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Abstract

In this study, we explore the possibility of simplifying the modeling of magnetohydrodynamic slow body modes
observed in photospheric magnetic structures such as the umbrae of sunspots and pores. The simplifying approach
assumes that the variation of the eigenvalues of slow body waves can be derived by imposing that the longitudinal
component of velocity with respect to the tube axis is zero at the boundary of the magnetic flux tube, which is in
good agreement with observations. To justify our approach, we compare the results of our simplified model for
slow body modes in cylindrical flux tubes with the model prediction obtained by imposing the continuity of the
radial component of the velocity and total pressure at the boundary of the flux tube. Our results show that, to a high
accuracy (less than 1% for the considered model), the conditions of continuity of the component of transversal
velocity and pressure at the boundary can be neglected when modeling slow body modes under photospheric
conditions.

Unified Astronomy Thesaurus concepts: Solar photosphere (1518); Magnetohydrodynamics (1964);
Sunspots (1653)

1. Introduction

The correct identification, as well as the interpretation, of
magnetohydrodynamic (MHD) wave modes in a variety of
magnetic structures is possibly one of the most important, yet
most challenging, problems of solar physics. The study of
waves in solar magnetic structures is important for many
reasons. Waves can transport kinetic energy to the upper layers
of the solar atmosphere, where it can be dissipated in the
presence of steep gradients in plasma or field parameters and
converted to heat, therefore contributing to the plasma heating
(see, e.g., Erdélyi & Ballai 2007; Usmanov et al. 2016; Oran
et al. 2017; Tiwari et al. 2019; Cranmer 2020).

On the other hand, MHD waves observed with high
resolution can be used as a diagnostic tool for the properties
of the plasma and magnetic field using a seismological
approach. This technique involves the combination of theor-
etical models (dispersion relation, evolutionary equation, etc.)
with high-resolution observations that provide information on
the damping time/length of waves, their periods, wavelength,
amplitude, etc. to derive values for physical parameters that
cannot be determined by direct measurements (subresolution
structure of the magnetic field, heating/cooling functions,
transport coefficients, scale heights, ionization degree, optical
depths, etc).

The derivation of an analytical dispersion relation depends
on the geometry of the waveguide and coordinate system
applied, assuming that the boundary of the waveguide varies
smoothly with the radius and shows symmetry with the
longitudinal axis. We should mention that a dispersion relation
can be derived even in the case of a discontinuity separating
two regions of different properties (see, e.g., Roberts 1981a;

Musielak et al. 2000; Ballai et al. 2011; Vickers et al. 2018);
however, this setup is not entirely relevant to solar plasmas. In
addition, in the absence of additional physical effects, waves
will be dispersive only in waveguides that have a clear
geometrical extent.
The magnetic field in the solar atmosphere tends to

accumulate in geometrically well-defined structures of different
strengths, from a few gauss in the quiet Sun and corona to
kilogauss fields (pores and sunspots). These magnetic struc-
tures show a temporal variability in their shape, strength,
stability, and density. Waves propagating along these magnetic
structures have been studied assuming either the magnetic slab
described in Cartesian geometry (Roberts 1981b; Marcu &
Ballai 2005; Hornsey et al. 2014; Pascoe & Nakariakov 2016;
Li et al. 2018; Mather et al. 2018; Skirvin et al. 2021) or the
magnetic flux tube described in cylindrical geometry (Edwin &
Roberts 1983; Erdélyi & Fedun 2006; Verth 2007; Erdélyi &
Fedun 2010; Verth et al. 2010; Jess et al. 2015). These simple
yet instructive models have the necessary symmetry that makes
the derivation and analysis of a dispersion relation possible.
Probably the most studied model to describe MHD waves in

