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ABSTRACT

Acoustic modelling for automatic dysarthric speech recogni-

tion (ADSR) is a challenging task. Data deficiency is a major

problem and substantial differences between the typical and

dysarthric speech complicates transfer learning. In this paper,

we build acoustic models using the raw magnitude spectra of

the source and filter components. The proposed multi-stream

model consists of convolutional and recurrent layers. It allows

for fusing the vocal tract and excitation components at differ-

ent levels of abstraction and after per-stream pre-processing.

We show that such a multi-stream processing leverages these

two information streams and helps the model towards normal-

ising the speaker attributes and speaking style. This poten-

tially leads to better handling of the dysarthric speech with a

large inter-speaker and intra-speaker variability. We compare

the proposed system with various features, study the train-

ing dynamics, explore usefulness of the data augmentation

and provide interpretation for the learned convolutional fil-

ters. On the widely used TORGO dysarthric speech corpus,

the proposed approach results in up to 1.7% absolute WER re-

duction for dysarthric speech compared with the MFCC base-

line. Our best model reaches up to 40.6% and 11.8% WER

for dysarthric and typical speech, respectively.

Index Terms— Dysarthric speech recognition, source-

filter separation and fusion, multi-stream acoustic modelling

1. INTRODUCTION

People with dysarthria often have impaired motor-control

over their speech articulation. The reduced articulation con-

trol often leads to heavily slurred speech, slower speaking

rate, abnormal pauses, false starts and repetitions [1]. As a re-

sult, the dysarthric speech, depending on severity, can sound

very different from the typical speech and is less intelligible.

This makes building ASR systems for dysarthric speech very

challenging. In particular, state-of-the-art ASR systems built

for typical speech do not work well for dysarthric speech,
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whilst dysarthric speech data paucity limits the efficacy of the

automatic dysarthric speech recognition (ADSR) systems.

Data augmentation techniques such as speed perturba-

tion [2, 3] and tempo adjustment [4] have been shown to be

useful and offer some limited improvement. Out-of-domain

data has been also exploited to address data sparsity [5–7].

However, the substantial differences between typical and

dysarthric speech limits the usefulness of transfer learning

from typical to dysarthric speech. Previous studies also

have demonstrated the benefit of employing effective speech

representations such as articulatory [6, 8] and bottleneck fea-

tures [9] to improve acoustic modeling of dysarthric speech.

In this paper, we build on the recent work on multi-stream

acoustic modelling from the raw source and filter compo-

nents [10, 11]. In this framework, the vocal tract (VT) and

excitation (Exc) components are pre-processed individually,

and post-processed after fusion. This approach offers a num-

ber of advantages: the source and filter components are pre-

processed based on their contribution to the task and by con-

sidering how they encode information. Moreover, it allows

for fusing the streams at an optimal level of abstraction.

Although this framework is generic and applicable in any

speech recognition/classification task, it can offer a special

advantage in the context of ADSR. When the model takes

two inputs characterising the lingual content (vocal tract)

and speaker attributes (excitation), among others, it learns to

normalise the speaker-associated properties reflected in the

source component whilst extracting the lingual content of

the speech from the filter component. Such implicit speaker

normalisation is highly desirable in recognising dysarthric

speech with a high inter and intra-speaker variability.

Based on this rationale, we build acoustic models for

ADSR from the raw magnitude spectra of the VT and Exc

components. We first separate the source and filter elements

via cepstral processing. Having pre-processed each stream by

a convolutional neural network (CNN), we recombine them

and pass them through a stack of recurrent layers. We also

study the effect of data augmentation via speed perturbation,

analyse the training dynamics in terms of cross entropy (CE)

loss and provide some interpretation for the learned filters.

We achieved up to 40.6% and 11.8% WER on TORGO for

dysarthric and typical speech, respectively.



2. PROPOSED SYSTEMS

In this section, we briefly review how the source and filter

components are separated and recombined.

