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Abstract 11 

Large quantities of mismanaged plastic waste threaten the health and wellbeing of billions 12 

worldwide, particularly in low- and middle-income countries where waste management 13 

capacity is being outstripped by increasing levels of consumption and plastic waste generation. 14 

One of the main self-management strategies adopted by 2 billion people who have no waste 15 

collection service, is to burn their discarded plastic in open, uncontrolled fires. While this 16 

strategy provides many benefits, including mass and volume reduction, it is a form of plastic 17 

pollution that results in the release of chemical substances and particles that may pose serious 18 

risks to public health and the environment. We followed PRISMA guidelines to select and 19 

review 20 publications that provide evidence on potential harm to human health from open 20 

burning plastic waste, arranging evidence into eight groups of substance emissions: brominated 21 

flame retardants; phthalates; potentially toxic elements; dioxins and related compounds; 22 

bisphenol A; particulate matter; and polycyclic aromatic hydrocarbons. We semi-quantitatively 23 

assessed 18 hazard-pathway-receptor combination scenarios to provide an indication of the 24 

relative harm of these emissions so that they could be ranked, compared and considered in 25 

future research agenda. This assessment overwhelmingly indicated high risk of harm to waste 26 

pickers, a large group of 11 million informal entrepreneurs who work closely with waste, 27 

delivering a circular economy but often without protective equipment or many structured, safe 28 

system of work. Though the risk to human health from open burning emissions is high, this 29 

remains a substantially under-researched topic.  30 
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Abbreviations 31 

ABS acrylonitrile butadiene styrene  

Backg’d background 

BaPeq benzo(a)pyrene equivalent 

BDEs brominated diphenyl ethers  

BFR brominated flame retardants  

BPA bisphenol A 

ca. circa 

CCME Canadian Council of Ministers of the Environment  

CI confidence interval  

Com. commercial 

Conc.  concentration  

DEHP  di(ethylhexyl) phthalate 

DEP diethyl phthalate 

DMP dimethyl phthalate  

DRC dioxins and related compounds  

EU European Union  

Geog. geographical context  

HBB hexabromobiphenyl  

HBCD hexabromocyclododecane 

HDPE high density polyethylene 

IPCC Intergovernmental Panel on Climate Change  

IRS informal recycling sector  

K-resin styrene-butadiene copolymer 

L likelihood 

LDPE low density polyethylene 

LIMIC low income and middle income countries  

MSW municipal solid waste  

Mt million metric tons 

Na not available  

NEERI National Environmental Engineering Research institute (2010)  

PAH polycyclic aromatic hydrocarbons  

PBDEs polybrominated diphenyl ethers 

PC polycarbonate  

PC-ABS polycarbonate/acrylonitrile-butadiene-styrene  

PCB polychlorinated biphenyls 

PCDD polychlorinated dibenzo-p-dioxins 

PCDD/Fs polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans 

PCDF polychlorinated dibenzofurans 

PE polyethylene  

PET polyethylene terephthalate 

phth. phthalates 

PM particulate matter 

PM0.1  particulate matter < 0.1 µm 

PM10  particulate matter < 10 µm 

PM2.5 particulate matter < 2.5 µm 
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PP polypropylene 

PS polystyrene 

PTE potentially toxic elements  

PVC polyvinyl chloride 

pw plastic waste  

R risk 

Res. residential 

RQ research question 

S severity 

SBC styrene-butadiene copolymer 

SD standard deviation  

Sed. sediment 

TBBPA tetrabromobisphenol A  

TCDD 2, 3, 7, 8-tetrachlorodibenzodioxin 

ton 1,000 kg 

TPM total particulate matter  

USMR uncertainty, strength of knowledge and methodological robustness  

VOC volatile organic compound 

wt. weight (i.e. a weight reporting basis) 

  32 



5 

1. Introduction  33 

The topic of solid waste mismanagement has attracted considerable attention in recent years, 34 

not least because of the large quantities of plastic waste that are reported to enter the aquatic 35 

environment (11 million metric tons per annum Mt y-1), mainly in the low- and middle-36 

income countries (LIMICs) of South and Southeast Asia.1 Our high dependence on plastics in 37 

almost every aspect of life has resulted in an exponential growth curve for plastic production 38 

since the 1950s, anticipated to continue unabated until 2050.2 Underlying this growth in 39 

plastic production, is the rapidly rising population that is projected for several middle-income 40 

countries in the Global South,3 where newly attained prosperity is allowing their citizens to 41 

benefit from the properties and characteristics that plastics bring to their lives such as 42 

freshness of food, fuel economy of transport systems, and insulating properties in 43 

constructions. Critically, increases in packaging production are anticipated, a stream that has 44 

an inherently short use phase, often becoming waste within a few months of production.2  45 

This rapid projected increase in plastic waste generation in LIMICs, particularly for short-use 46 

items and objects will necessitate concurrent and concerted effort by municipalities to 47 

provide systems to collect, dispose and potentially reclaim, recycle and recover significant 48 

additional material. However, the present situation is that approximately 40% wt. of 49 

municipal waste plastics are already mismanaged and that this proportion is projected to 50 

increase to 55% wt. by 2040 unless considerable and concerted action is taken to either inject 51 

more resources into an already struggling waste management system or dramatically reduce 52 

the mass that enters it.1 Controlling and reducing this mass of unmanaged plastic waste is fast 53 

becoming one of the dominant environmental topics of the 21st century. 54 

As yet, the focus on emissions of plastic debris to the marine environment has dominated the 55 

plastic pollution research landscape, with many of the proposed solutions focusing on 56 
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reduction of at-risk items through fractional (by weight) plastic bans and action to stimulate 57 

the circular economy for materials.4-6 However, other forms of plastic pollution have received 58 

comparatively little attention in recent years and the focus on circular economic aspirations 59 

has detracted from the foundational imperative for waste management in the first place, to 60 

protect human health and reduce our interaction with harmful effects of solid waste.7 Two 61 

environmental compartments, the land and the atmosphere, accumulate large amounts of 62 

plastics, the former as debris in dumpsites (12 Mt y-1) and diffuse terrestrial deposits (18 Mt 63 

y-1), and the latter in the form of gasses, vapors and particulates that are emitted when plastics 64 

are combusted in open, uncontrolled fires (49 Mt y-1).1  65 

For the 2 billion humans that receive no solid waste collection services,8 open burning is an 66 

effective self-management approach that quickly reduces the mass and volume of waste 67 

(indicatively, up to 75% wt.9 and 90% v/v.10 under ideal conditions in energy from waste 68 

plants). In addition, the heat generated in open fires, compresses the bioactivity of the 69 

putrescible fractions and associated direct infection risk as well as providing reduction in 70 

odor11 and a perceived deterrent against mosquitos that transmit malaria.12 In this perverse 71 

sense, open burning may offer benefits to people: however, at a serious potential risk to their 72 

own health, and that of any other people who may be exposed, for example via downwind 73 

plumes and wider atmospheric dispersion. Importantly, many of the most affected individuals 74 

are also the world’s poorest people, including approximately 11.4 million waste pickers (a 75 

conservative estimate), who, as strong anecdotal evidence suggests, work in close proximity 76 

to waste fires; and who have few choices about whether to sustain exposure to their 77 

emissions.13 78 

Two prominent studies have investigated the open burning of waste with a global perspective. 79 

Lemieux et al.14 provided a comprehensive review of emission factors associated with the 80 
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open burning of different materials, many of which were waste. The study summarised 81 

research on potentially hazardous emissions of several substance groups including certain 82 

brominated flame retardants (BFRs), dioxins and related substances (DRCs), polycyclic 83 

aromatic hydrocarbons (PAHs), particulate matter (PM) and volatile organic compounds 84 

(VOCs). Wiedinmyer et al.15 presented the only comprehensive global estimate of emissions 85 

from the open burning of waste specifically to date, the study used as a basis for further 86 

research since. For instance, Cogut16 presented the Wiedinmyer et al.15 model outputs in the 87 

context of the wider waste management system. Kodros et al.17 also used the Wiedinmyer et 88 

al.15 data and combined them with a global burden of disease study by Lim et al.18 to estimate 89 

270,000 premature deaths per year worldwide (5th to 95th percentiles: 213,000 to 328,000) 90 

from the open burning of waste. In a more recent study, Williams et al.19 combined the 91 

findings of Kodros et al.17 with World Health Organization20 and Institute for Health Metrics 92 

and Evaluation21 to estimate between 270,000 and 270,500 premature deaths from the open 93 

burning of waste. The estimate accounted for an additional 5,000 child deaths not included in 94 

the study by Kodros et al.17. Only one global NGO report by Gower et al.22 has specifically 95 

focused on emissions from the open burning of plastic waste, targeting in particular items 96 

produced by four major international corporations (Coca-Cola, Nestlé, PepsiCo and 97 

Unilever). The study was not subject to blind peer review, but involved informal academic 98 

review, and concentrated on the contribution to global warming from black carbon and CO2 99 

emissions. Importantly, no study as yet has attempted to collate and summarize evidence that 100 

focuses on the human health impacts of the open burning of plastic waste as a distinct 101 

material group. Given, the large quantities of plastic waste that are reported to be open 102 

burned each year and the inferred prevalence of the activity across the Global South,23 103 

potentially hundreds of millions of the world’s poorest people may be exposed to a cocktail 104 

of hazardous emissions. We have, for the first time, collected, arranged and synthesized 105 



8 

available evidence on the issue. We use  a systematic approach based on PRISMA 106 

guidelines24. Here, we focus on the mismanagement of plastic waste through uncontrolled, 107 

open burning. This work is complimented by Cook et al.25, who reviewed the risks associated 108 

with melt extrusion and legacy substance contamination ‘inherited’ by secondary plastics 109 

from the previous use phase. Both the present review and the review by  Cook et al.25 110 

followed the same methodological approach based on PRISMA guidelines and feature the 111 

same initial pool of literature.  112 

We begin this paper with an appraisal of evidence to indicate the mass of waste material 113 

burned in the open in different contexts (Section 3.2); this section does not strictly form part 114 

of the systematic review, but is intended to provide context on the magnitude of the open 115 

burning phenomenon – also a prerequisite to any global risk assessment. This is followed by 116 

six sections that address the state of knowledge around the emissions from burning waste 117 

plastics. Finally, we provide an indicative score for a series of hazard-pathway-receptor 118 

combinations to assist with basic ranking and prioritization of future areas of research. We do 119 

not include appraisal of incineration or energy from waste plants, at least where they 120 

incorporate air pollution control technology and management, as these are clearly out of the 121 

scope of open uncontrolled burning.  122 

2. Methods 123 

2.1. Systematic review 124 

The present review is part of a wider piece of research that investigated the risks to human 125 

health and safety from the mismanagement of plastic waste. Whilst this paper presents 126 

findings on the risks to human health from the open, uncontrolled burning, another paper by 127 