solar magnetic structures is the magnetic cylinder that can
provide quantitative and qualitative descriptions of the myriad
of waves that can appear in magnetic structures. According to
the standard nomenclature (Edwin & Roberts 1983), waves can
be categorized according to the way they perturb the symmetry
axis of the tube. Sausage modes are axisymmetric waves that
propagate such that the axis of the tube is not perturbed. In
contrast, in the case of kink waves, the symmetry axis of the
tube undergoes a swinging motion. Waves can also be
categorized by the way they behave inside the cylinder in the
transversal direction. Waves whose behavior is oscillatory
inside the waveguide are usually referred to as body waves.
Waves that are evanescent inside the tube have a maximum of
their amplitude on the boundary of the tube as surface waves.
Finally, waves can also be categorized according to their
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characteristic speeds. Accordingly, the possible magnetoacous-
tic waves can be slow or fast, and their phase speed is weakly
(for slow waves) or strongly (for fast waves) influenced by
dispersive effects. All of the above categorizations are true as
long as the magnetic field is along the interface separating the
internal and external regions (the discontinuity where the
magnetic field is parallel to the discontinuity surface is often
called a tangential discontinuity). When the background
magnetic field has a tilt angle with respect to the interface,
the interface becomes a contact discontinuity, and the lifetime
of the waves is shortened by lateral leakage of energy
(Ruderman et al. 2018; Vickers et al. 2018).

In reality, though, high-resolution observations show that the
cross section of magnetic flux tubes is far from being circular
(see, e.g., Sobotka et al. 1999; Mathew et al. 2003;
Solanki 2003; Ryutova et al. 2008; Borrero & Ichimoto 2011;
Schlichenmaier et al. 2016; Sobotka & Rezaei 2017; Houston
et al. 2018; Keys et al. 2018). A very first attempt to consider
noncircular waveguides (however, still maintaining a high
degree of symmetry) is the study of waves in magnetic flux
tubes of elliptical cross section. The studies by Ruderman
(2003), Díaz (2006), Morton & Erdélyi (2009), Morton &
Ruderman (2011), and Guo et al. (2020) investigated the
modifications of the waves’ properties in such geometry. The
results of these investigations show that such structures can
support the propagation of two kink waves polarized linearly
along the minor and major axes of the flux tube, and in general,
waves with a nonzero azimuthal wavenumber are affected by
the eccentricity of the elliptical shape.

Observationally, waves can be categorized based on
signatures such as symmetry or asymmetry. However, recent
studies by Aldhafeeri et al. (2021) and Albidah et al. (2022)
have shown that the morphology of waves (especially higher-
order modes) in sunspot umbrae are strongly affected by their
cross-sectional shapes, and a wave diagnostic based on the
perturbations of the intensity or Doppler velocity might lead to
wrong conclusions on the nature of waves if this is not taken
into account. Hence, a more accurate depiction of theoretically
modeled cross-sectional shapes is required to explain the
eigenmodes of pores and sunspots.

In particular, the effect of the ellipticity of the magnetic flux
tube on the patterns of MHD modes was analyzed in detail by
Aldhafeeri et al. (2021), who showed that for a high degree of
ellipticity, sausage modes corresponding to the n= 0 azimuthal
wavenumber cannot be easily identified, and even solutions
that correspond to the fluting mode with the azimuthal
wavenumber n= 3 can be misinterpreted as a kink modes
(n= 1) due to the similarities in their morphology. This result
was the impetus for finding a new approach that clarifies and
provides an accurate explanation of the type of observed wave
mode patterns. It is worth noting here that most of the previous
studies are based on the requirement of the continuity of the
component of radial (i.e., transversal) velocity and total
pressure at the boundary of the waveguide. These conditions
are a consequence of imposing that the normal and tangential
components of the stress tensor are continuous. However, these
conditions also constitute an obstacle in modeling the MHD
modes with realistic cross-sectional shapes, since, mathemati-
cally, we do not have arbitrary coordinates to help us in the
modeling process. Recent studies by Albidah et al. (2022) and
Stangalini et al. (2022) demonstrated the importance of taking
into account the actual cross-sectional shape of sunspot umbrae

in giving a correct interpretation of the observed modes by
taking the vertical (i.e., longitudinal) velocity or density/
pressure perturbations to be zero at the umbra–penumbra
boundary, to be consistent with the observation data.
Motivated by the findings of Albidah et al. (2022) and

