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A B S T R A C T   

Chemical exposure concentrations and the composition of ecological receptors (e.g., species) vary in space and 
time, resulting in landscape-scale (e.g. catchment) heterogeneity. Current regulatory, prospective chemical risk 
assessment frameworks do not directly address this heterogeneity because they assume that reasonably worst- 
case chemical exposure concentrations co-occur (spatially and temporally) with biological species that are the 
most sensitive to the chemical’s toxicity. Whilst current approaches may parameterise fate models with site- 
specific data and aim to be protective, a more precise understanding of when and where chemical exposure 
and species sensitivity co-occur enables risk assessments to be better tailored and applied mitigation more 
efficient. We use two aquatic case studies covering different spatial and temporal resolution to explore how geo- 
referenced data and spatial tools might be used to account for landscape heterogeneity of chemical exposure and 
ecological assemblages in prospective risk assessment. Each case study followed a stepwise approach: i) estimate 
and establish spatial chemical exposure distributions using local environmental information and environmental 
fate models; ii) derive toxicity thresholds for different taxonomic groups and determine geo-referenced distri-
butions of exposure-toxicity ratios (i.e., potential risk); iii) overlay risk data with the ecological status of bio-
monitoring sites to determine if relationships exist. We focus on demonstrating whether the integration of 
relevant data and potential approaches is feasible rather than making comprehensive and refined risk assess-
ments of specific chemicals. The case studies indicate that geo-referenced predicted environmental concentration 
estimations can be achieved with available data, models and tools but establishing the distribution of species 
assemblages is reliant on the availability of a few sources of biomonitoring data and tools. Linking large sets of 
geo-referenced exposure and biomonitoring data is feasible but assessment of risk will often be limited by the 
availability of ecotoxicity data. The studies highlight the important influence that choices for aggregating data 
and for the selection of statistical metrics have on assessing and interpreting risk at different spatial scales and 
patterns of distribution within the landscape. Finally, we discuss approaches and development needs that could 
help to address environmental heterogeneity in chemical risk assessment.   
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1. Introduction 

The natural environment consists of a wide range of land and water 
patches that can vary in their physical and chemical characteristics and 
in the occurrence and abundance of organisms inhabiting them. This 
abiotic and biotic heterogeneity occurs at different spatial and temporal 
scales. Landscape-scale heterogeneity e.g., separable and quantifiable 
aspects of landscape features such as the flood plains, forests, agricul-
tural fields and urban areas that occur in a river catchment, is one of the 
key factors, along with emission scenarios, climate and chemical prop-
erties, that determine the extent to which organisms are exposed to 
chemicals emitted into the environment (Sala et al., 2010). Environ-
mental heterogeneity relevant to chemical risk assessment can comprise 
several factors including: variation in release of chemicals to receiving 
habitats leading to variation in exposure; variation in the fate and 
behaviour of chemicals (and behaviour of organisms) within different 
receiving habitats also leading to variation in exposure; variation in 
inherent sensitivity of ecological receptors (e.g. species, life stages) be-
tween receiving habitats leading to differing magnitudes of toxic effects; 
variation in the potential for ecological communities to respond to 
chemical impacts leading to differing extents of recovery (Armitage 
et al., 2007, Grill et al., 2015, Oldenkamp et al., 2018, Spurgeon et al., 
2020, van Leeuwen and Vermeire, 2007). Furthermore, as the spatial 
and temporal scales increase and landscape-scale heterogeneity is 
propagated, there is greater scope for occurrence of different exposures 
and species assemblages resulting in a broader range of potential risk. 

Although consideration of the spatial patterns inherent to multi-use, 
multi-stressed landscapes has raised important questions about how to 
assess the risks of chemical stressors in the environment, e.g. Dale et al. 
(2008), current regulatory prospective chemical environmental risk 
assessment (ERA) schemes do not directly nor fully address environ-
mental heterogeneity. ERA schemes are largely based on comparisons of 
chemical exposure estimates, derived from emission data and environ-
mental fate models (and occasionally monitoring data), with generic 
derivations of protective toxicity thresholds for the types of organism 
assemblages expected to be exposed. In order to achieve high levels of 
protection these generic frameworks assume that reasonably worst-case 
chemical exposure concentrations co-occur, spatially and temporally, 
with species assemblages that are most sensitive to the chemical’s 
toxicity. Whilst this approach aims to be protective, a more precise 
understanding of when and where exposure and species co-occur en-
ables risk assessments to be better tailored and mitigation made more 
efficient. 

Use of geo-referenced data enables the influences of environmental 
heterogeneity on chemical risks to be considered. Indeed, some pro-
spective risk assessment approaches have included spatially explicit 
estimates of chemical exposure concentrations at appropriate spatial 
and temporal scales derived from exposure modelling (Kooistra et al., 
2005; Faggiano et al., 2010; Linkov et al., 2002; Luo and Zhang, 2010; 
Nause et al., 2021, Oldenkamp, 2018, Price et al., 2010, Pistocchi, 2008, 
Wannaz et al., 2018). Geographic Information System (GIS) modelling 
approaches have been combined with ecotoxicity data to predict spatial 
distributions of risk (Sala and Vighi, 2008; Dabrowski and Balderacchi, 
2013; Liu et al., 2013). 

Whilst ecological effects assessments do not generally account for 
geographic (spatially explicit) patterns of species distributions, several 
research groups have aimed to correlate site-specific chemical exposure 
and associated ecotoxicological risk with ecological community 
composition based on matching biomonitoring data (Hatakeyama and 
Yokoyama, 1997; Liess and Schulz, 1999; Liess and von der Ohe, 2005; 
Vaj et al., 2011; Malaj et al., 2014; Lemm et al., 2021; Sumudumali and 
Jayawardana, 2021). However, many of these studies utilise ecological 
data from field sampling that represent relatively limited spatial scales 
or numbers of locations. 

The spatial and temporal dynamics of individuals and populations 
have also been modelled, e.g. using agent or individual-based models of 

focal or indicator species in terrestrial and aquatic environments 
(Kooistra et al., 2005; Schmolke et al., 2010; Topping et al., 2015). Many 
of these models provide highly resolved estimates and when combined 
with dynamic, landscape-scale exposure models, can address the influ-
ence of landscape fragmentation on the impact and recovery of pop-
ulations exposed to chemicals (Dalkvist et al., 2013; Focks et al., 2014; 
Topping et al., 2019; Ziółkowska et al., 2021). However, such modelling 
has mostly been applied to a few focal species and relatively small 
geographical areas, e.g. local landscapes. Application to prospective risk 
assessment would ideally apply such approaches over larger regional 
scales (e.g. pan-European) and consider species assemblages. 

