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Identifying fluency parameters for a machine-learning-based
automated interpreting assessment system
Xiaoman Wang and Binhua Wang

School of Language, Culture and Society, University of Leeds, Leeds, UK

ABSTRACT
Fluency is an important yet difficult-to-measure criterion in
interpreting assessment. This empirical study of English-Chinese
consecutive interpreting aims to identify fluency parameters
for a machine-learning-based automated assessment system. The
main findings include: (a) empirical evidence supports the choice
of the median values as the cut-offs for unfilled pauses and
articulation rate; (b) it informs the selection of outliers as
particularly long unfilled pauses, relatively long unfilled pauses,
particularly slow articulation and relatively slow articulation; (c)
number of filled pauses, number of unfilled pauses, number of
relatively slow articulation, mean length of unfilled pauses, mean
length of filled pauses can be chosen to build machine-learning
models to predict interpreting fluency in future studies as they
can explain the variance of established temporal measures and
show stronger explanatory power than dependent variables
when predicting scores. The study identifies assessment rubrics
on an empirical basis and provides a methodological solution to
automate the labour-intensive tasks in interpreting assessments.
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1. Introduction

Since the mid-1980s, some researchers have explored criteria for interpreting quality
assessment mainly through survey studies (e.g., Bühler, 1986). Fluency of delivery is
identified as one of the most important criteria for interpreting quality along with criteria
about content such as sense consistency, logical cohesion and correct terminology,
according to the results from surveys among interpreters and users (Bühler, 1986;
Kurz, 1993, 2002; Pöchhacker & Zwischenberger, 2010). Fluency as a quality criterion
in interpreting assessment is a particularly meaningful but much under-explored topic
in interpreting studies. A major reason for the under-exploration is mainly due to the
evanescent nature of interpreting and speaking, which causes special difficulties in
data collection, collation, transcription, annotation and analysis (esp. of prosodic and
paraverbal features). As seen in the literature below, some studies have begun investi-
gating the phenomenon of (dis)fluency in simultaneous interpreting, with the indices
of filled, unfilled pauses and repairs, with less attention on consecutive interpreting.
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Against this background, this study intends to identify the parameter that best pre-
dicts five established temporal measures for objective fluency assessments. It explores
the quantification of acoustical measures and extraction of fluency features in English-
Chinese consecutive interpreting, which can be used to build a machine-learning-
based automated assessment system. We focus specifically on the variables for two
reasons. One reason is that literature has proposed many variables based on the
theory, but descriptive statistics has not examined the interpreting data. The other
reason is that the variables are expected to be used to build a system for a more objec-
tive assessment of fluency than humans. When raters assess the quality in a holistic
manner, it is not easy to rate in the aspect of fluency by calculating the occurrences
of disfluency. Not all raters all equally severe overall, even when they rate each sen-
tence within the same rendition. Therefore, fluency quantification via computer
system is expected to facilitate objective assessment for interpreting training and aca-
demic research.

Building on relevant concepts and findings validated by previous researchers in inter-
preting studies and spoken language studies, fluency can be measured by five temporal
measures: phonation time ratio, speaking rate, articulation rate, the mean length of
runs and the average length of pauses (Towell et al., 1996). This study further examines
the relationship among variables first and investigate how variation of phonation time
ratio, speaking rate, articulation rate, the mean length of runs and the average length
of pauses as indicators of interpreting fluency can be explained by parameters extracted
based on descriptive statistics in regression analysis.

2. Literature review

Spoken language studies have sought to define and categorise fluency in terms of objec-
tive acoustic measures of an utterance (Segalowitz, 2010; Tavakoli & Skehan, 2005).
According to Paul Lennon, fluency is ‘the listener’s feeling that the psycholinguistic pro-
cesses of speech planning and speech output are operating readily and efficiently’
(Lennon, 1990, p. 391). Following that, Towell et al. (1996) conclude that fluency can
be measured by five temporal measures based on the previous studies: phonation time
ratio, speaking rate, average length of pauses, articulation rate, and mean length of
runs. Tavakoli and Skehan (2005) categorise fluency into breakdown fluency, speed
fluency and repair fluency. Breakdown fluency is represented by filled pause and
unfilled pauses in a speech. Repair fluency includes reformulation, replacement, false
starts and repetition of words or phrases.

