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Abstract: A new interim and connection space (ICS) and its reconstruction method are proposed.
The proposed ICS,tD65A, consists of six colorimetric values or two sets of tristimulus values
under CIE illuminant D65 and A respectively. In addition, a new spectral decomposition based
on the tD65A ICS and the Wiener Estimation matrix MW was introduced for an improved spectral
reconstruction. Accompanying the tD65A ICS, m important basis vectors for the metameric black
space based on the new spectral decomposition, and a mapping matrix MP,k via a polynomial model
of order k, were trained so that both the spectral and colorimetric accuracies for the reconstructed
reflectance can be further enhanced. The proposed ICS and its reconstruction method can ensure
exact colorimetric matches under two (real rather than synthetic) illuminants D65 and A, which
is an advantage compared with other ICSs. The performance of the proposed method was tested
and compared with five other ICSs using the NCS dataset and three spectral images respectively,
using RMSE and GFC to measure the spectral accuracy, and using CIEDE2000 colour differences
to measure the colorimetric accuracy under three types of illuminants (continuous, fluorescent,
and LED). Performance test results showed the proposed methods outperform other ICSs in
terms of both spectral accuracy and colorimetric measures (RMSE, GFC, and CIEDE2000 colour
difference). Therefore, it is expected the proposed ICS and its reconstruction method can play an
important role in spectral image compression and reproduction applications.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Spectral images, compared with traditional trichromatic RGB images, have great advantage in
high-fidelity color representation and reproduction [1–4]. The spectral reproduction of spectral
images enables colour matching under any illuminant and observer. However, spectral images
need more storage space, which results in storage, communication and transformation problems.
Furthermore, spectral space is not suitable for spectral image processing, gamut boundary
description and mapping in spectral image reproduction. Therefore, in practice, an interim
connection space (ICS) is needed for both spectral image compression [5–7] and reproduction
[1–4]. In the literature, it seems the ICS concept was first proposed by Rosen and Ohta [8]
in 2003 for performing interpolation in a spectral reproduction system. They ruled out the
eigenvectors provided by principal component analysis (PCA) [9] as the axes for the ICS and also
pointed out the dimension for the ICS cannot be more than 6 to limit the look up table for the
interpolation within a reasonable size of grids. Since then, many ICSs have been proposed and
most of them have six dimensions. For example, three dimensions could be the XYZ tristimulus
values under CIE (International Commission on Illumination) illuminant D65 together with CIE
1931 colour matching functions. Let the n-component column vector r be the spectral reflectance
and the 3 by n matrix WD65 be the weighting table [10] of illuminant D65 with CIE 1931 colour
matching functions (CMFs), then the 3-component column vector t formed by the XYZ values,
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the weighting table WD65 and the reflectance r satisfies:

t = WD65r (1)

Furthermore, if we let
M = (WD65)

T (WD65(WD65)
T )−1 (2)

and
rb = r − Mt (3)

then we have

WD65rb = WD65r − WD65(WD65)
T (WD65(WD65)

T )−1t = t − t = 0 (4)

Hence, rb is normally called metameric black [11].
Almost all ICSs compress reflectance r to the tristimulus vector t and they are different in

the last three dimensions. For the LabPQR ICS [1], the last three dimensions are defined based
on the metameric black space. Let uj, j = 1, 2, · · · , n be the unit orthogonal basis vectors for
the metameric black space of all metameric blacks rb for the spectral image or independent
training spectral dataset obtained by principal component analysis (PCA) [9] or singular value
decomposition (SVD) [12], and let Um be an n by m matrix formed by the first m basis vectors,
then the other three dimensions of the LabPQR ICS are defined by a 3-component vector tPQR
and given by:

tPQR = (U3)
Trb (5)

For the XYZLMS ICS [2], the other three dimensions, denoted by a 3-component vector tLMS,
are defined based on three offset functions denoted here by le(λ), me(λ), and se(λ). They are
so defined to make up the wavelength regions not covered by the CIE CMFs. Therefore, the
tristimulus value vector tLMS of the metameric black rb is defined by

tLMS = WLMSrb (6)

Here, WLMS is the weighting table [10] formed by le(λ), me(λ), and se(λ) and the spectral
power distribution of the equal energy illuminant.

Thus, both the LabPQR and XYZLMS ICSs have a common vector t (see Eq. (1)) formed by
colorimetric values or tristimulus values, which ensures that the reconstructed or reproduced
reflectance r̂t (based on t) defined by:

r̂t = Mt (7)

will be a colorimetric match under the specified illuminant since

WD65r̂t = WD65Mt = t (8)

while tPQR (see Eq. (5) for the LabPQR ICS and tLMS (see Eq. (6)) for the XYZLMS ICS are
used to have a better estimation of the metameric black rb, denoted by r̂b. Thus, it follows from
the spectral decomposition, Eq. (3) that the final reconstructed reflectance r̂ is given by

r̂ = r̂t + r̂b (9)

Hence, the contribution of the compressed vector tPQR or tLMS is to have a higher spectral
accuracy for the reconstructed reflectance.
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To improve the spectral accuracy of the reconstructed reflectance, the LabRGB [13,14] and
LabW2P [4] ICSs use 6 trigonometric functions [13,14] to form the basis vectors sj, j = 1, 2, · · · , 6
for the reflectance. Thus, it is expected that, for any reflectance r we have

r =
6∑︂

i=1
wisi (10)