Although large-scale spatially referenced information, especially on 
ecological receptors, has not been generally available for use in pro-
spective ERA, the availability of spatially and temporally referenced 
landscape scale environmental and ecological data is increasing, in part 
due to the deployment of remote sensing ground, aviation and satellite 
technology (Ozesmi and Bauer, 2002; Gergel and Turner, 2017), but also 
via the provision of data from national, regional and global monitoring 
and biomonitoring programmes such as the IUCN Red List of Threatened 
Species (Anon, 2021), the European Environment Agency (EEA) 
Waterbase – Water Quality, which provides information on concentra-
tions of chemicals (Anon, 2021) and EEA Waterbase – Biology, con-
taining biological quality elements (BQEs) (Anon, 2020) for more than 
8200 European sites. 

In this study, we investigate the capabilities and challenges of 
combining three available datasets to account for heterogeneity in the 
prospective risk assessment of chemicals over a large geographic scale, 
e.g. regional, national: i) geo-referenced predicted exposure concentra-
tions derived from environmental models, ii) geo-referenced ecological 
status (quality of the structure (biodiversity) of surface water ecosys-
tems) derived from biomonitoring data, iii) ecotoxicity data for the 
chemicals considered. We were particularly interested to assess whether 
high or low risk coincided with high or low ecological status (quality of 
the biological community) (Anon, 2018). We inform discussion by un-
dertaking two focussed case studies to explore and identify issues and 
needs for further work, but do not make recommendations for regula-
tory implementation. We focus on demonstrating whether the integra-
tion of relevant data and potential approaches is feasible rather than 
making comprehensive and refined assessments of specific chemicals. 

2. Methods 

2.1. Assessment strategy 

The key aim was to explore and demonstrate how spatially refer-
enced exposure and ecological receptor data could be integrated for a 
refined prospective assessment of chemical risk, rather than to explicitly 
quantify risks. Therefore, the case study ERAs should not be interpreted 
as consisting of best estimates of exposure or effects, but as examples of 
how spatially referenced exposure and ecological receptor data could be 
examined together. The general approach followed was i) estimate and 
establish spatial exposure distributions using two case studies based on 
different chemicals, emission pathways and spatial/temporal scale of 
exposure scenarios; ii) derive toxicity thresholds for various taxonomic 
groups and determine geo-referenced distributions of exposure-toxicity 
ratios, i.e. potential risk; iii) overlay risk data with the ecological status 
of Water Framework Directive, WFD, (Anon, 2018) biomonitoring sites 
to assess trends between predicted chemical exposure and ecological 
status (Fig. 1). 

We demonstrated the approach using case studies that explored the 
integration of exposure and ecological receptor data based on the 
exposure of freshwaters to i) a down-the-drain chemical used in do-
mestic cleaning products (anionic surfactant) and ii) three Plant Pro-
tection Products (PPPs) (herbicide, insecticide and fungicide) applied to 
large area production crops (winter wheat, oil-seed rape and barley). 
These case studies were selected to examine two chemical classes having 
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different usage and environmental emissions patterns. We also utilised 
ecological data representing four broad taxonomic groups (WFD bio-
logical quality elements, BQE): macroinvertebrates, fish, macrophytes, 
diatoms. However, the aim of this work was not to determine causal 
relationships between chemical exposure and ecological effects, as that 
would have required an eco-epidemiological approach (e.g., Kapo et al., 
(2008, 2014), Posthuma et al., (2016)). Rather, our main interest was to 
explore spatially explicit, prospective ERAs. 

2.2. Study area 

We focused on the German state, Hessen, as a suitable geographic 
area for demonstrating how to integrate spatial data. Hessen encom-
passes 21,000 km2 and contains a population of over 6 million people 
(300/km2), mostly located in the southern part of the state which in-
cludes the city of Frankfurt (12% of population). There are several large 
rivers including Main, Lahn, Fulda, Eder and Kinzig. Major land cover 
includes trees (44%), agriculture (39%) and developed areas (12%), 
with high yield agriculture located mainly in the lowland area of the 
south west (Anon, 2021). See Fig. S1 for a map of land covers in Hessen. 
The study area was chosen primarily due to the availability of 
high-quality ecological data (WFD biomonitoring data) for aquatic en-
vironments in conjunction with detailed hydrologic data to which the 
ecological sampling data were spatially located. Environmental expo-
sure estimates for PPPs were available for Germany, and it was possible 
to develop emission and predicted environmental concentrations (PECs) 
for an anionic surfactant based on available EU-wide data. In principle, a 
broader, Germany-wide, or even a pan-European, assessment could be 
made if suitable ecological data were available. 

2.3. Ecotoxicology data used for risk estimation 

Ecotoxicology data were obtained from public literature sources, 
including regulatory risk conclusion documents from the European Food 
Safety Authority (EFSA, 2008; EFSA European Food Safety Authority, 

2014a, 2014b). Data were obtianed for organisms broadly representa-
tive of the four main WFD BQEs (Table 1). 

2.4. Down-the-drain chemicals 

2.4.1. Estimation of anionic surfactant exposure concentrations in surface 
waters 

The down-the-drain case study represents an assessment of a widely 
used substance in home and personal care products with environmental 
emission into the aquatic habitat via wastewater treatment plant 
(WWTP) discharges. Surfactant usage occurs in most, if not all, house-
holds in Europe, and therefore it was assumed that each WWTP receives 
a mass of surfactant in influent proportional to the population served, 
and the concentration of surfactant in this influent is determined by the 
per capita water use within these households. Locations of contributing 
WWTPs and receiving stream segments were combined to estimate the 
spatially explicit mean annual surfactant concentration in receiving 
waters in Germany. The methodology is summarised in Fig. S2. 

We considered aquatic exposure only and there was no assessment of 
exposure to terrestrial organisms via soil amendment with sewage 
sludge containing the surfactant. The focus on aquatic exposure was 
because of limited spatially referenced data on sludge application rates, 
locations, dates and environmental conditions making estimates of soil 
exposure highly uncertain within the limitations of this study. 

Information describing the geographic location and estimated pop-
ulation served by each WWTP in Germany (n = 3846) was obtained 
from the EEA Waterbase-UWWTD dataset (Anon, 2017). These data are 
collected as part of the Urban Waste Water Treatment Directive 
(UWWTD) addressing the collection, treatment and discharge of urban 
wastewater. The UWWTD requires discharged wastewater to adhere to 
specific guidelines for biological and chemical oxygen demand (BOD 
and COD, respectively) and therefore are assumed to have at least sec-
ondary treatment (e.g. activated sludge treatment). Waterbase reported 
estimated population including commercial and transient populations in 
addition to residents. Therefore, it is expected that reported population 

Fig. 1. Overview of assessment strategy steps and associated information utilised to assess trends of risk and ecological status.  
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estimate numbers are equal to or greater than actual population served 
for the purposes of this study. 

An EU-wide average usage of 3 g of surfactant per capita per day 
(Anon, 2013) was combined with usage of 12 laundry and household 
care product types containing surfactant for European countries (Euro-
monitor, 2018) to derive a refined surfactant usage value specifically for 
Germany of 1463 g yr−1 per person (4.0 g day−1 per person), i.e., 
slightly higher than the EU average (Table S1). Following Cavalli et al. 
(1993) and Hera (2013), we assumed that 99% of surfactant was 
removed (via biodegradation and sorption to solids) prior to discharge 
into receiving stream segments. This was a conservative estimate as 
Freeling et al. (2019), report an average removal of > 99.8% based on a 
monitoring programme in Germany. 

