typical speech during training

while it increases for the dysarthric speech after 20 epochs.

More training is mostly beneficial in decreasing the Sub

errors which is the primary source of error. Comparing three

systems, VT+Exc-sp outperforms others on the Sub error by

a significant margin, while it has a slightly higher Ins error.

We also studied the optimal value for the language model

weight (LMWT) that obtains the best WER vs. epoch for

speakers in different severity levels in the proposed VT+Exc-

sp system. As seen in Fig. 10, the optimal LMWTs is almost

2Normalised by the number of tokens for the dysarthric and typical speech.

TABLE V: Speech recognition errors (Ins, Del, Sub, WER)

for the first fold
.

Dysarthric Typical
Feature Ins Del Sub WER Ins Del Sub WER

Baseline

MFCC 30 27 135 53.1 17 25 132 18.2

Mag0.1 25 26 137 52.4 13 19 121 16.2
VT 28 22 136 50.9 18 20 119 16.8
VT+Exc 27 20 130 49.2 13 20 108 15.0

Mag0.1+VT 28 19 115 45.8 13 22 105 14.8

Mag0.1+VT+Exc 31 24 134 52.3 13 27 138 19.0

Speed perturbation via sp scheme

MFCC 28 17 106 42.3 14 15 92 12.7

Mag0.1 28 15 100 40.5 13 20 109 10.9

VT 28 16 118 45.2 14 16 100 13.7
VT+Exc 28 13 94 37.7 7 12 59 11.4

Mag0.1+VT 25 16 96 38.4 9 17 82 11.2

Mag0.1+Exc 24 18 96 38.4 9 20 88 12.4

Mag0.1+VT+Exc 24 19 96 38.6 8 19 83 11.7

Speed perturbation via sp-FixedF0 scheme

Mag0.1 33 19 136 52.2 18 18 121 16.5
VT 27 23 138 52.0 17 22 138 18.8
VT+Exc 30 22 139 52.8 20 23 136 19.0

Mag0.1+VT 26 24 134 51.0 14 33 143 20.2

Mag0.1+Exc 29 24 136 52.3 15 29 138 19.3

Mag0.1+VT+Exc 29 21 128 49.4 10 26 118 16.4
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Fig. 8: The normalised insertion, deletion and substitution

errors of different models for the dysarthric and typical speech.

fixed across various epochs and is strongly influenced by the

severity level. Dysarthric speech requires higher LMWTs than

typical speech and the higher the severity level, the higher the

optimal LMWTs. The optimal LMWT for the mild dysarthric

speech is similar to that for typical speech.

The LMWT is a hyperparameter used to balance the dy-

namic range of the acoustic model and the language model: a

higher LMWT elevates the contribution of the language model

in the decoding stage. For severely dysarthric speech, the out-

put of the acoustic model is less reliable and therefore, noisier;

hence, allocating a higher weight to the language model and

consequently reducing the contribution of the acoustic model

improves the WER during the decoding process.

F. Importance of MLP-1

As mentioned earlier, the role of the MLP-1 is primarily

fusing the pre-processed information streams. To this end, a

linear or non-linear FC layer may be used. We also examine

the effect of removing this layer. Table VI shows the WERs for
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Fig. 9: Training dynamics of the insertion, deletion and

substitution errors vs. epoch for various systems.
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Fig. 10: Optimal LMWTs vs. epoch for various severity levels.

Dys denotes the average of the severe, moderate and mild.

TABLE VI: WER of different systems for dysarthric and

typical speech. NL: non-linear, L: linear.

Arch NL-MLP1 L-MLP1 No-MLP1
Feature Dys Typ Dys Typ Dys Typ

MFCC 49.0 16.8 47.0 15.5 47.5 15.8
FBank 54.9 20.6 48.7 15.9 47.7 15.3
Mag 55.8 22.1 56.1 20.3 49.8 17.5
VT+Exc 47.4 15.7 47.9 15.7 45.3 14.1

(VT+Exc)-sp 36.1 11.3 37.3 11.9 35.9 11.7

various features when a non-linear (NL-MLP1) or linear (L-

MLP1) fully-connected layer is used as MLP-1 and also when

MLP-1 is removed (No-MLP1). Fig. 11 shows the relative

(to the default setting, namely NL-MLP1) gain for various

configurations. As seen, although the results do not reflect a

clear trend, for the dysarthric and typical speech, No-MLP1

and NL-MLP1 lead to the highest performance, respectively.
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Fig. 11: The relative performance gain/loss of different archi-

tectures. (a) Dysarthric, (b) Typical.