In interpreting studies, fluency has been conceptualised in a narrower sense, as shown
in its limited use of only some measures listed above and in its focus on pauses and hes-
itation in the interpreting product. Commonly used indices of disfluency are filled pauses
and unfilled pauses (Pöchhacker, 2016). Mead (2005) posits that the pauses in interpret-
ing might be attributed to difficulty with formulation or notes, logical doubts or other
reasons. The author found that novices tend to have more formulation problems and
proficient interpreters are more likely to pause. An analysis based on the European Par-
liament Interpreting Corpus (EPIC) for two types of disfluencies (mispronounced words
and truncated words) by Bendazzoli et al. (2011) reveals that these two types of disfluen-
cies appeared more frequently than filled pauses in the interpretations.
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The findings on the threshold of silent pauses are rather eclectic. Goldman-Eisler
(1958) concludes that the minimum cut-off point should be 0.25 seconds because
71.5% of pauses in oral speech are between 0.25 and 1 second. Grosjean and Deschamps
(1972, 1973, 1975) apply the same standard in their study. However, according to Rau-
pach’s (2011) definition, pauses are intervals of 0.3 seconds or longer, within or between
sentences. Riggenbach (1991) distinguishes hesitation from pauses. He defines the
threshold for micro-pauses as 0.2 seconds, hesitation ranges from 0.3 to 0.4 seconds,
and an unfilled pause between 0.5 and 3 seconds. Towell et al. (1996) conclude the
minimum cut-off point should be 0.28 seconds. Mead (2005) sets the threshold at 0.25
seconds, and the upper cut-off point is 3 seconds.

Interpreting studies about fluency have concerned mainly with the simultaneous
mode (Bakti, 2009; Macías, 2006; Petite, 2005; Tissi, 2000; Wang & Li, 2015), with
little attention to consecutive interpreting. Among the previous studies, Wang and Li’s
(2015) empirical study on characteristics of and motivations for pauses is most relevant
to the present study since it conducts empirical research on pauses about the language
pair of English and Chinese. They find that pauses are less frequent but longer in
Chinese-English simultaneous interpreting than in the original speech and that pauses
are distributed hierarchically in correspondence with syntactic complexity.

It is nevertheless only recently that several empirical studies have begun to apply more
complex statistical models in testing the predictability of objective fluency in modelling
judged fluency in interpreting. Objective fluency refers to counting occurrences of a
certain type of disfluency. Judged fluency is the rating of fluency perceived by raters.
Yu and van Heuven (2017) report result from an experimental study of consecutive inter-
preting involving twelve trainee interpreters, suggesting that speech rate, number of
unfilled pauses, articulation rate and mean length of pauses could be the main predictors
of judged fluency. These findings are confirmed in the subsequent work by Han et al.
(2020), who conclude that mean length of unfilled pauses, phonation ratio, mean
length of run and speech rate are strongly correlated with perceived fluency ratings in
both directions and across raters. These empirical inquiries converge on the view that
assessment of fluency in interpreting is strongly related to acoustic measures such as
speech rate, articulation rate, phonation time ratio, mean length of unfilled pauses and
mean length of runs, which can be used as a basis for the exploration of automated assess-
ment of interpreting fluency.

Though the above studies have identified some predictors for interpreting fluency,
little research has been done to identify objective fluency parameters that explain
judged fluency in an automated approach, possibly due to the methodological
difficulty of computed-system building. As a necessary step in empirical research, tran-
scription and extraction of paraverbal features have always relied on manual work, which
typically use such software as PRAAT or Cool Edit Pro to convert acoustic signals into a
visualised wave pattern so that fluency features can be identified manually. The whole
process also requires a lot of time and effort from annotators and analysts.

In addition, in order to provide acoustic measures to index interpreting fluency,
specific temporal measures representing data attributes based on statistical distribution
are required to build more precise regression models. The approach to identifying the
independent variables is expected to extract the smallest number of variables to obtain
a solid and valid assessment of fluency as an economic approach.
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Finally, the linear regression models built in the recent literature are based on data
truncated per minute with variables such as articulation rate, speaking rate and phona-
tion time ratio (Yu & van Heuven, 2017). The limitation of such a method of collecting
data is that there won’t be enough data to build a machine-learning model. It is worth-
while to explore a new methodology to better explain the variables with outliers spread-
ing within the dataset by understanding, summarising and organising data.

Against this background, this study aims to define and identify parameters of objective
fluency that explain judged fluency. It is expected the identified parameters can be
extracted in an automated approach for the future research via a python script. It
bases parameters in part on Yu and van Heuven (2017) and Han et al. (2020) ‘s previous
research and develops new parameters. All parameters are operationalised under Tava-
koli and Skehan’s categorisation of fluency since they are closely related to Tavakoli and
Skehan’s theory of utterance fluency and are suitable to be quantified in empirical exper-
iments. In contrast to earlier studies, fluency parameters in this study were developed
through quantitative descriptions and analysed in a manageable form. They can thus
be applied in machine learning training for an automatic assessment system.

3. Research questions

Based on the above literature review, it has been identified as meaningful to extract
fluency features applicable in an automatic assessment system. This study will explore
the following research questions:

(1) How can the prosodic features, i.e., filled pauses, unfilled pauses, and articulation
rate, which are difficult to be transcribed manually, be extracted and retained in
the transcription using a more efficient method?

(2) What parameters measuring fluency can be identified through statistical analysis of
interpreting data?