Hydrology information was obtained from the HydroSHEDS dataset 
(Lehner et al., 2008), including river locations from the HydroRIVERS 
data layer. These data include medium to large rivers suitable for use 
with WWTP discharge information (n = 13,877). River flow was 
accessed from the FLO1K dataset (Barbarossa, 2018), using the 2015 
mean annual flow data. The source data are 1-km raster data and 
therefore multiple 1-km cell values are associated with a single Hydro-
RIVER segment. To estimate a single value for each segment, the median 
value of all FLO1K cells underneath each HydroRIVER segment was 
determined and assigned to the segment. 

Locations for the Waterbase WWTPs in Germany were geolocated 
within the GIS using provided coordinates and linked to the closest river 
(Fig. S3). The HydroRIVERS dataset represents medium and large rivers, 
but does not include much smaller rivers and streams, therefore if a 
WWTP was further than 500 m from a HydroRIVERS segment 
(n = 1263), we assumed the receiving water body was not present in the 
HydroRIVERS dataset and these WWTPs were excluded from further 
processing, leaving 2583 WWTPs for analysis. Note that in our analysis 
the PECs estimated at each WWTP discharge (i.e., the mixing zone) do 
not account for upstream loadings of chemical. Therefore, while the 
smaller WWTPs/tributaries may not all be accounted for, their absence 
would also not affect the PECs for the larger WWTP/rivers. The dilution 
factors for the rivers included in our Hessen case studies ranged down to 
1.6. 

A dilution factor (DF) was estimated for each river segment with an 
associated WWTP discharge location using:  
DF = (River Flow + WWTP Flow) / (WWTP Flow)                                  

WWTP flow was based on a constant per capita water use of 46.3 m3 

yr−1 (Anon, 2017) and population served by each WWTP (Population 
Equivalents reported in WaterBase). The minimum DF is 1.0, indicating 
effluent discharge to a river with no flow (i.e., a dry river). 

The 929 HydroRIVERS segments in Hessen have an average length of 
5.4 km with a longest stretch of 29 km. In many cases several WWTPs 
were associated with a single river segment. To associate a WWTP with 
only the immediate downstream portion of a HydroRIVERS segment, 
WWTPs (n = 257) were ‘snapped’ to the closest location on a river 

segment, and river segments were split at these locations. This resulted 
in river segments being split at WWTP locations with river PECs specific 
to the most immediate upstream WWTP (Fig. 2). Each WWTP on the 
same original river segment discharged to the same river flow. The 
spatial processing is further described in the SI (Fig. S2, Sections 1.2.1, 
1.2.2). 

Surfactant PECs were calculated for each river segment with an 
associated WWTP discharge location (i.e., the mixing zone for WWTP 
effluent) using: 

Concinfluent = per capita surfactant usage / per capita water usage.  
Conceffluent = Concinfluent * (1 – Removalsurfactant) PEC = Conceffluent / DF      

WWTP locations, connected populations and associated rivers are 
presented in Fig. 3A. The level of spatial data available enabled inte-
gration of emissions from individual WWTPs with receiving water body 
flow rates and site-specific exposure estimates. Complete mixing of 
surfactant in receiving water was assumed and dilution factors (and 
therefore exposure concentrations) were calculated as a representative 
annual value based on mean, annual average, river flows. 

2.4.2. Calculation of surfactant ETR values 
Surfactant PECs were converted to exposure:toxicity ratios (ETRs) 

using available ecotoxicity data for the four main WFD BQEs: macro-
invertebrates, fish, macrophytes, diatoms (Table 1). Whilst the species 
selected to represent the BQEs do not provide a detailed distribution of 
the sensitivity of the species present at each site, they are generally 
considered to be sensitive to chemical toxicity within their broad taxo-
nomic groups. A more refined approach utilizing the ecotoxicological 
sensitivity of each of the species found at each biomonitoring location 
would have provided a distribution of risk values that better reflected 
the range in responses of biological species likely to be exposed. How-
ever, such an approach, which also applied to the PPP case study, was 
not achievable because of the availability of relatively few species- 
specific ecotoxicity data. 

Both acute (fish and Daphnia) and chronic (fish, Daphnia, Lemna, 
algae) ETRs were calculated using annual mean PEC estimates. There-
fore, for the purposes of our analysis, no account of temporal variation is 
made for the surfactant case study. 

2.5. Plant protection products 

2.5.1. Estimation of PPP predicted environmental concentrations in surface 
waters 

The PPP case study incorporates several refinements from the down- 
the-drain case study. In this case study, multiple substances with 
different modes of action are included, the spatial scale is more highly 
resolved, and the temporal dimension is included. The methodology is 
summarised in Fig. S4. 

For this study, three widely cultivated crops were selected to use as 
the target application of the PPPs: winter wheat (Triticum aestivum), 

Table 1 
Ecotoxicity data for Surfactant and PPP substances used in the case studies.   

Acute EC50# (mg/L) Chronic NOEC# (mg/L)   
Substance Daphnia Fish Algae Lemna Daphnia Fish Chir. 
Anionic surfactanta  3.5  1.7 2.4  1.2  0.5  0.22   
Acid anilide herbicideb  30  4.6 0.0076  0.0071  0.1  1.4  9.8 
Pyrethroid insecticidec  0.00023  0.000078 0.005 *    0.000002  0.00003  0.00013 
Triazole fungicided  2.8  4.4 3.80  0.14  0.01  0.012  2.5 

*Endpoint set to water solubility 
#EC50 (Median effective concentration); NOEC (no observed effect concentration) 

a Anon (2013) 
b EFSA European Food Safety Authority (2014a) (2014b) 
c EFSA (2008) 
d EFSA European Food Safety Authority (2014a) (2014b) 
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Fig. 2. Example of 500 m distance to rivers and multiple WWTPs associated with a single river segment (grey hatched segment) (A) and resulting split river segments 
for each WWTP (B) [UWWTP = urban waste water treatment plant]. 

Fig. 3. A) Spatial distribution of WWTPs showing connected population (equivalents) and HydroSHEDS river network with FLO1K mean annual flow (2015), B) 
Location of 3970 biomonitoring sites in Hessen showing BQE (fish, macroinvertebrates, diatoms, and macrophytes) and C) diversity of ecological status values (note 
that a single location may represent more than one BQE and/or ecological status) [UWWTP = urban waste water treatment plant; WWTP = waste water treat-
ment plant]. 
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winter barley (Hordeum vulgare) and winter oilseed rape (Brassica napus) 
(Fig. S5 shows the spatial distribution of these crops within Hessen). A 
PPP was selected for each category of fungicide, insecticide and herbi-
cide that was representative of widely used active ingredients in their 
class: a triazole fungicide, a pyrethroid insecticide, and an acid anilide 
herbicide. Within our study area, 134,183 applications (73461 winter 
wheat, 14144 winter barley, 46578 winter oilseed rape) were simulated 
on 81,822 fields over a 1-year period. Of the fields, 42% received a single 
PPP, 52% had two PPPs, and 6% received all three PPPs. Further details 
on applications are available in Tables S2 and S3 in the SI. 