TABLE VII: The best WER along with the corresponding

epoch (Best-Ep) for various systems (architecture: No-MLP1).

* refers to concatenation at the input level.

Average
Feature Best-Ep Dysarthric Typical

MFCC 35 47.5 15.8
FBank 45 45.3 15.0

Mag 30 49.8 17.5

Mag0.1 40 52.0 20.5

VT+Exc* 35 44.0 14.0
VT+Exc 45 43.6 13.5

FBank-sp 45 36.5 11.3
Mag-sp 30 40.0 12.5
VT+Exc*-sp 40 35.5 11.1
VT+Exc-sp 45 35.3 11.0

We trained the No-MLP1 models which returns the best

results for the dysarthric speech, for an extra 20 epochs (50

epochs in total), considering the training dynamics depicted in

Fig. 6 where the loss value was still improving with a mild

slope around 30 epochs. The best WERs and the epoch at

which they were achieved (Best-Ep) are reported in Table VII.

In this set of experiments, we added an V T + Exc
∗ system

where * indicates directly concatenating the VT and Exc

components at the input level. Compared with V T + Exc
∗,

VT+Exc achieves higher recognition performance by concate-

nating the two information streams after pre-processing each

stream using CNN layers (as shown in Fig. 4). This observa-

tion is in line with what was found in [35] that the optimal

fusion level should be high enough to effectively pre-process

each information stream and low enough to leave sufficient

capacity after fusion for post-processing the fused streams.

Compared with other features, both VT+Exc and VT+Exc-sp

systems further benefit from the extra training epochs. The

proposed multi-stream VT+Exc-sp system achieves compet-

itive performance with WERs of 35.3% and 11.0% for the

dysarthric and typical speech, respectively.

G. UASpeech database

To explore the generalisation of the proposed method, we

applied our best system (the proposed architecture with No-

MLP1) to another widely used dysarthric speech corpus,
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TABLE VIII: WERs of the best systems for UASpeech.

Dys and Both denote using only dysarthric speech and both

dysarthric and typical speech for training, respectively.

Training data Feature Dysarthric

Dys FBank 43.1
Dys VT+Exc 42.0
Dys [17] 48.5

Both FBank 42.9
Both VT+Exc 42.2

Both-sp FBank 31.7
Both-sp VT+Exc 30.3
Both-sp [24] 32.4
Both-sp [52] 30.5

namely UASpeech [16]. It contains 102.7 hours of speech

recorded from 29 speakers (16 speakers with dysarthria and

13 typical speakers). The dataset only includes isolated word

utterances based on single word utterances of digits, computer

commands, radio alphabet letters, common and uncommon

words. It contains two training sets: only dysarthric and a

combination of both dysarthric and typical speech, which

we refer to them as Dys and Both , respectively. The speed

perturbation expands the data threefold.

Table VIII shows the performance of the proposed VT+Exc

and FBank systems on UASpeech along with results from

some recent studies. When the system is trained with only

dysarthric speech (Dys) and without speech perturbation, both

FBank and VT+Exc systems outperform the result obtained

in [17]. The absolute WER reduction of the VT+Exc system

over the FBank baseline is 1.1%.

Adding typical speech to the training data (Both) have no

significant and consistent positive effect on WER in recognis-

ing dysarthric speech. With speed perturbation, the VT+Exc

model outperforms FBank by 1.4% absolute WER reduction.

Additionally, the proposed VT+Exc system outperform both

[24] and the highly competitive system in [52] which utilises

QuartzNet [53], CTC [54], meta-leaning [55], [56] and SAT

[5]. This indicates that the proposed VT+Exc based system

effectively generalise over other dysarthric datasets.