Stangalini et al. (2022) in this paper, we demonstrate that the
eigenvalues, and hence eigenfunctions, of slow body modes
can be found without solving the full dispersion relation. The
paper is structured as follows. In Section 2, we present the
traditional way of determining the dispersion relation of MHD
waves in circular waveguides, together with the governing
equation of eigenvalues. Section 3 is devoted to the
comparative study of eigenvalues of slow body modes obtained
using two different approaches. In Section 4, we compare the
variation of eigenvalues near the boundary of the tube
providing a numerical and mathematical foundation for our
approach. Finally, in Section 5, we summarize and discuss our
results.

2. Governing Equations

The simplest, however illustrative, model to study wave
propagation in solar magnetic flux tubes, e.g., coronal loops,
sunspots, pores, prominence fibrils, etc., is the cylindrical
magnetic flux tube model (Wentzel 1979; Wilson 1979;
Spruit 1982; Edwin & Roberts 1983). This model provides a
quantitative and qualitative description of the possible
magnetoacoustic waves that can propagate in such structures.
The waves that a magnetic flux tube can support are used to
explain the characteristics of observed patterns of line-of-sight
magnetic and velocity perturbations. One important conse-
quence of waves confined to propagating in a geometrically
well-defined structure is that waves become dispersive; i.e.,
their propagation speed depends on the wavelength of the
waves.
In the case of sunspots, the magnetic field is predominantly

vertical in the umbra, meaning that the cylindrical model of the
magnetic waveguide can be applied to this region. Waves
studied with this model are mainly confined to the umbra
region and are evanescent in the outer penumbra region. Under
photospheric conditions, it is customary to assume that the
background plasma temperature, density, and pressure in
the umbra are less than in the penumbra, and the strength of
the vertical magnetic field is greater in the umbra than in the
penumbra. These considerations lead to the particular ordering
of the characteristic speeds VAi, CSe>CSi, VAe, where VA

denotes the Alfvén speed, and CS stands for the sound speed in
the internal (i) and external (e) regions of the cylindrical flux
tube. These particular conditions have important consequences
for the types of MHD wave modes that can be supported by
such a waveguide. Specifically, the MHD wave modes with the
largest phase speeds, Vph, propagating in the z direction are
surface modes with Vph ä (CSi, CSe), and these modes attain
their maximum amplitude at the umbra/penumbra boundary. In
addition, we found that such a waveguide can also support slow
body modes whose phase speeds satisfy Vph ä (CTi, CSi), where
CTi is the tube speed inside the waveguide and will be defined
later (see Equation (8)). In structures with a strong magnetic
field, such as pores and sunspots, the values of the tube and
sound speeds are very close to each other, and all slow body
modes propagate in the same narrow band of the dispersion
diagram (see Edwin & Roberts 1983). Slow body modes attain
their maximum amplitude inside the flux tube, and they possess
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an oscillatory pattern in the transversal direction. Given the
very narrow allowed propagation window of slow body modes,
we would like to show that it might be possible that solving the
full dispersion relation will not be required; instead, a much
easier approach would give us a very accurate result. To show
this, we postulate that slow modes show a negligible
perturbation amplitude at the umbra/penumbra boundary;
therefore, it might be possible that the effect of the environment
can be confidently neglected.

