
This is a repository copy of Calculating concentratable entanglement in graph states.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/192173/

Version: Published Version

Article:

Cullen, A.R. and Kok, P. (2022) Calculating concentratable entanglement in graph states. 
Physical Review A, 106 (4). 042411. ISSN 2469-9926 

https://doi.org/10.1103/physreva.106.042411

©2022 American Physical Society. Reproduced in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



PHYSICAL REVIEW A 106, 042411 (2022)

Calculating concentratable entanglement in graph states
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We propose a method to calculate the purity of reduced states of graph states entirely within the stabilizer

formalism, using only the stabilizer generators for a given state. We apply this method to find the concentratable

entanglement of graph states, with examples including a single qubit within any graph state, states proposed for

use in quantum repeaters, and states that maximize and minimize the overall concentratable entanglement.
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I. INTRODUCTION

The quantum phenomenon of entanglement [1,2] that is

present in quantum states associated with graphs [3] makes

such states a useful resource in quantum information process-

ing. When used for measurement based quantum computation

(MBQC) [4] and the one-way quantum computer [5,6], the

specific computation dictates the structure of the graph state.

Conversely, the entanglement structure of a graph state deter-

mines its effectiveness in applications such as the quantum

repeater [7–9], quantum error correction codes [10,11], and

quantum secret sharing [12]. An entanglement measure is

required to investigate the structure of the multipartite entan-

glement within a graph state.

Entanglement across the two subsystems within a bipar-

tite quantum state is well understood. An initial qualitative

test of entanglement is the Peres-Horodecki criterion [13,14].

A widely used quantitative measure is entanglement of for-

mation [15], which for pure states coincides with the von

Neumann entropy of the reduced state of either subsystem.

The definition can be extended to mixed states by considering

ensembles of pure states. Entanglement of formation for pure

states can also be defined as a function of concurrence [16];

a different entanglement measure that applies to pure states

of two qubits, which can be adapted to apply to bipartite

systems [17].

Entanglement in multipartite states is more difficult to

characterize and quantify, as the ways in which a state can

be entangled increase with the number of parties involved. A

widely cited example of different kinds of entanglement, first

discussed by Dür et al. [18], is demonstrated when consider-

ing three-party entanglement, as the entanglement present in

a three-qubit Greenberger-Horne-Zeilinger (GHZ) state dif-

fers from that in a three-qubit W state. It is not possible to

transform either state to the other using local operations and

classical communication (LOCC). Several existing multipar-

tite measures are functions of bipartite entanglement measures

[19–21], sometimes considered over multiple bipartitions of

the state; for example, this approach is applied to generalize

concurrence to multipartite states [21].

A recently proposed multipartite entanglement measure

is concentratable entanglement [22]. This is shown to be

a valid pure state entanglement measure [22], as it satis-

fies the two standard postulates for entanglement measures

[23] concerning monotonicity under LOCC and vanishing on

separable states. Further properties of the measure are demon-

strated including subadditivity and continuity. When defined

for different cuts of qubits within a state, concentratable en-

tanglement relates to several existing measures [16,17,19–

21,24,25], making it a candidate for adoption as the universal

multipartite entanglement measure of pure states. Like other

measures, one approach to calculating concentratable entan-

glement is to consider bipartitions of the multipartite quantum

state. The purities of the corresponding reduced density matri-

ces are required to evaluate the concentratable entanglement.

The multipartite entanglement of graph states has previ-

ously been investigated in terms of Schmidt measure and

Schmidt rank [3,26], which can be challenging to compute.

Concentratable entanglement offers a new measure that can

be applied to graph states. Using the stabilizer formalism

[10], which gives a convenient and efficient mathematical de-

scription of graph states, we have developed a method reliant

only on the stabilizer generators for determining reduced state

purities and thus concentratable entanglement for graph states.

This allows for calculation of the concentratable entanglement

for examples such as single qubits in graph states, for subsets

of qubits within graph states proposed for use in quantum

repeaters, and as a measure of the overall entanglement for

any graph state.

II. BACKGROUND

We begin by outlining the mathematical background re-

quired to define concentratable entanglement [22], graph

states within the stabilizer formalism, and how measurements

of individual qubits affect a graph state [3].

A. Concentratable entanglement

Concentratable entanglement [22] can be used as a mea-

sure of multipartite entanglement of a pure quantum state |ψ〉.