(3) How do the interpreting fluency parameters relate to each other?
(4) How much variation of dependent variables, i.e., phonation time ratio, articulation

rate, speaking rate, average length pauses, and mean length of runs, which have been
verified to explain fluency, is explained by fluency parameters defined by descriptive
statistics in regression models?

4. Methodology

4.1 Developing a model for identifying parameters to assess interpreting
fluency automatically

This study develops a model for identifying parameters to build the machine-learning-
based automated system to assess interpreting fluency. Before the extraction of fluency
features, the interpreting data as video and audio recordings first need to be transcribed
into texts and written into a bespoke database. Next, fluency features are identified with
newly defined thresholds for vectorisation. Vectorisation of fluency features is a concept
to compute the best machine-readable parameters. In other words, it maps fluency fea-
tures to corresponding vectors of real numbers, used to find fluency predictions. The
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study extracts breakdown and speed fluency features based on a descriptive statistical
analysis of interpreting data. However, the development of Natural Language Processing
is not advanced enough to assist in identifying features for repair fluency. Data distri-
bution is displayed in a standardised way to select thresholds for unfilled pauses and
articulation time (Bird et al., 2009). It is based on the anatomy of a five-number
summary (‘minimum’, first quartile (Q1) or twenty-fifth percentile, median, third quar-
tile (Q3) or seventy-fifth percentile, and ‘maximum’). Outliers, incidental systematic
flaws or anomalous observations distant from the data centre are calculated to indicate
disfluency. The new approach applied in the model helps interpret and organise data
for regression modelling (Figure 1).

4.2 Corpus and ratings of renditions

The data used in this study are recorded interpreting performances of interpreting trai-
nees in the professional interpreter training programme. They were all would-be pro-
fessionals majoring in interpreting, studying consecutive interpreting and
simultaneous interpreting for two semesters. Their L1 language is Mandarin and L2
language is English.

The raters include a native English tutor and a Mandarin Chinese interpreting tutor
with both more than ten years of professional interpreting experience. They rated each
trainee’s performance in four aspects: accuracy, completeness, use of language, and deliv-
ery and presentation. In terms of delivery and presentation, paraverbal features are
assessed such as fluency and good pace, articulation and pronunciation, and nonverbal
features such as the ability to engage with the audience (eye contact and posture) and
stamina (see appendix 1). The discrepancy in rating a trainee’s performance between
two raters is normally smaller than three points. In case where the discrepancy is

Figure 1. A model of identification of interpreting fluency parameters.

PERSPECTIVES 5



bigger than three points, a third-rater adjudication is employed. The mean score from the
three raters is used as the final.

There are 48 recordings in total performed by 24 participants. The database contains
two renditions per participant as each participant performed interpreting on two
different topics. The recordings of interpreting performances are collected at three criti-
cal assessment points of the one-year postgraduate interpreting programme: in the
middle and at the end of Semester 1 and at the end of Semester 2.

In Semester 1, the participants interpret consecutively at mid-term a speech of about
4.5 minutes, and in the final a speech of about 5.5 minutes. At the end of Semester 2
they interpret consecutively a speech of about 7–8 minutes with more specialised
content and information density. All the speeches are delivered spontaneously
without a script though the speaker is allowed to prepare the content on the topic in
advance.

4.3 Automated transcription

All video files are first converted into audio files and then transcribed automatically via a
speech-recognition engine with a self-designed system on Python. FLAC format of audio
is preferable and outperforms the MP3 in preserving the quality to improve
transcription.

‘Speech-to-text’ cloud service from IBM is integrated with the application program-
ming interface. IBM returns more accurate timestamps and reserves filled pauses in
interpreted texts. By contrast, Google provides superior results in transcription with
the terminology or name entity, but it merges unfilled pauses with the duration of
spoken words and returns less accurate timestamps. This study opts for IBM Waston
as the primary goal of this study is to identify prosodic features based on accurate time-
stamp information. The accuracy of the automatic transcription is 95.6%, as the study
also annotates the incorrect transcription.

4.4 Data analysis

Before building regression models, it is necessary to find correlations among dependent
and independent variables (see Table 1) since multicollinearity might happen when inde-
pendent variables in the regression model are highly correlated to each other. Multicol-
linearity makes it difficult to interpret regression models and leads to overfitting
problems. The quantitative data fit into bivariate and multiple linear regression inferen-
tial statistical modelling to explore the extent to which different temporal measures could
explain the variance of the fluency predictand (Hebbali, 2020; R Core Team, 2021). R
feature selection technique, Best Subsets and Stepwise Regression (Venables & Ripley,
2002) is applied to identifying key variables responding to the dependent variables and
overcoming overfitting problems. The Best Subsets can calculate regression models of
all possible combinations of parameters, but it might increase the computational com-
plexity. Thus, this study also uses bidirectional elimination in stepwise regression, com-
bining forward selection and backward elimination procedures to select the smallest
needed set of temporal measures to predict five measures corroborated as fluency-
related measures.
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The regression variables are calculated based on timestamps. Transcription and
timestamps are stored in a dataset built in the Relational Database Management
System and organised into multiple tables for further analysis. In the study, fifty-
one English-to-Chinese consecutive interpreting videos have been transcribed into
fifty-one files containing 68,305 characters. The total count of pauses is 6776
(filled and unfilled pauses), and the total pause duration is 5627 seconds
(93.8 minutes).