Environmental exposure data were obtained from the SYNOPS model 
(Gutsche and Roßberg, 1997; Gutsche and Strassemeyer, 2007; Stras-
semeyer et al., 2017), a Germany-wide field-scale model which utilises 
PPP usage survey data to associate PPP applications to individual fields. 
PPP applications schemes were generated from the German wide 
reference farm network ‘Netzwerk Vergleichbetriebe Pflanzenschutz’ 
(Dachbrodt-Saaydeh et al., 2021; Freier et al., 2016). Treated fields were 
randomly selected within soil/climate regions linked to surveyed PPP 
data (Roßberg et al., 2007) and controlled to match county crop statis-
tics (i.e., if according to the statistics in a certain county, 10% of the 
agricultural area is maize, only 10% of the field area in the county will 
be assigned to maize). Timing of PPP applications on crops were taken 
from the survey data. The weather data came from individual station 
information from Deutsche Wetterdienst for the 2015/2016 growing 
season. Each field was paired with the nearest weather station. PPP 
no-spray buffer zones were implemented within the SYNOPS exposure 
calculation. PPP exposure modelling was performed at a daily time step 
using regulatory models to simulate drift, drainage and runoff/erosion. 
These regulatory models utilize the physical/chemical properties of the 
PPP (e.g., terrestrial half-life, aquatic-half-life, sorption properties and 
potential for leaching) coupled with environmental properties (e.g., 
temperature, rainfall, wind speed, soil properties and field slope) to 
parameterize empirical equations describing the fate and transport of 
chemicals via spray drift (Drift Calculator, https://esdac.jrc.ec.europa. 
eu/projects/drift-calculator), in soil (PRZM_SW model, https://esdac. 
jrc.ec.europa.eu/projects/przmsw) and water (TOXSWA model, 
https://esdac.jrc.ec.europa.eu/projects/toxswa) on a daily basis (Anon, 
2001). Estimated daily concentrations in field margins, 1- and 7-day 
time weighted average concentrations in surface water and soil were 
summarised within the model and stored as the annual 90th percentile 
of daily PECs associated with the field for that year. While SYNOPS also 
includes the calculation of risk indices, the model output also represents 
a suitable realistic prospective scenario for exposure estimation. 

2.5.2. Calculation of PPP ETRs in surface waters 
A risk index (ETR) for the same broad BQEs as used in the surfactant 

study was calculated for each field-level PPP using endpoints from 
Table 1. The sum of risk for all PPPs applied to each field was calculated 
to account for applications of more than one PPP to a single field in our 
risk estimation. Acute (daily) risk was calculated for fish and Daphnia, 
while chronic risk (7-day time weighted average (TWA)) was calculated 
for algae, Daphnia, fish, Lemna and Chironomus. 

To match the spatial resolution of the SYNOPS field-level exposure 
data, as well as containing a direct link to the ecological sampling data, a 
detailed dataset of streams (Gewässerstruktur aller hessischen 
Fließgewässerder)1 was obtained from Hessen State Office for Nature 
Conservation, Environment and Geology, Wiesbaden. This dataset con-
tained over 77,757 segments (typically 100 m or 500 m in length) and 
associated attributes within Hessen (Fig. S6). Each agricultural field was 
spatially linked to the closest surface water segment within 300 m (the 
maximum distance SYNOPS used for runoff/erosion) within the GIS. If a 
field was further than 300 m, it was not included in the analysis of 

surface water risk. A field was associated with only the closest surface 
water segment, even if multiple segments were within 300 m. For each 
surface water segment within 300 m of a field (n = 53,624), risk indices 
for all treated fields were summed for each category (acute & chronic for 
each BQE) resulting in 18,142 stream segments with ETR values. 

To account for hydrologic transport and accumulation, upstream 
segments on the mainstem comprising a total of 1000 m were identified 
for each surface water segment (using available attributes within the 
hydrology data), and the sum of the individual risk indices for all up-
stream segments was calculated for each BQE. Distances of 500 m and 
2500 m were also calculated for evaluation but not presented here. The 
1000 m distance was selected after consideration of ten river segments 
upstream (i.e., 10 ×100 m). The longer 2500 m distance would likely 
incur greater uncertainty in exposure since degradation and aquatic fate 
losses are not accounted for. It was judged that it could take approxi-
mately 1 h for river water to travel 1000 m at an assumed 0.28 m/s. The 
10 upstream segments move downstream as a “sliding window” (1–10, 
2–11, 3–12, etc.). Additional information is included in the SI. 

The detailed hydrology dataset links individual segments (e.g., 
100 m) of a river reach together in order, it does not allow assessment of 
additional exposure from incoming tributaries/confluences. However, 
risks in tributaries are assessed as individual river stretches based on 
their own upstream contribution from treated fields. 

2.6. Biomonitoring locations in Hessen 

Water Framework Directive ecological data were obtained from 
Federal State of Hessen, Hessen State Office for Nature Conservation, 
Environment and Geology, Wiesbaden, Germany (Biologie der Fliess-
gewässer2) containing 3970 unique sampling locations in Hessen which 
were mapped in the GIS using the provided coordinates. Each bio-
monitoring location had one or more sample dates between 2004 and 
2017 along with the associated observations. Where there were more 
than one sample per biomonitoring location, we used the most recent 
sampling event to determine ecological status. Attributes included 
location, abundance, evaluation of ecological state, as well as other 
scoring values. Data included observed information on ecological type 
including fish, macroinvertebrates, diatoms, and macrophytes (i.e., 
BQEs) (Fig. 3B). Of particular interest was the ranking of ecological 
status for each site (Fig. 3C). A rough visual assessment suggested no 
clear spatial aggregation of ecological status in Hessen. 

We excluded highly modified water bodies because they are classi-
fied in terms of their potential for reaching one of the ecological classes 
whereas their current observed status may be lower. Non-highly modi-
fied streams are given actual ecological status classification. This 
excluded approximately 100 sites which are clustered in a heavily 
agricultural region. 

In order to relate our calculated exposure/risk values with the 
measured ecological sampling information, i.e., taxonomic presence and 
abundance data, each biomonitoring location was associated with the 
nearest hydrology segment using GIS functionality. For the down-the- 
drain case study, biomonitoring sites within 250 m of the river seg-
ments downstream of a WWTP were linked (see SI for details) so that 
surfactant PEC and ecotoxicity values could be combined to calculate 
site-specific ETR values for the relevant BQEs (Fig. 4A). This process 
resulted in 800 biomonitoring sites linked to rivers with surfactant PECs. 
For the PPP case study, a more detailed river network was used to 
complement the refined spatial nature of the agricultural fields. Over 
25,000 agricultural fields within 300 m had the potential to influence 
surface water. Biomonitoring sites within 300 m of the detailed stream 
network were spatially selected (n = 3815) and associated with the 
closest stream segment (Fig. 4B). 

