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Abstract

We give a unified treatment of constructing families of circular discrete dis-
tributions. Some of these families are deduced from established distributions
such as von Mises and wrapped Cauchy. Some others are derived directly
such as a flexible family based on trigonometric sums and the circular lo-
cation family. Results interrelating these families are discussed. These dis-
tributions have been motivated by two examples of discrete circular data:
casino roulette spins and smart health acrophase monitoring, and these data
are analyzed using our proposed models. We discuss how using continuous
circular models for circular discrete data can be misleading.
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1 Introduction

The subject of Directional Statistics has grown tremendously, especially
since the 1980’s, with advances in “Statistics on Manifolds” leading to new
distributions on the hyper-sphere, torus, Stiefel manifold, Grassmann mani-
fold and so on. The progress in this area can be seen through several books
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published since then: Fisher et al. (1987), Fisher (1993), Mardia and Jupp
(2000), Jammalamadaka and Sengupta (2001), Ley and Verdebout (2017)
and Ley and Verdebout (2018). There has been a recent special issue of
Sankhya edited by Bharath and Dey (2019). Further, Pewsey and Garcia-
Portugués (2021) have given a comprehensive survey of directional statistics
and in the discussion to the paper, Mardia (2021) has given a brief history
of the subject. However, there is limited development of circular discrete
models. There are good choices for continuous models for circular data, but
there has been a dearth of models for discrete data. In this paper, we give
the first unified treatment of constructing families of circular discrete dis-
tributions and present examples of circular data that are observed directly
as discrete rather than created by grouping continuous data. The two data
that motivated our paper are:

(i) Roulette wheel data: A typical European roulette has 37 discrete
outcomes, viz. {0,1,2,...,36}. If the outcome 0 is mapped to 0 radi-
ans, then the outcomes get mapped to a regular support of 37 points
on the circle given by

2mr
e 1,2,... . 1.1
(2 ez ) (1)

In Section 4.1, we consider data sequences obtained from spins of four
different European roulette wheels, one from an online roulette sim-
ulator and three from two different casino industries. It should be
pointed out that Karl Pearson, in the early 1890’s, acquired roulette
spins data from Monte Carlo to examine the question of whether the
roulette wheel was unbiased (see, Plackett, 1983, p.60), and indeed his
paper of 1897 has the apt title “The scientific aspect of Monte Carlo
roulette” (Pearson, 1897). Few authors have considered this problem
but have used linearized methods, beginning with Karl Pearson and
subsequently some others, e.g. Ethier (1982), Spencer (2009). Surpris-
ingly, for this important application from the gaming industry, there
has been little attention to inference that uses explicitly the circularity
of the wheel.

(ii) Acrophase data: In non-invasive smart health monitoring, param-
eters such as Systolic Blood Pressure (SBP) are recorded, by ambu-
latory devices, at predetermined discrete time points repeated each
day. “Acrophase” is defined as the time point at which the maximum
SBP reading is recorded on a given day. Typically, acrophase data is



FAMILIES OF DISCRETE CIRCULAR DISTRIBUTIONS... 3

extracted from SBP measurements at each half hour during daytime
(8 am to 8 pm) and each hour during nighttime (8 pm to 8 am). If we
map 8 am to 0 radians and 8 pm to 7 radians, the acrophase times get
mapped to an irreqular support of 36 points on the circle given by

2rr 2nr
—.r=20,1,2,...,24 — . r =26,28,....44.46 1.2
{48’r 9 Ly 4y 9 }U{487r 9 9 9 9 }7 ( )

where the first set in the union corresponds to 25 half-hourly points
during daytime and the second set corresponds to the 11 one-hourly
points during nighttime.

In any application with discrete data in Linear Statistics, one usually
takes into account the discrete nature of the underlying population. Our
overall recommendation is the same here: “if one has discrete circular data
then one should start with a discrete circular model”. Also, the “loss” due to
use of a continuous model for circular discrete data can only be assessed after
appropriate discrete modeling, which serves as a benchmark. Of course, this
issue of discrete versus continuous distributions is a general problem, which
is well known and has been dealt successfully in Linear Statistics and we
treat this problem here as a model misspecification problem (see, Section 5).

In this paper, we give four methods to construct families of discrete
distributions on the circle along with some basic results interrelating the
methods. We apply these models to analyze the aforementioned examples
of discrete data and also to provide insights based on comparisons among
discrete as well as (approximate) continuous models for discrete data. Our
methods to construct the probability distributions can be briefly described
as follows:

(i) Maximum entropy method: We start with a given set of moment condi-
tions for the discrete distribution on the circle. We then determine the
discrete probability distribution with the maximum Shannon entropy
among those satisfying the moment constraints.

(ii) Centered wrapping method: We start with a given discrete distribution
on the line, and wrap it on the circle to obtain a discrete distribution
on the circle.

(iii) Marginalized method: We start with a continuous distribution on the
circle, which we refer to as the “parent”, and then obtain a discrete dis-
tribution on the circle by integrating the probability density function
(pdf) on pre-determined arcs on the circle.
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(iv) Conditionalized method: We start with a continuous distribution on
the circle (parent), and then obtain the discrete distribution on the
circle by restricting and normalizing the pdf to a pre-determined lattice
on the circle.

In particular, we derive circular discrete distributions from general continu-
ous location families and a family based on trigonometric sums. Key special
cases include discrete families deduced from two established continuous dis-
tributions, viz. von Mises and wrapped Cauchy. These two distributions
are commonly selected for circular data depending on whether the unimodal
data has a long tail (wrapped Cauchy) or not (von Mises), which we now
describe.