The weights wi can be found using the least squares method [12]. The other three dimensions,
denoted by a 3-component vector tRGB, for the LabRGB ICS and tW2P for LabW2P ICS, are
defined, respectively, by

tRGB =

⎛⎜⎜⎜⎜⎝
w1

w2

w3

⎞⎟⎟⎟⎟⎠
(11)

and

tW2P =

⎛⎜⎜⎜⎜⎝
w1

w2

P

⎞⎟⎟⎟⎟⎠
(12)

For the P in Eq. (12), let rrest be defined by

rrest = r −
6∑︂

i=1
wisi (13)

and let hj, j = 1, 2, · · · , n be the unit orthogonal basis vectors for all rrest from the spectral image
or independent training spectral dataset obtained by PCA (Principal Component Analysis) or
SVD (Singular Value Decomposition), then P is the projection of rrest on the first basis vector h1,
i.e.,

P = (rrest)
Th1 (14)

Note that the LabRGB ICS (t (see Eq. (1), and tRGB (see Eq. (11)) depends only on the given
spectral reflectance. However, for the LabW2P ICS, the basis vector h1 for determining the value
P (see Eqs. (12–14)) can be trained using the given spectral image or an independent training set
of reflectance values.

In this paper, a new ICS and its reconstruction method for spectral compression or spectral
images reproduction are proposed, which will now be described.

2. Proposed method

Motivated by the available ICSs, such as LabPQR and XYZLMS, both the colorimetric and
spectral accuracies are considered for the development of the proposed new ICS.

To improve colorimetric accuracy, the proposed ICS uses two illuminants, for example CIE
D65 and A. Let the 6 by n matrix WD65A be formed by the weighting tables [10] of the CIE
D65 and A illuminants under the CIE 1931 CMFs. The proposed ICS is simply the compressed
column vector tD65A formed by 6 colorimetric values or two sets of tristimulus values for the
given spectral reflectance r and is given by:

tD65A = WD65Ar (15)

Note that for the LabPQR and XYZLMS ICSs only three colorimetric values under one
illuminant (D65) (see Eq. (1)) are used, and the reconstructed reflectance r̂t using Eq. (7) can
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only ensure an exact colorimetric match under one illuminant (D65). But for the proposed ICS,
the 6 colorimetric values, 3 under D65 and 3 under illuminant A are used. Thus, based on the
tristimulus value vector tD65A, we can also estimate the reflectance (denoted by r̂t) using Eq. (7)
with the matrix M (see Eq. (2)) where WD65 is replaced by the weighting table WD65A. It can
also be verified that WD65Ar̂t = tD65A. Hence, the reconstructed reflectance r̂t can ensure exact
colorimetric matches under both illuminant D65 and illuminant A.

To improve the spectral accuracy of the reconstructed reflectance using the proposed method,
similar to the LabPQR and XYZLMS ICSs, the metameric black space is also used. We note
first that the metameric black defined by Eq. (3) is based on the Cohen and Kappauf spectral
decomposition from its colorimetric values [11]. The matrix M defined by Eq. (2) is also known
as “matrix-R”, and depends only on the weighting table(s), and has nothing to do with the spectral
property being considered. Recently, Lv et al. [15,16] found that spectral decomposition (see
Eq. (3)) with the Wiener estimation “matrix-W” [17], denoted by MW and defined by

MW = Kr(WD65A)
T (WD65AKr(WD65A)

T )−1 (16)

is better than with the matrix-R M. Here, the n by n matrix Kr is the covariance matrix [14–16]
derived from the training set of reflectance from the considered spectral image or independent
training set of reflectance. Thus, for the proposed ICS, an initial estimation, denoted by r̂t, to the
original reflectance is defined by

r̂t = MW tD65A (17)

Furthermore, it follows from Eqs. (16) and (17), that the following spectral decomposition
based on the colorimetric value vector tD65A

rb = r − MW tD65A (18)

is the metameric black for a given spectral reflectance r under both CIE illuminants D65 and A.
Suppose Rb is formed by all the metameric black rb (see Eq. (18)) for the reflectance either from
a spectral image or an independent training reflectance set, and the SVD of the n by J matrix Rb
is given by

Rb = UDV (19)

Here, U and V are n by n and J by J orthogonal matrices respectively, and D is an n by J zero
matrix except that the diagonal elements or singular values σi = D(i, i), i = 1, 2, · · · , n,being
non-negative and monotonically decreasing. Thus, σ1 is the largest, i.e. the first column vector
of U is the most important basis vector, σ2 is the second largest, i.e. the second column vector of
U is the second most important basis vector, and so on. Once again, Um is the matrix formed by
the first m column vectors of U, thus for any metameric black rb an estimated metameric black r̂b
is given by

r̂b = Umqm (20)

with
qm = (Um)

Trb (21)

Because the proposed tD65A ICS already has 6 colorimetric values, for the given reflectance
r, we cannot keep any more information from the coefficient vector qm from the metameric
black for improving the spectral accuracy. However, we can train a mapping matrix based on a
polynomial model [18] to predict the coefficient vector qm from the tD65A ICS. If k is the order of
the polynomial, then the column vector ft,k [18] can be obtained from tD65A. Hence the mapping
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matrix, denoted by MP,k is chosen so that

qm = MP,kft,k (22)

Let Fk and Qm be formed from all ft,k and qm from the training set, and then the mapping MP,k
in the least squares sense [12] is given by

MP,k = Qm(Fk)
T (Fk(Fk)

T )+ (23)

Here, the “+” in the superscript means the generalized inverse [12] of the matrix Fk(Fk)
T . If

Fk(Fk)
T is nonsingular, the generalized inverse becomes the normal inverse, i.e., (Fk(Fk)

T )+ =

(Fk(Fk)
T )−1.