We consider a straight magnetic cylinder oriented along the
z-axis. In an equilibrium state, the plasma is characterized by its
kinetic pressure, p0, and its density, ρ0, while the equilibrium
homogeneous magnetic field oriented along the symmetry axis
of the magnetic cylinder is denoted by B0. All equilibrium
quantities are considered to be homogeneous, and they are
allowed to have a jump in their magnitude at the boundary of
the waveguide situated at r= a. After linearizing the ideal
MHD equations, the relation that describes the temporal and
spatial evolution of small-amplitude MHD perturbations reads
(see, e.g., Lighthill 1960; Cowling 1976; Roberts 1981a;
Aschwanden 2005)
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Since the plasma is homogeneous and infinitely extended in the

azimuthal and longitudinal directions, we can Fourier analyze

the problem and write the variable in Equation (1) as

R r i t n kzexp , 3( ) [ ( )] ( )w qD = - -

where n and k are the wavenumber components in the

azimuthal and longitudinal directions, ω is the angular

frequency of the oscillations (assumed here to be a real

quantity), and the function R(r) is the amplitude ofΔ that needs

to be determined.
After substituting Equation (3) back into Equation (1), the

governing equation becomes a Bessel differential equation (for
details, see Edwin & Roberts 1983) whose solutions are well
known. After imposing the kinematic and dynamic boundary
conditions (the continuity of the total pressure and the radial
component of the velocity) at the radius of the tube, i.e., at
r= a, the dispersion relations can be written as (see, e.g.,
Spruit 1982; Edwin & Roberts 1983; Aschwanden 2005)
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are the internal and external tube (cusp) speeds. Here all

quantities with an index i refer to the region inside the tube

(r< a), and the quantities with an index e denote the external

region (r> a). The functions Kn and In are the modified Bessel

functions, Jn is the Bessel function of the first kind, and the

“prime” denotes the spatial derivative of these functions with

respect to their argument. The dispersion relations provide

the relation between the longitudinal wavenumber, k (along the

axis of the cylinder); the azimuthal wavenumber, n; and

the frequency, ω. Given that these dispersion relations involve

transcendental functions, simple analytical solutions can be

obtained only for limiting cases, and for a complete solution,

one needs a numerical approach.
The system of MHD equations also allows us to express the

perturbations of various physical quantities in an explicit way.
It is easy to show that the total internal pressure (i.e., the sum of
kinetic and magnetic pressures), Pi, in the case of body waves is
governed by
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Equation (9) is a typical Bessel differential equation whose

solution that is bounded at r= 0 can be written as

P A J n r ,i i n i( )=

where Ai is an arbitrary amplitude. As a result, all eigenfunc-

tions of the problem can be expressed in terms of Bessel

functions; in particular, the z-component of the velocity can be

written as (see, e.g., Spruit 1982)
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According to the standard nomenclature, waves that correspond

to n= 0 are the sausage modes, n= 1 are the kink modes, and
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the modes corresponding to n> 1 are referred to as fluting

modes.
In what follows, our investigation will focus on our

statement, according to which, instead of deriving the
dispersion relation and solving it, we will show that in the
case of slow body modes, it will suffice, with high accuracy, to
solve the equation for vzi directly with imposing the condition
that on the boundary of the waveguide this quantity is zero (i.e.,
imposing a Dirichlet boundary condition). Therefore, the
eigenvalues will be solutions of the equation Jn(nia)= 0, like
in the case of waves on a circular membrane.

3. Slow Body Sausage and Kink Modes in Photospheric
Flux Tubes: Variation of Eigenvalues

In the case of a cylindrical waveguide, Edwin & Roberts
(1983) showed that under photospheric conditions, slow waves
are restricted to propagate in a rather narrow window between
the internal tube (CTi) and sound (CSi) speeds, and they show a
monotonically increasing phase speed with increasing wave-
number (or decreasing wavelength).