The direction of a unit random vector in two dimensions can be repre-
sented by an angle ©. On the circle, the von Mises distribution for © (see,
for example, Mardia and Jupp, 2000, p.36) plays the same role as the nor-
mal distribution on the line. It belongs to the exponential family with two
analogous parameters. Its pdf is given by

1
0 = "1 9 ¢ [0,27), € [0,27),5 >0 1.3
fU( |/€,,U) 27FI()(/€)€ ) [ ’ 7T),IU [ ’ W)aﬁ - ( )
where p is the mean direction and & is the concentration (precision) param-
eter. The normalization constant Iy(k) is the modified Bessel function of

order O:
e 2r

Ir) =Y (i!)?

r=0

For large k, © is approximately normal with mean p and variance 2/k, and
for kK = 0, © is uniformly distributed on the circle.

Given a distribution on the line, we can wrap it around the circumference
of the circle with unit radius. If X is the random variable on the line, the
random variable © of the wrapped distribution is given by

© = (X mod 27).

A popular example of wrapped distributions is the wrapped Cauchy distri-
bution with its pdf (see, for example, Mardia and Jupp, 2000, p.51)

1 1—p?

31t 7%~ 2pcos(d = M),H €10,2m),u € [0,27),p € [0,1),
(1.4)

where p is the mean direction parameter and p is the concentration param-

eter. It is one of the wrapped distributions whose density has a closed form

and is heavy-tailed. When p = 0 it also reduces to the uniform distribution.

fc(9|pv /L) =
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In what follows, Section 2 gives constructions of discrete circular families
based on the four methods, along with some examples and results interrelat-
ing them. In particular, we deduce families from general continuous location
families, and a flexible family based on trigonometric sums. Section 3 de-
duces some discrete families from established distributions such as von Mises
and wrapped Cauchy. We apply some of the models to our discrete data in
Section 4. In Section 5, we treat the problem of model misspecification for
circular discrete distributions. We conclude the paper with a discussion in
Section 6. Some supporting material is given in the supplement, including a
table of abbreviations used in the paper.

2 Constructions of Families of Circular Discrete Distributions

In this section, we elaborate on the four different methods to construct
families of circular discrete distributions that were mentioned in Section 1.
Although our ideas naturally extend to constructing discrete distributions
on an irregular support (such as in (1.2)), we will focus here on the reg-
ular lattice support (as in (1.1)) which lends itself to some mathematical
simplifications.

We denote the set of real numbers by R, non-negative real numbers by
R*, the set of integers by Z, non-negative integers by Z' and the cyclic
group of integers modulo a given positive integer m by Z,, i.e.

Lo ={0,1,...,m —1}. (2.1)

The regular circular lattice domain is given by the vertices of a regular
polygon on the circle, denoted by D,,, i.e.

Dy, = {270 /m,r € Zp}. (2.2)

We generally use f(-) or g(-) to denote a probability density function (pdf)
of a continuous distribution on the line or circle, and p(-) to denote a discrete
probability function on Z,,

2.1.  Mazimum Entropy Discrete Circular Distributions For a probability
function {p(r), r € Z,,}, with p(r) denoting the probability of the point
27r/m € D,,, Shannon’s entropy is defined as

m—1

p(r) log p(r (2.3)
r=0
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Let t1,t2,...,t4 be g real valued functions defined on Z,, and suppose
we are interested in discrete distributions {p(r), r € Z,,} that satisfy a set
of pre-selected moment conditions

m—1 m—1 m—1
pr)t(r) = a1, Y pr)ta(r) =as,..., > p(r)ty(r) =aq,  (2.4)

r= r=0 r=0
with given constants a1, as,...,aq. Then, a useful method to construct dis-

crete distributions is to maximize the entropy among all distributions on Z,,
that satisfy the given conditions. As noted by Kemp (1997), the philosophy
behind this construction is that “one should use all the given information
and nothing else”. The following theorem gives this construction, which fol-
lows from Theorem 13.2.1 of Kagan et al. (1973, pp. 408-409) on the line
and was adapted in Mardia (1975a) for directional distributions.

THEOREM 1 (Maximum Entropy Distributions). The probability function
{p(r), r € Zp} that mazimizes the entropy (2.3) subject to the constraints
(2.4) is of the form

o 1bjt(r)

p(r) = Zz@—lezg’-zlbﬂj(k)’ T € L, (2.5)
=0

provided there exist constants by, ba, ..., b, satisfying

St (r)eZizabiti(r)

Zl_}]lezgzlbiti(k)

=a;, j=12,...,q (2.6)

In that case, the distribution is unique.
We now give a few examples of maximum entropy discrete distributions.

EXAMPLE 1. von Mises distribution: Suppose ¢ = 2 and 1 (r) = cos(27r/m)
and to(r) = sin(27r/m), a discrete version of the von Mises distribution is
of the form

6ficos(27r'r/m—,u)
p(r) = T € L, (2.7)

m—1_xcos(2nr/m—p)’
m-Lencos(2mr /m—10)

where k = /b3 + b3 and tan(p) = ba/b;.
We note that this also happens to be the conditionalized discrete von Mises
distribution that is discussed in more detail later.

EXAMPLE 2. Beran distributions: A more general family than the previ-
ous example, a discrete version of the Beran family (Beran, 1979), is obtained
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by considering constraints on the expected values of t;(r) = (cos (2wrj/m),
sin (27rj/m)), which leads to the probability function
Zgzl(aj cos(27rj/m)~+by sin(27rj/m))

p(r) o<e R/ (2.8)

We will denote this distribution by B,, where ¢ is the order of the distribu-
tion. So, B; is von Mises discrete distribution as in the previous example.
By is the discrete generalized von Mises distribution.