Cook et al.25 presents on plastics extrusion and legacy substance contamination in secondary 128 

plastics. The same initial pool of literature was used in the preparation of the two reviews as 129 
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detailed in Section S.1.4, obtained by the same PRISMA adapted method24; presented in 130 

Cook et al.25.  131 

We searched three databases: Scopus, Web of Science and Google Scholar to explore the 132 

following three research questions (RQ):  133 

• RQ1: What evidence exists to indicate risk to public and occupational safety posed by 134 

the open burning of plastic waste? 135 

• RQ2: What are the comparative risks to public and occupational safety that arise from 136 

the open burning of plastic waste? 137 

• RQ3: Based on the most important risks identified in RQ1 and RQ2 from plastic 138 

waste open burning, what are the core evidence gaps and, therefore, further research 139 

needs? 140 

Boolean search queries are listed in the Supporting Information (SI) (Section S1.2). They 141 

were streamlined using one-at-a-time sensitivity analysis to ensure the maximum number of 142 

relevant articles whilst reducing the number of non-relevant sources. Articles were included 143 

or excluded according to criteria detailed in (S1.3). Snowball and citation searching 144 

techniques26 were used to identify further relevant literature. Several websites and datasets 145 

were also queried for further relevant information, including those of Health and Safety 146 

Executive27, International Labour Organization28, The World Bank29 and World Health 147 

Organization30.  148 

The hazards posed by waste plastic items, and chemical substances arising from them, were 149 

identified in each information source. These were listed alongside receptors and the various 150 

pathways through which they may be exposed to each hazard. These  hazard-pathway-151 

receptor combinations were used to produce a theoretical conceptual diagram (Figure 1) that 152 

illustrates potential core pathways through which receptors may be potentially exposed to 153 

hazards emerging from specific sources.  154 
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Estimates to indicate the mass of waste open burned were included to add context and scale 155 

to the review, and were obtained separately to the main literature review via non-systematic 156 

snowball and citation searching.  157 

2.2. Uncertainty, strength of knowledge and methodological robustness (USMR) 158 

As required by PRISMA guidelines24, the strength of information provided in each of the 159 

sources reviewed was assessed. In our review this was done qualitatively as described by 160 

Cook et al.25 and coded according to USMR on a case-by-case basis; commentary is provided 161 

in footnotes below each table, unless no issues were identified. Specifically, data/information 162 

reported in the literature falling within the scope of inclusion criteria were assumed to be 163 

robust unless marked for: (i) inconsistent or ambiguous description of sampling and sample 164 

processing; (ii) issues of comparability with data reported by different authors; and, (iii) 165 

comparability affected by age of study. 166 

2.3. Risk based approach 167 

To assist with comparisons and ranking of the relative risk of each hazard-pathway-receptor 168 

combination, a risk-based approach reported by Cook et al.25, adapted from Hunter et al.31, 169 

Kaya et al.32, World Health Organization33 and Burns et al.34. This approach assigns 170 

likelihood and severity scores to each hazard-pathway-receptor combination, enabling an 171 

indicative scoring of risk to be calculated. The matrix for scoring is shown in Section S.2. 172 

This process was not an attempt to fully and comprehensively quantify risk (which is not 173 

possible given the paucity of data), but instead intended to support decision-making on 174 

directing future research agenda. The aggregated results of this process are shown, ranked in 175 

Section S.3. 176 
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3. Open burning of plastic waste  177 

3.1. Context 178 

The variable conditions in plastic waste open fires results in the emissions of a wide range of 179 

gasses, particles and vapors.14 These substances have several origins, described here in four 180 

groups. First, there are substances that have been intentionally added to plastic materials, i.e., 181 

in addition to the basic polymer, to improve their properties. For instance, flame retardants, 182 

fillers, antioxidants, and impact modifiers.35  Second, there are substances that have been 183 

added unintentionally as a result of the inclusion of recycled content, so called “legacy 184 

substances” that were either additives to a previous product or that were introduced during 185 

the reprocessing or sorting of the previous product. Third, there are substances and 186 

derivatives that were used or arose during the production of the primary polymer, including 187 

catalysts, monomers and partially formed polymers called dimers or oligomers. Fourth, there 188 

are the polymers themselves. 189 

In open uncontrolled fires, these four groups of substances and materials result in emissions 190 

via two main mechanisms:  191 

(1) Heat causes the substances in groups 1-3 to volatilize; and, 192 

(2) Thermochemical reactions at low and variable temperatures and oxygen presence 193 

result in bond fission and formation between present (groups 1-4) or newly created 194 

molecules. These are produced during pyrolysis, gasification and combustion; 195 

phenomena that can also be grouped according to fire types as:36 i) flaming 196 

combustion, well ventilated; ii) flaming combustion, ventilation-controlled iii) 197 

oxidative pyrolysis (smoldering); and iv) anaerobic pyrolysis.36 198 

The action of these two main mechanisms on the four groups of materials and substances 199 

results in the formation of residues in ash form (“inert”, incombustible part), or the release of 200 

gasses, particles and vapors into the atmosphere from where they may be suspended or 201 
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deposited onto land or into water with a risk of entering the food chain. Figure 1 provides a 202 

conceptual generalised summary of the various exposure pathways. 203 

 204 

Figure 1: Theoretical hazard exposure conceptual (hazard-pathway-receptor) model 205 

associated with open uncontrolled burning of plastic waste (risks from substances contained 206 

and combustion/heating products). Notation: 1volatilisation pathway; 2thermochemical 207 

reaction pathway. 208 

3.2. Mass of waste open burned  209 

Understanding emissions from open burning of plastic waste and the resultant health 210 

implications, requires information about how much material is combusted in different 211 

contexts. In Table 1, 31 proportional estimates from 12 authors across six different waste 212 

stream denominators are shown for comparison. It is striking that most highly cited article by 213 
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Wiedinmyer et al.15 uses an Intergovernmental Panel on Climate Change (IPCC)37 estimate of 214 

60% of municipal solid waste (MSW) deposited in dumpsites in LIMICs, which is based on 215 

an expert elicitation exercise. While expert elicitation is a useful last resort for estimating 216 

parameters in a sector where data is scarce, they do not purport to provide accurate data. 217 

Other estimates such as the National Environmental Engineering Research Institute38 218 

(NEERI) relate only to wards of Mumbai that have a dumpsites and uses an unclear 219 

denominator. As with the IPCC estimate, the NEERI study has its own risk of bias as the 220 

estimates were made on the basis of discussions with the Mumbai local authority who may 221 

have a vested interest to underestimate the mass. There was also no indication of how many 222 

officials were interviewed and what their position was. Notably, there is insufficient 223 

information regarding the exact location of the open burning, the urban vs. rural character and 224 

about the type of site or wider activity, despite the obvious utility of such contextual 225 

information.226 
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Table 1: Selected estimates of the proportion of municipal solid waste (MSW) open burned in different geographical and socio-economic 227 

contexts. 228 

Denominator  Ref. Country Locale Geog. Basis of estimate  Context  Rurality 

Proportion of 

waste open 

burned  

All MSW 

Nagpure et al.39 

IND 

Delhi  City 

Transect sampling 

LIMIC 

Urban 

2-3% 

Agra  City 24% 

Yedla et al.40 as cited by Nagpure et al.39 Mumbai City Assumptions 2% 

Central Pollution Control Board41 as cited by 

Nagpure et al.39 Delhi City Assumptions 1% 

Sharma42 as cited by Nagpure et al.39 Kanpur City 

Visual observation survey 

in few neighborhoods 8% 

Guttikunda43 as cited by Nagpure et al.39 MNG Ulaanbaatar  City Assumptions 20% 

Pansuk et al.44  THA  National Interviews (n=24) Urban & rural 13% 

Chanchampee45 THA  National Assumptions Urban & rural 36% 

Premakumara et al.46 PHL  National Assumptions Urban & rural 17.5% 

Reyna-Bensusan et al.47 MEX Huejutla de Reyes Municipality Survey Urban & rural 23.4-24.7% 

National Environmental Engineering 

Research Institute38 (NEERI) IND Mumbai City Interviews with officials Urban 2% 

Getahun et al.48 as cited by Bundhoo49 ETH Jimma City  Urban 22% 

Rodil et al.50 as cited by Bundhoo49 SLB Honiara City  Urban 23% 

McCulloch et al.51 as cited by Christian et 

al.52 Global  Global Assumption Urban & rural 50% 

Wiedinmyer et al.15 Global  Global Assumption (IPCC) Global Urban & rural 41% 

United States Environmental Protection 

Agency53 USA  National Survey HIC Rural 25-32% 

Das et al.54 NPL 

Kathmandu 

Metropolitan City 

& surrounding 

municipalities Municipality 

Transect sampling & 

household survey LIMIC Urban 

3%  

(0.9-5.6%) 

Household 

solid waste  Reyna-Bensusan et al.47 MEX Huejutla de Reyes Municipality Survey LIMIC 

Urban  2-6% 

Peri-urban 4.5-9.2% 
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Denominator  Ref. Country Locale Geog. Basis of estimate  Context  Rurality 

Proportion of 

waste open 

burned  

Rural 66% 

Urban, peri-urban & rural 36% 

United States Environmental Protection 

Agency55 as cited by Christian et al.52 USA  National   HIC Rural 12–40% 

Ghana Statistical Service56 GHA  National Survey (n=37,026) LIMIC Not stated 7.7% 

Uncollected 

waste 

Kumari et al.57 IND 

Ten cities & 

national 

Cities & 

national Assumption (IPCC) 