For a state of n qubits with labels in S = {1, . . . , n}, the con-

centratable entanglement can be calculated for the full set to

determine the overall entanglement, or it can be applied to any
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nonempty subset s ⊆ S to investigate the structure of the en-

tanglement within the state. Operationally, the concentratable

entanglement corresponds to the probability of producing Bell

pairs in a SWAP test [27]. The concentratable entanglement of

|ψ〉 can be defined in terms of SWAP test outcomes, making

it possible to efficiently calculate its value using quantum

computers and two copies of |ψ〉.

However, without the physical resource of a quantum com-

puter, the definition of the concentratable entanglement in

terms of purities still offers a method to determine the entan-

glement of a (subset of a) state. For a nonempty set of qubit

labels s ⊆ S , the concentratable entanglement is [22]

C|ψ〉(s) = 1 −
1

2|s|

∑

α∈P (s)

Trρ2
α, (1)

where ρα is the density matrix of the reduced state with qubits

labeled by the set α, which is a subset of the power set P (s).

This requires the calculation of up to 2n purities, including the

trivial case Trρ2
∅ = 1.

B. Graph states

In order to describe graph states, we first define the Pauli

matrices as

X =

(

0 1

1 0

)

, Y =

(

0 −i

i 0

)

, Z =

(

1 0

0 −1

)

. (2)

A graph G = (V, E ) is determined by a set of vertices V

and a set of edges E connecting pairs of vertices. Graphs

can be used as pictorial representations of entangled quantum

states. Each vertex represents a qubit in the |+〉 eigenstate, i.e.,

the eigenstate of the Pauli X operator corresponding to the

eigenvalue +1. Edges denote interactions between qubits in

the form of controlled-Z (CZ) operations. Such quantum states

are known as graph states. Since there is no entanglement

between disconnected graphs, we consider only connected

graphs.

The neighborhood n(a) of a vertex a ∈ V is the set of

vertices connected to a by a single edge. In a graph state

this identifies the qubits that jointly undergo a CZ operation

with a.

Each qubit in the graph state |G〉 can be assigned a Hermi-

tian operator of the form [5]

Sa = Xa

∏

b∈n(a)

Zb. (3)

These n operators form the generators of an Abelian group,

known as the stabilizer SG of the state |G〉. The 2n elements

in the stabilizer are the products of all possible subsets of the

stabilizer generators including the identity I . The stabilizer is

a subgroup of the Pauli group for n qubits, i.e., SG ⊂ Gn. The

state |G〉 is an eigenstate with eigenvalue +1 for any element

S of the stabilizer

S |G〉 = |G〉 ∀S ∈ SG. (4)

The stabilizer formalism provides an efficient way to fully

specify graph states.

C. Measurement

When a gate from the Clifford group or a Pauli mea-

surement is applied to a stabilizer state, the resulting state

is also a stabilizer state. This is a useful property that can

be applied when considering measurements on qubits within

graph states.

The simplest measurement to describe on a graph state is

that of the Pauli Z operator on a single qubit. As an immediate

consequence of such a measurement, the measured qubit is

removed from the graph state. Depending on the measurement

outcome with possible values +1 or −1, the individual qubit

is in one of the two eigenstates of the Z operator, |0〉 or |1〉,

with stabilizer generator Z or −Z , respectively.

Though the measured qubit is disconnected from the graph

state, it still affects the remaining state. When qubit a ∈ V is

measured, the graph becomes G′ = G − {a} where all edges

to vertex a are removed. The state of the remaining qubits

is U |G − {a}〉 where U is a unitary operator determined by

the measurement outcome of a. For the outcomes ±1 the

respective unitaries are

U+ = I and U− =
∏

b∈n(a)

Zb. (5)

In the stabilizer formalism the stabilizer generator S′
b for each

remaining vertex b ∈ V ′ will again take the form of Eq. (3).

The unitary operator corresponding to the outcome is applied

to each generator as US′
bU

† to give the generators for the state

U |G − {a}〉.

An alternative method is to take the original set of stabilizer

generators for |G〉 and set the stabilizer generator for the

measured qubit to ±Za. The generators for qubits that were

not within the neighborhood of qubit a remain unchanged.

However, the generators for qubits within the neighborhood

of a, which contain the term Za, are multiplied by the new

generator ±Za, allowed by the group structure of the new

stabilizer. This produces the new stabilizer generators without

explicitly drawing the graph representing the quantum state.

III. PURITIES OF REDUCED GRAPH STATES

Calculating the purities required within the concentratable

entanglement relies on the reduced states of different subsets

of qubits. Within the stabilizer formalism, a reduced state can

be described as a mixture of several pure states, each of which

has its own set of stabilizer generators. We show that the

number of distinct sets of stabilizer generators corresponds

to the purity of the reduced state that the sets of generators

collectively describe.