2.1. Source-filter Separation

Cepstral low-pass liftering (CLPL) [12] is a straightforward

method to extract the source and filter components. The un-

derlying premise of CLPL is that the log of the magnitude

spectrum can be interpreted as a superposition of the two

components: a rapidly oscillating component modulated by

a slowly varying envelop. The former is associated with the

excitation component and the latter reflects the vocal tract.

Applying a low-pass lifter returns the VT component and by

taking advantage of the additivity of the source and filter in

the cepstral domain, the Exc component is extracted.

The high cut-off quefrency of the low-pass lifter (L0)

should be adjusted based on the fundamental frequency (F0)

which necessitates tracking F0 per frame. In [11], it was

argued that tracking F0 can be avoided, if L0 is chosen based

on the minimum possible fundamental periodicity T
Min
0

(or

equivalently F
Max
0

). This design choice ensures the filter

component is devoid of any source information and highly

simplifies the setup. It, however, results in some error (VT

residues exist in the Exc component) which was shown to be

insignificant [11]. We use the same configuration and set L0

to 50, equivalent to F
Max
0

of 320 Hz.

Fig. 1 illustrates the separated source and filter compo-

nents using CLPL for a severely dysarthric speech utterance.

Compared with typical speech signals, the spectral energy of

the dysarthric speech is more limited to the low frequencies

and has weak high frequency components. Besides, as the

VT spectral component demonstrates, the formants structure

is highly distorted; the spectral energy above 1.5 kHz is no-

tably low, making higher order formants particularly affected.

2.2. Source-filter Fusion (Recombination)

We wish to construct a multi-stream acoustic model using

the raw magnitude spectra of the source and filter compo-

nents. Unlike the MFCC [13] and FBank features, which

are lossy representations, raw magnitude spectrum provides

the model with a more informative signal representation, pre-

serving both vocal tract and excitation components. It is also

devoid of suboptimal information loss inadvertently occurs

along the handcrafted parametrisation pipelines.

However, one shortcoming of feeding the model with the

raw magnitude spectrum is that it implicitly fuses the VT and

Exc components at the input level, whereas these two com-

ponents carry complementary information, encode it differ-

ently, and are not equally important. As such optimal pre-

processing for each stream is different. To address this issue,

one needs a multi-stream system which allows for individual
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Fig. 1: Source-filter separation for a severe dysarthric speech.

(a) Spectrogram, (b) Magnitude spectrum along with the VT

and Exc components, (c) VT component, (d) Exc component.

pre-processing, fusion at optimal level of abstraction, and fi-

nally post-processing the recombined streams.

One issue in the multi-stream processing is fusion at an

optimal level of abstraction. Assuming a fixed budget in terms

of number of layers, the fusion level should be high enough to

allocate enough layers to per-stream pre-processing while be-

ing sufficiently low to leave enough layers for post-processing

the recombined streams. According to findings in [10,11,14],

fusion after pre-processing each stream via multiple convolu-

tional layers appears to be a reasonable design choice.

Ideally, an optimal information processing system should

only pass through the task-relevant information whilst fil-

tering out the irrelevant one. In the context of ASR, using

speaker-invariant representations like VT component is desir-

able. However, using task-irrelevant information such as Exc

component, which essentially captures speaker-correlated

characteristics of speech, could be helpful, too. That is, this

component can inform the model about the speaker and helps

it to normalise the speaker-related attributes and style. Such

normalisation, among others, is potentially very instrumental

in recognising the dysarthric speech with a large inter and

intra-speaker variability and, can contribute towards enhanc-

ing the generalisation and robustness of the acoustic model.

Fig. 2 illustrates the proposed multi-stream acoustic

model along with the single-stream baseline system. In the

proposed system the source and filter components are first

pre-processed via three convolutional layers. Then, they are

fused via a fully-connected multi-layer perception (MLP) and

post-processed by a stack of five layers of LiGRU [15].