We note that this family can be traced back to Maksimov (1967), al-
though his focus for this family is on a characterization for the unknown
centering parameter (rather than the concentration parameter), so it is of
limited practical importance.

EXAMPLE 3. Geometric distribution: Suppose ¢ = 1 and t1(r) = r the
maximum entropy distribution is of the form
1 _ T
p(r) = (1_1;))"]:, € Ly, where p = e, (2.9)
Historically, Mardia (1972, p. 50) proposed the above distribution as a model
for roulette outcomes (possibly biased).

The above three examples also arise out of the “conditionalized” con-
struction of discrete circular distributions that we define below in Section 2.3.
We note that (2.9) is also the “centered wrapped geometric distribution” dis-
cussed below in the next subsection.

2.2.  Centered Wrapped Discrete Circular Distributions A natural con-
struction to obtain a circular discrete distribution is to start with a discrete
distribution on the line and wrap it on the circle (see, for example, Mardia,
1972, p.50). Let Z be a random variable taking integer values (i.e. in 7Z)
with probability function po(-). For a given positive integer m, we define
here the wrapped discrete random variable:

Zyw = (Z mod m) x (2w/m).

We note that Z,, € D,, and its probability function is given by

Puo(r) = P(Zy =2mr/m) = Y po(r+km), 1€ ZLp. (2.10)

k=—o00

It follows that the characteristic function of Z,, is given by

Vpm = E (e®?0) = ¢(2mp/m), (2.11)
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where ¢(-) is the characteristic function of Z. In general, these distribu-
tions do not have a mean direction or centering parameter, and therefore
we construct the “centered wrapped” probability function with a centering
parameter t as follows,
p(r) = {pr(T —ttm) r<t Tt € L. (2.12)
puwo(r — ), r>t,

Choosing the domain of ¢ as Z,, ensures probabilities are well defined without
changing the domain of the distribution.

ExaMPLE 4. Centered wrapped Poisson distribution: For the Poisson
distribution with mean A, the wrapped Poisson distribution has the proba-
bility function

7}\ e )\T—Hcm
Puo(r Z T L. (2.13)

The centered wrapped probability function with centering parameter ¢ is
then given by

_)\ AT t+m+km
ey, T <1
pr) =9 k0 e km)t vt € o, (2.14)
Zk 0 (r—t+km)! > r>t

The above expression is a special case of the distributions considered by
Mastrantonio et al. (2019).

For practical applications with continuous circular data, it is well known
that the selected probability density is continuous at 27, i.e. the pdf value
at 0 is same as its limiting value at 27. Similarly, along the same lines, a
desirable property for a circular discrete probability function p(:) on Z,, is
to have p(0) = p(m). The maximum entropy and the centered wrapping
methods do not necessarily ensure this property as is apparent from Ex-
amples 3 and 4. However, this property is ensured if we construct discrete
distributions by applying the marginalized and conditionalized methods on
continuous circular distributions, which we will discuss next.

2.3. Marginalized and Conditionalized Discrete Distributions In this
section, we focus on univariate circular constructions based on marginal-
ized and conditionalized methods, whose brief descriptions were given in
Section 1.

There has been literature on the marginalized and conditionalized dis-
cretization on the line. For example Kemp (1997) and Szablowski (2001)
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discuss the conditionalized discrete normal, Inusaha and Kozubowski (2006)
discuss the conditionalized discrete Laplace, and Papadatos (2018) derives
the characteristic function of the conditionalized discrete Cauchy. The con-
ditionalized approach can also be described as a “plug-in” approach, whereas
the marginalized approach is in fact equivalent to the well known probit con-
struction, usually used for univariate and multivariate normal distributions,
see for example Joe (2014, p.20). Alzaatreh et al. (2012) and Chakraborty
(2015) make references to both of these methods, while developing other
methods of constructions. However, there have not been any insights relat-
ing these constructions.

Marginalized and conditionalized constructions of circular families of dis-
crete distributions are very recent as proposed in Mardia and Sriram (2020).
Besides, there has not been published in-depth analysis of truly discrete
circular data. However, particular cases of the conditionalized approach,
including von Mises and wrapped Cauchy distributions, have appeared, not
only in Mardia and Sriram (2020) but also in Girija et al. (2019) and Imoto et
al. (2020). We give a unified treatment of the different methods as a strategy
to construct rich classes of discrete distributions on the circle. We derive new
results (e.g. Theorems 1 to 4) that offer insights on the inter-relationships
between the constructions.

We now define the marginalized and conditionalized discrete families for
the circular case. There has been some very recent work on these approaches
although not in a comprehensive and unified way, as we describe below. Let
© be a random variable with pdf f(0), 0 € [0, 27).

DEFINITION 1. The probability function of the marginalized discrete
(MD) distribution on the circle is given by

2w (r+1)

p(r) = /2mm f(0)do = F (W*D) ~F <27”") T E Ly (2.15)

m m

where F'(-) is the cumulative distribution function of the pdf f(-).

We note that this is also the probability function of the discrete random
variable LT;—?J, where | -] denotes the largest integer less than or equal to the
given number.

DEFINITION 2. The probability function of the conditionalized discrete
(CD) distribution on the circle is given by
2
_ n;f _(1 r/m) e
> ko f(2mk/m)

p(r) v/ (2.16)
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For simplicity, we will denote both probability functions (2.15) and (2.16)
by the same notation, but the choice will be obvious from the context. One
question of interest is “can the marginalized and conditionalized methods
lead to the same discrete distribution on the circle?” We show that under
certain conditions, the two approaches will lead to diffent discrete distribu-
tions on the circle except for the trivial uniform case. This has implication
when we come to selecting between the two approaches in practice and we
give insights based on comparison of the two approaches for some particu-
lar cases in Section 5. Theorem 2 below gives one characterization. This
theorem is inspired by a similar question for the linear case related to the
exponential distribution (see supplement Section AT).