Consider a bipartition (A, B) of qubits within the graph G.

The reduced state of the qubits in B is found by tracing out the

qubits in A:

ρB = TrA(|G〉 〈G|). (6)

This partial trace is equivalent to measuring the qubits in

A and discarding the outcome. These measurements can be

performed in the Z direction, where the outcomes ±1 each

occur with probability 1/2.

Through repeated application of the Z measurement rule

and unitaries given in Eq. (5), and considering all possible
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outcomes, the density operator for the reduced state of the

qubits in B is

ρB =
1

2|A|

∑

z∈FA
2

U (z) |G − A〉 〈G − A|U (z)†, (7)

where F2 is the finite field of two elements {0, 1}. An element

of the finite field F
A
2 is a bitstring z of length |A|. In F

A
2

addition and subtraction are equivalent and performed modulo

2 without carry. The local unitaries are [3]

U (z) =
∏

a∈A

(

∏

b∈n(a)∩B

Zb

)za

, (8)

where za = 0 represents the outcome +1 and za = 1 for −1.

Within the unitaries, only qubits in the neighborhood of mea-

sured qubits which are also in B need to be considered. This

is because the individual qubits in A can be measured in any

order, making it possible for neighborhood qubits to already

be disconnected from the graph. Further, Zb for b ∈ A has

no effect on the state |G − A〉, which does not contain qubits

in A.

For completeness, we prove the following properties of

these unitary operators that have previously been stated and

applied [3], as they provide the basis for proving our own

result regarding the purities of reduced states.

Lemma (Hein-Eisert-Briegel). (1) For different measure-

ment outcomes z and z′ to give the same unitary operator, i.e.,

U (z) = U (z′), the bitstrings must satisfy [3]

U (z − z′) = I. (9)

(2) If U (z) �= U (z′), then the states U (z) |G − A〉 and

U (z′) |G − A〉 are orthogonal.

Proof. (1) Using the definition of the unitary operator in

Eq. (8),

U (z − z′) =
∏

a∈A

(

∏

b∈n(a)∩B

Zb

)za−z′
a

=
∏

a∈A

(

∏

b∈n(a)∩B

Zb

)za
∏

a′∈A

(

∏

b′∈n(a′ )∩B

Zb′

)−z′
a′

=
∏

a∈A

(

∏

b∈n(a)∩B

Zb

)za
∏

a′∈A

(

∏

b′∈n(a′ )∩B

Z−1
b′

)z′
a′

= U (z)U (z′)†.

(10)

This is equal to the identity

U (z − z′) = U (z)U (z′)† = I, (11)

and by right multiplying by U (z′), this gives U (z) = U (z′).

(2) If U (z) �= U (z′), then U (z)U (z′)† �= I using the above

proof. U (z)U (z′)† is a product of Pauli Z operators, as shown

in Eq. (10), which in the simplest case consists of a single

operator Z j where j ∈ B. Qubit j in the remaining graph

G′ = G − A is associated with a stabilizer generator S′
j in the

form of Eq. (3) that satisfies S′
j |G

′〉 = |G′〉. The inner product

of the states U (z) |G − A〉 and U (z′) |G − A〉 is

〈G′|U (z′)†U (z) |G′〉 = 〈G′| Z j |G
′〉

= 〈G′| Z jS
′
j |G

′〉

= 〈G′| Z jX j

∏

b∈n( j)Zb |G′〉

= 〈G′| (−X jZ j )
∏

b∈n( j)Zb |G′〉

= − 〈G′| (X j

∏

b∈n( j)Zb)Z j |G
′〉

= − 〈G′| S
′†
j Z j |G

′〉

= − 〈G′| Z j |G
′〉

= − 〈G′|U (z′)†U (z) |G′〉 . (12)

This is satisfied only when 〈G′|U (z′)†U (z) |G′〉 = 0 so the

states U (z) |G − A〉 and U (z′) |G − A〉 are orthogonal.

More generally, U (z)U (z′)† can be written as

U (z)U (z′)† = Z j

∏

c∈C

Zc, (13)

where C is a subset of B \ j.
∏

c∈C Zc commutes with S′
j so

replacing Z j by the more general expression for U (z)U (z′)†

in Eq. (12), the states U (z) |G − A〉 and U (z′) |G − A〉 satisfy

〈G − A|U (z′)†U (z) |G − A〉 = 0 and hence are orthogonal. �

The unitary operators U (z) can used within the stabilizer

formalism to find the reduced state of qubits in B. The set

of stabilizer generators for each outcome must be considered

separately. The remaining graph G − A can be found by re-

moving all edges to qubits in A and the stabilizer generator

S′
b for each qubit b ∈ B is given by Eq. (3). Then for each

outcome, the corresponding unitary operator must be applied

to each stabilizer generator according to U (z)S′
bU (z)†, giving

a new stabilizer for each unitary operator.