In this section, we will compare the solutions we find for slow
body sausage (n= 0) and kink (n= 1) modes by numerically
solving the dispersion relation and using the proposed simplified
approach. For numerical calculations, we adopt typical photo-
spheric values for characteristic speeds; in particular, we choose
VAe= 0.5CSi, CSe= 1.5CSi, and VAi= 2CSi. The curves in panels

(a) and (b) of Figure 1 display the variation of the phase speed of
slow body modes (Vph= ω/k) in units of the internal sound speed
with respect to the dimensionless quantity ka (here varying
between zero and 4) when the variation is obtained based on
solving the full dispersion relation (Equation (5), solid lines) and
vzi= 0 (dashed lines), where the expression of vzi is given by
Equation (11). It is clear from Figure 1 that the two solutions are
very close to each other not only in magnitudes but also in trend.
The fundamental sausage and kink modes have the highest
propagating speed; higher harmonics propagate with lower phase
speed. All modes are dispersive, and the propagation speed
increases with decreasing wavelength. The variation of the
dimensionless phase speed also shows that higher-order modes
are less affected by the change in the wavelength (or,
alternatively, the size of the waveguide). The accuracy of the
simplified method is shown in panels (c) and (d), where we plot
the percentage error between the two approaches, and the colors
are chosen so that they match the modes shown in panels (a) and
(b). For all modes, the error is very small (less than 1%) and tends
to diminish with increasing the order of the modes.
The above results have important implications for the

identification and modeling of waves in photospheric struc-
tures. First of all, these results confirm that in the case of slow
body modes, it is a good approximation to consider that the
longitudinal component of the velocity vanishes on the
boundary. Since this velocity component is directly linked to

Figure 1. Dispersion curves for slow body kink (panel (a)) and sausage (panel (b)) modes in a photospheric flux tube. The solid lines correspond to the variation of the
phase speed of waves in units of the internal sound speed obtained based on the dispersion relation (Equation (5)), while the dashed lines correspond to the solutions of
vzi = 0 on the boundary of the cylindrical waveguide, where the expression of vzi is given by Equation (11). The different colors denote different wave harmonics; red
stands for the fundamental modes, while blue, magenta, and green lines denote subsequent higher harmonics. Panels (c) and (d) show the percentage error in finding
the solutions of the dispersion relation (Equation (5)) and the solutions obtained by assuming vzi = 0. The colors of the curves correspond to the wave harmonics of the
sausage and kink modes shown in panels (a) and (b).
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the total pressure, this quantity also vanishes at the boundary.
Obviously, this result does not mean that the whole velocity
becomes zero; simple mathematical calculations evidence that
here the radial component of the velocity has a maximum.

Note that the assumption of the vzi= 0 at the boundary is not
valid if the value of nia is less than the first zero of the Bessel
function, Jn(x), meaning that our approximate solution does not
work accurately in a thin flux tube. In addition, our method also
fails near the characteristic speeds, as at these values, the
argument of the Bessel function becomes zero or infinity,
meaning that these speeds are degenerate values of the system.
That is why the solutions we obtained in Figure 1 show a gap
for long wavelengths.

To check how much our results vary with the range of
Alfvén and sound speeds estimated from sunspot observations,
we use the characteristic values from Cho et al. (2017), who
analyzed 478 sunspots using the Helioseismic Magnetic Imager
on board the Solar Dynamics Observatory. These authors found
that the average relationship between the Alfvén and sound
speeds in sunspot umbrae is VA= 1.2CS. In order to investigate
a wide spectrum of cases and ensure the robustness of our
results, we have repeated the analysis shown in Figure 1 for
VA= 1.2CS and VA= 3CS. The results show that, irrespective
of the multiplier between the two characteristic speeds, the
percentage error between the predictions of the full analysis
and the simplified method remains less than 1%.