Thus, for the decoding, reconstruction, or reproduction stage for the proposed tD65A ICS,
first the estimated reflectance r̂t can be obtained using Eq. (17). Then the vector ft,k can be
computed from the tD65A ICS using the polynomial model [18], and the coefficient vector qm can
be computed using Eq. (22). Hence, the estimated metameric black r̂b can be obtained using
Eq. (20). Finally, the reconstructed or decoding reflectance r̂ is given by

r̂ = r̂b + r̂t (24)

It is expected that the proposed ICS and its reconstruction method can generate reflectances
with higher colorimetric and spectral accuracies.

For easy understanding and implementing the proposed ICS and its reconstruction, a data flow
chart is shown in Fig. 1 using a matrix notation. The top part enclosed by red dashed line is the
training stage, starting with the training spectral matrix denoted by RTR and weighting table WD65A
under two viewing conditions, ending with Wiener Matrix MW , basis vectors Um, and matrix
MP,k together with WD65A enclosed in the blue solid box for compression and reconstruction. The
middle part enclosed by green dashed line is the compression stage. The bottom part enclosed by
blue dashed line is the reconstruction stage.

Fig. 1. Data flow chart for the training (top red dashed part), compression (middle green
dashed part), and reconstruction (bottom blue dashed part) for the proposed ICS.

To complete this section, we note that Urban et al. [19] in 2008 used the multiple illuminant
colorimetry approach for the gamut mapping to improve the spectral reproduction in printing.
We also note that, in 2012, a similar ICS named as ICS-2SI was proposed by Zhang et al. [3]. For



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40149

a given reflectance r, the compressed colorimetric value vector denoted by t2SI , is also given by

t2SI = W2SIr (25)

In this instance, W2SI is the weighting table of two synthetic illuminants derived from spectral
power distributions of 29 popular illuminants including CIE illuminants A, the CIE daylight
series [20], and some LED illuminants, using the PCA. However, the reconstruction method is
different. If R is the matrix formed by all reflectances from the spectral image, or an independent
reflectance set, and U6 is the matrix formed by the first 6 most important basis vectors for the
reflectance set (R) found by PCA or SVD, then the reconstructed reflectance r̂ for ICS-2SI is
given by

r̂ = (W2SIU6)
−1t2SI . (26)

3. Experimental setup

To test the performance of the proposed ICS and its reconstruction method, and compare it with
other alliable ICSs, spectral datasets, spectral and colorimetric accuracy measures are needed.

3.1. Spectral datasets

To test the performance of the proposed ICS and its reconstruction method, the NCS (Natural
Color System) set of reflectances, and three spectral images (IM1, IM2, IM3) from Rochester
Institute of Technology Studio for Scientific Imaging and Archiving of Cultural Heritage, as
shown in Fig. 2, were used for the testing. The NCS set of reflectances was obtained from spectral
measurements of the 1750 NCS color chips between 400 nm and 700 nm at 10 nm intervals.
The spectral reflectances of the spectral images were all between 430 nm and 700 nm at 10 nm
intervals. The image resolution was 120 by 120 pixels for IM1, and 160 by 160 pixels for IM2
and IM3. In addition to the NCS dataset and the three spectral images, an independent training
dataset (the Munsell dataset) of reflectances measured from 1560 Munsell color chips was used,
also measured between 400 nm and 700 nm at 10 nm intervals.

(a) IM1 (b) IM2 (c) IM3

Fig. 2. Spectral images from an oil painting for performance testing

3.2. Spectral accuracy measure

Let r be the original reflectance, and r̂ be the reconstructed reflectance from the proposed, or any
other, ICS. Both the root-mean-square error (RMSE) [21–23] and the goodness of fit coefficient
(GFC) [23,24] between r and r̂ are used as measures of spectral accuracy. For the RMSE, the
smaller it is, the better the considered method or ICS performs; for the GFC, the considered
method performs better if the nearer the value is to unity.
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3.3. Colorimetric accuracy measure

Let tristimulus values XYZr and XYZr̂ be computed from r (original) and r̂ (rconstructed) under
any of the test illuminants, together with the CIE 1931 CMFs. CIEDE2000 colour difference
∆E00 [20] between XYZr and XYZr̂ is used to assess the colorimetric accuracy. Three types
of illuminants are used: continuous illuminants including CIE D65, A, C, D50, D55 and D75,
fluorescent illuminants including CIE F1-F12 illuminants, and LED illuminants including CIE
B1, B2, B3, B4, B5, VH1, RGB1, V1 and V2 illuminants [20]. The least squares or LWL
weighting table [10] is used for computing tristimulus values.