THEOREM 2. Suppose f(-) is a strictly positive and continuous circular
pdf on [0, 2x] with f(0) = f(0+2m). Then, the two discretization approaches
(i.e. MD and CD) lead to the same discrete distribution, with

fla+ko)y  JEETY? p(0)do

P =2 ,V,a,0 €10,27), YV k € Zn, with md < 2,
S flatrd) o [ETT F(0)do

(2.17)

iff f is the uniform density.
PrOOF. Considering (2.17) for k =1 and k = 0, and taking their ratio,
we get

a+26

a+0
Fla+d) / " 10)d0 = f(a) / £(6)do. (2.18)

a+0

Integrating both the left hand side (lhs) and right hand side (rhs) of (2.18)
with respect to 6 € [0,2m), we get

21 a+9d 27 a+2(5
; f(a—l—(S)/a f(0)dods = f / / 0)dods. (2.19)

Using continuity of f(-) including f(6+2m) = f(0), we have fa+27r f(0)do =
1 for any a, and the lhs of (2.19) can be simplified as

2

[t /aa+6f(0)d0d5: % </aa+6 £(0)d ) 2172 (2.20)

Now, the rhs of (2.19) can be shown to be

27 a+26
/ / 6)d0ds = f(a)(A — B) = f(a)r, (2.21)



FAMILIES OF DISCRETE CIRCULAR DISTRIBUTIONS... 11

Equation 2.21 follows because A and B can be simplified as below.

27 a+26 a-+26 27
/ / £(6)d0ds — 5/ F(0)d8)2" — / 25 f(a + 26)ds
0 a a 0

27

A

a+4m 4
271'/ F(0)do — % 8 fla+68)ds' = 4m — (n + [ fa+ (Y)d(i’) ,
a 0 0

and
27 a+é a+6 27 27
= = 2Tr - = —
B = /0 /a £(0)dods = 5/a 1OIH /O 5f(a+8)ds = 2m /0 5f(a+ d)ds.

Equating the lhs (2.20) and rhs (2.21), we get f(a) = 5. Since a is
arbitrary, this means that f(-) must be the uniform pdf on the circle.

It is to be emphasized that the assumption on continuity of the pdf
f() is crucial in the above theorem. For example, the marginalized and
conditionalized methods applied to the wrapped exponential distribution on
the circle lead to the same discrete distribution, i.e. geometric distribution.
However, the wrapped exponential pdf is not continuous at 6 = 2.

A related question is whether the marginalized and conditionalized meth-
ods can belong to the same family of distributions. Indeed, it is easy to see
that this property will hold for a generalized Cardioid-type family of distri-
butions as given by the following theorem.

THEOREM 3. Consider the pdf of the parent family defined by
1 oo
10) = o kzlnk (14 2p cos(0 — pz)), 0 €[0,2m), (2.22)

where Y oo =1, Y k, n, > 0, pp € [0,2m), |px| < 1/2. Then the
marginalized discrete distribution is also a member of the family of condi-
tionalized discrete distributions.

An interesting connection between the constructions on the circle and
line, is given by the following theorem.

THEOREM 4 (Duality). Consider the following dual approaches to con-
structing discrete circular distributions supported on Z,, starting with a real
valued random variable X, with a pdf f(-) on R, via either the marginalized
or the conditionalized methods of discretization.

(a) Scale, discretize and wrap: Start with the pdf of the scaled random
variable X = mX/(2w), obtain the marginalized [or conditionalized]
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discrete probability function on the line and denote the corresponding
random variable by X 4. Further, wrap Xd, i.e. let de = (Xd mod m).

(b) Wrap, scale and discretize: Let X,, = (X mod 2m) (i.e. X wrapped
on the circle). Now, start with the pdf of the scaled random variable
X = mX,,/(27), obtain the marginalized [or conditionalized] discrete
probability function on the circle and denote the corresponding random
variable by )A(:wd.

Then, )Zdw and )de have the same distribution.

PRrROOF. For a given random wvariable Z with continuous support, recall
that discretization by marginalized method means taking the random variable
| Z], and discretization by conditionalized method means taking the random

variable Zy with its probability function defined by P(Zg = 1) = Zi(;zk)
First, we will prove the equivalence for the conditionalized discretization
method. The probability function of the discrete distribution resulting from
process (a) is given by

¥ %, ) — Yowezt 2m(r 4+ km)/m)
PlXaw = )_,;ZP(Xd_ + km) Yokenf@mk/m)

For the process in (b), let us denote the pdf of Xy, by fr,. Then, the prob-
ability function of the discrete distribution resulting from process (b) will

be

(2.23)

> » = fo, @mr/m) Y owezf2mr/m + 27k)
Ppiny P CLIED) 2 kezf(2mk/m)

Since (2.23) and (2.24) are the same, (a) and (b) yield the same discrete
circular distribution. Now, to prove the equivalence under the marginalized
method of discretization, we observe that process (a) leads to the probability
function given by

(2.24)

P(Xqw=71) = » P(Xg=r+km)=>_ (F (er%k) fF(%%+27rk)),

keZ keZ

but process (b) also leads to the same probability function because

> (F (W—k%k) —F(Q%erc)).

kEZ
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2.8.1.  General Circular Discrete Location Family. Consider a general
circular location family (see, for example, Mardia, 1975b) with probability
density function given by

f@lr, 1) =g-(0 —p), 0,p€l0,2m), 720, (2.25)

which we assume to be unimodal with mode at . For simplicity, we assume
9-(0) = g- (27 —0), g-(0) > 0 for all € [0,27) and also that g,(27) = g,(0).
Note that the normalizing constant will depend only on 7 and not on . Here,
7 > 0 is another parameter in addition to y, such that 7 = 0 corresponds
to the case of uniform distribution and the dispersion around the mode
decreases as T increases. For example, 7 = k for the von Mises distribution
(1.3), and 7 = p for wrapped Cauchy distribution (1.4).

