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Abstract—Fact-checking is vital for countering fake news. This
process requires verifying the truthfulness of a claim by reasoning
about multiple pieces of evidence. The current dominant approach
depends upon capturing the claim-evidence relations from a claim-
evidence interaction graph. Existing solutions utilize phrase-level
semantics on a single-granularity but ignore other hierarchical
features, such as fact- and sentence-level textual semantics and
their logical topology. Since the hierarchical features often provide
hints to infer collaborative high-order clues that can be essential
for fact-checking, they should not be overlooked. This paper
proposes a better method to model the claim-evidence graph
in a multi-granularity manner. Doing so allows one to exploit
more textual semantics and logical topology between a claim and
its evidence. To achieve the target, we firstly employ a graph
inference learning framework to infer graph nodes on different
granular semantic units within their hierarchical topology. Then,
an inference learning procedure is designed to optimize the global
textual similarity and local topological reachability from the
claim-evidence graph. We evaluate our approach by applying it to
fact-checking on an open dataset and experimental results show
that our technique outperforms existing graph-based techniques
by a large margin.

Index Terms—Fact-checking, Graph Inference Learning, Graph
Reasoning, Graph Coarsening, Graph Pooling.

I. INTRODUCTION

The prevalence of misinformation is a major concern on

social media. Such inaccurate information can influence public

opinions, stock prices, and even presidential elections [1]–[4].

By assessing the truthfulness of a claim, fact-checking is an

important counter-measure against fake news and the spread of

misinformation. The definition is given in [5], where a claim

is a factual statement under investigation.

Due to the large volume of information generated, techniques

for automating claim assessment are highly desired. While

vital, automated fact-checking remains an open challenge.

This process involves multiple steps to retrieve the documents

composed of evidence sentences (document retrieval), select

relevant evidence (evidence selection), and predict the truth

of the claim (fact-checking). Our work focuses on the last

step of claim assessment (fact-checking). Here, the goal is to

label a given claim as ‘SUPPORTED’, ‘REFUTED’, or ‘NOT

*Jianxin Li is the corresponding author.

Claim: The Rodney King riots took place in the most populous county in the USA. 

Evidence 1: The 1992 Los Angeles riots, also known as the Rodney King riots were 

a series of riots, lootings, arsons, and civil disturbances that occurred in Los 

Angeles County, California in April and May 1992. 

Evidence 2: Los Angeles County, officially the County of Los Angeles, is the most 

populous county in the USA. 
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Fig. 1. Reasoning examples of FEVER data over several pieces of evidence
for verification. The words (tuples) in red are the key information to verify the
claim. The claim requires to reason and aggregate multiple evidence sentences
in a hierarchical manner for fact verification.

ENOUGH INFO’, indicating that the evidence can support,

refute, or is insufficient for the claim respectively.

Existing fact-checking methods are dominated by a particular

case of recognizing textual entailment (RTE) [6] or natural

language inference (NLI) [7]. They work by modeling the

connections among evidence sentences by simply concate-

nating them [8]–[16]. Unfortunately, their strategies prevent

the inference system from grasping sufficient relational and

logical information among the evidences [12]. Some recent

works [17], [18] use neural graph networks to aggregate

evidences. Although producing promising results, they only

model simple granularity graphs (e.g., either the word-level [18]

or sentence-level [17], [19] graphs). Their strategies are unlikely

to capture the joint relations across evidences from multi-

granular information, i.e., word tuples, facts, and sentences.

This paper argues that effective fact-checking requires

integrating and reasoning evidence graphs with multiple-



granularity semantic units. For example in Fig.1, a claim

sentence is presented with two evidence sentences. The three

sentences can be organized as three sub-graphs in which entities

from the same sentence have the same node color, and the

graph nodes in the graphs are the smallest unit like a word- or

phrase-level tuple. These small units can form larger-grained

facts. For instance, ‘Los Angeles County’, ‘is’, ‘the most

populous country’ from Fig.1. With this breakdown, facts

form the largest-grained unit of sentence. Some examples of

key information are highlighted in red in Fig.1, which can

provide direct clues to the claim and should not be ignored.

These clues are multiple nested facts formed from word- or

phrase-level tuples provided by the sentences. In other words,

multiple-granularity subgraph components can contribute to

fact-checking. Therefore, verifying a claim requires sorting out

factual clues to understand the reasoning process over facts

across multi-granularity evidence.

In light of the aforementioned observation, we aim to

develop a learning framework to leverage multi-granulated

facts for fact-checking. We achieve this by developing a

hierarchical graph inference learning (HiGIL) model. Our

model employs graph representation and graph inference

learning techniques to guide a downstream model to verify

facts with the minimum (e.g., word and phrase level), medium

(fact level) and maximum (sentence level) granularity. It then

learns to aggregate information in factual graphs to support or

reject a claim based on the extracted factual information.

Our implementation utilizes StuffIE, the best-performing

open information extraction tool to construct the multi-granular

factual graph. This tool provides nested relations among

facts and is naturally suitable for graph construction without

hand-crafted rules. Our graph representation component is

based on a graph convolutional network which is similar to

GCN [20] or GCNII [21]. It is designed to work with the graph

pooling procedure to generate hierarchical representations of

graphs. The graph representation learning procedure integrates

a semantic cluster from fine-grained nodes, forming the coarse-

grained input for the subsequent graph convolutional layer. To

support the graph model for semantics inference learning, our

approach optimizes the global textual similarity and the local

topological reachability to bridge the semantic relation between

the claim and evidence.