5. Results

5.1 Fluency parameters identified

Table 1 summarises fifteen parameters of fluency in the study (for details of the calcu-
lation, see Table 1), which base dependent variables on Towell et al.’s (1996) temporal
measures of speech fluency and some independent variables on Han et al. (2020) and
Yu and van Heuven (2017) ‘s measures in previous studies.

One of the differences between dependent and independent variables is that indepen-
dent variables are those extracted based on descriptive analysis. The thresholds to define
unfilled pauses are concluded from the perspective of L2 oral fluency, with no previous
study exploring it from interpreting studies. Dependent variables are those concluded by
Towell et al. (1996). Parameters with * are newly defined in this article, while the others

Table 1. List of 15 selected temporal measures of fluency and their brief definition.
Variables Fluency Parameters Definition and Calculation

Independent
variables

Number of unfilled pauses*
(NUF)

No. of unfilled pauses equal to and longer than 0.25 seconds,
excluding the first pause at the very beginning of
interpreting.

Mean length of unfilled pauses
(MLUP)

Sum of length of unfilled pauses / No. of unfilled pauses equal
to or longer than 0.25 seconds

Number of relatively long
unfilled pauses* (NRLUP)

No. of unfilled pauses duration larger than Q3 + 1.5 * IQR and
smaller than and equal to Q3 + 3 * IQR

Number of particularly long
unfilled pauses* (NPLUP)

No. of unfilled pauses duration larger than Q3 + 3 * IQR

Number of filled pauses (NFP) No. of filled pauses
Mean length of filled pauses
(MLFP)

Sum of length of filled pauses / No. of filled pauses

Number of relatively slow
articulation* (NRSA)

No. of the duration per syllable larger than Q3 + 1.5 * IQR and
smaller than and equal to Q3 + 3 * IQR

Number of particularly slow
articulation* (NPSA)

No. of count of the duration per syllable larger than Q3 + 3 * IQR

Number of relatively quick
articulation* (NRQA)

No. of the duration per syllable smaller than Q1 − 1.5 * IQR and
larger than and equal to Q1 − 3 * IQR

Number of particularly quick
articulation* (NPQA)

No. of the duration per syllable smaller than Q1 − 3 * IQR

Dependent
variables

Phonation time ratio (PTR) Total length of speaking time / (total length of speaking time +
total length of filled and unfilled pauses)

Articulation rate (AR) No. of syllables / the duration of utterance, excluding pause
time

Speaking rate (SR) No. of syllables in each sample speech / speaking duration,
including pause time

Mean length of runs (MLR) Number of unfilled pauses equal to or longer than 0.25 seconds
/ number of syllables

Average length pauses (ALP) Sum duration of pauses equal to or longer than 0.25 seconds /
the number of pauses.
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correspond to the ones proposed and used by others in previous studies (Han et al., 2020;
Towell et al., 1996; Yu & van Heuven, 2017).

5.1.1 Parameters related to pauses
The distribution of data for unfilled pause is skewed to the right, with mean value
greater than the median value. The skewness indicates that the median value of 0.25
seconds should be taken as the cut-off point for unfilled pauses instead of the mean
value of 0.45 seconds, as 0.25 seconds is the centre of the dataset without being
affected by outliers. Number of unfilled pauses (NUP) counts the number of unfilled
pauses equal to and longer than 0.25 seconds, excluding the first pause at the very
beginning of interpreting.

New parameters are defined based on the outliers. Mild outliers of unfilled pauses are
calculated as any values larger than 1.405 seconds (Q3 + 1.5 times IQR) and smaller or
equal to 2.2 seconds (Q3 + 3 times IQR). Extreme outlier of unfilled pauses is any
value larger than 2.2 seconds (see Table 2). Therefore, number of relatively long
unfilled pauses (NRLUP) and number of particularly long unfilled pauses (NPLUP), cor-
responding to number of mild and extreme outliers, are developed to better describe the
attributes possessed by pauses.

Number of filled pauses (NPF) refers to the number of啊(uh)，嗯(mm)，and呃(er).