The probability function for the marginalized discrete distribution based
on the circular location family (2.25) is given by

2w (r+1)/m
(i) = [ 60— 1)dO, € Ty, € [0,27),  (2.26)

27r/m

and we will call this distribution the “marginalized discrete circular location
family” .

Similarly, the probability function of the conditionalized discrete distri-
bution based on the circular location family (2.25) is given by

g: (2mr/m — p)
S g @mr/m — )’

p(rim, T, 1) = 7 € L, it € [0,2m), (2.27)

and we will call this distribution the “conditionalized discrete circular loca-
tion family”.

The characteristic function for the probability function (2.26) or (2.27)
is given by

m—1
o 2mr
Ypm = Y plrlm, 7, p)e® . (2.28)
r=0

Since g-(#) can be expressed in terms of its characteristic function ¢, (see
Mardia and Jupp, 2000, p.27) as

1 & —igf
97(0):% Z ¢qe q7

g=—o00
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it can shown that the characteristic function of the marginalized discrete
location family is

p/m) Z?ifoo ?;;n:;o eilmu’p € Z,,\{0},

1, p=0
wp,m = {meip(uf,rl) sin( (2'29)

™

and the characteristic function of the conditionalized discrete location family
is

il
eiPH Zloi—ooqblmﬂ)ez i
Z?i—oo Qi)lm eilmu

Ypm = , P E L. (2.30)

2.8.2.  Circular Discrete Family Based on Trigonometric Sums. In this
section, we derive the marginalized and conditionalized discrete distributions
starting from the flexible continuous distribution based on trigonometric
sums introduced by Ferndndez-Duran (2004). For a set of complex numbers
c ={co,c1,...,cy} such that

J

1

2

= — 2.31
SlerP =5 (2:31)

k=0

the pdf defined by Fernandez-Duran (2004) is

J
fo) = % + % Z {aj cos(k@) + by sin(k@)}, 6 € [0,27), (2.32)
k=1

where (ay,by) are such that ap — iby, = 2 Zi;g ¢y+kCy. The specific choice
of (ay,by) is a necessary and sufficient condition to ensure positivity of the
function f. The pdf (2.32) can also be written as

1

J
F6) = oot =Y pecos(ho—d1), 0€[0.2m),  (233)
k=1

where
pr = \/ai + b3 and ¢ = arctan(by/ay). (2.34)

We will refer to the distributions obtained by applying Definitions 1 and 2
on the pdf (2.32) as the “marginalized discrete trigonometric sum” distribu-
tion (denoted M DT'S(m, ¢)) and the “conditionalized discrete trigonometric
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sum” distribution (denoted CDT'S(m, c)), respectively. It is easy to see from
(2.32) and (2.33) that the probability function of M DT'S(m,c) is given by

J .
1 2 2 1/2
p(r|m, c) = 7+7zsm7rk/m) OS<7TI<:(7“+ /)_¢k)aT€Zm;
m m
(2.35)
and the probability function of CDT'S(m, c) is given by
119 J 2rkr
p(r|m,e) = * 2 demaprcos (5 (bk), T € L, (2.36)

m(1+2 S, a
k=0(mod m)

where p;, and ¢y, are as in (2.34). Note that for J =1, (2.35) and (2.36) give
the marginalized and conditionalized discrete cardioid distributions, respec-
tively. We see that the two distributional forms are identical although with
different parametrization, which is consistent with Theorem 3.

As in the continuous case, the above constructed discrete families give
flexibility in modeling multimodality and skewness in circular discrete data.
See also Imoto et al. (2020). In this paper, we will give a particular applica-
tion in Section 4.1.2.

3. Key Special Discrete Distributions and Their Properties

We now give the marginalized and conditionalized methods for the von
Mises (1.3) and the wrapped Cauchy (1.4) as the parent distributions fol-
lowed by some basic properties including characteristic function, estimation
and hypothesis testing. We begin with the definitions of these distributions.

DEFINITION 3. Using (2.15), the probability function for the marginal-

ized discrete von Mises distribution (MDVM) with mean parameter p and
concentration parameter x, denoted by M DV M (m, k, ), is given by

1 2w (r+1)/m )
p(r|m, k, 1) = MO()/2 / SO0 v € L, pel0,27), (3.1)

DEFINITION 4. Using (2.16), the probability function for the condition-
alized discrete von Mises (CDVM) distribution with mean parameter p and
concentration parameter x, denoted by CDV M (m, k, 11), is given by

1

K cos(2mr /m—p)
e 1T € Loy, 1€ 1(0,27), 3.2
[0(%, ) [ ) ( )

p(r|m, K, p) =
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where the normalizing constant is the reciprocal of the function

m—1

Z ofcos (2mr/m— ,u) (33)

r=0

Similarly, we have the following definitions for the wrapped Cauchy case.