We have developed a working prototype of HiGIL and

applied it to the FEVER [8] dataset for fact extraction and

verification. We compare our approach to a range of graph-

based fact-checking methods. Experimental results show that

HiGIL can effectively leverage multi-granular semantic units

to improve the accuracy in verifying the truthfulness of claims.

This paper makes the following contributions:

• It is the first to construct a multi-granular hierarchical factual

graph with the extracted results of the best-performing

information extraction tool StuffIE, achieving the target of

supporting graph reasoning for claim verification.

• It shows how the techniques for graph representation learning

and graph inference learning can be integrated to verify facts

with minimum (e.g., word and phrase level), medium (fact

level) and maximum (sentence level) granularities.

• It showcases how global textual similarity and local topolog-

ical reachability of a hierarchical factual graph can be used

to support graph inference learning for fact-checking.

II. RELATED WORK

In general, fact-checking involves veracity assessment of

human-generated claims by extracting evidence from Wikipedia.

Existing fact-checking methods mainly formulate the task as a

natural language inference (NLI) [7]. However, these NLI mod-

els [8]–[16], kind of textual inference models, mainly utilize

simple evidence combination methods, such as concatenating

the evidence or just dealing with standalone evidence. These

methods are unable to grasp sufficient relational information

in multiple dependent pieces of evidence.

The line of researches [17]–[19] proposes a graph-based

reasoning approach to grasp the hierarchical logical reasoning

process for fact-checking. GEAR [17] and KGAT [19] construct

graphs with evidence as sentence-level nodes and use deep

graph attention networks to propagate clues among neighbor

nodes. DREAM [18] infers facts on a graph constructed by

outputs of the semantic role labeler (SRL1) with phrase-level

(or words tuple-level) semantic units. TARSA [12] constructs

a fully-connected evidence graph and reaches a topic-aware

evidence reasoning for fact verification. FACE-KEG [22]

constructs a relevant knowledge graph for fact-checking

from a large-scale structured knowledge base. Both graph

nodes of TARSA and FACE-KEG are trained from scratch

(TFS), making the training process convenient. However, these

graph-based models learn only phrase-level or sentence-level

representations. Thus, simply reasoning on single-granularity

semantic units makes these models insufficient to capture

complex or high-order clues since collaborative clues could be

propagated hierarchically [23]–[25]. Moreover, both structural

and semantic information plays an important role in knowledge

graph reasoning [26].

III. FACTUAL GRAPH CONSTRUCTION

Our work utilizes StuffIE2, a fine-grained information

extraction tool to construct the hierarchical factual graph.

As one might observe from the StuffIE output in Fig.2B,

extracted facts following numbers are formed as a triple of

⟨subject; predicate; object⟩ and follow the augment with a form

⟨connector; content⟩ alongside their types which represent

the semantic role, such as ‘DETAILS’, ‘ CONJUCTION,

(CONJCT)’, ‘PURPOSE, (PURP)’, ‘TIME’, and ‘POST’. All

tuples in Fig.2B are formed by ⟨A;B⟩. The fact 1.14 and 1.28
are in the evidence sentence 1. The fact 2.12 and 3.5 are in

the evidence sentence 2 and the claim sentence, respectively.

The pseudocode in Fig.2C shows the steps for constructing

a factual-knowledge graph.

• For the fact itself, nodes are subject, object, and predicate

phrases. We use the label ‘sub’ or ‘obj’ to link three nodes in

1[Online].Available: https://demo.allennlp.org/semantic-role-labeling
2[Online].Available: https://gitlab.inf.unibz.it/rprasojo/stuffie



Claim: The Rodney King riots took place in the most 

populous county in the USA. 

Evidence 1: The 1992 Los Angeles riots, also known as the 

Rodney King riots were a series of riots, lootings, arsons, 

and civil disturbances that occurred in Los Angeles 

County, California in April and May 1992. 

Evidence 2: Los Angeles County, officially the County of 

Los Angeles, is the most populous county in the USA. 

1.14: ⟨The 1992 Los Angeles riots; were; a series of riots; lootings, arsons, and civil disturbances⟩
- ⟨also known as; the Rodney King riots⟩ (DETAILS)
1.28: ⟨ that⟨ref#1.14s⟩; occurred in; Los Angeles County, California⟩
- ⟨in; April and May 1992⟩ (TIME)
2.12: ⟨Los Angeles County, officially the County of Los Angeles; is; the most populous county⟩
- ⟨in; the USA⟩ (LOCATION)
3.5: ⟨The Rodney King riots⟨ref#1.7o⟩; took place; in the most populous county⟩
- ⟨in; the USA⟩ (LOCATION)
Graph Construction Steps：

CONFIGURATION OF FACT TRIPLES

Subject\Predicate\Object

Sub, {Subject  → Predicate}

Obj, {Predicate → Object}

CONNECTION W/ OVERLAP

All Tuples

Tuple A equals or contains Tuple B; 