5.1.2 Parameters related to articulation time of syllables
New measures in terms of speed are also developed by applying the same method. IQR of
duration per syllable ranges from 0.1 to 0.2 seconds, and mean value is approximately
equal to the median with fewer outliers, indicating trainees hesitated and spoke slowly.
Upper mild outlier of articulation is any value larger than 0.388 seconds (Q3 + 1.5
times IQR) and smaller than or equal to 0.53 seconds (Q3 + 3 times IQR); upper
extreme outlier of articulation is any value larger than 0.53 seconds. Lower mild
outlier of articulation is any value smaller than 0.007 seconds (Q1 − 1.5 times IQR)
and larger than or equal to −1.51 (Q1 − 3 times IQR); lower extreme outlier of articula-
tion is any value smaller than −1.51 seconds (see Table 3). The thresholds help generate
four parameters, namely, number of relatively slow articulation (NRSA), number of par-
ticularly slow articulation (NPSA), number of relatively quick articulation (NMQA), and
number of particularly quick articulation (NEQA).

Table 2. Data distribution based on a five-number summary.
Category Mean Std Min X25. X50. X75. Max IQR

Duration per Syllable 0.207 0.080 0.060 0.150 0.195 0.245 2.680 0.095
Unfilled Pause 0.454 0.591 0.030 0.080 0.250 0.610 8.990 0.530

Table 3. Thresholds to define outliers.
Category Q1-3 times IQR Q1-1.5 times IQR Q3 + 1.5 times IQR Q3 + 3 times IQR

Syllable Speak Duration −0.135 0.007 0.388 0.530
Unfilled Pause −1.510 −0.715 1.405 2.200
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5.2 Predictability of the variables tested in statistical models

5.2.1 Correlation between temporal measures
The inter-correlation among the parameters has been summarised in Figure 2 to esti-
mate regression models better and determine how well each independent variable can
be used most effectively to predict dependent variables. The correlation between two
variables is also measured to check if multicollinearity occurs, which may lead to
skewed or misleading results. On the bottom of the diagonal, the bivariate scatter
plots with a fitted line are displayed to show the correlation between two measures.
The closer the data points gather to form a straight line, the higher the correlation
between the two measures is.

Correlation coefficient values are presented on the top of the diagonal. Interest-
ingly, in theory, some indices that are supposed to cluster together show very low cor-
relation. Although both NUP and MLUP belong to breakdown fluency, no moderate
or strong correlations are identified between them (r = 0.28, p < 0.05). However, two
newly proposed measures, NPLUP and NRLUP, with absolute Pearson’s r values
ranging from 0.63 to 0.87, do have a positive, strong, and moderate correlation
with MLUP, respectively. Pearson correlation analysis also reveals a strong positive
association between NPLUP and ALP (r = 0.81, p < 0.001), and a negative moderate
correlation between NPLUP and PTR (r =−0.67, p < 0.001). Another newly developed
measure, NRSA, has a negative moderate correlation with both SR (r =−0.65, p <
0.001) and AR (r =−0.64, p < 0.001). High correlations between the new parameters
and dependent variables help to explain the variance of dependent variables better
in regression models.

5.2.2 Regression analysis of temporal measures
Five dependent variables are explained with pre-selected most correlated predictors by
building linear regression models. Two general scores between zero and one, the so-
called R2 and adjusted R2, gauge the variance, with a larger adjusted R2 corresponding
to a better fit. Regression models built by best subset selection for each dependent vari-
able include models built with only one variable, all possible combinations of variables
and a full model. The best model predicting AR by stepwise regression is explained by
NFP, NUP, NRSA and MLUP with an adjusted R2 value of 0.480 (see appendix 3).
Four utterance measures, NRSA, NPLUP, NRLUP, and NUP, are selected as potential
predictors in the regression analysis to model SR. 16 regression models are built
totally. In conclusion of SR, the best model by subset is model 15 (i.e., NRSA +
NPLUP, + NRLUP +NUP) with an adjusted R2 value of 0.547; the best model by stepwise
regression is explained by model 16 (NFP + NRSA +MLUP +MLFP + NUP) with an
adjusted R2 value of 0.591 (see appendix 4). The analysis in appendix 5 predicts PTR
by NPLUP, MLUP, NRLUP and NUP. The last model via stepwise selection explains
71.4% of PTR variance, and the full model explains 66.1%, the two most successful
models predicting PTR in the study. ALP is perfectly explained by two different sets of
predictors (see appendix 6). The model with only one variable of MLU accounts for
83.6% of the variance in ALP as the best result. As for the models predicting MLR, the
one by stepwise selection produces the best results (56.4%) with NUP and MLFP (see
appendix 7).
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Figure 2. Correlation matrix chart. Note * p < 0.05, **p < 0.01, ***p < 0.001.
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5.2.3 Regression analysis explaining holistic manual ratings
Regression models are built to compare their ability to predict manual scores with depen-
dent and independent variables, respectively. The score Table 4 presents results for
models with the best performance. Model 1 using two independent predictors (MLFP,
NPLUP) shows a more desired property of goodness of fit, though this parsimonious
model explains 16.6% of the variance of ratings. In contrast, models built with dependent
variables display limited explanatory power in Model 3 (SR) and Model 4 (AR + PTR +
MLR), explaining 6.6% of the variance of human ratings.