DEFINITION 5. The probability function of the marginalized discrete
wrapped Cauchy (MDWC) distribution with mean parameter p and con-
centration parameter p, denoted by M DWC(m, p, ), is given by

(vl ) 1 o (1+p?) COS(LF(T—H) — ) —2p
rim = —
p y Py o 1+p 2IOCOS(27I'(T+1) —,U)

1 0§4{<1+p>am@”—->—2p}

Cor 1+ p% —2pcos(ZL — p)
r € Zm, pel0,2m), pel0,1). (3.4)

Alternatively, for computational purposes, the above expression can be
written as

1 %Z{tan(ﬂ'(T*l»1)/m7u/2)7tan(7ﬂ"/mf’u/2)}
p(rim,p,u) = = arctan i 7
1+ (ﬁ) tan(7(r + 1)/m — p/2) tan(wr/m — p/2)
T € Lm, p€0,2m), pel0,1). (3.5)

Further, we have

DEFINITION 6. The probability function of the conditionalized discrete
wrapped Cauchy distribution with mean parameter p and concentration pa-
rameter p, denoted by CDWC(m, p, u), is given by

1 1
P(T|maPaH) - D(p ﬂ)1—2p008(2m—u)+p2’
7€ Ly, p€[0,2m), pe0,1). (3.6)

where the normalizing constant is the reciprocal of the function

_ m(1l - p*™)
Pole ) = =5 cos(imp) + o) (1 = ) 3.7)
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The normalizing constant (3.7) is derived in the supplement Section A2,
Corollary Al. For simplicity of notation, while writing the marginalized or
conditionalized discrete probability functions, we will omit the subscripts
such as v or ¢ corresponding to von Mises or Cauchy, but they will be
clear from the context and by the explicit mention of x versus p as the
concentration parameters. So, we will always denote the discrete probability
functions by p(r|m, k, u) for von Mises or p(r|m, p, u) for wrapped Cauchy.
We now make some additional observations specific to CDVM and CDWC
distributions.

Probability Functions Figure 1 plots the probability functions of CDWC
(m, p, ) and CDV M (m, K, p), for (i) m = 10 and (ii) m = 37 with p =
275/m and p = 2w16/m respectively, for p = 0.5 and its mapped x value. In
order to compare the probability functions of CDWC(m, p, u) and CDV M
(m, k, ), we need to first map the parameters p to k. We do so by match-
ing their first trigonometric moments given by (3.10) and (3.12) below, i.e.
B(k) = pw. We note that the CDWC is more spiked and heavy tailed
compared to CDVM.

Characteristic Functions We make some observations based on the char-
acteristic functions of CDV M and CDW C' distributions.

(a) CDVM. For the CDV M distribution (with x = 0), we can also
obtain an alternative simplified form for the characteristic function.

O] (ii)
m=10 p=0.5 k=1.164 m=37 p=0.5 x=1.159

probability function
probability function

Figure 1: Probability functions of CDW C(m, p, u)(triangles joined by solid
line) and CDV M (m, &, ) (cross joined by dotted lines) plotted for (i) m =
10 and (ii) m = 37 with u = 275/m and p = 2716/m respectively, for
p = 0.5 and its mapped k value by matching the first trigonometric moment
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Let us write

s 27r 2
Ly(k) = cos <p> eneos(3r). (3.8)
m
r=0

So, for © ~ CDV M (m, k, u = 0), we have
Ypm =E [ein] = By(k),where By(k) = Ly(k)/Lo(k). (3.9)
It then follows by writing B; (k) = B(k), that

2rr

B(x) = E <cos 2:;’") and B'(x) = Var (cos m) . (3.10)

L, (k) is the discrete analogue of the Bessel function I,(k). It is to be
noted that not all of the standard identities of I,(x) (see Mardia and
Jupp (2000), Appendix 1) necessarily hold for its discrete analogue.

CDWC. For ©® ~ CDWC(m,p,u = 0), the pth trigonometric mo-
ments (p € Z,,) are given by

. 14 pm—2p
apm = Esin (pO©)] =0, Bpm = E[cos(pO)] = W
(3.11)
For p =1, this leads to the mean resultant length
p(L+p""2)
w = ) 3.12
p 5 m (3.12)

In general, 0 < p, < 1 and as m — o0, py — p. By property of
characteristic functions, in general 0 < 3,,, < 1, and as m — oo,
Bp,m — PP, as can be seen from (3.11), which is known to be the char-
acteristic function of the wrapped Cauchy distribution as expected.
Further, this convergence happens at an exponential rate. To see this,
note that

B pp (pm—2p _ pm) B pm—p (1 _ p2p)
wp,m(p) - pp - 1+ Pm - 1+ Pm

For any fixed p, it follows that |¢,m(p) — pP| < p™ P, and hence
[Ypm(p) — pP| = O(p™~P). In particular, since ©1,, = py, we have
lpw = pl = O(p™ ).
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Estimation The maximum likelihood estimates (mle) of (p, k) for CDV M
and (u, p) for CDWC can be obtained by iteratively solving the maximum
likelihood equations for the two parameters, the details of which are given in
Section A5.1 of the supplement. Further, we give asymptotically equivalent
estimates to mle which are simpler to compute:

(a).

Moment estimates: Characteristic functions for the marginalized dis-
crete and conditionalized discrete location families with cardioid, von
Mises and wrapped Cauchy as parent distributions, based on the gen-
eral formulas (2.29) and (2.30), are given in the supplement (Section A3
Table S2). These can be used to estimate parameters based on match-
ing of trigonometric moments from the data. For © ~ CDWC(m, p, u),
the trigonometric moments have a closed form, given by

Elcos(0©)] = Acos(u) + Bceos((m — 1)u),
E[sin(0©)] = Asin(u) — Bsin((m — 1)u),
where
g PA=p) o pm 1= p?)
(1—p?m) ~ (1 —p?m)

For the constrained case when y = 27t/m,t € Z,,, the above equations
simplify to

p(1+p™?)
14 pm

m—2
Elcos(9)] = cos(p) and Esin(©)] = p(ll—ippm)sin(,u).