LIMIC 

Urban & rural 10 – 20% 

Pansuk et al.44 THA  National Interviews (n=24) Urban & rural 53.7% 

Premakumara et al.46 PHL  National Assumptions Urban & rural 50% 

Wiedinmyer et al.15 Global  Global Assumption (IPCC) Global 

Urban & rural 60% 

Urban & rural 13% 

Dumpsite 

waste  Wiedinmyer et al.15 Global  Global Assumption (IPCC) 

LIMIC Urban & rural 60% 

HIC Urban & rural 13% 

Landfilled 

wastea 

National Environmental Engineering 

Research Institute38 (NEERI) IND Mumbai City Interviews with officials LIMIC Urban 10% 

Collected 

waste  Pansuk et al.44 THA  National Interviews (n=24) LIMIC Urban & rural 2.5% 

a NB the definition of landfill in this context is not specified and it is likely that the sites described would be classified as an open dumpsite. Abbreviations: municipal solid 229 
waste (MSW); Intergovernmental Panel on Climate Change (IPCC); low income and middle-income countries (LIMIC); high income countries (HIC); geographical context 230 
of the study (Geog.). 231 



16 

The largest sample and possibly most reliable estimate was provided by Pansuk et al.44 who 232 

interviewed municipal officials (n=96) and householders (n=4,300) across Thailand. Based 233 

on the opinions of the officials,  Pansuk et al.44 estimated that 54% wt. of all MSW was 234 

burned residentially and a further 2.5% wt. was burned by local authorities post collection; 235 

presumably in open dumpsites. We speculate that local authority interviewees may have a 236 

vested interest in underestimating the mass that is open burned, and the data is specific to 237 

Thailand. Moreover, there is no information about how the officials were able to make such 238 

estimates or how they did so, indicting potentially high uncertainty in their reports.  However, 239 

it suggests confirmation of the practice, albeit at a low rate. Several other studies provide 240 

evidence for open burning on land disposal sites, such as Oyegunle58 who sampled soils on 241 

dumpsites in Canadian First Nation communities; Chanchampee45 who reported that 66% of 242 

landfills (or dumpsites) in Thailand practice open burning as a form of waste mass/volume 243 

reduction; Cuadra59 who reported the burning of MSW to retrieve metals; and Rim-Rukeh60 244 

who reported emissions characteristics at five landfill/dumpsites in Nigeria where fires were a 245 

frequent occurrence. Other forms of data exist to evidence open burning on land disposal 246 

sites such as: video footage from Lenkiewicz61 in The Gambia, Human Rights Watch62 in 247 

Lebanon, and TracingThought63 in Bali; and from news articles such as Chandrashekar et 248 

al.64 in Bengaluru and Doshi65 in Kolkata.  249 

Two studies39, 54 used transect distance sampling to record incident of open burning along 250 

urban streets, selected for their representativeness of waste generation sector (for example 251 

households, commercial, institutional) within each urban environment. Nagpure et al.39 252 

determined the mass of material being burned by quenching fires at various stages of burning 253 

and comparing the level of completeness with the observations; scaling up the observed 254 

incidents on the basis of the number of buildings in the area being observed. Das et al.54 255 
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created coefficients by weighing and measuring the volume of waste samples, igniting them 256 

and then re-weighing and measuring the volume of residues. These were used to estimate 257 

mass combusted in the observed incidents during the transect analysis. 258 

The studies by Nagpure et al.39 and Das et al.54 represent the only comprehensive efforts to 259 

determine the mass of material combusted in open uncontrolled fires through observations. 260 

Whilst the assumption, survey and interview data provide a useful contribution, it is 261 

recommended that they are compared with further observational studies to assess the variance 262 

between different methods.  263 

3.3. Brominated flame retardants (BFR) 264 

BFRs have been in use since the 1950s as additives in plastics used in applications where 265 

there is a risk of fire such as cars, airplanes, furniture and electrical and electronic 266 

equipment.66 The groups of substances that can be classified as BFRs include bromophenols, 267 

hexabromocyclododecane (HBCD), polybrominated diphenyl ethers (PBDEs) and 268 

tetrabromobisphenol A (TBBPA), which is reported by The International Bromine Council67 269 

to be the most widely used BFR still on the market, used mainly (90%) in printed circuit 270 

boards, but also as a direct additive to engineered plastics (10%). Of the PBDEs, three broad 271 

formulations exist, Penta-BDE, Octa-BDE and Deca-BDE include 209 congeners. The 272 

Stockholm Convention lists and targets multiple BFRs for elimination due to their persistence 273 

in the environment and potential toxicity for humans and animals. Both the Octa- and Penta-274 

BDE formulations were classified by the Stockholm Convention as persistent organic 275 

pollutants in May 2004 and the Deca-BDE formulations were added in 2019.68 HBCD was 276 

added to Annex A of the Stockholm Convention in 2014, with certain products still permitted 277 

for use including some building insulation foams made from polystyrene (PS) as long as they 278 

are labelled as such.69 According to Sharkey et al.68, several groups of BFRs are almost 279 
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completely prohibited in some countries and regions, for instance in the European Union 280 

(EU), hexabromobiphenyl (HBB), and HBCDD and PBDEs are entirely prohibited for use in 281 

production or content in products.  282 

In plastics, BFRs are not generally chemically bonded to the polymers, but occupy the space 283 

in between.70 They inhibit combustion and therefore when the host polymer is burned, they 284 

are released as gas, airborne particulates and in the residual ash. To date, most research into 285 

the open burning of MSW has concentrated on dioxins, with little attention paid to BFRs. In 286 

this study only a single research output by Hong-Gang et al.71 was revealed that assessed 287 

BFR emission potential from combustion of plastic waste (Table 2). BFR concentrations 288 

were measured in five polymers collected from waste sites in China along with atmospheric 289 

emissions and residues in ash. All samples contained significant quantities of BFR congeners, 290 

albeit below the one million ng g-1 thresholds set by the European Restrictions on Hazardous 291 

Substances Directive72 and Persistent Organic Pollutants Regulations.73 Nonetheless, the 292 

presence of certain BFRs in all samples is an indication of a secondary plastics globalized 293 

market involving places where the source of feedstock is not controlled to reduce the risk of 294 

hazardous substances re-entering the product stream.  295 

Table 2: BFR concentration in plastic wastes (Column A) and emission factors (Column B-296 

D) when the plastic is combusted; after Hong-Gang et al.71. 297 

  A B C D  

BFR Polymer 

Plastic wastea  

(ng g-1)  

Gas phase  

(ng g-1-pw) 

Airborne particle 

(ng g-1-pw) 

Residual ash 

(ng g-1-pw) 

Total  Mean c SD Mean SD Mean SD Mean SD 

ƩPBDE 

PVC 61,900 62,200 11.8 19.6 556 1,330 206 266 775 

PS 388,000 463,000 124 210 605 667 0.1 0.3 729 

ABS 26,700 22,600 93.6 245 650 1,310 1,050 2,340 1,790 

PP 67,000 88,400 8.6 24.2 37.1 83.8 556 1,040 602 

PE 228,000 246,000 96.2 208 20,700 40,400 13,900 31,600 34,700 

Mean b 154,320   66.8   4,520   3,140   7,720 
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  A B C D  

BFR Polymer 

Plastic wastea  

(ng g-1)  

Gas phase  

(ng g-1-pw) 

Airborne particle 

(ng g-1-pw) 

Residual ash 

(ng g-1-pw) 

Total  Mean c SD Mean SD Mean SD Mean SD 

Median 67,000   93.6   605   556   775 

ƩHBCD 

PVC 18,700 7,310 10.2 0.9 26.8 3.7 6.7 0.8 44 

PS 20,800 7,680 13.3 1.7 5,290 1,100 7.2 0.7 5,310 

ABS 18,700 8,640 13.0 1.1 43.7 9.7 4.9 0.6 62 

PP 25,000 7,980 15.6 1.3 48.1 11.4 60.0 15.8 124 

PE 20,300 7,360 17.1 1.6 61.0 9.5 77.1 22.1 155 

Mean 20,700   13.8   1,090   31.2   1,140 

Median 20,300   13.3   48.1   7.2   124 

a Plastic items used were as follows: PVC: cable sheath, wire jacket, tube; PS: foamed plastic, disposable plate, 298 
meat tray; ABS: cell-phone casing, air-conditioning wind deflector, computer housing; PP: soybean milk 299 
machine cover, lunch box, plastic bailer; PE: bottle, corrugated pipe, toys. b Arithmetic mean of means; c 300 
arithmetic mean. Abbreviations: polypropylene (PP); polystyrene (PS): polyethylene (PE); acrylonitrile-301 
butadiene-styrene (ABS); polyvinyl chloride (PVC); hexabromocyclododecane (HBCD), polybrominated 302 
diphenyl ethers (PBDEs); plastic waste (pw); standard deviation (SD). 303 
 304 

The highest concentration observed by Hong-Gang et al.71 in the plastic itself was in the PS, 305 

and may originate from the foam board or corrugated pipe either of which may be expected to 306 

have some flame retardant properties. However, this is speculation; the authors did not test 307 

for any food contact material in this category separately, and it would have been useful to 308 

understand if these contained unregulated concentrations of BFRs. PE also showed a high 309 

BFR content, which may have originated from the corrugated pipe. Interestingly the PE 310 

showed a much higher ratio of airborne particle concentrations to plastic concentration 311 

compared to the PS that appeared to have fully combusted or transformed most of the BFRs. 312 

Hong-Gang et al.71 contextualized their findings by using the emission factors presented in 313 

Table 2 to model emissions from incinerators at national level in China based on an 314 

emissions abatement efficiency of 99%; estimating 25.5 metric tons per annum emitted to the 315 

atmosphere and 71.7 metric tons per annum deposited in landfill or dumpsites. The study did 316 

not estimate emissions from open burning which are completely unabated, and we would 317 
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recommend that such a calculation is carried out to estimate the magnitude of release of these 318 

potentially hazardous substances.  319 

BFR concentrations in soils and sediments are also an indicator of plastic open burning 320 

activity. Both Tang et al.74 and Tang et al.75, investigated soil and sediment concentrations in 321 

an area of China where plastics recycling has been a major activity for more than 30 years. 322 