3. INTERPRETATION OF THE LEARNED FILTERS

Fig. 3 illustrates the average of the 128 learned filters, 129

samples long, along with the magnitudes of their FFT, for

the first convolutional layer (ConvL-1) for models shown in



Fig. 2: Proposed multi-stream model vs single-stream base-

line, consisting of convolutional, MLP and recurrent layers.
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Fig. 3: Average of learnt filters in the first convolutional layer.

(left) learnt filters, (right) magnitude of FFT of the filters.

Fig. 2. Note that these filters operate on the magnitude spec-

trum, not the time-domain. Hence, after taking Fourier trans-

form (FT), the domain is analogous to the cepstral domain.

As seen, the average responses in the original domain are

not very insightful. However, taking Fourier transform shows

that the Mag filters act like low-pass lifters. This demonstrates

the model implicitly learns to pay more attention to the low

cepstral components which are associated with the VT and

discards the Exc part. The VT filters behave similarly to Mag

while filters operating on the Exc component pay no atten-

tion to the low cepstral components. This is an interesting

observation: the corresponding input (Exc component) has

no component in low quefrencies; the model learns this and

disregards such components.

4. EXPERIMENTAL RESULTS

4.1. Data Description

Acoustic models are built using TORGO [16] dysarthric

speech datasets. It contains 21 hours (7.3 hours for dysarthric

and 13.7 hours for typical speech) of acoustic recordings col-

lected from 15 speakers. Eight of the speakers have dysarthria

ranging from mild to severe, while others are non-dysarthric

typical speakers. The total vocabulary size is 1573.

4.2. Experimental Setup

The networks are trained using PyTorch-Kaldi [17]. To build

acoustic models for raw signal representations, raw waveform

model configuration was used. As shown in Fig. 2, the pre-

fusion CNNs are cascades of three 1D convolutional layers.

The post-fusion sub-network consists of one fully-connected

layer, a stack of five bidirectional [18] LiGRU [15] layers,

followed by another fully-connected layer and a softmax clas-

sifier. The dropout [19] (0.15), layer normalisation [20] and

batch normalisation [21] are also employed along with RM-

SProp optimiser [22]. Learning rate annealing with a factor of

0.5 was applied. The dimensions of MFCC, FBank and raw

spectral features (per frame) are 39 (including delta and delta-

delta), 83 (80 FBank + 3 pitch) and 257, respectively. The

Mag, VT and Exc are all 10th root of the corresponding raw

magnitude spectra. The 5-fold cross-training TORGO setup

proposed in [23] is applied. An independent 200k vocabulary

size Librispeech trigram language model, as proposed in [24],

was employed for decoding.

4.3. Results and Discussion

Table 1 reports the results for various features. The first two

rows show the performance of the handcrafted 39-D MFCCs

and 83-D FBank features. As seen, MFCC outperforms

FBank by a significant margin in this task. The third and

fourth rows illustrate the performance of the raw waveform

and raw magnitude spectrum. These two signal representa-

tions are more informative than MFCC and FBank, however,

return poorer results. This is primarily due to the data scarcity

problem in dysarthric speech and the fact that the amount of

training data is more critical for high dimensional features.

The last three rows display the WERs when the source

(Exc) and filter (VT) components are applied individually and

jointly (VT+Exc). The raw VT representation outperforms

the raw magnitude spectrum by 3.9% and 3.0% (absolute) for

dysarthric and typical speech, respectively. Although VT out-

performs FBank feature, it is still behind MFCC by a notice-

able margin for both dysarthric and typical speech.

Using only the Exc component leads to a very poor per-

formance for both dysarthric and typical speech. However,

when this seemingly task-irrelevant representation is em-

ployed jointly with the VT within the proposed architecture,

the best performance is achieved. This is a very interesting

observation showing that although Exc does not carry infor-

mation directly applicable to ASR, it helps the VT component

to normalise the speaker related attributes, returning the best

performance for both typical and dysarthric speech. It outper-

forms MFCC by 1.6% and 0.6% (absolute) in terms of WER

for dysarthric and typical speech, respectively.