4. Performance of the proposed method

In this section the proposed ICS and its reconstruction method are tested and compared with
other available ICSs including LabPQR, XYZLMS, LabRGB, LabW2P and ICS-2SI using each
of the NCS test dataset, and three spectral images IM1, IM2, IM3(see Fig. 2). Recently, ICC
(International Color Consortium) [25] developed a set of 6 sensors for spectral compression and
reconstruction using iccMAX based color management. These “sensors” distribute evenly in
the visible wavelength range as shown in Fig. 3(a) and can be considered as weighting table
similar to that under two viewing conditions. Thus, we can use this set of weighting table to
compress the spectral data, and then we use the same reconstruction method used in the proposed
ICS. This new ICS is named as ICC-6S and is also included for comparison. For comparison
reason, the ‘sensors’ (combination of color matching functions and spectral power distributions
of illuminants D65 and A) for the proposed ICS is also shown in Fig. 3(b). In the literature [2,3],
to test and compare the ICSs, all parameters and basis functions were trained using the Munsell
dataset as an independent training set, then the performance of each ICS was tested using the test
datasets. However, we propose that it is better that all parameters and basis functions should be
trained using the test dataset itself since when we consider the spectral compression, we already
know the spectral dataset or image. Therefore, the performance of all ICSs were tested with all
parameters and related basis functions trained by both the independent Munsell dataset, and the
test dataset itself respectively. In addition, it follows from Eqs. (20–23) that the proposed method
depends on parameters m: the number of basis vectors used for the metameric black space, and k:
the order of the polynomial used for transferring tD65A to ft,k [18]. It was found that the proposed
method with m = 6, k = 3 performed the best when the NCS dataset was used for testing, while
when the spectral Images 1-3 were used for testing, the proposed method with m = 6, and k = 2
performed the best. Hence, in the following tests, these values were used for the NCS dataset,
and the spectral images respectively.
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Fig. 3. ICC sensors (a) and sensors (b) for the proposed ICS.
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Table 1 lists the spectral accuracy test results in terms of average (Ave), the worst (Worst) and
the median (Med) indices of RMSE and GFC measures respectively, using the NCS test dataset
trained by the Munsell dataset (grey background) and the NCS test dataset (white background).
The worst index for the RMSE measure is the maximum values of all RMSE errors, while the
worst index for the GFC measure is the minimum values of all GFCs. The bold values in this, and
the following tables indicate the methods (see the first column) that perform the best compared
with the other methods within the same background under the index given at the top of the
column considered. There are 6 indices in the table, and if all methods are ranked (from number
1 to number 7) according to each of the indices the sums of the rankings for each method are 28,
29, 31, 26, 14, 27, and 11 respectively (in the order of the seven methods listed in the Table). The
smaller the number is, the better the corresponding method performed. Overall, the proposed
method performed the best, and LabW2P performed the second best when trained using the
Munsell dataset. Similarly, according to the sums of rankings, the proposed method performed
the best, and ICS-2SI peformed the second best when trained using the NCS test dataset.

Table 1. Spectral accuracy in terms of average (Ave), worst (Worst), and median (Med) values of
the RMSE and GFC measures for each of the methods considered using the NCS test dataset and

trained by the Munsell reflectance dataset (grey background) and NCS test dataset (white
background).

RMSE GFC

Ave Worst Med Ave Worst Med

LabPQR 0.0140 0.0650 0.0126 0.9984 0.9421 0.9991

XYZLMS 0.0131 0.0789 0.0106 0.9984 0.9297 0.9993

LabRGB 0.0155 0.0716 0.0132 0.9982 0.9668 0.9993

LabW2P 0.0153 0.0728 0.0134 0.9985 0.9676 0.9994

ICS-2SI 0.0118 0.0580 0.0105 0.9988 0.9635 0.9995

ICC-6S 0.0121 0.1177 0.0089 0.9983 0.8560 0.9996

Proposed 0.0099 0.0661 0.0082 0.9992 0.9608 0.9997
LabPQR 0.0129 0.0594 0.0114 0.9986 0.9499 0.9992

XYZLMS 0.0120 0.0738 0.0093 0.9986 0.9377 0.9995

LabRGB 0.0155 0.0716 0.0132 0.9982 0.9668 0.9993

LabW2P 0.0150 0.0741 0.0131 0.9985 0.9676 0.9994

ICS-2SI 0.0101 0.0668 0.0084 0.9990 0.9694 0.9996

ICC-6S 0.0076 0.1015 0.0056 0.9990 0.9073 0.9998

Proposed 0.0057 0.0404 0.0047 0.9997 0.9863 0.9999

Comparing results in Table 1, it can be seen that the LabRGB method performed the same
whether trained by the Munsell dataset or the test dataset itself, which is to be expected since this
ICS does not need training. The proposed method performed better when trained using the test
dataset.

Table 2 lists the colorimetric accuracy test results in terms of the average (Ave), the worst
(Worst) and the median (Med) values of CIEDE2000 colour differences using the NCS test dataset
trained by the Munsell dataset (grey background) and the NCS test dataset (white background).
Again, the worst value for CIEDE2000 colour difference is the maximum value of all ∆E00
values. Since three different types of illuminants were used, the results are reported separately
for each type. Firstly, the average, worst, and median values of ∆E00 errors under each of the
illuminants in each type were computed. The results in Table 2 are the averages of the average,
worst and median values among all illuminants for each type of illuminants. For the continuous
illuminants, there are 6 illuminants: CIE D65, A, C, D50, D55 and D75. For the proposed
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method, exact matches could be ensured under illuminants D65 and A. Hence, the averages were
calculated using the remaining 4 illuminants C, D50, D55 and D75. For the LabPQR, XYZLMS,
LabRGB, and LabW2P ICSs, an exact match could be ensured under illuminant D65, hence the
averages were taken using the remaining 5 illuminants, A, C, D50, D55 and D75. While, for the
ICS-2SI and ICC-6S, the averages were taken over all the 6 illuminants. According to the sums
of rankings, the proposed ICS performed the best, the ICC-6S performed the second best either
trained by the Munsell or the NCS datasets.

Table 2. Colorimetric accuracy in terms of average (Ave), worst (Worst), and median (Med) values
of CIEDE2000 colour difference for each of the methods considered using the NCS test dataset
with training by the Munsell reflectance dataset (grey background) and NCS test dataset (white

background).