1 https://www.hlnug.de/themen/wasser/fliessgewaesser/fliessgewaesser- 
struktur 

2 Biologie der Fließgewässer at https://www.hlnug.de/themen/wasser/ 
fliessgewaesser/fliessgewaesser-biologie 
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2.7. Comparison of ETR values with ecological data 

Our interest was in the methodology for generating prospective risk 
assessments rather than establishing retrospective trends in chemical 
exposure and ecological status over time. Once ETR values were 
spatially linked to the river/stream dataset we compared them to the 
ecological status (Anon, 2018) of approximately 4000 WFD bio-
monitoring sites in Hessen (based on data for fish, diatoms, macrophytes 
and macroinvertebrates). Values for ecological status range from 1 (best 
ecological status) to 5 (worst ecological status). 

For a single BQE at a location, more than one sampling event/date 
may be reported. Comparing some biomonitoring data to ETRs from 
different individual years can introduce uncertainty due to temporal 
variation in species occurrence and abundance. Nevertheless, as a 
demonstration of our assessment approach we assumed the exposure 
data would be representative of typical use patterns and used the most 
recent ecological status class where a temporal range occurred. 

For a single location, more than one BQE could be reported, each of 
which has a BQE-specific ecological status. We develop an analysis 
which addressed three “levels” of ecological resolution for our 
assessment. 

Level 1 –The “Best” ecological status of all BQEs sampled at a site (i. 
e., lowest ecological status value) was compared to the ETR of highest 
(maximum) risk across all BQEs (chronic & acute separately). The 
comparison includes all BQE types in a single analysis. Comparing the 
highest ecological status with the highest risk provides a conservative 
approach to identifying risks to relatively unimpacted sites, i.e., with 
ecological status class 1 or 2. 

Level 2 – Ecological status at a site was compared to the ETR of 
highest (maximum) risk across all BQEs (chronic & acute separately). 
The comparison includes separate analyses for each BQE type and 

represents a more refined approach than Level 1 whilst keeping a con-
servative (worst case) metric for risk. 

Level 3 – Ecological status at a site was compared to the most 
taxonomically relevant ETR (chronic & acute separately). The compar-
ison includes separate analyses for each BQE type. Comparing ecological 
status and risk derived from the same BQE represents the highest level of 
resolution and the most scientifically relevant of the three approaches. 

3. Results 

3.1. Down-the-drain chemicals 

3.1.1. Predicted environmental concentrations (PECs) 
Surfactant PECs were estimated at each WWTP location in Germany 

located within 500 m to the river network, resulting in 2583 location- 
specific concentrations in this ‘mixing zone’ using mean annual river 
flow. WWTP population served (uwwLoadEnteringWWTP) ranged from 
532 to 1.75 million population equivalents, with a median value of 
10,803. Per capita water use was constant at 127 L d−1. River flows 
(2015 annual average) ranged from 0.01 to 1590 m3 sec−1 with a me-
dian value of 1.03 m3 sec−1. Dilution factors ranged from 1.1 to more 
than 300,000, with a median value of 72.4. Estimated mean annual 
surfactant concentrations ranged from 9.5 × 10−7 to 2.9 × 10−1 

mg L−1, with a median value of 4.4 × 10−3 mg L−1. 
For Hessen, WWTP population served ranged from 2000 to 1.06 

million population equivalents, with a median value of 9760. River 
flows (2015 annual average) ranged from 0.04 to 1093 m3 sec−1 with a 
median value of 0.79 m3 sec−1. Dilution factors range from 1.6 to more 
than 151,000, with a median value of 56.0. Estimated mean annual 
surfactant concentrations ranged from 2.1 × 10−6 to 2.0 × 10−1 

mg L−1, with a median value of 5.6 × 10−3 mg L−1. See corresponding 

Fig. 4. Example of biomonitoring sites linked to river segments for WWTPs in surfactant case study (A) and SYNOPS fields in the PPP case study (B) [UWWTP 
= urban waste water treatment plant]. 
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figures in SI for charts and maps of these results (S8-S11). 

3.1.1.1. PEC comparison to published data. During the course of our 
analysis, data were published reporting surfactant concentrations at 33 
WWTPs across Germany (Freeling et al., 2019). We worked with the 
German Environment Agency (Umweltbundesamt, UBA) to compare 
their measured results to those predicted using our methodology. To 
maintain confidentiality, specific information about WWTPs could not 
be divulged by UBA, and therefore UBA performed the comparison 
analysis based on the full dataset of 2583 surfactant PECs that we 
provided. 

In order to identify the 33 WWTP with measurements in the UBA 
data with the 2583 predictions, the WWTP name and capacity was used. 
Twenty two of the 33 sites were clearly identified and three other sites 
were excluded due to release into large lakes. The remaining 8 UBA sites 
were not readily identified in our data, however PECs were estimated 
using our estimate of the constant effluent concentration (3.16 ×10−1 

mg L−1) and measured removal and flow values from Freeling et al. 
(2019). The highest concentration measured directly in the 33 waste-
water effluent samples was 4.74 × 10−2 mg L−1. 

Overall, our river concentrations consistently overpredicted the UBA 
concentrations based on a regression slope of 0.85 and R-square of 0.94. 
Concentrations were generally overpredicted by slightly more than an 
order of magnitude and are therefore conservative.3 The overprediction 
is likely related to the net balance between lower WWTP removal rates 
that we used (99% compared to >99.8% UBA, almost an order of 
magnitude difference in mass remaining in the effluent) counter-
balanced by using annual mean river flow conditions compared to low 
flow conditions in the UBA results. 

3.1.2. Surface water ETR (risk) 
A total of 717 of the 3970 biomonitoring sites were associated with 

the 257 river segments having a WWTP within 500 m, and a BQE- 
specific ETR was calculated based on the ecotoxicity data from 
Table 1. The resulting risk values were examined in relation to the 
ecological status of each BQE at that biomonitoring site (Fig. 5). Addi-
tional chronic risk maps for the remaining BQEs, as well as acute risk 
maps are available in the SI. The risk maps did not indicate any obvious 
spatial trends or hot spots within Hessen. 

3.1.3. Comparison of ETRs and ecological status 
Data were grouped by BQE and sorted by ecological status for ex-

amination of risk distributions and visualisation (Fig. 6). Three levels of 
association were performed for both acute and chronic ETRs. We present 
only chronic Level 3 comparisons here, while the remaining results, 
including risk maps, are available in the SI (Figs. S8-S22). Chronic ETRs 
should be most relevant to the assessment of the down the drain 
chemical since it has a continuous exposure profile. 