No. of overlap-words between A&B > the 

half of the minimum No. of words in A&B

CONNECTION OF AUGMENT PHRASES CO-REFERENCE

Augment Phrases

LOCATION, {Predicate  → Augment}

TIME, {Predicate  → Augment}

POST, {Predicate  → Augment}

Named Entity 

REF, connected by the reference label, 

e.g. ref#2.12s refers to the subject in 

fact of 2.12
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Fig. 2. The claim-evidence example and the constructed multi-granular factual graph. The StuffIE outputs are shown in subfigure B. As one might observe
from the StuffIE output in subfigure B, extracted facts following numbers are formed as a triple of ⟨subject; predicate; object⟩ and follow the augment with a
form ⟨connector; content⟩ alongside their types which represent the semantic role, such as ‘DETAILS’, ‘LOCATION’, ‘TIME’, and ‘ POST’. The pseudocode
in subfigure C shows the steps for constructing a multi-granular factual-knowledge graph. Links of ‘Sub’ and ‘Obj’ are used to connect internal triples of the
fact, and other Links are used to connect facts and their augments. The multi-granular graph is given in subfigure D, which has three types of nodes: tuples,
facts and sentences. Nodes visualized in the same color refer to they are from the same sentences.

a fact. For the graph example given in Fig.2C, a ‘sub’ label

moves from the subject node of ‘the embattled Tillerson’ to

the predicate node of ‘would last in’. Similarly, from the

predicate node of ‘would last in’, the ‘obj’ label moves to

the object node of ‘the job’.

• For multiple tuples, we link two facts with a co-reference.

As the example given in Fig.2B, ref#1.14s refers to ‘that’

in the fact 1.28 and represents the subject node (the 1992

Los Angeles riots) in the fact 1.14. We also add edge among

tuples as Zhou et al., [18] did, if one of the following

conditions is satisfied: tuple A equals or contains tuple B;

the number of overlapped words between A and B is larger

than half of the minimum number of words in A and B.

• For the augments of a fact, we directly use SRL tags to

link a fact and its augments. In our working example, the

predicate node ‘occurred in’ is connected to a augment node

‘in April and May 1992’ by the edge of ‘TIME’, an SRL tag.

In the end, nodes inside the claim or evidence and nodes

across the claim and evidence are connected by links.

The multi-granular factual graph has naturally formed the

hierarchical patterns, in which minimum-grained tuples form

the medium-grained facts, and facts form the maximum-grained

sentences. It should be noted that there is no guarantee that

the extracted information for graph construction is error-free.

The StuffIE is the best-performing tool among OpenIE tools

for fact extraction. It is also a unique tool that does not

require additional manual rules to obtain the nested relationship

between facts and their augments [27].

IV. PROPOSED METHOD

Given the constructed graph of a claim-evidence pair (a

single claim and its multiple evidence), our model is required

to predict the claim’s truthfulness. The basic idea of our

model is to employ hierarchical graph representation learning

and hierarchical graph inference learning for fact-checking.

The former procedure uses the convolutional graph network

(GCN [20]) to update node representations by aggregating

the representations from their neighbors. It then implements

graph pooling [28] to produce hierarchical representations.

The latter explores feature-based and topology-based inference

learning. It optimizes global textual similarity (GTSim) and

local topological reachability (LTRch) on the graph for the

final prediction. The two procedures are implemented on three

granular graphs jointly. In doing so, we can simultaneously

leverage the complementary strengths of multi-granular graph

representation for hierarchical graph inference.

A. Graph Representation Learning

Formally, We denote the constructed claim-evidence graph

G = {V, E ,X}, where V is the finite set of |V| nodes, and E
defines the adjacency relationships among nodes representing

the topology of G. Taking the tuple-level graph as an example,

we denote X ∈ R
np×d as a matrix containing the representation

of all tuple-level nodes np. We initialize representations Xp

for graph nodes using a language representation model, LRM

(e.g., RoBERTa).

These representations are used as inputs to the graph

convolutional module, and then will be iteratively updated
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Fig. 3. Illustration of the HiGIL model.

based on the tuple-level graph topology with a GCN model.

The output representation matrix H of the k-th GCN layer Lk

is computed as:

H
(k)
i = Relu

(
D̃
−

1

2 ÃpD̃
−

1

2H
(k−1)
i W

(k)
p

)
, (1)

where Ãp = Ap+ Ip is the adjacency matrix of the tuple-level

graph and W
(k)
p ∈ R

dk−1×dk is weight matrix of the layer.

H
(0) = Xp is the matrix of input representation of the model.

Hi ∈ R
d is the d-dimension representation of node i.

We simplify H
(k) as H which indicates the representation

of all nodes updated by k-layer GCNs. We also use Hp =
GCN(Ap,Xp), to denote an arbitrary GCN module in which

Hp indicates the representation of all tuple nodes. Given Hp,

we apply hierarchical graph pooling (HGPool) to coarsen the

tuple-level graph:

Af ,Xf = HGPool(Ap,Hp), (2)

with generating a coarsened adjacency matrix Af ∈ R
nf×d and

a matrix of new embeddings Xf ∈ R
nf×nf for the fact-level

graph. Specifically, the HGPool takes the tuple embeddings

Hp and aggregates them according to the cluster assignment

matrix:

HGij = ✶|ni
p ∈ n

j
f , (3)

where HGij refers to whether the i-th node of the tuple-level

graph (ni
p) belongs to j-th cluster of the fact-level graph (n

j
f ).