Continuous ILLs Fluorescents ILLs LED ILLs

Ave Worst Med Ave Worst Med Ave Worst Med

LabPQR 0.08 0.67 0.07 0.49 4.82 0.38 0.35 2.61 0.31

XYZLMS 0.16 1.96 0.12 0.62 5.94 0.46 0.51 5.18 0.39

LabRGB 0.14 0.92 0.12 0.72 5.38 0.56 0.46 2.38 0.39

LabW2P 0.13 0.90 0.11 0.65 3.51 0.56 0.44 2.20 0.37

ICS-2SI 0.09 0.58 0.07 0.56 4.60 0.39 0.29 2.14 0.23

ICC-6S 0.03 0.23 0.02 0.34 2.38 0.25 0.20 1.39 0.14
Proposed 0.01 0.06 0.01 0.36 2.29 0.26 0.19 1.02 0.14
LabPQR 0.07 0.63 0.06 0.46 6.61 0.34 0.35 2.58 0.30

XYZLMS 0.15 1.77 0.10 0.52 5.18 0.38 0.47 4.70 0.36

LabRGB 0.14 0.92 0.12 0.72 5.38 0.56 0.46 2.38 0.39

LabW2P 0.13 0.91 0.11 0.67 3.92 0.57 0.43 2.21 0.36

ICS-2SI 0.09 0.76 0.07 0.47 4.86 0.33 0.28 2.24 0.23

ICC-6S 0.02 0.19 0.01 0.17 1.52 0.12 0.14 1.20 0.11
Proposed 0.01 0.05 0.01 0.17 1.44 0.12 0.14 0.84 0.11

Tables 3 and 4 list the spectral and colorimetric comparison results using IM1 for testing
trained by the Munsell dataset and IM1 itself. It can be seen from Table 3 that when all methods
were trained using the Munsell dataset, overall the proposed method performed the best, ICC-6S
and LabPQR performed the second best according to the sums of rankings. When trained using
the test IM1, the proposed method performed the best, the ICC-6S performed the second best
according to the sums of rankings. Table 4 shows the proposed method performed the best, the
ICC-6S performed the second best when trained using the Munsell and test IM1 datasets.

Tables 5 and 6 list the spectral and colorimetric comparison results using IM2 for testing
trained by the Munsell dataset and IM2 itself. It can be seen from Table 5 that when all methods
were trained using the Munsell dataset, the LabRGB performed the best, and the proposed method
performed the second best, according to the sums of rankings. Similarly, when all methods were
trained using the test IM2, the proposed method performed the best, and the ICC-6S performed
the second best.

Table 6 shows that when all methods were trained using the Munsell dataset, the proposed
method performed the best, the LabW2P performed the second best according to the sums of
rankings. Similarly, when all methods were trained using the test IM2, the proposed method
performed the best, and the ICC-6S performed the second best.

Tables 7 and 8 list the spectral and colorimetric comparison results using IM3 for testing
trained by the Munsell dataset and the IM3 itself. It can be seen from Table 7 that when all
methods were trained using the Munsell dataset, the LabW2P performed the best overall and the
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Table 3. Idem to Table 1, except the test dataset being spectral image IM1

RMSE GFC

Ave Worst Med Ave Worst Med

LabPQR 0.0177 0.0352 0.0193 0.9993 0.9927 0.9992

XYZLMS 0.0223 0.0465 0.0249 0.9989 0.9920 0.9990

LabRGB 0.0390 0.0801 0.0459 0.9967 0.9920 0.9960

LabW2P 0.0334 0.0781 0.0305 0.9975 0.9923 0.9981

ICS-2SI 0.0224 0.0499 0.0229 0.9988 0.9898 0.9991

ICC-6S 0.0137 0.0436 0.0119 0.9995 0.9884 0.9997
Proposed 0.0171 0.0390 0.0166 0.9993 0.9930 0.9995

LabPQR 0.0104 0.0324 0.0098 0.9997 0.9898 0.9998

XYZLMS 0.0183 0.0502 0.0196 0.9993 0.9870 0.9993

LabRGB 0.0390 0.0801 0.0459 0.9967 0.9920 0.9960

LabW2P 0.0344 0.0720 0.0295 0.9973 0.9926 0.9980

ICS-2SI 0.0072 0.0585 0.0063 0.9998 0.9920 0.9999

ICC-6S 0.0053 0.0219 0.0050 0.9999 0.9951 1.0000
Proposed 0.0050 0.0177 0.0048 0.9999 0.9984 1.0000

Table 4. Idem to Table 2, except the test dataset being spectral image IM1

Continuous ILLs Fluorescents ILLs LED ILLs

Ave Worst Med Ave Worst Med Ave Worst Med

LabPQR 0.11 0.41 0.11 0.96 2.59 0.94 0.48 2.12 0.31

XYZLMS 0.17 0.74 0.16 0.85 3.11 0.75 0.66 2.25 0.61

LabRGB 0.23 0.57 0.24 1.54 3.19 1.59 1.68 5.78 1.01

LabW2P 0.22 0.59 0.20 1.18 2.82 1.05 0.72 1.92 0.68

ICS-2SI 0.14 0.87 0.11 0.78 2.87 0.65 0.37 2.48 0.30

ICC-6S 0.18 1.00 0.10 0.62 3.12 0.39 0.25 1.58 0.19
Proposed 0.03 0.12 0.03 0.47 2.01 0.41 0.36 1.87 0.31

LabPQR 0.11 0.63 0.10 0.57 2.80 0.52 0.39 2.71 0.31

XYZLMS 0.11 0.59 0.08 0.69 2.73 0.64 0.51 2.34 0.47

LabRGB 0.23 0.57 0.24 1.54 3.19 1.59 1.68 5.78 1.01

LabW2P 0.30 0.69 0.31 1.44 2.88 1.60 0.77 1.94 0.78

ICS-2SI 0.05 0.61 0.03 0.25 2.40 0.16 0.15 1.96 0.10

ICC-6S 0.04 0.62 0.03 0.16 1.57 0.12 0.08 1.16 0.06
Proposed 0.01 0.07 0.00 0.12 1.08 0.09 0.09 1.23 0.07
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Table 5. Idem to Table 1, except the test dataset being spectral image IM2