An alternative method does not require calculation of the

unitary operators corresponding to each measurement out-

come. Instead, in the set of stabilizer generators for the

original graph G, the stabilizer generator for each qubit a ∈ A

can be set to ±Za. Then the group structure of the stabilizer

can be used to determine the stabilizer generators for the

remaining graph only in terms of qubits in B. This process

is repeated to give a set of stabilizer generators for each

measurement outcome.

The following theorem provides a link between the sets

of stabilizer generators that describe a reduced state and the

purity of that reduced state. This is the main component in

calculating the concentratable entanglement.

Theorem 1. Consider a graph state bipartitioned into sets

A and B. Let k ∈ N denote the number of distinct sets of

stabilizer generators for the different measurement outcomes

when measuring the qubits in A. The purity of the reduced

state of qubits in B is then

Trρ2
B =

1

k
. (14)

Proof. When measuring the qubits in A there are 2|A| pos-

sible outcomes. Each outcome is represented by a bitstring

z ∈ F
A
2 , which is associated with a unitary operator U (z).

Therefore there are 2|A| unitary operators. However, these

unitaries need not be unique.
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For any graph state and subset A of qubits, the outcome

represented by the bitstring made entirely of zeros leads to the

identity operator

U (0) = I. (15)

If U (0) is the sole identity operator, operators U (z) and

U (z′) are equal when z − z′ = 0 using the Hein-Eisert-Briegel

lemma. This is solved trivially by z = z′ but has no further

solutions. Therefore when one operator is the identity, all

remaining unitaries take distinct values.

Consequently, for any unitary to occur more than once,

there must be further operators equal to the identity. If a

second operator is the identity, i.e., U (w) = I for some w �= 0,

the remaining elements in the finite field can be matched into

pairs whose difference modulo 2 is w. Therefore there are

2|A|/2 = 2|A|−1 different unitaries, each of which occurs twice.

If a third unitary is set to the identity, U (v) = I for

v /∈ {0, w}, then it follows that a fourth unitary, U (v′) where

v′ = v − w, must also be the identity. Hence

U (0) = U (w) = U (v) = U (v′) = I. (16)

For any remaining z ∈ F
A
2 , U (z) is equal to three other uni-

taries, those for which the bitstring differs from z by w, v, or

v′. There are 2|A|/4 = 2|A|−2 different unitary operators, each

occurring four times.

More generally, if there are 2 j unitary operators that are

the identity where 0 � j � |A|, then there are k = 2|A|− j dif-

ferent values for the unitary operators, each of which has

multiplicity 2 j .

To find the purity of the reduced state, first the density

operator must be squared. Using Eq. (7), this gives

ρ2
B =

1

22|A|

∑

z,z′

U (z) |G′〉 〈G′|U (z)†U (z′) |G′〉 〈G′|U (z′)†,

(17)

where G′ = G − A for brevity. By the Hein-Eisert-Briegel

lemma, if U (z) �= U (z′), then 〈G′|U (z)†U (z′) |G′〉 = 0 since

the states U (z) |G′〉 and U (z′) |G′〉 are orthogonal. In the

2 j cases when U (z) = U (z′), including the case z = z′,

〈G′|U (z)†U (z′) |G′〉 = 1. This leads to

ρ2
B =

2 j

22|A|

∑

z∈FA
2

U (z) |G′〉 〈G′|U (z)† =
1

k
ρB. (18)

The trace is then taken, resulting in a purity given by

Trρ2
B =

1

k
, (19)

since TrρB = 1.

If there are k different unitaries, this leads to k different

sets of stabilizer generators to describe the graph state once

the qubits in A have been removed by measurement. Each of

the k unitaries is applied to give a set of generators according

to US′
bU

† for all b ∈ B. �

For any bipartition, the purities of the reduced states ρA and

ρB are related by [28]

Trρ2
A = Trρ2

B, (20)

due to the Schmidt decomposition theorem. When calculating

purities using Theorem 1, the smaller partition from (A, B)

can be traced out, reducing the number of bipartitions of an

n-qubit state to consider by one half.

Theorem 1 also applies when using the alternative method

of finding sets of stabilizer generators without calculating the

unitary operators, since this method results in the same sets of

stabilizer generators.