HGPool generates hierarchical representation Xf for each of

the nf clusters.

Similarly, we can obtain the representation of fact Hf and

the representation of sentence Hs in fact-level graph and

sentence-level graph through the above equations. HGPool is

heuristic since ni
p ∈ n

j
f is already known from the extraction

results. To do so, HGPool maintains the logical topology of the

constructed graph. Moreover, we explore three simple graph

pooling approaches: GMaxPool, GMeanPool and GWghtPool.

Take tuple-level graph coarsening as an example:

• GMaxPool: The graph max pool performs the Element-wise

Max operation among fine-grained nodes H ∈ R
np×d into

coarse-grained nodes H ∈ R
nf×d.

• GMeanPool: The coarse-grained nodes are obtained by the

Element-wise Mean operation among fine-grained nodes.

• GWghtPool: The coarse-grained nodes are obtained by

the weighted summation, H =
∑

i=1 aihi ∈ R
nf×d.

hi is the representation of i-th fine-grained node, ai =
softmaxi (Wfhi), and Wf ∈ R

1×nf×d.

Three pooling approaches are inspired by the evidence

aggregation procedure employed by Zhou et al., [17] and

Tymoshenko et al., [16]. However, they aggregate sentence-

level evidence based on LRMs rather than graphs, which is

different from our methods.

B. Graph Inference Learning

We employ hierarchical graph inference learning by combin-

ing feature-based and topology-based inference learning with

the multi-granular graph. Specifically, the feature-based node

inference learning to optimize global textual similarity is named

as GTSim mechanism. The topology-based node inference

learning to optimize the local topological reachability is named

as LTRch mechanism. The two reference mechanisms are

combined to generate a claim-specific evidence representation

in the multi-granular graph for each node before making the

final prediction.

GTSim mechanism: f(ne
p, n

c
p,R) ⇒ Z

GTS: Here we

have ne
f and nc

f which denote the number of evidence and

claim nodes in the tuple-level graph, respectively. R refers to

the relationship of global textual similarity between ne
f and nc

f .

The GTSim mechanism is to obtain claim-centric evidence-

aggregated representation Z
GTS for further graph inference.

Let He
p ∈ R

ne
p×d and H

c
p ∈ R

nc
p×d denote matrices containing

node representations in the evidence-based sub-graph and claim-

based sub-graph, respectively. The GTSim optimizes global

textual similarity between H
e
p and H

c
p for the graph inference

learning. Specifically, the GTSim takes each h
c
i ∈ H

c
p as a

query, and takes all node representations h
e
j ∈ H

e
p as keys.



Then, it computes normalized attention coefficient which shows

the textual similarity score sGTS
i←j between the evidence node

j ∈ ne
p and the claim node i ∈ nc

p:

sGTS
i←j = softmaxj(LeakyReLU(a⃗T

[
Wch

c
i ||Weh

e
j

]
)), (4)

where a
T represents transposition, and a⃗

T ∈ R
2d and ‘||′

represent concatenation. After that, we calculate a claim-centric

evidence-aggregated representation Z
GTS =

[
z1, ..., znc

p

]
using

the weighted sum over all evidence node representations H
e
p:

zi =
∑

j∈ne
p

sGTS
i←jh

e
j . (5)

The Z
GTS is obtained by the global textual similarity. With con-

sideration of local topological reachability, we obtain another

kind of claim-centric evidence-aggregated representation.

LTRch mechanism: f(ne
p, n

c
p,V) ⇒ Z

LTR: Here we have

the topology relationships (topology edges V) among all graph

nodes. We compute the path reachability (proposed by Xu et

al., [29]) from ne
p to nc

p by employing random walks on the

tuple-level graph. Thus, the information in evidence nodes ne
p

in the sub-graph is propagated to claim nodes nc
p in the claim

sub-graph based on the reachability probability matrix.

For the claim-evidence graph G, we define the random-walk

transition matrix P = D
−1E where D ∈ R

n×n is the diagonal

degree matrix. Thus, Pi←j is the probability of moving from

node j ∈ ne
p to node i ∈ nc

p in one step. We denote that PK
i←j

is the probability of moving from node j ∈ ne
p to node i ∈ nc

p

in K steps, where P
K
ij = Pij when K = 1, and if K > 1:

P
K
i←j =

∑

o

Pi←oP
K−1
o←j , (6)

where the K-step probability P
K
i←j starts from node j ∈ ne

p

and ends at node i ∈ nc
p, taking a single step to any node

o ∈ np, and then taking K − 1 steps to node i ∈ nc
p.