4. Slow Body Sausage and Kink Modes in Photospheric
Flux Tubes: Variation of Eigenfunctions

To further substantiate our approach for determining the
dispersion curves for slow body modes in photospheric flux
tubes, in this section, we will discuss in detail the solutions

obtained in the cylindrical model following the standard
approach of deriving the dispersion relation with the help of
matching the normal and tangential stresses at the boundary of
the waveguide. The dispersion relation also allows us to
express the eigenfunctions for different modes. Using the
values of ω and k based on the dispersion relations, we plot the
variation of the vz velocity component under photospheric
conditions in the neighborhood of the waveguide’s boundary.
As specified earlier, the set of linearized and ideal MHD

equations in a cylindrical waveguide can be reduced so that the
z-components of the velocity inside and outside the waveguide
are given by

v A
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V k C
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where Ai and Ae are arbitrary constants.
The radial variation of the z-component of the velocity for

the slow body sausage and kink modes is shown in Figures (2)
and (3), panels (a) and (d), respectively. The cases corresp-
onding to ani< 4 and >4 are shown separately for simplicity.
The value of 4 has been chosen to make sure that, in the case of
both Bessel functions, J0 and J1 have only one zero.
It is clear that in the case of both slow sausage and kink

modes, the amplitude of the z-component of velocity near the
boundary of the waveguide (r/a≈ 1) under photospheric
conditions is very small, and the maximum occurs somewhere
inside the waveguide. This result also suggests that in the case
of these waves, the longitudinal perturbation at this boundary is
very small. In order to evidence the relative difference between

Figure 2. Variation of the z-component of the velocity across the boundary of a cylindrical waveguide for slow sausage body modes under photospheric conditions.
This eigenfunction is plotted for ani < 4 (panels (a)–(c)) and �4 (panels (d)–(f)). Panels (a) and (d) show the dependence of the amplitude of vz on the radial distance
in units of the waveguide’s radius inside (blue) and outside (magenta) the tube. The maximum amplitudes of vz inside the flux tube (normalized by the largest value)
and at the boundary are shown in panels (b) and (d). The blue dots indicate the maximum amplitude of vz inside the flux tube for various modes, while the green dots
show the maximum amplitude at the tube boundary. Panels (c) and (f) show the absolute value of the ratio of the maximum amplitude of vz at the boundary of the
waveguide and the maximum value attained inside the waveguide. On the horizontal axis of panels (b), (c), (e), and (f), we denote the modes that correspond to
different values of the radial wavenumber.
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the maximum of various body modes and the amplitude of vz at
the boundary, we show the locations of these maxima in panels
(b) and (e) with blue and green dots for waves corresponding to
different values of the radial wavenumber. It is clear that the
fundamental sausage and kink modes have the largest
amplitude inside the cylinder, while higher overtones have a
smaller amplitude with an increase in the radial wavenumber.
The same pattern is followed by the amplitude of vz at the
boundary, where the amplitudes of various overtones are close
to zero. We note here that under photospheric conditions, there
are no fast body modes, but there are fast surface modes, and
these modes are not consistent with the ones present in our
model.

Figures 4 and 5 display the 2D polar plot of the vz
component of velocity as obtained as a result of solving the
dispersion relation (Equation (5), top panels) and the solution
obtained by imposing the condition vzi= 0 at the boundary
(bottom panels), where the expression of vzi is given by
Equation (11). For illustration, we show the first four branches
of the kink (Figure 4) and sausage (Figure 5) modes. The
modes m are labeled by two numbers (x, y), where the first
number (x) denotes the azimuthal wavenumber (x= 0 and 1
correspond to the sausage and kink modes), while the second
number (y) denotes the different branches; e.g., y= 1
corresponds to the first branch, y= 2 to the second, etc.
Figures 4 and 5 again show that our simplified approach is
consistent with the standard assumption, which requires the
continuity of the radial velocity component and the total
pressure for all modes. The white regions in the external
regions of the waveguide in the top panels denote that no
solution is sought, as these regions are not needed for the
analysis.