IV. EXAMPLES

The result of Theorem 1 can be applied within the stabi-

lizer formalism to calculate the concentratable entanglement

for cuts of qubits of graph states with different designs and

applications. We will consider several examples here.

a. Single qubits. The concentratable entanglement for a set

containing a single qubit a in an n qubit graph state |G〉 is

C|G〉({a}) = 1
4
. (21)

To show this, consider any connected graph state of n qubits.

To find the concentratable entanglement for a set s containing

a single qubit, the purity of the reduced state of the single qubit

must be calculated. The reduced state can be found by tracing

out the other n − 1 qubits and considering all 2n−1 possible

measurement outcomes. However, this can be simplified by

instead using Eq. (20) and only tracing out the qubit of in-

terest. When bipartioning the set S = {1, . . . , n} of all qubit

labels, the set A = {a} contains a single qubit and B = S \ {a}

contains the remaining n − 1 qubits.

The stabilizer generators for the graph take three forms.

Firstly, qubit a has the stabilizer generator

Sa = Xa

∏

b∈n(a)

Zb. (22)

Second, the stabilizer generator for each qubit b ∈ n(a) is

Sb = ZaXb

∏

k∈ñ(a)

Zk, (23)

where ñ(a) = n(b) \ {a}. Finally, qubits c ∈ B \ n(a) have sta-

bilizer generators of the form

Sc = Xc

∏

m∈n(c)

Zm, (24)

where n(c) cannot contain qubit a.

By tracing out qubit a, its stabilizer generator must be

updated to ±Za. In both cases generators in the form of Sc

remain valid. However, each Sb must be multiplied by ±Za

so the new generator contains only Pauli operators acting on

qubits in B. The possible sets of stabilizer generators are

Za −Za

S′
b = Xb

∏

k∈ñ(b) Zk S′
b = −Xb

∏

k∈ñ(b) Zk

S′
c = Xc

∏

m∈n(c) Zm S′
c = Xc

∏

m∈n(c) Zm,

where there is a stabilizer generator in both sets for each

b ∈ n(a) and each c ∈ B \ n(a). The stabilizer generators for

qubits in the neighborhood of qubit a acquire a minus sign

when the measurement outcome is −1.

There are two possible sets of stabilizer generators to de-

scribe the reduced states of qubits in B. Applying Theorem 1

042411-4
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FIG. 1. A six-qubit graph state. The qubit labels can be bipar-

titioned, with qubits in set A represented by hollow vertices and

qubits in set B by filled vertices. (a) A = {4, 6}, B = {1, 2, 3, 5}. (b)

A = {3, 4, 6}, B = {1, 2, 5}.

and Eq. (20), the purity is

Trρ2
B = 1

2
= Trρ2

a . (25)

Therefore the concentratable entanglement for a single qubit

within any connected graph state, where s = {a}, is

C|G〉({a}) = 1 − 1
2

(

1 + Trρ2
a

)

= 1
4
. (26)

b. A six-qubit graph. Figure 1 shows a graph state with qubit

labels S = {1, . . . , 6}. This is graph No. 13 according to the

standard numbering of graph state local unitary (LU) equiv-

alence classes [3,29,30]. The graph is described by stabilizer

generators

S1 = X1Z2

S2 = Z1X2Z3

S3 = Z2X3Z4 Z6

S4 = Z3X4Z5

S5 = Z4X5

S6 = Z3 X6.

(27)

To find the purity of the reduced state of qubits 1, 2, 3, and

5, qubits 4 and 6 must be traced out. The stabilizer generators

for qubits 4 and 6 are set to ±Z4 and ±Z6 to account for

all possible measurement outcomes, where qubits 4 and 6

collapse into the eigenstates of the Z operator. This results

in the following sets of stabilizer generators to describe the

remaining state:

{Z4, Z6} {Z4,−Z6}

S′
1 = X1Z2 S′

1 = X1Z2

S′
2 = Z1X2Z3 S′

2 = Z1X2Z3

S′
3 = Z2X3 S′

3 = −Z2X3

S′
5 = X5 S′

5 = X5

{−Z4, Z6} {−Z4,−Z6}

S′
1 = X1Z2 S′

1 = X1Z2

S′
2 = Z1X2Z3 S′

2 = Z1X2Z3

S′
3 = −Z2X3 S′

3 = Z2X3

S′
5 = −X5 S′

5 = −X5.