6. Discussion

About Research Question 1, the prosodic features in interpreting that would be lost in
manual transcription are retained and extracted via the rule-based calculation based
on timestamps by means of Python script. It is expected that once the parameters
have been identified, the rule-based programming could automate the extraction and
annotation for the future research. Specifically, the study integrates automatic transcrip-
tion results and timestamps provided by the Waston service provided by IBM. The inno-
vative part about identifying the fluency parameters using ‘speech-to-text’ service than
software for speech analysis in phonetics is that it uses the timestamps to calculate
pauses and articulation time and conduct statistical analysis so that all the prosodic infor-
mation can be extracted in batches.

Concerning Research Question 2, breakdown fluency related to filled pauses, unfilled
pauses and speed fluency concerning articulation rate can be identified through auto-
mated processing of interpreting data. Ten parameters are identified through the auto-
mated processing of interpreting data, namely, number of unfilled pauses, mean
length of unfilled pauses, number of relatively long unfilled pauses, number of particu-
larly long unfilled pauses, number of filled pauses, mean length of filled pauses,
number of relatively slow articulation, number of particularly slow articulation,
number of relatively quick articulation, and number of particularly quick articulation.
Seven of them are newly defined parameters (NUP, NRLUP, NPLUP, NRSA, NPSA,
NRQA, NPQA).

As the most important index of breakdown fluency, the straightforward way to
describe and characterise it is to define its threshold. However, the controversy concern-
ing the selection of a pause in the literature shows that there has been little empirical evi-
dence supporting the choice of a particular threshold. Like previous studies (Goldman-
Eisler, 1958; Towell et al., 1996), this study also uses 0.25 seconds as the threshold of
unfilled pauses. While this result resonates with the finding, the principles employed
to conclude are different. The centre value of 0.25 seconds in the study accurately rep-
resents the length of unfilled pauses in trainees’ performance because very short or

Table 4. Regression models predicting overall assessment SCORE.
No. Variables Predictors R2 Adjusted R2

1 Independent variables MLFP + NPLUP 0.201 0.166
2 NRLUP + MLUP + MLFP 0.215 0.163
3 Dependent variables SR 0.086 0.066
4 AR + PTR + MLR 0.124 0.066
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long pauses influence the widely used average value of 0.45 seconds. It is noticeable that
0.25 seconds as the median value is smaller than 0.45 seconds as the mean value, indicat-
ing that the data are ‘skewed’ such that the mean is pulled higher by long pauses. Since
the threshold is only valid for the specific data set in this study and maybe a different
result in other language pairs or ever larger data sets. It is suggested that the median is
informative to be used as a cut-off for an unfilled pause in future studies. By calculating
the interquartile range, we determine whether some long pauses are outliers and dis-
tinguish relatively long pauses from particularly long pauses to explain indicators accu-
rately. The newly developed parameters in the study are scientifically interesting
observations. Future interpreting research may identify the long pauses as outliers
based on the five-number summary. The same method has been applied to distinguish
articulation-related parameters.

Regarding Research Question 3, correlations among the parameters prove that the
newly developed measures correlate more with the dependent variables. Han et al.
(2020) suggest that no correlation is identified among the measures of breakdown
fluency. However, the study does not resonate with the previous findings, as number
of particularly long unfilled pauses has strongly positive correlations with both mean
length of unfilled pauses and average length of pauses, and number of relatively long
unfilled pauses has a moderately positive correlation with mean length of unfilled
pauses. Measures of speed fluency cluster together, as the number of relatively slow
articulation has a moderately negative correlation with both speaking and articulation
rate. The strong relationships among these indices indicate that these parameters,
defined by outliers, can be used to judge fluency, for they better reflect trainees’ unprofi-
ciency and limited competence.

About Research Question 4, i.e., how much variation of dependent variables is
explained by fluency parameters, it is found that the independent variables can explain
the variation of the dependent variables. In the models best-predicting articulation
rate, speaking rate, phonation time ratio, average length of pause, and mean length of
runs, the R2 value ranges from 83.6% to 48%, with the selected parameters as number
of filled pauses, number of unfilled pauses, number of relatively slow articulation,
mean length of unfilled pauses, mean length of filled pauses. Although number of par-
ticularly long unfilled pauses correlates highly with mean length of unfilled pauses,
these two independent variables have not been selected simultaneously in the best
regression models predicting independent variables by stepwise selection. Therefore,
the parameter chosen can be used to build a machine-learning model as it does not
imply imperfect multicollinearity.