Whereas the studies were unable to determine whether the soil and sediment concentrations 323 

resulted from open burning, abrasion or extrusion, we speculate that the higher temperatures 324 

in open burning compared to extrusion could indicate that open burning is also a likely 325 

source. Tang et al.74 took hair samples from the local population and compared them with the 326 

concentrations in sediments and soils to infer the level of exposure to human receptors. 327 

Young people (15−45 years old), who the authors state, are more likely to be involved in 328 

plastic recycling operations, featured much higher concentrations, 133 ng ΣPBDE g-1 hair 329 

(dry wt.), compared to children and older adults, indicating that BFRs may be transferring 330 

into their bodies through occupational exposure.  331 

3.4. Phthalates  332 

In plastics, phthalates are used primarily as plasticizers in polyvinyl chloride (PVC), where 333 

they modulate elasticity in products such as toys, building materials, clothing, and medial 334 

appliances,76 with annual consumption reported to be as high as 8 Mt y-1.77 Their low 335 

molecular weight and tendency for non-covalent bonding to polymers means that some 336 

formulations are very sensitive to changes in temperature and pH and readily escape from 337 

their host products into the environment, where they have potential for long-range transport78 338 

and as a result are found in almost all environmental compartments.79   339 

Phthalates bond readily with fats, which means they are easily absorbed into the human 340 

bloodstream.80 Once inside the human body, they are transformed, and their metabolites can 341 
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irreversibly disrupt the endocrine system,81 metabolism82 and interfere with thyroid 342 

hormones.83 343 

Several studies have investigated phthalate transmission from waste incinerator plants, 344 

finding that they have the potential to be emitted intact from facilities without adequate air 345 

pollution control and management.77, 78 However, studies of phthalate concentration in the 346 

atmosphere as a consequence of open burning plastic waste are limited. Simoneit et al.81 347 

combusted samples of several plastic products, some of which were “single polymer” items 348 

and some of which were mixtures (Table S5, Section S.4). The data indicate phthalate 349 

emissions from several sources, but the data are hard to contextualize, because they were 350 

presented as a proportion of “soot” generated from combustion of approximately 20 g of 351 

material.   352 

Two papers have reported concentrations of phthalates in ambient outdoor air in Northern 353 

Indian cities84, 85 and these are contextualized with concentrations observed in urban and 354 

remote environments by Teil et al.86 and Thuren et al.87 (Table 3). 355 

  356 
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Table 3: Total phthalate concentrations observed in ambient atmospheric samples and plastic 357 

extrusion facilities. 358 

Ref. Context  Sampling  Phase 

Conc. (ng m-3) 

USMR# Mean  

SD / CI / 

range 

Shivani et 

al.84 

National 

Capital 

region, IND 

Atmospheric 

field sampling 

Delhi  

Particle phase 

502.7 SD 136.4 

P 

Modinagar 387.7 SD 124.3 

Mahendragarh 160.4 SD 43.8 

Gadi et al.85 

Delhi 210.8 ± 79.7 

Uttar Pradesh  158.9  ± 72.2 

Haryana 130.4  ± 63.6 

Teil et al.86 Paris, FRA Paris 

Particle phase 8.2 3.9-13 

 Vapor phase 55.3 20.6-109.3 

Thuren et 

al.87  

Enewetak Atoll, N 

Pacific Ocean  

Gas/particle phase 

2.27   

Portland, Oregon  0.76   

Great Lakes  4   

Sweden  3.7   

a Comparison between exposed and reference concentrations significant (p<0.05); # uncertainty, strength of 359 
knowledge and methodological robustness (USMR) assessed qualitatively. It is assumed that there are no 360 
significant concerns unless marked as: P = results are indicative. While most phthalates are reported to originate 361 
from plastic waste burning, the study reports significant emissions from biomass burning. Gas phase not 362 
quantified. Results show species identified in PM2.5 only. Abbreviations: dimethyl phthalate (DMP); diethyl 363 
phthalate (DEP); di-2-ethylhexyl phthalate (DEHP); styrene-butadiene copolymer (SBC); concentration (conc.); 364 
standard deviation (SD) confidence interval (CI). 365 

The near ubiquity of phthalates, multitude of sources and ready migration from their host 366 

products and materials means that it is complex to determine if the emissions detected by 367 

Gadi et al.85 and Shivani et al.84 are a result of the open burning of plastic waste. Atmospheric 368 

emissions of phthalates may arise from manufacturing processes; vehicle exhausts; interior 369 

vehicle components; paints and coatings; plastic items; and agricultural fertilizers and 370 

insecticides.85, 86 Therefore, measured atmospheric concentrations of phthalates are 371 

problematic to disaggregate from other emissions sources.  372 

Both Gadi et al.85 and Shivani et al.84 used positive matrix factorization to apportion 373 

emissions sources to substances measured in PM2.5 particles sampled at four locations in 374 

North India. The critical emissions factors used to apportion phthalate concentrations are 375 
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from Simoneit et al.81, also reported in the present study; indicating that 50-60% of phthalate 376 

emissions in the sampled areas originated from the open burning of plastic waste.  377 

Concentrations of ambient atmospheric phthalates reported by Gadi et al.85 and Shivani et 378 

al.84 were in the order of two to ten times greater than maximum values reported in Paris86 379 

and comparable with concentrations identified inside ABS-PC and K-Resin extrusion plants 380 

that did not implement emissions control measures reported by Huang et al.88. Though they 381 

are relevant to indoor air in the workplace, the concentrations were very low in comparison to 382 

the mean long term Workplace Exposure Limits (WEL) over eight hours of 5,000,000 ng m-3 383 

recommended by the United Kingdom’s (UK’s) Health and Safety Executive89. 384 

3.5. Potentially toxic elements (PTEs)  385 

Many elements have the potential for toxicity in humans, particularly some metals such as 386 

cadmium, lead, chromium and nickel, all of which have the potential to cause cancer.90 Other 387 

elements used in plastics are metalloids, for instance antimony, used as a synergist in BFRs, 388 

can irritate the lungs at low concentrations; and arsenic, used in small quantities as a biocide35 389 

and which can cause vomiting diarrhea and death in extreme circumstances.91 Collectively, 390 

these substances are often discussed as “heavy metals”; however, here we use the term 391 

“potentially toxic elements” (PTEs) as suggested by Pourret et al.92 as a less ambiguous term. 392 

As well as being used as additives to enhance properties in plastics, PTEs are used as 393 

catalysts in polymer production35. One of the most common examples of a catalyst is Ziegler-394 

Natta that can potentially leave titanium(IV) and aluminum oxide residues within the 395 

resulting material, for instance.93 Several examples also exist to indicate that PTE content in 396 

plastic through unintentional contamination, such as during the reprocessing of e-waste or 397 

end-of-life vehicles.90, 94 398 
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Several PTEs are carcinogenic, and thus considered a priority for public health protection 399 

such as  arsenic, cadmium, chromium, lead, and mercury.95 The review by Cook et al.25 400 

revealed that migration to the surface of plastic material is very limited for PTEs in plastic 401 

items, even when mouthed by children or aerosolized during mechanical processing of plastic 402 

waste. Nonetheless, we have identified three laboratory studies (Table 4) which evidence the 403 

release of PTEs into the atmosphere in soot (defined as mostly carbonaceous particulate 404 

matter from incomplete combustion of hydrocarbons) during plastic waste combustion, from 405 

where they may be inhaled; deposited from the atmosphere into soils and water; or deposited 406 

in ash. Although all three studies96-98 were intended to improve the evidence base around PTE 407 

emissions from open burning, they all neglected to include information such as: the source of 408 

plastics;96 the composition of the plastics;97 and the type of plastic, beyond the product 409 

description.98 Concentrations of all PTEs were generally low in all studies, but despite the 410 

uncertainties, the presence of PTEs, particularly in soot, poses a health risk through 411 

inhalation, particularly to those who are in prolonged, close proximity to open burning 412 

activities such as participants in the informal recycling sector (IRS).99   413 
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Table 4: Potentially toxic elements (PTEs) observed in laboratory scale combustion of plastic 414 

materials.  415 

Ref. Context Sampling   Substance  Key findings  USMR# 

 

Valavanidis 

et al.96 GRC 

PS, LDPE, HDPE, PP, 

PET combusted a at 

600–750 °C 

Soot Pb, Cd, Cr, Cu, Ni, Zn Detected low conc. 

Q 

Ash Pb, Cr, Cd, Cu, Ni, Zn Detected low conc. 

PVC combusted† at 

600–750 °C 

Soot Pb, Ni, Cr, Al, Cu 

Detected higher conc. compared to 

other plastics  

Ash Pb, Cr, Ni, Zn 

Detected higher conc. compared to 

other plastics 

Park et al.97 KOR 

Unspecified plastics 

combusted  Soot 

Pb, Ní, Cu, Cd, Cr, Zn 

Detected in PM from combustion 

of plastic samples 

R Total PTE 

27.09 μg g-1 combusted plastic, 

(compared to 9.7 μg g-1 for paper 

and 8.14 μg g-1 for wood) 

Wagner et 

al.98 

USA, 

CHN, 

VEN  

10 samples: rubber 

soles (n=3), rubber tires 

(n=2), rubber sole 

repair compound (n=1), 

insoles (n=2), printer 

cartridge (n=1) & PCV 

tube (n=1) 

Soot/ 

ash 

Pb Detected in 80% of samples  

S Sb and Cr Trace or minor conc. 

a Samples (n=3 of each polymer) of PS, PVC, LDPE, HDPE, PP, PET (source not stated) combusted at 600-750 416 
°C; ash and soot analyzed for 15 elements (Al, Ba, Mn, Pb, Cr, Cd, Cu, Zn, Ni, Na, Ca, Mg, Fe, Si, P). # 417 
Uncertainty, strength of knowledge and methodological robustness (USMR) assessed qualitatively. It is 418 
assumed that there are no significant concerns unless marked as: Q = source of plastics not stated; R = 419 
combustion was under controlled conditions and therefore likely to have underestimated emissions and plastic 420 
composition unknown, limiting the usefulness of this analysis; S= study is old and composition of these types of 421 
product may have changed since. Only very few results were shown, albeit with very high level of detail. 422 
Abbreviations: potentially toxic elements (PTE); Low density polyethylene (LDPE); high density polyethylene 423 
(HDPE); polypropylene (PP); polystyrene (PS); polyethylene terephthalate (PET); polyvinyl chloride (PVC). 424 
 425 