There are four distinct sets of stabilizer generators and

therefore by Theorem 1 the purity of the reduced state of

qubits 1, 2, 3, and 5 is

Trρ2
1235 = 1

4
. (28)

Instead, if qubits 3, 4, and 6 are traced out, the stabilizer

generators for each of these qubits must be changed to con-

sider all possible outcomes. Since the stabilizer generators

where qubits 4 and 6 are traced out have already been cal-

culated, only the stabilizer generator for qubit 3 needs to be

updated. The stabilizer generator for qubit 3 is set to ±Z3

within each set. Therefore the sets of stabilizer generators for

the remaining qubits are

{Z3, Z4, Z6} {−Z3, Z4, Z6}

{Z3, Z4,−Z6} {−Z3, Z4,−Z6}

S′′
1 = X1Z2 S′′

1 = X1Z2

S′′
2 = Z1X2 S′′

2 = −Z1X2

S′′
5 = X5 S′′

5 = X5

{Z3,−Z4, Z6} {−Z3,−Z4, Z6}

{Z3,−Z4,−Z6} {−Z3,−Z4,−Z6}

S′′
1 = X1Z2 S′′

1 = X1Z2

S′′
2 = Z1X2 S′′

2 = −Z1X2

S′′
5 = −X5 S′′

5 = −X5.

Though there are eight possible measurement outcomes,

this results in only four distinct sets of stabilizer generators.

Therefore by Theorem 1 the purity of the reduced state of

qubits 1, 2, and 5 is

Trρ2
125 = 1

4
. (29)

This is also the purity of the state ρ346 due to Eq. (20) and of

the states ρ145 and ρ236 because of the symmetry of the graph

in Fig. 1.

This method can be used to find the purities of all possible

reduced states of the graph state. For the six bipartitions where

the smaller set contains a single qubit, the purity is 1/2 from

Example a. When the smaller set in the bipartition contains

two qubits, a purity of 1/4 occurs twelve times and a purity

of 1/2 occurs three times. For the ten bipartitions where each

set has three elements, the purity is 1/8 in four cases, 1/4 in

four cases, and 1/2 in two cases. These values can be used

to calculate the concentratable entanglement of any subset

of qubits and the overall concentratable entanglement of the

graph state:

C|G13〉(S ) = 1 −
1

26

[

1 + 6 ×
1

2
+

(

12 ×
1

4
+ 3 ×

1

2

)

+

(

8 ×
1

8
+ 8 ×

1

4
+ 4 ×

1

2

)

+

(

12 ×
1

4
+ 3 ×

1

2

)

+ 6 ×
1

2
+ 1

]

=
21

32
. (30)

An alternative measure of entanglement with respect to a

bipartition (A, B) is the Schmidt rank, defined as [26]

SRB(ψ ) = log2[rank(ρB)]. (31)

This measure is related to the purity of the reduced state of B

according to [26]

SRB(ψ ) = − log2[Tr(ρ2
B)]. (32)
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FIG. 2. A 16-qubit “snowflake” state proposed for use in re-

peaters [9]. Gray circles represent 1st leaf qubits, each of which is

connected to a 2nd leaf qubit, shown in black.

The rank index RIm considers all bipartitions where the

smaller set contains m qubits [3]. It lists the number of times

the Schmidt rank m, then m − 1, through to 1 occurs. For

graph No. 13 in Fig. 1, RI2 = (12, 3) and RI3 = (4, 4, 2):

for smaller sets in the bipartition of qubit labels of the graph

containing two qubits, there are twelve sets with a Schmidt

rank of 2 and three sets with a Schmidt rank of 1. For smaller

sets of three qubits, the Schmidt rank 3 occurs four times, 2

occurs four times, and 1 occurs twice. This corresponds to the

occurrences of different purities of reduced states calculated

for the concentratable entanglement. Using Eq. (32), the rank

index can be used to give the number of splits where the

purity is (2−m, . . . , 1) for bipartitions with a smaller set of

m qubits. For any connected graph of seven or fewer vertices,

the concentratable entanglement for s = S can be calculated

using the results for the rank index in Table II of [3].

c. Graph states for repeaters. Azuma et al. [9] propose

a quantum repeater design based on graph states; repeater

stations create “snowflake” graph states as shown in Fig. 2,

to perform entanglement swapping and set up direct entan-

glement over larger distances. The inner 1st leaf qubits (gray)

form a fully connected graph so there is a direct path between

any two qubits. Each 1st leaf qubit is further connected to a

single 2nd leaf qubit (black).