. Hybrid estimates: When n is large, plug-in the sample mean direction

(0) for u, and obtain mle for only p or .

Constrained estimates: When m is large, constrain p to {27t/m,t €
Zp}. In this case, the normalizing constants (3.3) and (3.7) become
free of u, leading to some simplifications. For C DV M, this approach
leads to following explicit equations for mle:

_ _ ot R 9
B(k) = Rcos (0—7Tt> and ¢ = [mﬁ] ,
m 2m |,
27TT)

where B(k) = Li(k)/Lo(k), Lp(k) = Z::ol cos (p2Z~) ereos(ZE ,
P € Z, and [z],, denotes the closest integer to x, modulo m.
Asymptotic normality of these estimate follow using the results in
Pewsey (2004) for the case (a) and Mardia et al. (2016) for the cases
(b) and (c).



20 K. V. Mardia and K. Sriram

Testing of Hypothesis We will give more details in the next section on
testing of hypothesis as we apply the methodology as required in the next
section but we outline some main points.

The Rayleigh Test is well known to test uniformity under the von Mises
distribution, that is to test (see, for example, (Mardia and Jupp, 2000))

Hy:k=0, Hy:rk>0,

where the mean g is unknown. It is based on T = 2nR?, which under
Hy, is approximately chi-squared with 2 degrees of freedom. Now, given the
data vector w of iid observations under CDVM, the log-likelihood ratio test
statistic (7") can be written as

T(w,k, 1) = —2LL(w|m, k = 0) + 2LL(w|#, 1),

where (&, 1) is the mle based on the data vector w and LL(-) is the log-
likelihood. If we denote the computed value of T" in the data sample by Ty,
then

p-value = P (T(w, R, 1) > Ty).

The test rule is then to reject Hy for values of the p-value in comparison to
a chosen significance level and use bootstrap for the mle and the p-values
for the tests. For large m, the T-test = the Rayleigh test. We can extend it
easily to the circular location family including CDWC which is easier to use
as the normalizing constant is simpler.

4. Examples

We apply some of the models developed in the previous sections to an-
alyze real data on roulette wheel outcomes and smart health monitoring
readings on SBP acrophase. In both these situations, data are circular and
discrete. Also, in both these situations, data are generated in abundance
daily, although they may not usually be accessible in the public domain.
Interestingly, the acrophase is an example where the data has an irregu-
lar discrete support. Our analysis and findings that are presented below
are mainly illustrative of the kind of insights that are possible through the
different circular discrete models.

4.1.  Roulette Wheel Data: Online Gaming and Casino Spins There
has been ongoing search to find a plausible test for testing unbiasedness of
a roulette wheel. The problem is now more pressing than ever before with
the rise of many online gaming sites, e.g. An Online Gaming Site https://
10bestcasinos.co.uk/en-en_d_rl.html. For example, the UK Gambling Com-
mission requires statistical testing to ensure fairness, by an approved third
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party as per the guidelines provided in their “Testing strategy for compliance
with remote gambling and software technical standards” at UK Government
Compliance https://www.gamblingcommission.gov.uk/.

Indeed, Pearson (1894, 1897) was captivated by this problem and had
acquired his data of n = 16, 563 roulette spins from the Monte Carlo Casino
as recorded in a journal “La Monaco”. He constructed three tests, but as the
subject of Directional Statistics was still developing, it was usual to ignore
the circular aspect of the data. A brief historical insight into his work, along
with images of a typical European roulette wheel, are given in the supplement
Section A4. Karl Pearson’s original sequence of roulette spin data is not
available and we work with data from an online roulette simulator as well
as some industrial casino data obtained from spins of different Furopean
roulette wheels. Note that here the number of outcomes is m = 37 (as
against an American roulette m = 38). In some cases, the data is available
as a streaming sequence of outcomes from successive spins of the roulette
wheel, and in others we may just have the frequency distribution of the
outcomes without knowledge of the sequence. Accordingly, we illustrate
different types of analysis.

We look at the following four roulette data:- three different streaming
sequence roulette data and one cumulative frequency data.

Roulette data 1 Our first data is of size n = 1000, a sequence of outcomes
from successive spins of an online European roulette simulator available
at (Online Simulator: last accessed 9-sept-2020)

Roulette data 2 This data has outcomes from successive spins of a real
European roulette recorded in a casino in Slovenia, n = 8299.

Roulette data 3 This data has outcomes from successive spins from the
same casino as roulette data 2, but from a different roulette wheel,
n = 8106.

Roulette data 4 This data is only of cumulative frequency of roulette
wheel spins from an industrial consulting project at University of Leeds,
n = 3094.

Rows (i)—(iv) of Table 1 give their respective frequency distributions.
We will deal with sequential roulette Data 1, Data 2 and Data 3 in the
next subsection (Section 4.1.1) and the cumulative roulette Data 4 in the
subsequent subsection (Section 4.1.2).