Table 1: ASR performance (WER) for different features per (F)emale and (M)ale speakers with different dysarthria severity,

along with the averaged results for all speakers. ‘M/S’ indicates speakers with Moderate to Severe levels of dysarthria.

Severe M/S Moderate Mild Average

Feature F01 M01 M02 M04 M05 F03 F04 M03 Dysarthric Typical

MFCC 56.1 86.6 56.3 80.4 62.6 40.1 26.6 13.1 49.0 16.3

FBank 69.5 93.4 67.8 80.7 61.5 47.9 29.7 22.1 54.9 20.6

Raw-wave 58.5 90.7 63.7 84.3 76.7 40.4 28.0 16.9 57.2 23.6

Mag 68.1 73.0 64.5 84.6 68.6 53.2 28.4 22.3 56.7 22.7

VT 59.9 68.5 59.5 80.6 67.6 50.2 24.7 17.6 52.8 19.7

Exc 98.4 102.6 103.5 97.2 96.7 91.4 95.3 93.1 96.8 94.8

VT+Exc 57.6 62.3 52.1 78.4 62.6 42.2 20.2 12.9 47.4 15.7
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Fig. 4: Training dynamics (CE vs Epoch) for various models.

Fig. 4 illustrates the evolution of the cross-entropy (CE)

loss for various features during training. Except for Exc,

other features have similar convergence pattern and on aver-

age training converges after 15 epochs. As the WER shows,

Exc has a very poor performance even though the CE dynam-

ics shows a fast convergence. Such a fast convergence is ow-

ing to the fact that the model finds out that there is not much

to learn from this stream when used individually. On the other

hand, the CE for VT+Exc is similar to others whilst in terms

of WER it outperforms them with a significant margin.

Finally, we augment the data via speed perturbation, using

0.9, 1.0 and 1.1 factors and without keeping the pitch fixed.

The results are reported in Table 2 along with the relative gain

for each feature. With more data for training, the raw mag-

nitude spectrum achieves the highest performance with rela-

tive gain of 28% and 48% for dysarthric and typical speech,

respectively. The VT system, although benefiting relatively

more than the handcrafted features, returns poorer results than

the Mag system. The results obtained by VT+Exc system

are behind the raw magnitude spectrum on both typical and

dysarthric speech and despite benefiting from data augmenta-

tion, its relative performance gain is less than other features.

Why is the relative gain after data augmentation the most

for Mag and low for VT+Exc? The raw magnitude spectrum,

individually, is the most informative spectral representation

but cannot handle the speaker variability when data is lim-

Table 2: Data augmented using speed perturbation for various

features (along with the corresponding relative gain).

Average

Feature Dysarthric Typical

MFCC 42.3 (13.7%) 12.3 (24.5%)

FBank 47.6 (13.3%) 14.2 (31.1%)

Raw-wave 46.0 (19.6%) 17.5 (25.8%)

Mag 40.6 (28.4%) 11.8 (48.0%)

VT 42.8 (18.9%) 12.7 (35.5%)

VT+Exc 40.8 (14.8%) 12.7 (19.1%)

ited. By perturbing the speed without keeping the fundamen-

tal frequency fixed, this data augmentation scheme implicitly

simulates many speakers and consequently helps the model to

learn to normalise the speaker variability. Additionally, it un-

dermines the speaker normalising role of the Exc component.

5. CONCLUSION

In this paper, we developed an effective multi-stream acoustic

model for ADSR using raw magnitude spectra of the source

and filter components. We separated the excitation and vocal

tract elements via cepstral processing and recombined them

by multi-stream CNNs. Having pre-processed each stream

with CNNs, the streams are fused through fully-connected

layers and post-processed via LiGRU layers. Training dy-

namics of the model as well as the learned filters in the first

convolutional layer were studied and up to 1.6% absolute

WER reduction for dysarthric speech was achieved. We also

employed data augmentation by speed perturbation which

further improved the performance, reaching state-of-the-art

results compared with the previous TORGO-based work. Fu-

ture work includes disentangled representation learning and

employing pre-trained models using out-of-domain data.
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