Very little data is available on the quantity of PTEs emitted from open burning and less so 426 

from plastics specifically. The studies by Wiedinmyer et al.15, Lemieux et al.14 and Williams 427 

et al.19 only include data on PTEs for mercury (Hg), however, Park et al.97 combined their 428 

analysis with Korean Environment Ministry data of open burning behavior to estimate total 429 

“heavy metal” emissions in Korea. The study used three methods to estimate that between 430 

0.03 and 1.16 metric tons per annum PTEs are emitted each year in Korea based on 24% of 431 

houses regularly combusting their waste. However, although direct inhalation of PTEs 432 

increases the likelihood of harmful health effects,99 national PTE emission data does not 433 

directly indicate exposure to receptors and thus potential harm to public health.   434 
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The identification of PTEs in environmental media such as soils, sediments and water provide 435 

an indication of transport and accumulation. For instance, Oyegunle58 sampled soils at open 436 

dumping grounds that showed visual evidence of open burning in Canadian First Nation 437 

Communities, finding very high concentrations of As, Cr, Pb, Zn and Cu in all samples 438 

(Table 27). The very high Zn content in these Canadian soils (1,000-10,000 μg g-1 soil) is 439 

consistent with Park et al.97 who observed large amounts of Zn in soot from combustion of 440 

plastics (max. >65 μg g-1) compared to paper (max. >18 μg g-1); wood (max. >15 μg g-1); and 441 

MSW (max. >14 μg g-1). Whereas Zn is essential for human health and only toxic at very 442 

high levels, the concentration identified by Oyegunle58 was more than 30 times the limit of 443 

the Canadian Council of Ministers of the Environment (CCME) commercial soil guideline.100 444 
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Table 5: Element concentrations detected in environmental media near historical plastics recycling area; potentially indicating open burning activities. 445 

Ref. Context  Sampling  Metal  

Conc. μg g-1 Soil guideline conc. μg g-1 

Mean (± range)  CI Backg’d CAN res. / CHN I CAN com. / CHN II 

Oyegunle58 CANa Soil 

Garden Hill 

As 5-52c  4.3 12d  

Cr 100-310c  84.8 64d 87e 

Pb 120-325c  25.5 140d 260e 

Zn 1,000-9,200c  151 200d 360e 

Cu 160-800c  26.5 63d 91e 

Wasagamack 

As 21-56c  4.3 12d  

Cr 320-630c  84.8 64d 87e 

Pb 130-230c  25.5 140d 260e 

Zn 4,500–10,000c  151 200d 360e 

Cu 320-630c  26.5 63d 91e 

Tang et al.75 Hebei, CHN 

Soils 

Zhaogezhuang 

Cd 0.418 ±0.547  0.094 0.2f 0.3g 

Hg 0.603 ±2.224 0.036 0.15f 0.5g 

Pb 40.4 ±35.5 21.5 35f 300g 

Sb 3.10 ±3.80 1.22 - f - g 

Daliu 

Cd 0.337 ±0.398 0.094 0.2f 0.3g 

Hg 0.211 ±0.435 0.036 0.15f 0.5g 

Pb 94.0 ±134 21.5 35f 300g 

Sb 3.6 ±6.90 1.22 - f - 

Sed. 

Xiaobaihe River 

Cd 0.376 ±0.428    

Hg 0.320 ±0.786    

Renwen Canal 

Cd 1.111 ±1.740    

Hg 0.204  ±0.285    

Yincun Ditchh 

Cd 33.350 ±3.551    

Hg 6.402  ±6.951    

Tang et al.101 Hebei, CHN Dust  

Road S334 (n=20) and 

residential areas (n=11) 

As 10.1 (±1.96)  13.6   

Cd 0.50 (±0.60)  0.094   

Cr 112 (±22.1)  68.3   

Cu 54.7 (±93.9)  21.8   

Hg 0.15 (±0.19)  0.036   

Pb 71.8 (±106)  21.5   

Sb 10.6 (±34.9)  1.22   

Zn 186 (±346)  78.4   

a Garden Hill and Wasagamack First Nations, communities in northern Manitoba, Canada; b Wen'an County, northeast Hebei Province, China (main cottage industry plastics recycling area in 446 
northern China for >30 yrs); c  data approximated from chart; d  CCME soil guideline for residential land100; e  CCME soil guideline for commercial land100; f  Chinese soil guidelines Class I102; 447 
g Chinese soil guidelines Class II102; h  Yuncun ditch is the main effluent outlet from a plastic recycling area; abbreviations: residential (res.); commercial (com.); sediments (Sed.); background 448 
(Backg’d); confidence interval (CI); concentration (conc.). 449 
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The analysis of soils and sediments in Hebei, China75 is ambiguous about the specific sources 450 

of the PTEs detected, apart from an inference that the concentrations in the Yuncun Ditch 451 

may have originated from production catalysts and other additives rather than waste residues. 452 

Tang et al.75 extrapolated the identified concentrations to calculate lifetime health risk from 453 

these metal concentrations finding a low non-carcinogenic hazard quotient to adults 454 

(reporting arithmetic mean: 0.255), but a considerable risk to children living in the area 455 

(1.67). Metal concentrations in dusts analyzed by Tang et al.101 were also greater than 456 

background values, with similar average ratio of non-carcinogenic hazard quotient for adults 457 

(0.319) and children (2.06).  458 

In general, elements are deposited in soils at low levels when plastics are open burned; 459 

however, over time these low concentrations may accumulate, posing a risk to children who 460 

are, in general, more likely to ingest soil compared to adults.103 Our research has compared a 461 

handful of studies that indicate the magnitude of risk from soils contaminated with PTEs 462 

from open burning. However, given the prevalence of the activity worldwide, and the 463 

potential deleterious and cumulative effects of PTEs in humans, further research should be 464 

carried out to develop emission factors that will allow further modelling and extrapolation. 465 

3.6. Dioxins and related compounds (DRC) 466 

“Dioxins” is a term used to describe a group of 419 polychlorinated aromatic compounds, 467 

described hereafter as “dioxins and related compounds” (DRCs), which can broadly be 468 

classified into three groups:104 469 

• 75 Polychlorinated dibenzo-p-dioxins (PCDDs) 470 

• 135 polychlorinated dibenzofurans (PCDFs)  471 

• 209 polychlorinated biphenyls (PCBs) 472 
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Only around 30 of these substances are considered significantly harmful to health,105 473 

however, they are persistent in the environment and have a half-life of between 7 and 11 474 

years in the human body.106 A range of adverse health impacts include short term conditions, 475 

such as chloracne (severe skin lesions) and longer-term conditions such as cancers; 476 

immunological, developmental, neurological, neurodevelopmental and hormonal disruptions; 477 

and reproductive issues.16 478 

DRCs are found throughout the environment, but particularly in sediments, soils and non-479 

vegetable foodstuffs.107 More than 90% of dioxins exposure is thought to be through food, 480 

mainly meat, fish eggs and dairy products,108 with only very small quantities being taken up 481 

by plants.109 Dioxins are often formed through incomplete combustion of materials 482 

containing chlorine or other halogens,110 but also, through non-combustion processes, such as 483 

chlorine bleaching of paper or production of some pesticides and herbicides.107  484 

While biological material inevitably contains some chlorine that will lead to dioxin 485 

production following combustion, anthropogenic materials, such as plastics featuring highly 486 

chlorinated polymers (e.g. PVC) and those containing halogenated additives, such as BFRs, 487 

are likely to generate significantly more material per unit of mass combusted.111, 112 488 

In 1995, controlled combustion of solid waste in incineration plants was reported to be 489 

responsible for 69% (wt.) of dioxin emissions worldwide.105 However, this percentage 490 

contribution is likely to be considerably lower today, with many older incineration plants 491 

falling out of use, and newer technology being times more capable of emissions abatement. 492 

For instance, in the UK, MSW incinerators are estimated to be responsible for approximately 493 

only 1% (wt.) of total DRC emissions.108 494 
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With emissions from incineration largely abated in many countries, open burning has become 495 

the focus of increasing attention as a potential major source of DRCs. Fiedler113 identified 496 

open burning of waste as one of the largest sources of DRCs; Zhang et al.114 reported that 497 

open burning contributes to 28% (25th percentile) to 82% (75th percentile) of dioxins reported 498 

in 61 national inventories; and Lemieux et al.14 reported that residential open burning in the 499 

US is likely to be one of the main atmospheric sources of DRCs in the country.  500 

To put dioxin release from open burning into context, two authors57, 115 have modelled 501 

emissions, exposure and health impacts from open burning MSW in India and domestic co-502 

incineration of MSW with coal for heating in Poland (Table 6). The different types of 503 

feedstock modelled make the results hard to compare. However, they both indicate 504 

substantial numbers of excess cancer cases that could otherwise be avoided. Given that some 505 

estimates (Table 1) indicate that 13% wt. to 50% wt. of all MSW is open burned, the 506 

scenarios modelled by Kumari et al.57 may be conservative if applied to other regions. 507 

Table 6: Modelled risk from dioxin emissions from open burning of MSW.  508 

Ref. Context  Scenarios Substance 

Excess cancer 

cases per 100,000 

pop. 