With respect to the approaches utilised in building the regression models, the best
model explaining the variation of all the dependent variables are those built through
the stepwise regression setup. This methodology selects all accurate measures and
excludes all the noise predictors. It is beneficial when theory and experience provide a
vague sense of which variables to include in the model. For instance, in the models pre-
dicting mean length of runs, since number of relatively long unfilled pauses and number
of unfilled pauses correlate highly with mean length of runs, model 3 chooses these two
measures to build a full model. However, stepwise selection in model 4 chooses number
of unfilled pauses and mean length of filled pauses, the parameter showing a weak cor-
relation with the mean length of runs, to build the regression model. Incidentally, the
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model built through the stepwise selection process presents a better result because it
addresses the problem of overfitting. The model reduces the noise and makes a
maximum contribution to explaining the variation of the dependent variables.

Regression models parsimoniously explain 16.6% of variance of human ratings. The
model presents a weak explanatory power but is acceptable because human ratings are
given by a holistic approach and the high variance in interpreting data. Therefore,
fluency accounts for only a tiny portion of the variation. The results compared
between the best models built with the newly developed parameters (adjusted R2 =
16.6%) and the dependent variables (adjusted R2 = 6.6%) show that new parameters
explain human ratings better. The result of two best models using mean length of
filled pauses is in line with previous findings, as Yu and van Heuven (2017) suggest
that measures related to filled pauses could be taken as a significant predictor of
fluency ratings. The study also finds that mean length of unfilled pauses, and two
specific measures related to articulation time constitute models explaining judged
fluency, which partially corroborates with Han et al. (2020).

7. Conclusion

This study identifies and vectorises objective utterance measures through descriptive
statistical analysis of interpreting data. It also explores the best explanation for the vari-
ation of dependent variables with newly defined parameters. The regression models built
with these new parameters explain the variation in five dependent variables from 48% to
83%. The analysis results indicate that (a) future interpreting studies should select the
median value as the threshold for unfilled pauses or articulation rate; (b) outliers can
be extracted as the relatively long and particularly long unfilled pauses, as well as rela-
tively slow articulation and particularly slow articulation; (c) newly developed par-
ameters explain human ratings better than well-established ones; (d) number of filled
pauses, number of unfilled pauses, number of relatively slow articulation, mean length
of unfilled pauses, mean length of filled pauses are selected to build machine-learning
models to predict interpreting fluency in future studies.

Identification of dependent variables and redefinition of their correlation to fluency is
applicable for the machine-learning-based automated interpreting assessment system.
Similar to word embedding approach in deep learning for natural language processing
where each word is represented by a real-valued vector, in this study, each fluency par-
ameter is mapped to one vector so that the vector values are to be further learned by
machine in a way that resembles human ratings of fluency. This has both methodological
and practical implications for not only assessment of fluency in practice and research but
also assessment of interpreting quality in a broader sense.

Despite the above findings, the study has several limitations. Firstly, the non-normal
data of some independent variables with skewed distributions violated normality
assumptions. With the application of our newly developed tool in future studies,
larger normally distributed databases can help improve the explanatory power of the
regression models. Secondly, the study only examines speed measures, while repair fea-
tures remain unexplored because automatic segmentation of speech data is carried out on
the basis of unfilled pauses rather than semantic meanings. Extraction of repair features
such as false starts or reformulation is based on accurate punctuation-delimited clauses.
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Automatic speech recognition views pause as the boundaries between sentences when
splitting audio files. Thus, inaccurate segmentation of the flow of speeches may result
in invalid feature extraction. Future research can explore the possibility of segmentation
based on text understanding via deep learning technology.
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Appendices

Appendix 1. Rating scale for delivery in Consecutive Interpreting

• Fluency and
good pace
• Articulation
and
pronunciation
• Ability to
engage with
the audience
• Stamina

Very Good (70–
100)
Engaging and
communicative
performance
which conveyed
the source
speaker’s
emotions and
intentions. Clear
articulation and
projection with
little to no sign of
nerves.

Good (60–69)
Confident
performance.
Little to no
hesitation or
fillers in
delivery. Clear
articulation
with good
expression and
projection.
Frequent and
appropriate
eye contact.

Pass (50–59)
Some
hesitation but
does not
interrupt flow
of
performance.
Clear
articulation
with only
minor/
infrequent
fillers. Good
frequency and
length of eye
contact. Good
voice
projection.

Poor (40–49)
Some
hesitancy in
performance.
Use of fillers
and unclear
articulation.
Insufficient eye
contact or
engagement
with the
audience.

Very Poor (0–
39)
Hesitant
performance.
Frequent use of
fillers. Lack of
eye contact.
Poor
intonation/
voice
modulation.
Inappropriate
projection (too
quiet/too loud).
Lack of clear
articulation.

