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Editorial on the Research Topic

Advancements in trajectory optimization and model predictive control

for legged systems

In recent years we witnessed the proliferation of legged systems as advanced robotic

platforms, which could be potentially employed in the near future on a huge spectrum of

useful tasks. This is not only related to the success of quadrupeds, e.g. for inspection tasks

(Bouman et al. (2020); Gehring et al. (2021)), but also to the increased capabilities of

humanoid bipedal systems enabling operation in real-world settings (Agility Robotics,

2021; BostonDynamics (2021a)). To achieve such a level of autonomy, the use of advanced

control and planning tools has been fundamental, in particular those allowing for the full

exploitation of the dynamics of the system within a prediction horizon. In this respect,

Trajectory Optimization (TO) and Model Predictive Control (MPC), among other

methods, have proved to be highly effective on legged robotics platforms for a

multitude of different tasks, including locomotion and manipulation Koenemann

et al. (2015); Neunert et al. (2018); Di Carlo et al. (2018); Kuindersma et al. (2016);

Belli et al. (2021). While TO is commonly used to plan complex open-loop trajectories

over a long prediction horizon, MPC enables fast re-planning and feedback stabilization,

over a shorter horizon. Thanks to the combination of these techniques, legged systems

have been able to successfully demonstrate complex high-level skills like loco-

manipulation in complex environments, agile locomotion, parkour, and much more

in the years to come. However, it still remains an open question how to effectively employ

TO and MPC on real legged systems. This requires smart formulations of contact-

constrained robot dynamics, convenient models of the environment, as well as

computationally efficient and real-time optimization algorithms.
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The aim of this Research Topic has been to inform the

robotics research community on the newest findings and future

directions in TO and MPC applied to legged systems. In

particular, we collected different contributions concerning

recent applications of TO and MPC on legged systems related

to climbing, dynamic locomotion and running, whole-body

manipulation, robust formulation of contacts under modeling

uncertainties, and software frameworks.

The first paper in our Research Topic, by L. Drnach et al.

proposes a novel framework to account for contact uncertainty in

TO. The authors developed chance complementarity constraints

to convert the stochastic constraints into deterministic

constraints showing that the chance constraints can mediate a

trade-off between feasibility and robustness.

Locomotion in simulated bipedal systems is addressed in two

works by K. Wan et al. and F. M. Smaldone et al. respectively. In

particular, the first work proposes a fast MPC based on a

Quadratic Programming (QP) formulation for automatic

footstep placement; the computed controls are consecutively

tracked by whole-body inverse dynamics. The locomotion

scheme is validated in simulation using a novel platform,

called SLIDER, walking blindly in various uneven terrain. The

second work presents an MPC for running and walking based on

the Variable-Height Inverted Pendulum (VH-IP) model (Koolen

et al. (2016)) and adaptive footstep placement. The nonlinearity

of the VH-IP is handled by splitting the gait generation into two

consecutive stages, both requiring a QP to be solved. The

proposed method is validated via dynamic simulations on the

full-scale humanoid robot HRP-4 (Kaneko et al. (2011)), and it is

experimentally validated on the small-sized robot OP3

(ROBOTIS (2022)).

In the two works from F. Aller et al. and P. Q. Lee et al. TO is

applied to the REEM-C robot (PAL Robotics (2020)) to generate

trajectories for a whole-body loco-manipulation task and

dexterous manipulation, respectively. In the first work, sit-to-

stand trajectories are optimized using optimal control, generating

dynamic and human-like motions. Based on the REEM-C sensor

data, a unified bench-marking procedure is presented based on

two different experimental protocols. In the second paper, the

buzzwire task is used to benchmark manipulation capabilities.

The work by F. Ruscelli et al. introduces a novel software

framework named Horizon for TO tailored to robotics

applications. Horizon is based on CasADi (Andersson et al.

(2019)) and permits easily setting up and solving complex TO

problems using different approaches and solvers. The authors

present contact rich dynamic motions on different types of

platforms, including KANGAROO (Roig et al. (2022)) and

Spot® (BostonDynamics (2021b)) together with a real

demonstration on the CENTAURO robot (Klamt et al. (2019)).

Finally, the paper from J. Lee et al. proposes a robust

planning and control framework for climbing robots that

provides robustness resistance to slippage in unknown

environments. The framework combines TO for the center of

mass position with re-planning, according to the uncertainties

related to the environment; a whole-body controller is able to

adjust the ground reaction force distribution in real-time. The

proposed method is tested in simulation using a novel magnetic-

legged climbing robot, Magneto.

We conclude by acknowledging the important contribution

made by the reviewers of the articles submitted to this collection.

They played a significant role in the high quality of the articles

presented here. We hope that researchers and practitioners will

enjoy this Research Topic and will be fascinated and inspired, as

we are, by reading these articles.
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