We perform the node reachability as a K-dimensional vector[
Pi←j ,P

2
i←j , ...,P

K
i←j

]
. Then, we map the reachable vector

into a weight value pLTR
i←j and implement it with a MLP layer:

pLTR
i←j = MLP

[
Pi←j ,P

2
i←j , ...,P

K
i←j

]
. (7)

After that, we calculate a claim-centric evidence-aggregated

representation Z
LTR =

[
z1, ..., znc

p

]
using the weighted sum

over all evidence node representations H
e
p based on the local

topology reachability weights pLTR
i←j :

zi =
∑

j∈ne
p

pLTR
i←jh

e
j . (8)

We next calculate two kinds of alignment vectors, aGTS and

aLTR, to augment node representations with aggregated features

produced by the global textual similarity and the local topology

reachability:

aGTS
i = falign(h

c
i , z

GTS
i ), (9)

aLTR
i = falign(h

c
i , z

LTR
i ), (10)

where falign(·) denotes the alignment function [18], [30], in

which falign(·) = W [x, y, x− y, x · y] and W ∈ R
d×4∗d.

Then, we obtain alignment matrix by concatenating two

kinds of alignment vectors:

A =
[
aGTS
1 ||aLTR

1 , ..., aGTS
nc
p
||aLTR

nc
p

]
. (11)

The mean pooling obtains the final outputs over A, and it will

be fed into a MLP network for the final prediction. In the

tuple graph, the cross entropy loss is:

Lt = CrossEntropy(y∗, P (y|A)), (12)

where y∗ is the ground truth verification label. We can obtain

another two training loss Lf and Ls on the two graphs.

The whole framework is trained end-to-end by minimizing

the final loss:

L = Lt + Lf + Ls. (13)

V. EXPERIMENTAL ANALYSIS

A. Dataset and Evaluation Metrics

We conduct our experiments on FEVER 1.03, a large-scale

benchmark dataset. This dataset contains 185,455 annotated

claims together with links to 5,416,537 Wikipedia documents

from the June 2017 Wikipedia dump. Each claim of the FEVER

dataset has a human-annotated label that classifies the claims

as SUPPORTS, REFUTES, or NOT ENOUGH INFO. For the

Wikipedia documents, we use the processed document retrieval

results 4 given by Liu et al., [19], which contain the predicted

Wikipedia article titles (i.e., document IDs). These document

retrieval results were extensively used in prior works to evaluate

fact-checking models, such as GEAR [17] and re-produced

KGAT [16]. We use the same dataset splits as the FEVER

Shared Task. The data statistics are shown in TableI.

We consider two evaluation metrics, the label accuracy (LA)

and FEVER score5. The former measures how accurately a

method classifies a claim into one of the three categories: SUP-

PORTS, REFUTES, or NOT ENOUGH INFO, by comparing

the results given by human annotators. The latter measures the

percentage of correctly retrieved evidence for the SUPPORTED

and REFUTED categories, and the claims labeled as NOT

ENOUGH INFO do not require evidence in this case. We also

submit our model to the FEVER Challenge site to report the

blind test performance.

B. Salient Baseline Models

We apply graph-based approaches to learn the structural-

semantic relationship of factual information using the pre-

trained RoBERTa-based LRM to initialize the graph com-

ponents. Specifically, we consider these salient graph-based

fact-checking models, GEAR [17], KGAT [19], Trf-XH [31],

DREAM [18], and TARSA [12] as our baselines. GEAR

utilizes a graph attention network on a fully-connected evidence

graph and aggregates all evidence through an attention layer.

3[Online].Available: https://fever.ai/resources.html
4[Online].Available: https://github.com/thunlp/KernelGAT/tree/master/data
5[Online].Available: https://github.com/sheffieldnlp/fever-scorer



TABLE I
STATISTICS OF THE FEVER DATASET.

Split TRAIN DEV TEST

SUPPORTED 80,035 6,666 6,666
REFUTED 29,775 6,666 6,666
NOT ENOUGH INFO 35,659 6,666 6,666
Tuple nodes (ALL) 592,715 82,771 85,440
Fact nodes (ALL) 214,713 30,185 31,250
Sent nodes (ALL) 145,449 19,998 19,998

KGAT regards sentences as the nodes of a graph and uses

kernel graph attention network to aggregate information. Trf-

XH models the structured text sequences by linking them

with a graphical structure and reasons by multi-hop questions

answering framework based on the Transfomer-XL [32].

DREAM constructs a fine-grained graph for the prediction

in which each evidence sentence is parsed into tuples 6 with

the off-the-shelf SRL toolkit. TARSA [12] explores a topic-

aware evidence reasoning and stance-aware aggregation for

fact verification, and it is trained from scratch (TFS). FACE-

KEG [22] constructs a relevant knowledge graph for fact-

checking from a large-scale structured knowledge base.

C. Hyperparameter Settings

We use the pre-trained LRMs (RoBERTa-base or RoBERTa-

large) model to initialize the graph node components. The

hyperparameters of the integrated LRM are the same as those

of the corresponding pre-trained RoBERTa, including weight

decay, the dimension of hidden state vectors, and the number

of heads. These hyperparameters are then fine-tuned for the

downstream tasks. We set the dropout rate of HiGIL as 0.1.