Appendix 2. Descriptive statistics and normality tests for parameters and score

Parameter Mean SD STDERR Skewness Kurtosis Shapiro_Wilk statistic2 sw_p_value
SCORE♣ 58.709 7.349 0.724 0.214 −1.061 0.956** 0.002
NFP♣ 6.359 8.899 0.877 3.295 15.223 0.660** 0.000
NPLUP♣ 7.942 7.746 0.763 1.508 1.874 0.821** 0.000
NRLUP♣ 12.854 8.365 0.824 1.188 2.416 0.922** 0.000
NUP♣ 117.825 43.058 4.243 0.651 0.488 0.967* 0.011
NPSA♣ 1.689 2.249 0.222 2.218 6.158 0.731** 0.000
NRSA♣ 22.262 14.198 1.399 0.815 −0.070 0.929** 0.000
MLUP 0.858 0.163 0.016 0.475 0.048 0.978 0.081
MLFP♣ 0.457 0.394 0.039 0.816 0.345 0.920** 0.000
ALP♣ 0.836 0.175 0.017 0.576 −0.334 0.958** 0.003
MLR 0.086 0.021 0.002 0.216 −0.512 0.987 0.394
AR♣ 4.371 0.434 0.043 0.300 −0.935 0.959** 0.003
SR♣ 3.270 0.469 0.046 0.284 −1.023 0.960** 0.003
PTR 0.705 0.058 0.006 0.224 −0.485 0.981 0.148

Note. ♣ Violated normality assumption, based on Shapiro-Wilk test; **p < 0.01; *p < 0.05.

Appendix 3. Regression models predicting articulation rate (AR)

No. Approach Predictors R2 Adjusted R2 Standard error
1 Best Subset Selection NRSA 0.415 0.403 0.298
2 NPSA 0.264 0.248 0.421
3 NPSA + NRSA 0.429 0.404 0.299
4 Stepwise Selection NFP + NUP + NRSA + MLUP 0.523 0.480 0.282
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Appendix 4. Regression models predicting Speaking Rate (SR)

No. Approach Predictors R2 Adjusted R2 Standard error
1 Best Subset Selection NRSA 0.417 0.404 0.324
2 NRLUP 0.358 0.344 0.339
3 NUP 0.346 0.333 0.344
4 NPLUP 0.319 0.305 0.384
5 NRSA + NRLUP 0.541 0.521 0.294
6 NRSA + NPLUP 0.527 0.506 0.297
7 NRSA + NUP 0.474 0.451 0.312
8 NPLUP + NUP 0.465 0.441 0.319
9 NPLUP + NRLUP 0.449 0.425 0.321
10 NRLUP + NUP 0.418 0.393 0.336
11 NRSA + NPLUP + NRLUP 0.584 0.556 0.290
12 NRSA + NPLUP + NUP 0.553 0.523 0.292
13 NRSA + NRLUP + NUP 0.543 0.512 0.293
14 NPLUP + NRLUP + NUP 0.491 0.458 0.318
15 NRSA + NPLUP + NRLUP + NUP 0.585 0.547 0.290
16 Stepwise Selection NFP + NRSA + MLUP + MLFP + NUP 0.634 0.591 0.266

Appendix 5. Regression models predicting Phonation Time Rate (PTR)

No. Approach Predictors R2 Adjusted R2 Standard error
1 Best Subset Selection NUP 0.460 0.449 0.040
2 NRLUP 0.452 0.441 0.042
3 MLUP 0.410 0.398 0.043
4 NPLUP 0.393 0.380 0.044
5 MLUP + NUP 0.680 0.666 0.033
6 NPLUP + NUP 0.597 0.579 0.035
7 NPLUP + NRLUP 0.561 0.541 0.040
8 NRLUP + NUP 0.541 0.521 0.040
9 MLUP + NRLUP 0.530 0.509 0.041
10 NPLUP + MLUP 0.431 0.406 0.041
11 NPLUP + MLUP + NUP 0.685 0.664 0.030
12 MLUP + NRLUP + NUP 0.681 0.659 0.033
13 NPLUP + NRLUP + NUP 0.627 0.602 0.036
14 NPLUP + MLUP + NRLUP 0.561 0.532 0.040
15 NPLUP + MLUP + NRLUP + NUP 0.689 0.661 0.030
16 Stepwise Selection NUP + NRSA + MLUP + MLFP 0.738 0.714 0.028

Appendix 6. Regression models predicting Average Length of Pause (ALP)

No. Approach Predictors R2 Adjusted R2 Standard error
1 Best Subset Selection MLUP 0.840 0.836 0.067
2 NPLUP 0.659 0.652 0.114
3 NPLUP + MLUP 0.841 0.834 0.067
4 Stepwise Selection MLUP 0.840 0.836 0.066

Appendix 7. Regression models predicting Mean Length of Runs (MLR)

No. Approach Predictors R2 Adjusted R2 Standard error
1 Best Subset Selection NUP 0.555 0.546 0.016
2 NRLUP 0.267 0.251 0.018
3 NRLUP + NUP 0.555 0.536 0.017
4 Stepwise Selection NUP + MLFP 0.582 0.564 0.014
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