RMSE GFC

Ave Worst Med Ave Worst Med

LabPQR 0.0151 0.0402 0.0151 0.9993 0.9883 0.9995
XYZLMS 0.0197 0.0584 0.0191 0.9988 0.9906 0.9991

LabRGB 0.0134 0.0382 0.0113 0.9991 0.9906 0.9995
LabW2P 0.0148 0.0373 0.0123 0.9990 0.9905 0.9994

ICS-2SI 0.0173 0.0460 0.0166 0.9991 0.9932 0.9994

ICC-6S 0.0189 0.1030 0.0173 0.9989 0.9838 0.9993

Proposed 0.0145 0.0466 0.0141 0.9994 0.9934 0.9994

LabPQR 0.0098 0.0294 0.0097 0.9995 0.9885 0.9997

XYZLMS 0.0090 0.0386 0.0082 0.9995 0.9908 0.9998

LabRGB 0.0134 0.0382 0.0113 0.9991 0.9906 0.9995

LabW2P 0.0103 0.0374 0.0097 0.9994 0.9895 0.9997

ICS-2SI 0.0060 0.0333 0.0051 0.9998 0.9941 0.9999

ICC-6S 0.0055 0.0419 0.0047 0.9999 0.9882 0.9999

Proposed 0.0043 0.0213 0.0040 0.9999 0.9978 1.0000

Table 6. Idem to Table 2, except the test dataset being spectral image IM2

Continuous ILLs Fluorescents ILLs LED ILLs

Ave Worst Med Ave Worst Med Ave Worst Med

LabPQR 0.07 0.60 0.06 0.89 3.26 0.87 0.29 2.45 0.25

XYZLMS 0.25 1.21 0.24 1.06 3.58 1.02 0.65 3.21 0.62

LabRGB 0.06 0.27 0.05 0.75 2.93 0.62 0.46 2.41 0.39

LabW2P 0.06 0.26 0.05 0.81 2.92 0.67 0.29 1.60 0.23

ICS-2SI 0.13 1.00 0.12 1.10 3.59 1.09 0.31 2.70 0.28

ICC-6S 0.09 1.00 0.08 0.94 2.54 1.00 0.23 1.70 0.20

Proposed 0.02 0.12 0.02 0.86 2.35 0.91 0.19 1.79 0.16
LabPQR 0.07 0.67 0.06 0.48 4.09 0.39 0.22 2.30 0.17

XYZLMS 0.13 0.99 0.11 0.60 4.21 0.48 0.34 2.96 0.28

LabRGB 0.06 0.27 0.05 0.75 2.93 0.62 0.46 2.41 0.39

LabW2P 0.06 0.24 0.06 0.48 3.65 0.39 0.25 1.73 0.21

ICS-2SI 0.05 0.66 0.04 0.30 3.54 0.22 0.13 1.96 0.09

ICC-6S 0.05 0.81 0.03 0.17 1.92 0.13 0.08 1.31 0.05
Proposed 0.01 0.08 0.00 0.14 1.29 0.10 0.08 1.15 0.06



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40155

proposed method performed the second best according to the sums of rankings. Similarly, when
all methods were trained using the IM3 itself, the proposed method performed the best and the
ICC-6S performed the second best. Table 8 clearly shows the proposed method performed the
best and the ICC-6S performed the second best according to the sums of rankings either trained
using the Munsell dataset or the IM3 itself.

Table 7. Idem to Table 1, except the test dataset being spectral image IM3

RMSE GFC

Ave Worst Med Ave Worst Med

LabPQR 0.0304 0.0850 0.0202 0.9910 0.9559 0.9925

XYZLMS 0.0392 0.0861 0.0339 0.9837 0.9241 0.9881

LabRGB 0.0285 0.0523 0.0288 0.9916 0.9536 0.9953

LabW2P 0.0233 0.0458 0.0228 0.9944 0.9697 0.9960

ICS-2SI 0.0302 0.0635 0.0293 0.9883 0.9393 0.9936

ICC-6S 0.0481 0.1844 0.0141 0.9790 0.8397 0.9970
Proposed 0.0287 0.0896 0.0163 0.9937 0.9601 0.9956

LabPQR 0.0263 0.0415 0.0266 0.9920 0.9537 0.9976

XYZLMS 0.0223 0.0789 0.0182 0.9855 0.8969 0.9992

LabRGB 0.0285 0.0523 0.0288 0.9916 0.9536 0.9953

LabW2P 0.0230 0.0466 0.0218 0.9950 0.9722 0.9972

ICS-2SI 0.0116 0.0846 0.0092 0.9978 0.9153 0.9997

ICC-6S 0.0114 0.0857 0.0076 0.9991 0.9669 0.9998

Proposed 0.0043 0.0303 0.0037 0.9999 0.9935 0.9999

Table 8. Idem to Table 2, except the test dataset being spectral image IM3

Continuous ILLs Fluorescents ILLs LED ILLs

Ave Worst Med Ave Worst Med Ave Worst Med

LabPQR 0.14 0.50 0.15 1.73 5.75 1.87 0.63 2.61 0.57

XYZLMS 0.59 1.55 0.63 2.21 6.70 2.09 1.48 4.60 1.30

LabRGB 0.16 0.53 0.15 1.56 3.96 1.45 1.53 4.79 1.39

LabW2P 0.13 0.50 0.11 1.33 3.93 1.04 0.98 2.87 0.98

ICS-2SI 0.24 0.85 0.26 1.96 6.36 1.70 0.84 2.79 0.90

ICC-6S 0.13 0.67 0.10 0.91 2.94 0.74 0.52 2.21 0.39

Proposed 0.03 0.13 0.02 0.59 2.83 0.48 0.40 1.96 0.36
LabPQR 0.26 0.68 0.28 2.41 6.02 2.42 0.95 2.45 1.01