We use 3, 2, and 1 GCN layers for the tuple, fact, and sentence

graphs, respectively. For implementing GCNII, the layers of the

three granular graph should be 10, 6, 2, respectively. We apply

the Adam optimizer for model training with a cross-entropy

loss function. The learning rate of the pre-trained LRMs is 2e-6,

and the learning rate of the graph convolutional modules is 2e-

3. We set the batch size as 8 for training and 32 for inference.

The maximum sequence length for inputs is 256. Integrating

with RoBERTa-base and RoBERTa-large, the dimension d of

node representation in graph convolutional modules is set to

768 and 1024, respectively. The reachability parameter K in

Eq.(6) is set to the 3, 2 and 1 in the tuple, fact and sentence

graph, respectively.

D. Implementations

We implement HiGIL on PyTorch and use the pre-trained

Transfomer implementation (v4.2.2) from Huggingface7. For

graph processing, we employ DGL8 v0.7.2. All models are

trained on a single 32GB NVIDIA Tesla V100 GPU.

6Sentence could be parsed as multiple tuples, and a tuple is composed of
several words.

7[Online].Available: https://huggingface.co/
8[Online].Available: https://github.com/dmlc/dgl

TABLE II
LA AND FEVER RESULTS ON THE BLIND TEST SET. WE UNDERLINE THE

RESULTS OF THE BEST GRAPH-BASED BASELINES. WE ALSO HAVE MARKED

THE FACT-CHECKING MODELS UNDER DIFFERENT DOCUMENT RETRIEVAL

RESULTS FOR A FAIR COMPARISON. MODELS MARKED WITH ♣ INDICATE

USING DOCUMENT RETRIEVAL RESULTS AND DATASET PARTITION GIVEN

BY LIU ET AL., [19], THE ◦ INDICATES THE MODELS USE THE DOCUMENT

RETRIEVAL RESULTS BY THEIR METHOD, BUT THEIR CODE/OUTPUTS ARE

NOT AVAILABLE ONLINE YET.

Model Nodes Initialization LA FEVER

GEAR♣ [17] BERT-base 71.60 67.19
Trf-XH◦ [31] BERT-base 72.39 69.07

KGAT♣ [19] BERT-base 72.81 69.40

KGAT♣ [33] CorefBERT-base 72.88 69.82
FACE-KEG◦ [22] TFS 73.90 71.20
TARSA◦ [12] TFS 73.97 70.70

KGAT♣ [19] RoBERTa-large 74.07 70.38
DREAM◦ [18] XLNet 76.85 70.60

KGAT♣ [33] CorefBERT-large 74.37 70.86

KGAT♣ [33] CorefRoBERTa-large 75.96 72.30

HiGIL♣ RoBERTa-base 76.30 72.12

HiGIL♣ RoBERTa-large 77.05 73.61

TABLE III
FACT-CHECKING PERFORMANCE OF LA AND FEVER ON THE DEV SET.

WE UNDERLINE THE FACT-CHECKING RESULTS OF THE BEST GRAPH-BASED

BASELINES.

Model Nodes Initialization LA FEVER

GEAR♣ [17] BERT-base 74.84 70.69

KGAT♣ [16] BERT-base 77.80 75.64

KGAT♣ [19] BERT-base 78.02 75.88
Trf-XH◦ [31] BERT-base 78.05 74.98

KGAT♣ [19] RoBERTa-large 78.29 76.11
DREAM◦ [18] XLNet 79.16 77.01

KGAT♣ [16] RoBERTa-base 79.98 77.66

KGAT♣ [16] RoBERTa-large 80.77 78.66
TARSA◦ [12] TFS 81.24 77.96

HiGIL♣ RoBERTa-base 80.51 77.77

HiGIL♣ RoBERTa-large 81.34 78.82

E. Main Results of Summarization

TableII reports the performance of different graph-augmented

models on the blind TEST data. Our HiGIL achieves the

best performance among graph-augmented models. It improves

the FEVER score of 1.31 by modeling multi-granular graphs

in the hierarchical reasoning process when compared with

the salient graph-based KGAT [19]. Among these graph-

augmented baselines, GEAR [17], Trf-XH [31], TARSA [12]

and KGAT [19] are the three single-granular sentence-level

graph neural models based on a fully-connected evidence

graph or a hyperlink-connected evidence graph. DREAM [18] 9

employs a tuple-level graph for evidence reasoning. HiGIL

outperforms these single-granular graph-augmented models

by a large margin. These results show that fact-checking

benefits from explicitly modeling the hierarchical structure’s

reasoning process among multi-granular semantic units. HiGIL

is designed to provide such capabilities.

9DREAM is also augmented by XLNet’s relative distance of words, making
semantically related words have short distances.
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Fig. 4. The attention matrix of the global textual similarity s
GTS
i←j

in GTSim and the local topological reachability p
LTR
i←j in LTRch. The claim node id in each

granular graph lies on X-axis and evidence node id lies on Y-axis. The similarity of tuple/fact/sentence graph is shown in the subfigure (a)/(b)/(c) which is
related to a SUPPORTED case. The similarity of tuple/fact/sentence graph in a REFUTED case is shown in the subfigure (d)/(e)/(f). The reachability of
tuple/fact/sentence graph is shown in the subfigure (g)/(h)/(i) in a SUPPORTED case and is shown in the subfigure (j)/(k)/(l) in a REFUTED case.

TABLE IV
ABLATION STUDIES OF THE PROPOSED COMPONENTS ON THE DEV SET

WITH ROBERTA-BASE.