Consider a snowflake state of 2n qubits where the 1st leaf

qubits have labels in the set S1st = {11, 21, . . . , n1} and the

2nd leaf qubit labels are S2nd = {12, 22, . . . , n2}. Qubit a2 is

the 2nd leaf qubit paired with 1st leaf qubit a1. The stabilizer

generator for each 1st leaf qubit a1 ∈ S1 is

Sa1
= Xa1

Za2

∏

b∈S1\{a1}

Zb. (33)

Each 2nd leaf qubit a2 ∈ S2 has a stabilizer generator of the

form

Sa2
= Xa2

Za1
. (34)

When measuring a 1st leaf qubit in the Z direction, the

outcome −1 introduces a minus sign to the stabilizer generator

for its 2nd leaf qubit partner and in the stabilizer generators for

all other 1st leaf qubits, as they are all in the neighborhood.

For a 2nd leaf qubit, the measurement outcome −1 introduces

a minus sign only to the stabilizer generator of its paired qubit

in the 1st leaf. Therefore, if a pair {a1, a2} is traced out, there

are only two possible sets of stabilizer generators. The 1st leaf

qubit stabilizer generators either all acquire a minus sign or

they do not.

When m � n qubits are traced out, where no two qubits

are a pair, each measurement outcome results in a unique set

of stabilizer generators for the remaining qubits. The purity of

the reduced state left when tracing out these m qubits is 2−m.

Using this result to calculate each of the purities required, the

concentratable entanglement for sets s of n qubits containing

no pairings, including the sets containing exclusively 1st leaf

or exclusively 2nd leaf qubits, is

C|G〉(s) = 1 −
1

2n

n
∑

m=0

(

n

m

)

1

2m
= 1 −

(

3

4

)n

. (35)

This is the maximum concentratable entanglement possible

for a set of n qubits within a graph state of 2n qubits. Therefore

within a snowflake state, all of the 1st leaf qubits or all of the

2nd leaf qubits exhibit maximal entanglement with respect to

the rest of the state.

d. Limits on overall entanglement. Concentratable entan-

glement provides a measure of the overall entanglement of a

state when applied to the set S . There are theoretical bounds

on the maximum and minimum values that the concentratable

entanglement can take.

The minimum value of concentratable entanglement occurs

when the purity of each possible reduced state is maximized.

Since a connected graph represents an entangled pure state,

any reduced state cannot be pure, excluding the reduced state

containing no qubits where Trρ2
∅ = 1. The maximum value

each of these purities can take according to Theorem 1 is 1/2,

where there are two sets of stabilizer generators to describe

the remaining qubits within the reduced state. The minimum

value of concentratable entanglement for a graph state of n

qubits is therefore

C|G〉(S ) = 1 −
1

2n

[

Trρ2
∅ + Trρ2

S
+

n−1
∑

i=1

(

n

i

)

1

2

]

=
1

2
−

1

2n
.

(36)

This is the concentratable entanglement of the GHZ state [22].

The n-qubit GHZ state is LU equivalent to the star graph and

the complete graph, which take this value for concentratable

entanglement.

If instead the purity of each reduced state is minimized,

the concentratable entanglement will be maximized. It is not

always possible to minimize the purity of all reduced states

due to the structure of entanglement and the dependent rela-

tionships between different subsets of qubits. The purity of

the reduced state of qubits in A or B is minimized when the

number of sets of stabilizer generators is given by

k = 2min(|A|,|B|). (37)

This gives a new set of stabilizer generators for each mea-

surement outcome when tracing out qubits, up to the number

of measurement outcomes possible for the smaller set of A

and B due to Eq. (20). Therefore the maximum value that the

concentratable entanglement can achieve for a graph state of

n qubits is

C|G〉(S ) = 1 −
1

2n

n
∑

j=0

(

n

j

)

1

2min( j,n− j)
. (38)

042411-6



CALCULATING CONCENTRATABLE ENTANGLEMENT IN … PHYSICAL REVIEW A 106, 042411 (2022)

FIG. 3. The LU classes of graph states, numbered according to

[3,29,30], where the overall concentratable entanglement achieves

the maximum theoretical value.

Graph states that maximize the concentratable entanglement

exist only for two, three, five, and six qubits, and an example

from each LU equivalence class is shown in Fig. 3. Trivially, a

graph state of a single qubit satisfies Eq. (38); however, it does

not represent an entangled state and subsequently is of little

interest. For graph states of two or three qubits, the maximum

value of concentratable entanglement is equal to the minimum

value, as the smaller (nonempty) bipartition always contains a

single qubit, restricting all purities to the same value of 1/2.

An absolutely maximally entangled (AME) state [31] has

maximal entanglement in all bipartitions. If B is the smaller

set containing j qubits in a bipartition (A, B), then the biparti-

tion is maximally entangled if the reduced state of qubits in B

can be written as the mixed state

ρB =
1

2 j
I2 j . (39)

The purity of this state is 2− j . An AME state will achieve the

maximum value of concentratable entanglement. The states of

two, three, five, and six qubits that maximize the concentrat-

able entanglement are known AME states.

e. Graphs up to nine qubits. For graph states consisting

of nine qubits or fewer, we have calculated the overall con-

centratable entanglement of the state, as shown in Fig. 4.