The above results can be easily understood even from a
mathematical point of view. Let us introduce a new variable in
Equation (9) such that

a r

a
, 14( )x =

-

where a is the radius of the tube. As a result, in the new

variable, the center of the cylinder is situated at ξ= 1, and the

tube’s boundary corresponds to ξ= 0. In the new variable, the

governing equation for the total pressure reads

d P
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This equation is still a Bessel differential equation whose

solution bounded at the origin can be written as

P J an1 1 , 16i n i12( ) [ ( )] ( )x xµ - -+

where n takes the value of zero and 1 for sausage and kink

modes, respectively. Since we are interested in the behavior or

total pressure near the boundary, we can expand this solution

into a series about ξ≈ 0, and the approximate solutions for the

total pressure of the sausage (
Pis

) and kink (Pi
k

) modes become
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or, using the trigonometric representation of the Bessel

functions,
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Figure 3. Same as Figure 2, but here we plot the amplitude of the z-component of the velocity for slow body kink modes under photospheric conditions.
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Figure 4. Polar representation of kink modes in a cylindrical waveguide. The top row shows different branches of the kink modes obtained by assuming vz = 0 on the
boundary of the cylindrical waveguide. The bottom row shows the same branches of the kink modes obtained by solving the whole dispersion relation. The labels
(m = (x, y)) represent the type of mode and branch; e.g., x = 1 refers to the kink mode, and y = 2 refers to the second branch.

Figure 5. Same as Figure 4 but for sausage modes.
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Once the solution for the total pressure is known, the z-

component of the velocity can be determined with the help of

Equation (11). These expressions clearly show that near the

boundary of the cylindrical waveguide, the magnitude of the

solutions are indeed very small ( ani
1 2( )» - ), as shown in

Figures (1) and (2); therefore, the use of the approximation

vz= 0 on the boundary is fully justified.

5. Conclusions

The determination of the nature and properties of waves
propagating in solar magnetic structures is one of the key
ingredients in performing plasma and field diagnostics using
seismological techniques. However, the determination of these
properties involves treating the magnetic waveguides as an
ideal environment with a high degree of symmetry that allows
the determination of dispersion relations. In reality, however,
these waveguides are rather irregular, and the cross-sectional
shape cannot be approximated by circles and/or ellipses.

In this paper, we examined the validity of a simplifying
method to determine the eigenvalues of slow body waves
propagating under photospheric conditions, and this has been
performed using a cylindrical symmetry for which the
dispersion relation can be derived. Our results suggest that
the eigenfrequency of slow body waves and their dispersive
variation can be approximated in a simpler, yet fairly accurate,
way by imposing the condition that the longitudinal component
of the velocity vanishes at the boundary of the waveguide. Our
approach was tested by comparing our results to the solutions
of the full dispersion relation. We have clearly shown that the
percentage error by using this approximation is very small (less
than 1%), and the error tends to diminish with an increase in the
order of the modes.

It is worth mentioning that the solutions we obtained show a
gap for long wavelengths because this approximation fails near
the characteristic speeds, as at these values, the argument of the
Bessel function becomes zero or infinity, meaning that these
speeds are degenerate values of the system. Therefore, our
approximate method does not work in the thin flux tube limit.
In addition, our approximation cannot be applied to surface
waves in sunspots because surfaces waves are evanescent
within the umbra and have maximum amplitude at the umbra/
penumbra boundary.

The main advantage of determining the eigenvalues of slow
body modes (sausage and kink) using this approximation is that
it removes the necessity of one of the key conditions needed to
derive the dispersion relation, i.e., the continuity of the radial
component of the velocity. Instead, reliable solutions can be
obtained by solving a Helmholtz-like differential equation with
Dirichlet boundary conditions. This approximation also allows

us to more easily determine the eigenvalues of various modes
in magnetic waveguides with cross sections of arbitrary shape
and further validates the sunspot umbra modeling of Albidah
et al. (2022) and Stangalini et al. (2022), who made the vertical
velocity or density/pressure perturbations zero at the umbra/
penumbra boundary to be consistent with observational data (it
was observed that the oscillations decayed very rapidly at the
boundary region). This also had the added advantage of making
the computations of the eigenmodes using the observed
irregular cross-sectional shapes more straightforward, since
matching the transverse velocity and pressure perturbations for
a magnetic waveguide with a complex cross-sectional shape is
a nontrivial problem.
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