Chronic risks to fish and macroinvertebrates were generally higher 
than to macrophytes and algae due to greater sensitivity to surfactants 
(Table 1). However, there were no trends in surfactant acute or chronic 
ETR values and ecological status indicating that ecological status was 
not primarily influenced by exposure to surfactant present in emissions 
from WWTP (Fig. 6). With minor differences, Level 1 and 2 analyses 
indicate similar ETR values whereas Level 3 analyses tend to indicate 
lower ETR values than comparable Level 1 and 2 values. Nevertheless, 
all Levels indicate similar trends across the range of ecological status 
classes. These results can also be used to assess what proportion of sites 
with high ecological status are at risk. In this case, the proportion of 
BQE-specific ecological class sites at risk (ETR >1) is zero for all taxa and 
all ecological classes. This outcome is consistent with existing surfactant 
risk assessments (Hera, 2013, Van de Plassche et al., 1997). 

3.2. Plant protection products 

3.2.1. Predicted environmental concentrations (PECs) 
For the PPP case study, surface water PECs were generated at the 

field-level for the herbicide, insecticide and fungicide applied to that 
crop (i.e., winter wheat, winter barley or winter oil seed rape (OSR)) 
(Figs. S23 to S25). Prior to combining into a single field-level risk value, 
the PPP-specific PECs can be reported based on the crop to which it was 
applied. Figs. S23 through S25 in the SI show the distribution of aquatic 
PECs in relation to the chronic and acute ecotoxicological endpoints for 
insecticide, herbicide and fungicide. 

The modelled PPP PECs could not be compared to measured data 
because SYNOPS output does not reflect an actual point in time (from 
which measurements could be made and compared). SYNOPS PECS are 
based on applying historic PPP usage data to the population of all 
agricultural fields selected in a stratified random approach (described in 
Nause et al., 2021 for sugarbeets). However, the underlying pesticide 
fate models used within SYNOPS (Strassemeyer et al., 2017) are also 
used by EFSA for risk assessment purposes (Anon, 2001). 

3.2.2. Surface water ETR (risk) 
PPP ETRs were estimated for each stream segment within 300 m of 

an agricultural field that had one of the three PPPs applied to winter 
wheat, barley and OSR (n = 25,523 fields). A total of 3731 biological 
sampling sites were located 1000 m downstream of at least one treated 
field. A BQE-specific ETR was calculated based on the ecotoxicology 
data from Table 1 and mapped in Fig. 7A. The resulting risk values were 
examined in relation to the ecological status of each BQE at that bio-
monitoring site (Fig. 7B). Additional chronic risk maps for the remaining 
BQEs, as well as acute risk maps are available in the SI (Figs. S26-S33). 
The risk maps did not indicate any obvious spatial trends or hot spots 
within Hessen. 

3.2.3. Comparison of ETRs and ecological status for BQEs 
Data were grouped by BQE and sorted by ecological status for ex-

amination of risk distributions and visualisation of possible trends 
(Fig. 8). Three levels of association were performed for both acute and 
chronic ETRs. Unlike the down-the-drain assessment, acute and chronic 
ETRs are relevant for PPP assessment because exposure can be short, i.e., 
< few days. We present only chronic Level 3 comparisons here, while 
the remaining results figures are available in the SI (Figs. S8-S22). 

Risks to macroinvertebrates and fish were generally higher than to 
macrophytes and algae indicating that, in this case with just three 
different types of active ingredient, there was relatively greater influ-
ence from the insecticide than from the fungicide and herbicide. 
Although exposure to the insecticide was lower than that to the fungi-
cide and herbicide, the inherent toxicity of the insecticide is relatively 
high and drives risk. However, there were no trends in PPP acute or 
chronic maximum ETR values and ecological status indicating that 
ecological status was not primarilly influenced by exposure to the three 
PPP chemicals. As with the surfactant case study, Level 1 and 2 analyses 
indicated similar ETR values whereas level 3 analyses tended to indicate 
lower ETR values than comparable Level 1 and 2 values (Figs. S28 to 
S33). Nevertheless, all Levels indicated similar trends across the range of 
ecological status classes. There was also no suggestion of any geographic 
distribution of high or low risk. The results can also be used to indicate 
the proportion of BQE-specific ecological class sites at risk (ETR >1). In 
this case, 6.5% of all sites have chronic ETR> 1% and 6.4% Class 1 & 2 
sites have chronic ETR > 1; no site has acute ETR > 1. The proportion of 
sites at chronic risk is low and Class 1 & 2 sites are no more or no less at 
risk than Class 3 & 4 & 5 sites, i.e., there is no correlation of sites at high 
or low ecological status with ETR values > 1. 

4. Discussion 

GIS-based ERA can better relate to landscape scale targeted 
3 Results of the comparison study are available from the corresponding 

author. 
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environmental management objectives than can current chemical ERA 
frameworks (e.g. EU REACH regulation, Pesticide Regulation No 1107/ 
2009) that use generic scenarios and assumptions of species presence, 
because it provides assessments tailored to local landscape/watershed 
abiotic characteristics and accounts for ecological heterogeneity. The 
two case studies developed here demonstrate the feasibility of i) 
deriving large scale (i.e. 21,000 km2) spatially explicit exposure con-
centrations for disparate chemicals and emission scenarios, i.e. PPP 
chemicals and chemicals disposed down the drain, ii) converting 
location-specific PECs to a range of risk indices representative of several 
broad taxonomic groups and iii) comparing these indices over a large 
geographic area e.g. > 250 locations for the surfactant study and > 3700 
locations for the PPP study, to matched site-specific ecological status to 
determine any geo-spatial trends or location-specific “hot spots”. The 
approach presented was intentionally made to be applicable across the 
EU i.e., national or pan-European, and at high levels of spatial 
resolution. 

The aim of this work focused on demonstrating the potential ap-
proaches and challenges in integrating relevant geo-spatial data rather 
than making comprehensive and refined assessments of specific chem-
icals. However, the approach exemplified in our prospective case studies 
could be used to identify discontinuous levels of risk across broad 
geographical areas, whether the distribution of high or low risk co-
incides with high or low ecological status or to focus on the impact of 
chemicals on specific lotic systems. Whilst our case studies did not 
consider any additional ecotoxicological risks from other chemicals co- 
occurring with the chemicals selected, the assessment approach could be 
extended to multiple chemicals using assessment schemes developed for 
assessing mixture toxicity. 

Identifying a trend where poor ecological status tends to coincide 
with high exposure or risk does not necessarilly indicate causality 

because of other (unknown) influencing factors including prior exposure 
to the same or other chemicals. Whilst our case studies did not find such 
relationships, they could indicate a need for further assessment and 
consideration of local mitigation where necessary. It follows that GIS- 
based risk assessment would be particularly relevant for chemicals 
with emission profiles that lead to variable spatial exposure in the 
environment, e.g. PPPs. Such assessments could be useful input to the 
implementation of Water Framework Directive (WFD) river basin 
management plans (RBMPs) as well as providing higher tier refinements 
for prospective risk assessments. 