The respective values of 0 and 1/4 for the concentratable

entanglement of the unique graph states of one and two qubits

are not shown. The theoretical maximum and minimum val-

ues of concentratable entanglement bound the area shaded

in gray. Star states achieving the minimum concentratable

entanglement, which are LU equivalent to GHZ states, lie on

the lower boundary of this area. The states with the greatest

concentratable entanglement of each size are shown, and can

be seen to achieve the maximum only for states of three, five,

and six qubits.

Figure 4 also highlights the concentratable entanglement

for linear and ring graph states. Linear cluster states of pho-

tons have been experimentally realized [32,33]: an important

step in developing the two-dimensional clusters needed for

MBQC and therefore their overall concentratable entangle-

ment is shown. Ring states are similar to linear states although

a further CZ operation is applied between the first and final

FIG. 4. The possible values of overall concentratable entangle-

ment of graph states of three to nine qubits. Theoretical bounds on

the concentratable entanglement define the area in gray. We consider

special classes of states, which are given different markers, as shown

in the legend.

qubits in the chain, thus completing a ring. Ring states have

higher concentratable entanglement than linear states except

for states of up to four qubits, where a ring and linear state are

LU equivalent.

All of the overall concentratable entanglement values for

graph states of nine qubits or fewer are shown in Fig. 4. Graph

states within the same LU class will have the same overall

concentratable entanglement; however, using concentratable

entanglement as a measure of the overall entanglement in

a state is not sufficient to identify the LU class of a graph

state, as the same value can occur for more than one class.

For example, for graph states of seven qubits, there are 26

LU equivalence classes, but only 16 possible values of con-

centratable entanglement. If concentratable entanglement is

calculated using Eq. (1), the reduced state purities can be

studied to identify the LU class of a state. However, if a

quantum computer were used to perform a SWAP test, fur-

ther calculations would be required, such as performing SWAP

tests to calculate the concentratable entanglement for subsets

of qubits within the state to identify the LU class from the

entanglement structure.

V. DISCUSSION AND FURTHER WORK

We have presented a method for calculating the purity of

reduced states and hence the concentratable entanglement for

graph states entirely within the stabilizer formalism, using

only the stabilizer generators of a graph state. By evaluating

the concentratable entanglement for different graph states we

have found closed forms when considering a single qubit in

any graph state and either the inner or outer leaf qubits in a

snowflake state for use in a quantum repeater. We have also

shown how concentratable entanglement relates to previous

results regarding Schmidt rank and AME states. However the

overall concentratable entanglement of graph states in differ-

ent LU classes is shown to overlap in certain cases, suggesting

that calculation of this version of the measure alone is insuffi-

cient to identify the entanglement structure of a graph state.
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Though concentratable entanglement was introduced for
pure qubit states, it may be possible to use it as an entan-
glement measure for pure qudit states. Further work could
then look to extend the definition in terms of purities given
in Eq. (1) to graph states of qudits. Extension of the SWAP

test to qudits [34] may allow for calculation of concentrat-
able entanglement via test outcomes when using a quantum
computer in a similar manner to the qubit case. Qudit graph
states [35–37] are stabilizer states for qudits of prime dimen-
sion d and allow for weighted or multiple edges. Reduced
states could be found by considering all possible measure-
ment outcomes, setting the stabilizer generators for measured
qubits accordingly, and using the group structure of the
stabilizer. The purity of the reduced state could again be
calculated based on the number of unique sets of stabilizer
generators.

It is unlikely that the result for calculating purities using

stabilizer generators within the stabilizer formalism can be

applied to hypergraphs. Like qudit graph states, hypergraphs

[38–40] allow for weighted or repeated edges between the

same qudits but hyperedges that can connect any number

of qudits are introduced. The stabilizer generator for each

qudit is given in terms of CZ gates on multiple qudits, which

are not within the Pauli group. Therefore hypergraphs with

hyperedges connecting more than two qudits are not true

stabilizer states and do not allow for the group properties of

a stabilizer to be used to find updated generators following a

measurement.

Currently concentratable entanglement is a measure that

applies only to pure states. Even single qubit errors either in

the generation or transmission of qubits within graph states

can result in a mixed state. An extension of concentratable

entanglement to mixed states could enable the study of effects

such errors have on the entanglement within graph states. This

is the subject of future investigations.
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