H. Usefulness of speaker adaptation by i-vector

To further highlight the capability of the proposed VT+Exc

system in normalising the speaker variability, we compared

it with the speaker adaptation via i-vectors [57], [58]. The

results on TORGO are shown in Table IX. As seen, adding

the i-vectors consistently improves the performance on typ-

ical speech by 0.2% to 0.3% absolute WER reduction. For

dysarthric speech, the FBank and VT systems benefit from the

i-vectors while the VT+Exc system performs slightly worse

when i-vector is added. This can be explained by considering

the fact that both i-vector and Exc represent the speaker related

attributes and having both is rather redundant.

Comparing VT, VT+i-vector and VT+Exc on typical speech

shows utilising the i-vector and Exc component are equally

useful, leading to identical performance. However, on the

TABLE IX: WERs on TORGO for different systems along

with applying i-vector for speaker adaptation.

System Average
Feature Dysarthric Typical

FBank 36.5 11.3
VT 36.6 11.2
VT+Exc 35.3 11.0

FBank + i-vector 36.3 11.0
VT + i-vector 36.0 11.0
VT+Exc + i-vector 35.4 10.8

dysarthric speech adding Exc to the VT feature results in 1.3%

absolute WER reduction while adding i-vector to VT improves

the WER by 0.6%. Also note that extracting i-vector involves

learning a universal GMM and developing a separate system to

extract such embeddings while extracting the Exc component

is as easy and as fast as computing FFT and a liftering process.

V. TOWARDS UNDERSTANDING THE LEARNED MODELS

In this section, we take some steps towards understanding

the models’ behaviour. In particular, we analyse the filters

in the first convolutional layer as well as how the model

normalises the nuisance variabilities such as speech style

(dysarthric vs. typical) or the speaker identities.

A. Interpretation of the learned filters

Fig. 12 illustrates the average of the first convolutional

layer (Conv-L1) for models shown in Fig. 4 along with the

magnitudes of their FFT. Note that these filters are fed with the

compressed magnitude spectrum (of the signal, VT or Exc),

not the time domain signal; hence, after taking the Fourier

transform (FT), the domain will be analogous to the cepstral

domain. We noticed that the filters’ shapes in the original

domain are not readily interpretable. However, taking the FT

sheds further light on the behaviour of the learned filters,

providing some informative insights into their functionality.

As seen in Fig. 12 (a), on average, the filters fed with the

Mag0.1 act like a low-pass lifter. The low cepstral components

are correlated with the vocal tract and speech’s lingual con-

tent. The acoustic model trained for ASR learns about such

variability and more heavily focuses on these components.

When the model is fed with VT, similar behaviour is exhibited,

with the difference that the model does not pay attention to

cepstral components beyond 50 samples. This is an interesting

observation, too, because the information encoded in the VT

part is concentrated within the first 50 samples and essentially

the VT component has no information beyond 50 samples

(recall how the VT component was computed in Section 2).

On the other hand, the Exc part has no information in low

quefrencies; the model learns about this property, too, and on

average disregards the first 50 samples.

Fig. 12 (b), (c) and (d) show the average of the magnitude

of filters’ FFT for filters in the first convolutional layer in

various single and multi-stream systems. It is observed that

in the multi-stream systems, the role which each stream can
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Fig. 12: Average of the learned filters in the first convolutional

layer. A(+B) indicates the average of the filters of the head fed

with A in a multi-stream system fed with A and B features.

play is enhanced and the streams complement each other. Let

A(+B) in this figure mean the average of the filters in the

first layer of a sub-network (head) takes A input, in a multi-

stream system fed with both A and B features. As seen in

Fig. 12 (b), comparing the single-stream Mag system with

the multi-stream Mag(+VT) shows that the latter pays extra

attention to the quefrencies beyond 50 which are missed by the

VT and are uniquely captured by the Mag input. On the other

hand, comparing the single-stream Mag system with the multi-

stream Mag(+Exc) illustrates that the Mag head in Mag(+Exc)

gives relatively less attention to components beyond 50 as the

Exc head will handle that part better. Similar complementary

behaviour is seen in Fig. 12 (c) and (d).