4.1. Landscape-scale exposure estimation 

Our approach to deriving surfactant exposure concentrations was 
generally consistent with other assessments of chemicals used in con-
sumer products (Price et al., 2010; Keller et al., 2014; Wannaz et al., 
2018). In order to make a large-scale, spatially explicit but relatively 
simplistic assessment of surfactant exposure, we used non-varying 
values for national average surfactant use, potable water usage and 
removal of surfactant in all WWTPs. This resulted in effluent surfactant 
concentrations being the same for all WWTPs. We assumed complete 
mixing of effluent discharges and no upstream contributions of surfac-
tant mass. It was considered that the upstream contribution of surfactant 
mass would not be significant given the short aquatic half-life of the 
surfactant being modelled, i.e. 3 h (Anon, 2013). We also did not ac-
count for temporal variation in dilution, likely to be the dominant factor 
influencing exposure to surfactant over an annual cycle. 
Temporally-referenced flow data are available and can be purchased (e. 
g. Low flows 2000 (Young et al., 2003)) or are freely available but 
require extensive processing for this use (FLO1K (Barbarossa et al., 
2018)). Temporal variation in exposure of the surfactant was not 

Fig. 5. Spatial distribution of surfactant chronic risk values for fish (A) and fish ecological status of biomonitoring locations (B) [ETR = exposure:toxicity ratio].  
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considered to add perspective to our main focus on spatial influences. 
Utilising annual average river flow data will be both over and under 
conservative depending on variation in annual flow profiles. Despite 
these simplifications, the range of dilution factors exceeded a factor of 
105, hence the range of exposure concentrations also extended over 
several orders of magnitude. Diamond et al. (2018) discuss an approach 
for deriving representative, site-specific concentrations of chemicals in 
waste water discharges. 

We used the SYNOPS tool (Strassemeyer et al., 2017) to estimate PPP 
chemical exposures. A number of spatio-temporal models exist to esti-
mate daily aquatic exposures at the landscape level (Schad and Schulz, 
2011). Due to the complexities of landscape scale PPP exposure 
modelling, it can be time intensive to develop PPP estimates across a 
large spatial expanse (i.e., all of Germany). Because SYNOPS in-
corporates in-use regulatory PPP exposure models coupled with 
real-world PPP usage information applied at the field scale (Nause et al., 
2021), and was available as a resource for this study, it was deemed 
suitable to demonstrate the principles of spatio-temporal exposure 
estimation of PPPs across a large landscape. If data sets for agrochemical 
application and timing are available, the SYNOPS framework can be 
adapted to other countries and provides estimates of exposure and risk 
to terrestrial, surface water and ground water systems (Dominic et al., 
2017). 

Use of SYNOPS included fewer generalised assumptions in predicted 
environmental concentration (PEC) estimation than in the surfactant 

case study. Consequently, PPP PECs were likely to reflect the influence 
of more of the relevant variables and so have potential to be more 
representative of the range of expected environmental concentrations. 

4.2. Landscale-scale estimation of exposure toxicity ratios (ETRs) and 
risk distributions 

Whilst ETRs incorporate variation in chemical exposure and sensi-
tivity to chemical toxicity, the influence of toxicity will usually be 
limited to a coarse scale by the relatively small range of ecotoxicity data 
available. ETRs were generated for the same range of biological quality 
elements (BQEs: fish, macroinvertebrates, macrophytes, diatoms) at all 
assessment locations since these BQEs were routinely represented in the 
biomonitoring data. A more resolved range of ecotoxicological sensi-
tivity, i.e., representing the variability of species found at each bio-
monitoring location would have provided a distribution of risk values 
that better reflected the heterogeneity of biological species likely to be 
exposed. The development of approaches to enhance the derivation of 
species sensitivity to chemicals is a key development needed to maxi-
mise the value from geo-referenced risk assessment (see 4.3), as it is for 
conventional prospective risk assessment. The ETR calculation for the 
three PPP chemicals involved aggregating ETRs for all contributing 
chemicals (i.e., concentration addition) at the same location (including 
1000 m upstream). This represents a conservative approach, i.e., a 
reasonable worst case, since chemicals with different modes of action 

Fig. 6. Boxplots of surfactant chronic ETR v ecological status (Eco.status) derived from the same taxonomic group (Level 3). Boxes represent the lower (25th) and 
upper (75th) quartiles, and line represents the median value. [ETR = exposure:toxicity ratio]. 
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most likely do not act additively (SHER, 2012). 
There are many approaches for using distributions of spatially 

referenced exposure concentrations and ecological receptor occurrence/ 
abundance in deriving risk estimates. Clear expression of the assessment 
objectives enables appropriate procedures to be selected. To illustrate 
this point and recognising the limited availability of ecotoxicity data 
needed to determine risk, we considered three simple correlative uses of 
the biomonitoring data with the ETR distributions. A conservative or 
screening approach is represented by our level 1 assessment which 
compared the “Best” ecological status BQE per site to ETR of highest 
(maximum) risk across all BQEs (chronic & acute separately). Whilst this 
approach makes broad use of the ecological data, interpretation of the 
ETR values is difficult for chemicals with wide differences in species 
sensitivity. For example, ecological status may not always be driven by 
taxa that are relatively sensitive to a chemical. An intermediate 
approach is represented by Level 2 where each BQE and ecological status 
per site are compared to ETR of highest (maximum) risk across all BQEs 
(chronic & acute separately). The most credible approach, Level 3, 
compares each BQE and ecological status per site to the most relevant 
ETR (chronic and acute separately). 

One approach to reducing the complexity of assessment options is to 
compare chemical exposures or ETRs with only those sites classed with a 
high ecological status, i.e., sites considered relatively unimpacted by 
anthropogenic stressors, including habitat degradation. Liess and von 
der Ohe (2005) report a similar approach using multiple stream sites 
likely to be relatively unimpacted by pollutants or hydrodynamic stress 
in which to assess any relationship between PPP chemical concentra-
tions and community composition. In our case studies higher ETR values 
did not occur less often at sites with high ecological status than at sites 
with lower ecological status. This might suggest a low level of concern if 

the biomonitoring data are taken as spatially and temporally represen-
tative. Apart from the specific chemicals selected, we did not investigate 
other factors that could have influenced ecological status. 

In our case studies, 90th percentile annual PECs were used to remove 
temporal variation thereby enabling a focus on spatial heterogeneity. 
Assessment of both spatial and temporal influences on risk could be 
made by comparing field-level acute or chronic exposure with ecotox-
icity data or biomonitoring data at multiple time points (Holmes et al., 
2018). Consideration of temporal variation in risk could include the 
timing of occurrence of sensitive life stages, e.g. by focusing the 
assessment at times and locations where chemical exposure coincides 
with occurrence of early life stages. However, given that most chronic 
ecotoxicity tests include sensitive life stages, and that use of 90th 
percentile PECs is reasonably conservative, excluding temporal varia-
tion may not represent an under-estimation of risk. 