Kumari et 

al.57 IND 

Ten metropolitan 

cities 

Open burning 

MSW 

10% MSW open burned 

PCDD/Fs 

0.20 

20% MSW open burned 0.38 

Nationwide 

10% MSW open burned 0.06 

20% MSW open burned 0.11 

Dziubanek et 

al.115 POL Upper Silesia 

Domestic co-

incineration of 

coal and waste 

Winter 

DRC 

4.5 to 13.2 

Summer  0.9 to 2.1 

Kumari et al.57 findings normalized to 100,000 cases using population. Abbreviations: 2, 3, 7, 8-509 
tetrachlorodibenzodioxin (TCDD); polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans 510 
(PCDD/Fs); dioxins and related compounds (DRC); municipal solid waste (MSW) 511 
 512 

Another relevant study by Kunisue et al.116 analyzed the human breast and cow’s milk of 513 

subjects living near dumpsites in India, Cambodia, Vietnam, and the Philippines. The study 514 

showed that residents in all countries living near dumpsites were exposed to DRCs. In 515 
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particular in India, where they were exposed to very high levels, most likely through 516 

ingestion of milk from cows that have grazed in exposed areas. The study did not infer open 517 

burning as the only potential source of DRCs, but also considered leaching of PCBs from 518 

legacy e-waste.  519 

Another indicator of open burning or incineration without emissions abatement can be found 520 

by analyzing concentrations in soils and sediments as identified in two studies in Korea and 521 

China (Table 7). Both Im et al.117 and Ding et al.118 found a strong correlation between DRCs 522 

concentrations in soils and sediments and open burning or unabated incineration. All levels 523 

exceeded Canadian soil guideline values119 (<4 pg toxic equivalency g-1 dry wt.), except for a 524 

single sample collected from the top of a mountain; showing that DRCs can travel 525 

considerable distances away from open burning activities. 526 

Table 7: Dioxins and related compound (DRC) concentrations in soils in areas surrounding 527 

open burning/unabated incineration of solid waste. 528 

Ref. Context  Samples  

Conc. pg g-1 dry wt. soil 

PCDFs PCDDs PCDD/Fs I-TEQs 

Ding et al.120 

Jiangsu, 

CHN 

Soil (n=24) 

samples collected 

from five 

locations 

Group I: >5,000 15,922 5,786 21,708 2,140 * 

Group II: 1,000–5,000 2,078 1,101 3,179 228 * 

Group III: <1,000 127 94.9 222 8.75 * 

Sediment samples (n=6) collected from five 

rivers or ponds  254 424 677 15.3 * 

Im et al.117  KOR Soil  

Industrial area (n=5) 1,317.2 1,939.8 3,257 46.14 * 

50 m from open burning 

(illegal) ind. waste 

incinerator (n=1) 87,249 34,158 121,400 3,720 * 

Top of 200 m mountain 

(n=1) 11 58 69 0.2  

Residential, commercial, 

and rural areas (n=15) 267 295 561 7 * 

* = concentration <4 pg TEQ g-1 dry wt. soil the Canadian soil guideline values 119. Abbreviations: 529 
polychlorinated dibenzo-p-dioxins (PCDD); polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-530 
furans (PCDD/Fs); polychlorinated dibenzofurans (PCDF). 531 
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3.7.  Bisphenol A (BPA) 532 

Bisphenol A (BPA) is a prolific chemical used in vast quantities (4.6 Mt in 2012)121 as a 533 

principal reactant (monomer in PC and epoxy resin production).122 It is also used as an 534 

antioxidant in some plasticizers; a polymerization inhibitor in PVC; and for synthesizing 535 

polysulfones and polyether ketones.123 BPA is ubiquitous in the natural environment and the 536 

subject of monitoring studies across the world.121 BPA is a known endocrine disruptor, as it 537 

has been reported cytotoxicity toward living tissue.35 However, there is disagreement in the 538 

scientific community about how long BPA lasts in humans (half-life) and the impacts on 539 

human health.124 540 

Despite considerable attention,125 the specific risks of BPA to humans and the environment 541 

from plastic waste are not sufficiently quantified. Under complete combustion conditions, 542 

bisphenol A (BPA) is destroyed. However, Fu et al.126 compared atmospheric aerosol 543 

samples (n=260) from 25 global locations and found significant quantities from between 2 544 

and ~4,500 pg m-3 (Table S5, Section S.8). The study found a strong correlation between 545 

BPA levels and 1,3,5-triphenylbenzene; a marker that indicates the open burning of waste.127 546 

The inference is that if combustion of waste is incomplete, as is the case with domestic waste 547 

burning, then BPA is not always destroyed. Therefore, open burning could be a potential 548 

release mechanism for BPA into the atmosphere. Research to date does not quantify the 549 

impact of the concentrations reported by Fu et al.126 on human health, and therefore further 550 

study is necessary to determine whether the impact of BPA release from open burning on 551 

public health is of concern.  552 

3.8. Polycyclic aromatic hydrocarbons and particulate matter   553 

When plastics are combusted (i.e., at sufficient air availability) at very high temperatures and 554 

time, for example, >1,000 °C,128 they mostly form water and carbon dioxide (complete 555 
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oxidation of carbon), along with other trace chemicals. However, combustion is rarely 556 

complete in open burning, and also other phenomena may occur (evaporation, thermal 557 

decomposition, gasification, pyrolysis), resulting in the formation of fine PM, which 558 

manifests as solid particles; liquid droplets of PAH; VOCs; tarry hydrocarbons; or a 559 

combination of the aforementioned.36, 129  560 

3.8.1. Particulate matter (PM) 561 

Solid PM is often expressed in three general categories based on diameter (Table S7, Section 562 

S.6). Whereas atmospheric PM can arise from a variety of sources, hydrocarbon combustion 563 

is the main one. Wiedinmyer et al.15 estimated that approximately 24% wt. (12 billion kg) of 564 

all global emissions of PM10 and 29% wt. (10 billion kg) of all emissions of PM2.5 are a 565 

consequence of open burned MSW. PM2.5 is estimated to contribute to between 13 and 125 566 

urban deaths per 100,000 people worldwide,130 and as with other emissions reported, 567 

disaggregating the contribution made by plastics has not been attempted. 568 

 Black carbon, a subset category of PM, is noteworthy because several studies have suggested 569 

it is significantly worse for health than other types of PM.131-133 Black carbon does not only 570 

pose a health risk. Inherently, burning plastic waste contributes to climate forcing, because 571 

the majority of plastic items are comprised of fossil carbon; but, this impact is compounded 572 

when plastic waste is combusted incompletely, because the black carbon aerosols that are 573 

generated have two distinct effects. Firstly, black carbon has its own direct radiative forcing 574 

effect; and secondly, black carbon reduces albedo on snow and ice, particularly in polar 575 

regions as it reduces the amount of heat being reflected from the earth’s surface.16, 134 576 

Consequently, black carbon may have a global warming potential of 577 

900 (120 to 1800 range) times the global that of carbon dioxide (100-year time horizon).135  578 
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Two studies97, 98 identified in this review calculated emissions factors for plastic wastes 579 

(Table 8). However, both are of limited use for extrapolation, because the waste sources used 580 

are either unspecified in the case of Park et al.97 or highly specific in the case of Wagner et 581 

al.98. Moreover, Wagner et al.98 is more than 20 years old and it is possible that the 582 

compositions of the various rubber materials investigated have changed over the years. Park 583 

et al.97 found that the mass of PM emissions from plastic waste items are much greater than 584 

for paper and wood, also quantified (data not shown), indicating that plastic waste is a key 585 

contributor to PM emissions from MSW.  586 

Table 8: Particulate matter (PM) emission factors for plastic waste.  587 

Ref. Year  Context  Samples  Particle size (µm) 

Emission factors (µg g-1 plastic) 

Mean Range / SD 

 

Park et al.97 2013 KOR Unspecified plastics 

TPM 1,700 (+1,600 -1,200) 

PM10 1,500 (+/- 900) 

PM2.5 500 (+350 -400) 

Wagner et 

al.98 1997 

VEN Rubber sole 

TPM (smoke) 

5,712 SD 2,485 

CHN Rubber sole 8,961 SD 2,910 

USA Rubber sole 6,638 SD 1,438 

USA Rubber tire (body) 18,105 SD 1,756 

Abbreviations: total particulate matter (TPM); standard deviation (SD); particulate matter <10 µm (PM10); 588 
particulate matter <2.5 µm (PM2.5). 589 
 590 

Barabad et al.136 investigated the effect of heating rate on PM emissions from combusted 591 

LDPE samples (Table S 8, Section S.7), finding that increasing the heat source increased the 592 

mass of PMs emitted from the samples in all particle size groups. While Barabad et al.136, 593 

Park et al.97, and Wagner et al.98 all provide useful indications of PM emissions, their 594 

findings are not sufficient to construct a coherent global model of emissions from open 595 

burning of plastic waste to enable a more robust calculation of the overall impact of plastics 596 

on public health.  597 
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3.8.2. Polycyclic aromatic hydrocarbons (PAHs) 598 

Organic compounds comprised of at least two aromatic rings, joined together, PAHs are 599 

generally carcinogenic, with a toxic potency indication of 1 ng m-3 benzo(a)pyrene equivalent 600 

(BaPeq) concentration leading to 8.7 cases of cancer per one million people exposed.84 601 

Although only around 100 have been studied and characterized, it is thought that millions of 602 

PAH species may theoretically exist.137 603 

PAHs have become prevalent throughout the natural environment, and open burning of waste 604 

is thought to be a significant source, being responsible for possibly 39% (334 million kg) of 605 

global atmospheric emissions.15 Most PAHs persist in the environment after being deposited 606 

from atmospheric aerosol phase into soils and sediments, where they can accumulate.138, 139  607 

The majority of open burning emissions studies characterize and quantify emissions from 608 

MSW rather than plastic waste specifically. As PAHs are produced through gasification and 609 

pyrolysis of biomass and other combustible materials, as well as fossil-engineered plastics, 610 

further research is needed to characterize and quantify emissions from plastics specifically. 611 

We identified two research outputs that compare PAH concentrations in aerosolized 612 

particulate matter and ash from combusted plastics (Table 9). The samples of PS and PVC 613 

both showed considerably higher PAH emissions compared to the other plastics, as did the 614 

mixed samples analyzed by Simoneit et al.81; possibly influenced by the high PVC content. 615 

The PE bag (likely LDPE) from the US showed the almost undetectable concentrations of 616 