XYZLMS 0.45 1.74 0.32 1.71 6.53 1.09 1.19 4.27 0.81

LabRGB 0.16 0.53 0.15 1.56 3.96 1.45 1.53 4.79 1.39

LabW2P 0.14 0.48 0.13 1.55 4.12 1.52 0.92 2.73 0.90

ICS-2SI 0.11 0.97 0.07 0.82 9.13 0.50 0.37 3.71 0.24

ICC-6S 0.04 0.51 0.03 0.16 1.33 0.13 0.10 1.10 0.07

Proposed 0.00 0.05 0.00 0.11 1.05 0.08 0.07 1.04 0.05

Table 9 summaries the performance of the proposed method tested using the NCS, and spectral
images IM1-IM3 and trained using both the Munsell and test datasets respectively. The proposed
method performed either the best or the second best in terms of the spectral accuracy measures,
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and the best in terms of the colorimetric accuracy measure when trained using the independent
Munsell dataset. When trained using the test dataset itself, the proposed method performed the
best in terms of both the spectral and colorimetric accuracies. In the brackets of the table, the
best or the second best ICSs are listed. It can be seen the ICC-6S performed the second best in
many cases, which could be due to both the choice of sensors and the reconstruction method
used. The proposed ICS and the ICC-6S are different only in terms of “sensors” (see Fig. 3).
Therefore, ensuring the exact colorimetric matches under two viewing conditions may be more
important than evenly distributed sensors in the visible wavelength range.

Table 9. Performance summary for the proposed method tested using the NCS dataset,
IM1,IM2,IM3 and trained using both the Munsell dataset and test dataset, respectively.

Test set Training set Spectral accuracy (RMSE, GFC) Colorimetric Accuracy (∆E00)

NCS Munsell Best (LabW2P is the second) Best (ICC-6S is the second)

NCS NCS Best (ICS-2SI is the second) Best (ICC-6S is the second)

IM1 Munsell Best (ICC-6S & LabPWR are the second) Best (ICC-6S is the second)

IM1 IM1 Best (ICC-6S is the second) Best (ICC-6S is the second)

IM2 Munsell Second best (LabRGB is the best) Best (LabW2P is the second)

IM2 IM2 Best (ICC-6S is the second) Best (ICC-6S is the second)

IM3 Munsell Second best (LabW2P is the best) Best (ICC-6S is the second)

IM3 IM3 Best (ICC-6S is the second) Best (ICC-6S is the second)

Before this section is ended, several notes are needed.
Firstly, we note that for all ICSs there is no restriction about the reconstructed reflectance must

be between 0 and 1. Hence, the reconstructed reflectance may have components beyond 0 and 1.
Let N be the number of reflectances in a test dataset. Thus, there are n × N components in test
dataset. Reflectance boundary checking summary in terms of percentage are listed in Table 10.
It can be seen that the physically non-plausible reconstructed reflectances depend on the ICS and
the dataset. The worst case is about 8% beyond 0 and 1 range when the LabRGB was used and
tested using the IM1 dataset. There is no physically non-plausible reconstructed reflectance for
the proposed ICS when trained using each of the test dataset.

Table 10. Reconstructed reflectance boundary checking summary for all ICSs tested using the
NCS dataset, IM1, IM2, IM3 and trained using both the Munsell dataset (grey background) and test

dataset (white background) respectively.

NCS IM1 IM2 IM3

LabPQR 0.0037 0 0.6796 0.0575 0 0.0000 1.6564 0.0406

XYZLMS 0.0055 0.0055 0.1917 0.4239 0 0.0014 1.1744 0.1554

LabRGB 0.0295 0.0295 7.9554 7.9554 0.0021 0.0021 0.2524 0.2524

LabW2P 0.0166 0.0258 6.2312 7.3460 0 0.0020 0.1122 0.4156

ICS-2SI 0.0258 0.0276 0.8797 0 0 0 0.7946 0.0268

ICC-6S 0 0 0.0305 0 0 0 0.3064 0.0232

Proposed 0 0 0.0047 0 0 0 0 0

Secondly, we note that the reflectance reconstruction approach for the proposed ICS can be
applied to other ICSs for further improvements. Research towards this direction is underway.

Thirdly, we note that above tests show the performances of all ICSs except LabRGB depend on
the choice of training dataset or depend on the similarity between the training and test datasets.
In fact, the similarity can be measured in terms of principle angels [26] between the subspaces
spanned by most relevant eigenvectors of each dataset. Let d be the dimension of the considered
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subspaces, and θj be the principal angles, j = 1, 2, · · · , d, and let

S(TE, TR) =
1
d

d∑︂
j=1

cos(θj) (27)

Here, TE, and TR represent the test and training datasets respectively, and S(TE, TR) is between
0 and 1. When S(TE, TR) is close to 1, the similarity between the two subspaces is higher. For
the proposed ICS, d = 6. If TE and TR are the same, then S(TE, TR) = 1. While, when TR is the
Munsell dataset, S(TE, TR) equals to 0.98 for TE being NCS, 0.95 for TE being IM1, 0.98 for TE
being IM2, and 0.82 for TE being IM3 respectively. It seems there is no way to have a universal
training dataset TR so that S(TE, TR) = 1 for any test dataset TE. Hence, it is recommended that
the spectral image (or test dataset) is chosen as training dataset for the proposed and other ICSs.