Model LA FEVER

HiGIL (full) 81.34 78.82

w/o GTSim 80.38 ↓0.96 77.81 ↓1.01
w/o LTRch 80.69 ↓0.65 78.11 ↓0.71
w/ Tuple graph 80.41 ↓0.93 78.02 ↓0.80
w/ Tuple graph & Fact graph 80.57 ↓0.77 78.34 ↓0.48
w/ Tuple graph & Sent graph 80.50 ↓0.84 77.96 ↓0.86

In an attempt to illustrate the working mechanism of our tech-

niques, we visualize the attention matrix of the global textual

similarity sGTS
i←j of GTSim, and the local topological reachability

pLTR
i←j of LTRch. The results are given in Fig.4, where subfigures

a-c show the semantic similarity in tuple/fact/sentence graphs of

a ‘SUPPORTED’ case. By observing the scale value of the color

bar, we find that HiGIL can capture high similarity (e.g., some

large attention score existed in the matrix) between the claim

(X-axis) and evidence nodes (Y-axis). In the ‘SUPPORTED’

case, this phenomenon indicates that the claim and evidence are

close in semantic space; hence, the claim is ‘SUPPORTED’ by

the evidence. In contrast, the similarity score is relatively low in

the ‘REFUTED’, as shown from subfigures d-f in each granular

graph. Moreover, the path reachability matrices have a clear

difference in the three graphs no matter in the SUPPORTED

case or ‘REFUTED’ case, as shown in subfigures g-i and j-l,

respectively. This distinction makes it easier for claim nodes

to find important adjacent evidence nodes.

F. Ablation Study

We conduct two ablation studies on the DEV set using

HiGIL with RoBERTa-large. First, we examine the effect of our

proposed two graph inference mechanisms, and the results are

shown in TableIV. Without the GTSim mechanism, HiGIL uses

local topological reachability to bridge the connection between

TABLE V
ADDITIONAL STUDIES OF DIFFERENT GRAPH POOLING STRATEGIES OF

HIGIL WITH ROBERTA-LARGE ON THE DEV SET.

Model LA FEVER

w/ GMeanPool 80.73 78.32
w/ GMaxPool 81.16 78.45
w/ GWghtPool 81.34 78.82

TABLE VI
ADDITIONAL STUDIES OF DIFFERENT GRAPH POOLING STRATEGIES OF

HIGIL WITH ROBERTA-LARGE ON THE DEV SET.

Model LA FEVER

w/ GAT 79.32 76.12
w/ GCN 81.31 78.74
w/ GCNII 81.34 78.82

the claim and evidence. Without the LTRch mechanism, HiGIL

optimizes the global textual similarity between the claim and

evidence. Compared to the full HiGIL, label accuracy drops

by 0.96 after removing the GTSim and the drop is greater than

that caused by removing LTRch. Incorporating LTRch brings

a 0.65 improvement in label accuracy.

Second, we explore several strategies for exploiting the

performance using hierarchical graphs. Removing the sentence-

level reasoning module drops 0.48 FEVER score, and removing

the fact-level reasoning module drops 0.86, which indicates the

importance of the fact-level graph. These results suggest that

these two graph inference modules are the two most essential

components. Our hierarchical graph modeling method considers

more complex fact augments on multi-granular semantic

units, such as semantic entailment and topical coherence in

their hierarchical topology. These fact augments exploit more

consolidated relations between the claim and evidence, leading

to steady improvements in label accuracy and FEVER score.

As shown in TableVI, HiGIL implemented in GCN or GCNII

have a slight difference in performance. However, using graph



TABLE VII
A CASE STUDY OF CORRECT AND FALSE PREDICTIONS IN WHICH CLAIMS

REQUIRE COMPLEX REASONING.

ID:4083

Claim: Bethany Hamilton’s biopic was directed by Sean McNamara.

Evidence sentences: She wrote about her experience in the 2004 autobiography

Soul Surfer: A True Story of Faith, Family, and Fighting to Get Back on the

Board. Soul Surfer is a 2011 American biographical drama film directed by Sean

McNamara, based on the 2004 autobiography Soul Surfer: A True Story of Faith,

Family, and Fighting to Get Back on the Board by Bethany Hamilton about her

life as a surfer after a horrific shark attack and her recovery.

Annotated label: SUPPORTED

Predicted label: SUPPORTED "
ID:130576

Claim: Bruce Shand died on a ranch.

Evidence sentences: Major Bruce Middleton Hope Shand MC and bar (22 January

1917–11 June 2006) was an officer in the British Army . He is best known as the

father of Camilla, Duchess of Cornwall, the second wife of Charles, Prince of

Wales. The Military Cross (MC) is the third-level military decoration awarded to

officers and (since 1993) other ranks of the British Armed Forces, and used to be

awarded to officers of other Commonwealth countries. Major is a military rank

which is used by both the British Army and Royal Marines. The equivalent rank

in the Royal Navy is lieutenant commander, and squadron leader in the Royal

Air Force.

Annotated label: NOTENOUGHINFO

Predicted label: NOTENOUGHINFO "
ID: 149051

Claim: Margaret Thatcher avoids all involvement in politics.