PAHs in the PM when self-combusted.  617 

  618 
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Table 9: Total polycyclic aromatic hydrocarbon (PAH) emissions from plastic waste 619 

combustion.  620 

Ref. Context  Samples  Polymer 

Conc. µg g-1 total 

particulate matter 

Soot Ash 

Valavanidis 

et al.96 GRC 

Spongy light insulating material PS  1,023 427 

Plastic bottles PVC  1,205 1,002 

Shopping bags and food wrap LDPE  517 355 

Trash bags HDPE  721 355 

Food containers PP  592 250 

Beverage bottles PET  363 319 

Simoneit et 

al.81 

CHL 

New shopping bags  PE (likely LDPE) 548.8  

“Roadside trash” PE 17.3%, PET 29.7%, 

PVC 39.3%, PS 2.9%, 

unidentified 10.8% 

910.7  

“Landfill trash” 523.6  

USA New shopping bags  PE (likely LDPE) 4  

Abbreviations: low density polyethylene (LDPE); high density polyethylene (HDPE); polypropylene (PP); 621 
polystyrene (PS); polyethylene terephthalate (PET); polyvinyl chloride (PVC); concentrations (conc.). 622 

 623 

Analysis of plastics purchased in Korea97 provided PAH emission factors of 1.94 µg total 624 

particulate matter g-1 “plastic waste” and 14.35 µg PM2.5 g
-1 “plastic waste”, which could 625 

enable extrapolation for future modelling efforts; however, the source and chemical 626 

composition of the plastic waste was not stated, limiting the usefulness of the results. 627 

Combined with PM solids, PAHs may have a different or potentially greater deleterious 628 

effect on health compared to PM alone.140 Particulates such as PM2.5 PAH are carcinogenic 629 

and mutagenic;141 can cause immunological and developmental impairments; and may lead to 630 

reproductive abnormalities.142 Shivani et al.84 estimated that “plastic and waste burning” 631 

(combined) contributes 13.5% of all PM2.5 generated and 5.1% of lung cancer cases (5,000 632 

per million population) or 255 cases per million in Indian cities.  633 

Air pollution is thought to be responsible for as many as 3.7 million deaths per year19 and 634 

speculatively, PAHs from open burning of plastic waste may make a contribution towards 635 

them. However, disaggregating PAH emissions produced when plastic waste is open burned 636 



37 

from the multitude of other potential sources is problematic. Moreover, the paucity of reliable 637 

emission factors combined with poor knowledge of the amount of plastic waste being burned, 638 

means that accurate modelling of risk to human populations is almost impossible with the 639 

current state of knowledge. This lack of data, combined with the potential hazardousness of 640 

PAHs, emphasizes the need for specific characterization of emissions from the open burning 641 

of plastic waste, suitable for improving conceptual and quantified modelling of PAH 642 

emissions. 643 

3.9. Risk characterization for open burning of plastic waste  644 

The semi-quantitative risk assessment of plastic waste and open burning resulted in the 645 

identification of 18 hazard-pathway-receptor combinations involving seven substance groups 646 

detailed in Table 10 and summarized and ranked in Section S.3, Table S 4. Members of the 647 

IRS were identified as being particularly vulnerable to emissions exposure from open burning 648 

as they often work on dumpsites that have been deliberately or accidentally ignited143. 649 

Moreover, waste pickers have been reported to burn residues of plastics and other wastes that 650 

are no longer required, either deliberately for fuel, warmth or insect repellence, or as a 651 

method of disposal. PM, PAHs, DRCs were all identified as posing a high risk to the IRS 652 

working in those contexts due to their sustained proximity. Both PAHs and PM were 653 

identified as posing a high risk to the population in areas where open burning takes place. 654 

These scores are evidenced through several studies that have quantified carcinogenic and 655 

non-carcinogenic risk.  656 

DRCs were also assessed to pose a high carcinogenic risk to the population, not only through 657 

direct inhalation from the atmosphere, but also through deposition to soil and subsequent 658 

uptake in food or livestock. Children were assessed to by susceptible to high risk from DRCs, 659 

as they are likely to ingest larger quantities of soil that they enjoy placing in their mouths.144  660 
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Though there is evidence for BPAs near-ubiquity on earth, the evidence to link the 661 

concentrations observed to negative health outcomes is insufficient to carry out an indicative 662 

risk assessment, such as that presented here. Therefore, BPA hazards were not scored in this 663 

assessment.  664 

 665 



  

39 

 

Table 10: Risk characterization summary for open burning of secondary plastics. 666 

Haz.  Pathway  Receptor Geog. 

Evidence & justification for risk 

assessment 

Notable 

material/ 

polymer/ 

substance  

Uncertainty  

(aleatoric & epistemic) Receptor vulnerability  L S R 

Global receptor 

context 

BFR 

Atmosphere/ 

inhalation; 

uptake in food  Population 

CHN 

• Analysis of BFR conc. in plastic 

wastes and subsequent modelling 

of emissions in China indicate 

widespread release of BFRs into 

the environment from 

incineration.71 Soil74 and dust75 

concentrations indicate deposition 

from ambient atmosphere which 

may lead to uptake into crops. 

PS, PVC, PE 

• Limited direct evidence to 

assess occupational and 

public health risk from 

BFRs, so can only be 

inferred through 

qualitative adductive 

reasoning. 

• Population living in proximity to 

open burning activities may be more 

exposed. 3 4 12 

Population living 

without 

comprehensive 

waste collection in 

LIMICs 

Soil/ mouthing  Children  PS, PVC, PE 

• No direct evidence of 

exposure to children, so 

inferred risk through 

qualitative adductive 

reasoning. 

• Children are more vulnerable to 

exposure due to lower body weight 

and propensity for mouthing. 3 4 12 

Children living in 

proximity to open 

burning in LIMICs 

Atmosphere/ 

inhalation 

Workers 

(informal) 

• Analysis of BFR conc. in plastic 

waste and subsequent modelling of 

emissions in China indicate 

widespread release of BFRs into 

the environment from incineration 

plants in China.71  

• Informal workers likely to be 

disproportionately affected as 

participants operate in proximity 

to significant open burning. PS, PVC, PE 

• No direct evidence of 

exposure to informal 

workers, so inferred risk 

through qualitative 

adductive reasoning. 

• IRS workers are acutely vulnerable 

to open burning at close range as 

they often work on dumpsites set on 

fire, and burn as a method of residue 

disposal or to recover other 

materials such as metals, and even 

to keep away mosquitos. 4 5 20 

IRS workers on 

dumpsites and 

where residues are 

burned in  LIMICs 

Phth. 

Atmosphere/ 

inhalation Population IND, CHN 

• Ambient atmospheric 

concentrations in open burning 

areas comparable84, 85 with 

concentrations inside extrusion 

PVC, PC-ABS, 

K-resin  

• Though atmospheric levels 

higher in exposed areas, 

not contextualized with air 

guidelines. 

• Population living in proximity to 

open burning activities may be more 

exposed. 2 4 8 

Population living 

without 

comprehensive 

waste collection in 

LIMICs 
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Haz.  Pathway  Receptor Geog. 

Evidence & justification for risk 

assessment 

Notable 

material/ 

polymer/ 

substance  

Uncertainty  

(aleatoric & epistemic) Receptor vulnerability  L S R 

Global receptor 

context 

Workers 

(informal) 

plants88 and 2–10 times greater 

than maximum values reported in 

Paris86 where limited open burning 

takes place. 

• 50-60% of phthalate contributions 

in open burning areas modelled to 

originate from plastic waste 

burning.84, 85 

• Though atmospheric levels 

higher in exposed areas, 

not contextualized with air 

guidelines. 

• Risk not quantified. 

• IRS workers are acutely vulnerable 

to open burning at close range as 

they often work on dumpsites set on 

fire, and burn as a method of residue 

disposal or to recover other 

materials such as metals, and even 

to keep away mosquitos. 3 4 12 

IRS workers on 

dumpsites and 

where residues are 

burned in  LIMICs 

Soil/ mouthing  Children  

• Deposition to soil and 

waterbodies145 indicated in plastics 

recycling area could be a 

consequence of extrusion and/or 

open burning. 

• No direct evidence of 

exposure to children, so 

inferred risk through 

qualitative adductive 

reasoning. 

• Children are more vulnerable to 

exposure due to lower body weight 

and propensity for mouthing. 2 4 8 

Children living in 

proximity to open 

burning in LIMICs 

BPA 

Atmosphere/ 

inhalation 

Population 
IND, CHN, 

JPN, NZL 

 

Indian, 

Atlantic and 

Pacific 

Oceans and 

Polar Regions 

• Causal inference between open 

burning of plastics and high BPA 

concentrations in the 

atmosphere,126 however then 

health implications of these 

concentrations are unknown. 
Epoxy resin & 

PC  

• Although link established 

between high atmospheric 

concentrations and open 

burning identified, the 

health impacts of these 

concentrations are 

unknown. 

• Potentially entire global urban 

population vulnerable. na na na 

Population living 

without 

comprehensive 

waste collection in 

LIMICs 

Workers 

(informal) 

• IRS workers are acutely vulnerable 

to open burning at close range as 

they often work on dumpsites set on 

fire, and burn as a method of residue 

disposal or to recover other 

materials such as metals, and even 

to keep away mosquitos. na na na 

IRS workers on 

dumpsites and 

where residues are 

burned in  LIMICs 



  

41 

 

Haz.  Pathway  Receptor Geog. 

Evidence & justification for risk 

assessment 

Notable 

material/ 

polymer/ 

substance  

Uncertainty  

(aleatoric & epistemic) Receptor vulnerability  L S R 

Global receptor 

context 

PTE 

Atmosphere 

/inhalation; 

soil/uptake in 

food  Population 

GRC, KOR, 

USA, CHN, 

VEN, CAN 

• Laboratory emissions observed96-98 

show metals are emitted when 

plastics are combusted, albeit in 

generally low concentrations.  

• Reasons to believe that PTEs are 

emitted through open burning by 

assessing evidence of 

concentrations in soil dust and 

sediment.58, 75, 101 

Higher conc. 

detected in PVC 

waste compared 

to polyolefins 

and PET 

sampled96 

• PTE emissions pose a risk 

to health and the 

environment, resulting in a 

variety of negative health 

impacts and potential to 

accumulate in biota. 

However exposure from 

open burning plastic waste 

not quantified and risk not 

calculated. 

• Population living in proximity to 

open burning activities may be more 

exposed. na na na 

Population living 

without 

comprehensive 

waste collection in 

LIMICs 

Atmosphere/ 

inhalation 

Workers 

(informal) 

• Although not quantified, 

the potential health risk 

through inhalation, in the 

case of prolonged, close 

proximity to open burning 

activities sufficient to 

score through qualitative 

adductive reasoning. 