Fourthly, we note Nakaya and Ohta [13] also used the standard deviation of spectral reflectance
estimation versus wavelength as a measure for the spectral accuracy, which can also be used for
investigating how the choice of sensors is impacted for each wavelength. Figure 4 shows the
standard deviation versus wavelength for each ICSs under each of the test datasets. Solid and
dotted curves indicate the associated methods were trained using the Munsell dataset and test
dataset respectively. It can be seen overall that the ICC-6S and proposed ICS are better than
others when trained using both the Munsell dataset (solid curves) and the test datasets (dotted
curves) for wavelength less than 650 nm. Surprisingly, for wavelength greater than 650 nm, the
ICC-6S performed worse than others especially when trained using the Munsell dataset. It can
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Fig. 4. Standard deviation versus wavelength for each ICSs under each of the test datasets.
Same colored solid and dotted curves indicate the associated method was trained using the
Munsell dataset and test dataset respectively.
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be seen that both the proposed ICS and the ICC-6S give larger errors in longer wavelength range
(greater than 660 nm). Fortunately, this range has little effect on visual system.

Fifthly, we note that the proposed ICS performs better due to both the compression space and
reconstruction method. For the compression, the ICS t consists of two set of tristimulus values.
Thus, the basic reflectance r̂t (see Eqs. (17) and (24)) obtained via the Wiener matrix can ensure
the exact matches under two viewing conditions, which is an advantage over other considered
ICSs, and improves both the colorimetric and spectral accuracies. For the reconstruction, a matrix
MP,k is trained via the polynomial model for predicting the metameric black r̂b = UmMP,kft,k,
which improves not only the spectral but also the colorimetric accuracies for the reconstructed
reflectance r̂ = r̂b + r̂t (see Eq. (24)). However, the proposed ICS needs extra m by 84 (with m= 6
and k= 3) matrix MP,k (see Eq. (23)) and n by 6 basis vectors Um (see Eq. (20)) for the reflectance
reconstruction compared with other ICSs. Considering current computer storage space and large
amount of data for a spectral image, it is worthwhile to have a little more parameters for a better
reconstruction accuracy.

Finally, we note also that a lower dimension ICS is desirable for spectral colour management
[8]. Recently, Le Moan et al. [27] proposed a 5-dimension ICS for the spectral color management.
The proposed ICS and LabPQR can also reduce to 5-dimension ICS by dropping the Y value
for example in the second set of tristimulus values for the proposed ICS and the R value for the
LabPQR. Research towards a lower dimension ICS is underway.

5. Conclusions

A new ICS and its reconstruction method were proposed. The proposed ICS tD65A (see Eq. (15))
consists of six colorimetric values or two sets of tristimulus values under CIE illuminants D65
and A. For improving the spectral accuracy of the reconstructed or reproduced reflectance, a
new spectral decomposition based on the colorimetric values (tD65A, Eq. (18)) was considered,
where the Wiener estimation matrix MW (Eq. (16)) rather than the “matrix-R” (Eq. (2)) was used,
so that MW tD65A is a better estimation to the original reflectance r. Based on the new spectral
decomposition, m main basis vectors Um, (Eq. (20)) for the metameric black space were found
using SVD and a mapping matrix MP,k was also trained via a polynomial model [18] so that
UmMP,kft,k was a better estimation to the metameric black rb associated with the new spectral
decomposition (Eq. (18)) for the original reflectance r. Here, ft,k is a column vector transformed
from the ICS tD65A via the polynomial of order k. Finally, the reconstructed reflectance r̂ from ICS
tD65A is simply r̂ = MW tD65A +UmMP,kft,k (Eqs. (17), (20), (22), (24)). The first term MW tD65A is
to ensure exact colorimetric matches under the CIE illuminants D65 and A, and the second term
UmMP,kft,k is to further improve the spectral accuracy for the reconstructed reflectance r̂.

The proposed ICS and its reconstruction method can ensure exact colorimetric matches under
two (real rather than synthetic) illuminants D65 and A, which is an advantage over other methods.
Besides, XYZ can be transformed to a uniform CIELAB color space, hence the proposed ICS
can be considered more uniform than other ICSs, which will benefit for the use of interpolation
for spectral reproduction.

The performance of the proposed method was tested and compared with five other methods
using the NCS dataset and three spectral images (Fig. 2) respectively in terms of the RMSE and
GFC for the spectral accuracy measure and in terms of CIEDE2000 colour differences for the
colorimetric accuracy under three (continuous, fluorescent, and LED) types of illuminants. For
each measure three (average, worst and median) statistical information were used.

Firstly, it was found the best choice for the number of basis vectors or parameter m for the
proposed method was 6, while the best choice for the polynomial order or parameter k for the
proposed method was 3 when the NCS dataset was used for testing, and 2 when the three spectral
images were used for testing.
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Secondly, when all methods were trained using the independent Munsell dataset, it was found
that the proposed method performed either the best or second best in terms of spectral accuracy
measures (RMSE and GFC), and performed the best in terms of colorimetric accuracy measure
(∆E00).

Thirdly, when all methods were trained using each test dataset, the proposed method performed
the best in terms of both the spectral accuracy measures (RMSE and GFC), and colorimetric
accuracy measure (∆E00).

Therefore, it is to be expected that the proposed ICS and its reconstruction method can play an
important role in spectral image compression and reproduction applications.
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