4.3. Further developments 

Direct comparisons of predicted environmental concentrations with 
specific taxa are feasible if the full biomonitoring data are available (Vaj 
et al., 2011; Liess and von der Ohe, 2005), but will likely be limited by 
the lack of knowledge of ecotoxicological sensitivity of most of the 
species present. Since relatively few species are included in standard 
ecotoxicity tests, e.g. OECD, ASTM, ISO, there will be many data gaps for 
exposed species and functions (Maltby et al., 2017). Assessment of 
adverse effects then requires approaches to account for use of surrogate 
ecotoxicity data as well as the other uncertainties in extrapolating from 
(mainly) single species laboratory tests to assemblages of species in the 
field (Spurgeon et al., 2020; Van den Berg et al., 2021). Such approaches 
are set out in existing regulatory frameworks which aim to be protective 

Fig. 7. Spatial distribution of PPP chronic risk values for macroinvertebrates (A) and ecological status of spatially associated biomonitoring locations (B) [ETR 
= exposure:toxicity ratio]. 
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of broad ranges of taxa. Continuation of approaches to address this issue, 
e.g. the use of species sensitivity driven by traits (Van den Berg et al., 
2019), is key to achieving risk assessments of high ecological resolution. 

A mid-way approach between the current generic models used in 
ERA and a site-specific approach could be to develop representative 
scenarios (Rico et al., 2015, Goussen et al., 2016, Franco et al., 2017). 
Ecological scenarios can be viewed as representative food webs or major 
taxonomic groups within food webs. Developing environmental and 
ecological scenarios could provide the basis for achieving a simplified 
and pragmatic approach to the number of assessments required for an 
individual chemical. Scenarios could be aligned to local specific pro-
tection goals, e.g. as set out in terms of WFD biological quality elements, 
BQEs RBMPs, or to other management goals, e.g. in terms of ecosystem 
services. 

4.4. Challenges 

Two main challenges were identified during this research that 
related to data availability and temporal variation in exposure. 

4.4.1. Data availability 
A search for available and accessible geo-referenced ecological data 

sources indicated scarce data suitable for risk assessments on a pan- 
European scale. The most useful data set was the WFD biomonitoring 
data as required for assessment of ecological status. Whilst these data are 
collected by national agencies they aim to provide comparable Europe 
wide assessment at the required spatial scale and resolution. However, 
ease of access varies even within Member States with some internal 
regions providing data freely whilst others require a financial payment. 
There are concerns over comparability when using indices specific to 
member states for ecological quality assessment. Nevertheless, there 
have been intercalibration exercises to ensure the comparability of 

Fig. 8. Plant Protection Product (PPP) chronic Exposure Toxicity Ratio (ETR) v ecological status derived from the same taxonomic group (Level 3).  
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ecological quality class limits between EU Member States (Birk et al., 
2013; Poikane et al., 2014). 

Broader application of WFD ecological monitoring data is limited by 
their hydrological scope and ecological relevance. The UK River Inver-
tebrate Classification Tool, RICT, is only applicable to freshwaters 
whereas the German Perlodes assessment (Pottgiesser and Som-
merhäuser, 2004) includes some transitional waters (backwater and 
brackish water influenced Baltic Sea tributaries). There are other tools 
for transitional and coastal ecosystems based on similar approaches to 
the use of WFD BQEs in freshwater assessment (Ponti et al., 2009; Borja 
et al., 2009, Hernández et al., 2010, Vinagre et al., 2016, Souza and 
Vianna, 2020). Linking these integrative biological indices with refer-
ence hydromorphological typologies provides potential incorporation 
into GIS-based tools. We did not identify large scale geo-referenced 
ecological data sets for other environmental compartments. 

Whichever approach is used, the comparisons lead to a spatial dis-
tribution of aggregated risk for the PPP case study or individual chem-
ical risk for the consumer product study. These distributions then 
require interpretation in order to determine acceptable chemical uses 
and risk management measures. Since ecological communities are 
influenced by local landscape and climate characteristics and stressors, 
simple correlative links between chemical exposure or ETR and 
ecological status require cautious interpretation. Determining the 
importance of a specific environmental factor using field data is chal-
lenging because other environmental factors may obfuscate possible 
effects. 

Temporal variation in exposure: for streams, flow may dissipate the 
acute 1-day PEC rapidly such that the 90th percentile of daily values at a 
given site is lower than the respective chronic 7-day TWA PEC for the 
same site. Concern for missing short-term exposure spikes has been 
discussed elsewhere (Lorenz, 2017). Furthermore, accounting for tem-
poral variation generates a huge amount of additional data to assess and 
present even though the biomonitoring data were obtained on relatively 
few time points during the annual cycle. Since biomonitoring data ob-
tained at high temporal resolution are not generally available, it would 
be necessary to extrapolate occurrence/abundance data which would 
introduce a high level of uncertainty. 

4.5. Future needs 

Whatever approach is applied to landscape-scale assessment, it 
seems critical to develop guidance on assessing and interpreting the 
outcomes of complex data integration necessary to determine the level 
of risk that is acceptable and to inform decision making. Guidance on the 
use and integration of exposure, ecotoxicity data and ecological quality, 
e.g. occurrence/abundance, is key to this as is the interpretation of this 
mapping. For instance, if an assessment should lead to 90th percentile 
protection on a spatial or temporal scale, does that mean risks up to the 
10th percentile are acceptable irrespective of how they are distributed, 
or should a spatially clumped concentration of risk be assessed differ-
ently? Identifying certain landscape characteristics or times of the year 
that lead to particularly high risk might also inform better management 
or mitigation decisions. If such high-risk situations are identified and 
managed with mitigation, does that then mean that in/at other areas/ 
times of the year higher chemical use rates could be acceptable? 
Furthermore, should highly diverse and/or sensitive ecosystems have 
higher protection than species poor and insensitive assemblages? If 
there is no indication of spatial clustering of risk, is a landscape scale 
assessment necessary for deciding on any management or mitigation 
measures? 

Our studies do not provide answers to these questions, but these are 
aspects that regulatory agencies and risk managers need to discuss if 
landscape scale risk assessments are to be used. In addition to further 
research to develop data and methods, we recommend stakeholder 
workshops to gain consensus on scoping and interpreting landscape 
scale assessments, leading to greater overall acceptance of the 

approaches. 

5. Conclusions 

Framing (problem formulation) of landscape-scale risk assessment is 
a critical step that requires a clear statement of the questions to be 
addressed and must consider data handling, e.g., aggregation, required 
resolution, methods for integrating data layers. Whilst we focused on 
demonstrating whether the integration of relevant data and potential 
approaches is feasible rather than making comprehensive and refined 
risk assessments of specific chemicals, we demonstrated that prospective 
derivation of spatially referenced exposure concentrations was techni-
cally feasible but that assessment of risk is less well resolved because of 
the limited range of ecotoxicity data. Furthermore, there is a limited 
breadth of ecological data sets that are comprehensive and consistent 
and that span large geographic areas. The challenges of adopting geo- 
referenced ERA over continental scales might be addressed by further 
development and application of spatially explicit ecological effects 
models. Further development towards increasing efficiency, simplifying 
and normalising assessment and interpretation methods would also be 
required. This includes the development of guidance on how to assess 
spatial and temporal distributions of risk for decision making. 
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