• IRS workers are acutely vulnerable 

to open burning at close range as 

they often work on dumpsites set on 

fire, and burn as a method of residue 

disposal or to recover other 

materials such as metals, and even 

to keep away mosquitos. 3 4 12 

IRS workers on 

dumpsites and 

where residues are 

burned in  LIMICs 

Soil/ mouthing  Children  

• Soil concentrations of PTEs linked 

directly to open burning58 and 

inferred circumstantially.75, 101 

• Non-carcinogenic hazard quotient 

for children at mean 1.6775 and 

2.06101 for soil and dusts 

respectively.   

• Though based on specific 

conditions in one area of 

China, it is reasonable to 

assume similar conditions 

throughout other areas of 

LIMICs where similar 

industry exists. 

• Children are more vulnerable to 

exposure due to lower body weight 

and propensity for mouthing. 3 4 12 

Children living in 

proximity to open 

burning in LIMICs 
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Haz.  Pathway  Receptor Geog. 

Evidence & justification for risk 

assessment 

Notable 

material/ 

polymer/ 

substance  

Uncertainty  

(aleatoric & epistemic) Receptor vulnerability  L S R 

Global receptor 

context 

DRC 

Atmosphere 

/inhalation; 

soil/uptake in 

food  Population 

IND, POL, 

CHN, KOR 

• Open burning is considered the 

largest source of dioxin release.14, 

113, 114 The contribution made by 

plastic waste is from mainly PVC 

and brominated flame retardants110 

which contain the relevant 

halogens but the proportion of 

emissions from plastic waste is not 

well reported. 

• Emissions are linked to open 

burning activities in cow’s milk, 
human breast milk116 and soil.117, 

120 

• Estimated population cancer rates 

reported from MSW Kumari et 

al.57 and domestic co-combustion 

with coal115 - ca. 0.2 - 13 cases of 

cancer per 100,000 people - not 

allocated for plastic. 

Halogenated 

plastics such as 

PVC, PVB, 

BFRs  

• Not possible to 

disaggregate the 

contribution of plastic 

waste to these emissions.  

• Population living in proximity to 

open burning activities may be more 

exposed. 3 4 12 

Population living 

without 

comprehensive 

waste collection in 

LIMICs 

 

Atmosphere 

/inhalation 

Workers 

(informal) 

 

•  

 •  

• IRS workers are acutely vulnerable 

to open burning at close range as 

they often work on dumpsites set on 

fire, and burn as a method of residue 

disposal or to recover other 

materials such as metals, and even 

to keep away mosquitos. 4 4 16 

IRS workers on 

dumpsites and 

where residues are 

burned in  LIMICs 

Soil/ mouthing  Children  

• Soil concentrations117, 120 in open 

burning areas exceeded Canadian 

soil guidelines by several thousand 

times in many cases posing 

significant risk to children living 

near open burning activities. 

• Children are more vulnerable to 

exposure due to lower body weight 

and propensity for mouthing. 4 4 16 

Children living in 

proximity to open 

burning in LIMICs 
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Haz.  Pathway  Receptor Geog. 

Evidence & justification for risk 

assessment 

Notable 

material/ 

polymer/ 

substance  

Uncertainty  

(aleatoric & epistemic) Receptor vulnerability  L S R 

Global receptor 

context 

PM 

Atmosphere 

/inhalation; 

soil/uptake in 

food  Population 

KOR, VEN, 

USA, CHN 

• Though the contribution of plastic 

waste is not known, open burning 

of all MSW is estimated15 to 

contribute 24% of PM10 and 29% 

of PM2.5 emissions.  

• Deaths from PM2.5 are estimated at 

between 13 and 125 per 100,000 

people in urban areas, therefore 

uncontrolled plastic waste 

combustion is likely to be a 

significant contributor. 

All plastics at 

risk of open 

burning  

• Not possible to 

disaggregate the 

contribution of plastic 

waste to these emissions.  

• Population living in proximity to 

open burning activities may be more 

exposed. 4 4 16 

Population living 

without 

comprehensive 

waste collection in 

LIMICs 

Atmosphere/ 

inhalation 

Workers 

(informal) 

KOR, VEN, 

USA, CHN 

• IRS workers are acutely vulnerable 

to open burning at close range as 

they often work on dumpsites set on 

fire, and burn as a method of residue 

disposal or to recover other 

materials such as metals, and even 

to keep away mosquitos. 4 4 16 

IRS workers on 

dumpsites and 

where residues are 

burned in  LIMICs 

PAH 

Atmosphere/ 

inhalation 

Population 

GRC, CHL, 

USA, KOR  

• Most PAHs are carcinogenic with 

a toxic potency indication of 1 ng 

m-3 BaPeq concentration leading 

to 8.7 cases of cancer per million 

people exposed.84 PVC, PS 

• Not possible to 

disaggregate  the 

contribution of plastic 

waste to these emissions  

• Population living in proximity to 

open burning activities may be more 

exposed. 4 4 16 

Population living 

without 

comprehensive 

waste collection in 

LIMICs 

Workers 

(informal) 

• IRS workers are acutely vulnerable 

to open burning at close range as 

they often work on dumpsites set on 

fire, and burn as a method of residue 

disposal or to recover other 

materials such as metals, and even 

to keep away mosquitos. 4 4 16 

IRS workers on 

dumpsites and 

where residues are 

burned in  LIMICs 

Abbreviations: likelihood (L); severity (S); risk (R); hazard being assessed (Haz.); phthalates (Phth.); geographical research context (Geo.); not available (na); polystyrene (PS); polycarbonate 667 
(PC); polyethylene terephthalate (PET); polyethylene (PE); polycarbonate/acrylonitrile-butadiene-styrene (PC-ABS); styrene-butadiene copolymer (K-resin); polyvinyl chloride (PVC); 668 
polyvinyl butyral (PVB); brominated flame retardants (BFR); low income and middle income countries (LIMIC); informal recycling sector (IRS); phthalates (Phth.); bisphenol A (BPA); 669 
potentially toxic elements (PTE); dioxins and related compounds (DRC); circa (ca.); brominated flame retardants (BFR); particulate matter (PM); particulate matter < 10 µm (PM10); 670 
particulate matter < 2.5 µm (PM2.5);polycyclic aromatic hydrocarbons (PAH); benzo(a)pyrene equivalent (BaPeq). 671 
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4. Outlook and prospects 672 

Increasing quantities of uncollected solid waste will result in a continuation of the need 673 

to self-manage discarded material that is generated by billions of households and 674 

business across LIMICs in the coming decades. The choices are stark: burn, bury, 675 

deposit on land or into water. If the most pessimistic estimates are to be believed, nearly 676 

a billion tons of solid waste is burned every year in open, uncontrolled fires, much of 677 

which is plastic waste. When plastic waste is combusted, a range of unbound substances 678 

of concern (BFRs, PTEs, BPA, and phthalates), added either intentionally or 679 

unintentionally, may escape destruction and be released into nearby media such as the 680 

atmosphere and surrounding land. In addition, there are substances and particles that are 681 

produced as a result of chemical transformations that take place in variable, low 682 

temperature conditions that are inevitable within open, uncontrolled fires (PM, PAHs 683 

and DRCs). Here, we have systematically collected and arranged key sources that 684 

evidence these emissions (RQ1), the risks they pose to human health and the pathways 685 

through which the harm is realized, creating a generalised conceptual description 686 

(Figure 2) – but only 20 publications made it to our inclusion list; and this despite not 687 

including upfront rejection based on research quality criteria. 688 

 689 
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 690 

Figure 2: Graphical overview of the hazard exposure conceptual model (hazard – 691 

pathway – receptor) associated with open (uncontrolled) burning of plastic waste (from 692 

substances contained and combustion products), as indicated by the review of 20 693 

literature sources eligible for the inclusion criteria in this systematic review. 694 

Our risk-based approach highlighted 18 main hazard-pathway-receptor combinations, 695 

seven of which were scored as having high harm potential and six which were scored as 696 
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having medium/high harm potential (RQ2). However, though we are confident with 697 

these indicative conclusions, the underlying research-base is extremely limited in 698 

several key areas, as directly implied by the paucity of relevant research (RQ3). Not 699 

least, we found little strong evidence to confidently estimate the mass of plastic waste 700 

or/and mixed waste that is open burned, beyond simple calculations that rely on bold 701 

assumptions. Only one city-scale study into open burning based its findings on observed 702 

behavior, whilst the majority were reliant on surveys, but more commonly, expert 703 

judgement or industrial opinion that was subject to potential bias.  704 

Overwhelmingly, the scores indicated a higher risk of harm to human health in LIMICs 705 

compared to HICs. Within these the most sensitive receptor was waste pickers (informal 706 

waste reclaimers, IRS), a large global workforce of proud day-to-day survivors and 707 

entrepreneurs who operate without safe systems of work and who may carry out 708 

approximately half of all the world’s recycling collections.146 Despite this tremendous 709 

contribution to the global circular economy, waste pickers work in conditions that 710 

directly threaten their health along with the health of their families, who have few 711 

choices about where they live and work.   712 

The quality of information we reviewed was assessed via an uncertainty, strength of 713 

knowledge and methodological robustness matrix and was found to be mixed, with only 714 

a subset of clearly presented studies - for example, identifying substance concentrations 715 

occurring in environmental media and humans. Overall, many of the studies fell short of 716 

identifying or attempting to identify causal linkages between the occurrence of a 717 

substance and receptor response, inferring exposure pathways rather than demonstrating 718 

a clear and verifiable connection between system components. In many studies, the 719 
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source of substances identified in environmental media or humans was not determined, 720 

leaving some doubt over whether the source was waste plastics processing, open 721 

burning, or some other confounding source.  722 

Resultant risks to human health may be comparatively small, yet not sufficiently 723 

quantified to be dismissed. Most worryingly, without substantial action, the health of 724 

those exposed to open burning of plastics, mainly waste pickers and wider communities 725 

in geographic proximity, could suffer substantial negative health effects; yet, it remains 726 

largely ignored and substantially under-researched.   727 
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