B. Speaker normalisation across layers

Fig. 13 depicts the scatter plot for the VT+Exc system after

applying dimensionality reduction on the outputs of different

layers for the dysarthric and typical speech. Dimensionality

reduction to 2D was carried out in two stages after initially

standardising the activations (mean-variance normalisation)

per dimension. First, for each layer the activations vector

was reduced to 50D using the principal component analysis

(PCA) [59]; second, the dimensionality was further reduced

to 2D through t-distributed stochastic neighbouring entities (t-

SNE) [60]. The activations were calculated by the forward

propagation of a randomly selected portion of the dev set.

We computed the centroids for the typical and dysarthric

speech at different layers and calculated the Euclidean distance

between them. Ideally, the distance between the centroids

representing each speech type should decrease for layers

closer to the output as this implies the model is normalising

the dysarthric and typical speech types to some canonical

representation. Aligned with this insight, we noticed that this

is indeed the case. As seen in Fig. 13, the distance between the

centroids after the last recurrent layer, MLP-2 and the softmax

output layer is 13.4, 11.6 and 0.7, respectively.

Fig. 13: Scatter plot after applying dimensionality reduction

to 2D on activations of the (a) LiGRU block, (b) MLP-2 layer

and (c) Softmax layer. The red triangle and black cross indicate

the centroids for dysarthric and typical speech, respectively.

Fig. 14: Visualisation of the softmax layer activations after

dimensionality reduction to 2D for different models. Triangles

and crosses denote the centroids for the dysarthric and typical

speech types whilst the red and blue markers denoted male

and female speakers, respectively. (a) Mag0.1 epoch 10, (b)

VT+Exc epoch 10, (c) Mag0.1 epoch 30, (d) VT+Exc epoch

30, (e) Mag0.1-sp epoch 30, (f) VT+Exc-sp epoch 30.

We conducted a similar study, but this time the centroids

were computed considering the speaker identities (IDs). Based

on the aforementioned insight, the model should learn to

normalise the nuisance and irrelevant variabilities such as

speaker IDs. As such we expect that during training, the

corresponding clusters get closer to each other. Comparing the

10th and 30th epochs in Fig. 14 (a)-(d) shows that for both

single-stream Mag0.1 and multi-stream VT+Exc systems, the

centroids get closer to each other by epoch 30.

Furthermore, although the male and female speakers are

still separable by epoch 10, by epoch 30 they are further

mixed and harder to separate. This is another indicator of

speaker normalisation by the model during training process. As
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seen in Fig. 14 (e) and (f), data augmentation also contributes

towards further restricting the spread of the speaker centroids

and consequently a better speaker normalisation.

Finally, comparing the centroids representing the dysarthric

speakers (triangles) with the typical ones (crosses) demon-

strates that the dysarthric speakers are distributed in a larger

subspace. This implies a higher speaker variability than the

typical speech which makes ADSR a more challenging task.

VI. CONCLUSION AND SCOPE FOR FUTURE WORK

In this paper, we developed a multi-stream acoustic model

for ADSR using raw magnitude spectra of the source and

filter components. We separated the excitation and vocal tract

elements via cepstral processing and recombined them by a

multi-stream architecture. Having pre-processed each stream

by a CNN, they were fused via a fully-connected layer and

post-processed by a cascade of recurrent and fully-connected

layers. We studied the effects of data augmentation via speed

perturbation and feature normalisation and, scrutinised the

training dynamics of the models in terms of the CE loss and

WER for both dysarthric and typical speech. In addition, the

role of the excitation component for speaker normalisation

were investigated and compared with speaker adaptation via

i-vector. We also analysed the learned filters in the first

convolutional layer for various input features and showed that

the proposed model normalises the speech type and speak-

ers attributes. The proposed system achieved a competitive

performance with up to 35.3% and 11.0% WERs for the

dysarthric and typical speech on the TORGO and 30.3% on the

UASpeech databases. Future work includes learning domain-

invariant features via adversarial training, leveraging unla-

belled data via semi-supervised learning and transfer learning

by employing the self-supervised pre-trained models.
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