Evidence sentences: In 1975, Thatcher defeated Heath in the Conservative Party

leadership election to become Leader of the Opposition and became the first

woman to lead a major political party in the United Kingdom.

Annotated label: REFUTED

Predicted label: REFUTED "
ID: 3111

Claim: Luis Fonsi was born in the eightie.

Evidence sentences: Luis Alfonso Rodrguez Lopez Cepero, more commonly

known by his stage name Luis Fonsi, (born April 15, 1978) is a Puerto Rican

singer, songwriter and actor.

Annotated label: REFUTED

Predicted label: SUPPORTED %
ID: 4414

Claim: The current Chief Executive Officer of Lockheed Martin is Kansas native

Marillyn Hewson .

Evidence sentences: Marillyn A. Hewson (born December 27, 1953 ) is

chairwoman, president and chief executive officer of Lockheed Martin. Marillyn

Hewson is the current President and Chief Executive Officer. Lockheed Martin is an

American global aerospace, defense, security and advanced technologies company

with worldwide interests. Lockheed Martin is one of the largest companies in the

aerospace, defense, security, and technologies industry. Kansas is a U.S. state in

the Midwestern United States .

Annotated label: NOTENOUGHINFO

Predicted label:SUPPORTED %
ID: 16306

Claim: Chadwick Boseman refused to ever portray a character in any Marvel

Studios film.

Evidence sentences: He will reprise his Marvel role in Black Panther, scheduled

for a 2018 release as well as in Avengers: Infinity War. Black Panther is an

upcoming American superhero film based on the Marvel Comics character of the

same name. Produced by Marvel Studios and distributed by Walt Disney Studios

Motion Pictures, it is intended to be the eighteenth film installment of the Marvel

Cinematic Universe.

Annotated label: REFUTED

Predicted label: NOTENOUGHINFO %

convolutional networks is better than using graph attention

networks.

G. Additional Analysis

Analysis of graph pooling in graph representation learn-

ing. The graph pooling method captures the important node

information in the mapping process from a fine-grained graph

to a coarse-grained graph. This experiment investigates three

graph coarsening approaches: GMeanPool, GMaxPool, and

GWghtPool. As shown in TableV, GWghtPool seems to be a
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Fig. 5. The performance trends w.r.t epochs on the official DEV set are shown
in the subfigure (a). The loss changing trends w.r.t steps (average results of
100 steps are reported as a point) are shown in the subfigure (b).

decent method given its much better performance than other

graph pooling methods.

Analysis of training procedure in graph inference learning.

As shown in Fig.5, we have tried 10 epoch experiments and

got an average LA score of 79.71 on the DEV set. From the

loss curves on the training steps shown in subfigure (b), we

find that HiGIL basically keeps convergence and obtains the

best performance in the second epoch (36360 steps).

H. Case Study

Correct predictions. TableVII shows the correct prediction

requires multiple nested facts to make the right inference. As

shown in the case (ID:4083), to verify the SUPPORTED claim of

‘Bethany Hamilton’s biopic was directed by Sean McNamara’,

our model needs to explore implicit clues, such as the fact ‘Soul

Surfer is a 2011 American biographical drama film’ and the

details of the fact, such as ‘film directed by Sean McNamara’,

‘based on the 2004 autobiography Soul Surfer’ and ‘by Bethany

Hamilton about her life’. Moreover, our HiGIL can also predict

the second REFUTED case accurately.

False predictions. To better understand the limitations of our

method, we have thoroughly examined 100 prediction mistakes

that HiGIL fails to predict the veracity of relation labels on the

DEV set. Our HiGIL is still inadequate in some complex and

detailed reasoning, such as semantic understanding of numbers

and reasoning of unmentioned information. In the last case,

our model needs to understand that ‘1978’ is not ‘eightie’ and

to note that ‘Marillyn Hewson is Kansas native’ is not in the

mentioned evidence.

Besides, we find there are some examples of possible

annotation errors. As shown in the last case (ID:16306), the

evidence does not mention who does ‘he’ refer in the first

sentence. Thus, the evidence does not directly support the claim,

and the label should not be the REFUTED. Our model predicts

NOTENOUGHINFO which could be a correct prediction. These

cases indicate the superiority of our model, which can capitalize

on the nested relationship among complex information pieces

in a multi-granular manner.

VI. CONCLUSIONS

In this paper, we formally model claim-evidence graphs

in a multi-granular manner for fact-checking. We design the

inference learning procedure to optimize the graphs’ global

textual similarity and local topological reachability, so that both



local and global information in multiple pieces of evidence can

be captured. Results on a large-scale FEVER dataset show that

our model outperforms the existing graph-based approaches.

Our future direction is to continue applying the HiGIL to other

fact-checking datasets and to explore the properties of HiGIL

in effectiveness and explainability.

Please also be aware of some known risks and limitations

of our framework. The strategies for constructing graphs are

carefully designed. However, we cannot completely avoid that

important facts loss, due to the problems existed in even the

best-performing information extraction tools. This is the same

problem that all existing graph reasoning methods cannot avoid.

To mitigate the risks and limitations and improve the real-world

usability, we also welcome all kinds of improvements and

enhancements from any research field by using our framework.
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