4.1.1.  Analysis of the Streaming Sequence Roulette Data 1-3. We con-
sider here roulette Data 1, Data 2 and Data 3. The main challenge is to
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Table 1: Frequency distributions for the roulette Data 1, 2, 3 and 4. The
entries of angular positions (r) in the first row correspond to angles 27r/m
on the circle, the second row shows the corresponding label on the roulette
wheel and the other rows show the frequencies of outcomes
r ] o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
label  [ON 26 35 2 29 22 31 20 33 2
(i) Datal 45 19 34 20 29 25 25 19 34 16 29 25 32 31 32 18 29 32 28
(ii) Data 2 242 228 231 213 241 211 202 221 208 216 230 199 232 230 220 208 196 215 203

) Data 3 230 202 184 231 200 221 169 187 224 212 232 221 255 236 225 190 189 199 214
iv) Data 4 76 78 72 8 74 101 93 71 67 70 67 103 104 102 93 82 8 73 65

r ‘19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ‘Total

label 10- 8-11-13- 6-17- 2- 4-15-

(i) Datal | 27 25 31 38 33 32 26 11 21 24 27 21 29 33 31 22 23 24 | 1000

(ii) Data2 |244 260 213 197 219 240 244 242 227 221 239 233 236 227 229 221 218 243 | 8299
(ii) Data3 | 196 203 206 207 213 247 222 199 201 233 250 254 274 239 220 256 218 247 | 8106
(iv) Data4 | 90 80 73 101 75 8 79 8 8 75 91 8 94 106 89 78 8 70 | 3094

detect a possible bias in a roulette based on a streaming sequence of spin
outcomes. We note here that since the roulette Data 1, 2 and 3 are available
as a time series, we carried out a test for serial independence, in the lines of
Watson and Beran (1967), but adapting to discrete data (more details are
in Mardia and Sriram (2020)). The test indicates that overall there is no
dependence. Our analyses and findings for these data are as follows. The
main challenge is to detect a possible bias in a roulette based on a streaming
sequence of spin outcomes.

Analysis 1 First, we carry out testing unbiased (of the wheels) using only
cumulative frequencies for the roulette Data 1, 2, and 3 given in Table 1,
which is equivalent to testing for uniformity, i.e. Hp : 7 = 0 (unbiased wheel)
vs. Hy : 7 # 0 (biased wheel). For this purpose, we use a log-likelihood
ratio test statistic (denoted 7T'), which is computed as the difference in the
log-likelihoods at the maximum likelihood estimates (mle) and at the null
hypothesis 7 = 0. Recall for the continuous circular location scale family,
7 = 0 corresponds to the uniform distribution on the circle, so a specific
value of p is not required for Hy. We carry out this analysis using the
CDWC model. Table 2 shows the mle, test statistic and the p-value for each
the roulette Data 1,2 and 3. Comparing the p-value with a 5% significance
level, we conclude that the evidence for bias does not exist for roulette data
1, is weak for roulette Data 2 and strong for roulette Data 3. The estimated
mode for data 3 is it = 5.34 approximately corresponding to the angular
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Table 2: Based on CDWC model, results of Analysis 1 for roulette data 1-3
Roulette n p SE(p) t=|2E] §=4 SE@®) T  SE(T) p-value
1) datal 1000 0.019 0.017 17 2976 1.236  0.688 3.010 0.711
(i1) data 2 8299 0.020 0.007 30 5.106 0.414 6.676 5.420 0.046
(iii) data 3 8106 0.030 0.008 31 5.340 0.279 14.333 7.924 0.000

position r = 31. See Supplement Section A5 Figure S2 for the circular
histogram of data 3. It turns out these conclusions happen to be the same
if we had used the CDVM model, or if we had used some alternative tests
known in the context of continuous data (see Supplement Section A5 for
details).

Analysis 2 Analysis 1 does not use the streaming nature of the out-
comes, that is we have used only the cumulative frequency not the full
time series. Here, we delve further into the sequence of outcomes. Let
us denote the sequence of angular positions of the roulette outcomes by
{w; :1€{1,2,...,n}}. The mapping of angular positions to labels on the
roulette wheel is given in Table 1. Our goal is to estimate a change-point
in the data. The model with a changepoint at i = K can be constructed as
follows:

w; {p(-|m, m,p1) ifi <K (41)

p(:|lm, o, p2) ifi > K,

where p(-|m, 7, p) is the probability function of the discrete circular distri-
bution as in (2.26) and (2.27). Of particular interest is to detect a change
from uniformity, i.e. 71 = 0, where p; can be arbitrary but we take it as 0
without loss of generality. The likelihood for the data can then be written
as

K n
L(w|(m1 = 0,72), (m1 = 0, p2), K) = [ [ p(wilm, 70 = 0,0 = 0) x TT p(wilm, 72, p2).

i=1 i=K+1

(4.2)

We can apply a Bayesian approach with standard Markov Chain Monte
Carlo methods for estimation, using non-informative flat priors on the un-
known parameters, viz 1o, uo and K. For our data, we carry out the change-
point analysis using the CDW C(m, p, 1) model, first based on the full data
sequence and then based on partial data sequences. Specifically, we use a
Gibbs sampling procedure to obtain the posterior distributions, by taking
the support of (p2, p2, K) to be a suitably fine grid of values, viz. py €
{0,0.001,0.002, . ..,0.999}, ps € {0,0.001 x 2,0.002 x 27, ...,0.999 x 27}
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and K € {1,2,...,n}. The posterior distribution summaries obtained for
each of the full sequences of roulette data 1,2, 3 are shown in Table 3. For
any given roulette data sequence, we conclude that there is evidence for a
changepoint if the 95% highest probability density (hpd) credible interval
for py is removed from 0. Accordingly, we conclude that there is no evidence
for a change from uniformity in data sequences 1 and 2. For roulette data 1
and 2, we also see that the 95% hpd interval for K spans a very large range
between 1 and n, as one would expect if the distribution of K is close to
a discrete uniform on {1,2,...,n}. This further supports the absence of a
changepoint in roulette data 1 and 2.

However, there is evidence for a changepoint in roulette data 3 since the
95% hpd interval for ps is clearly removed from 0. We can also see that the
estimated posterior mode for the changepoint in roulette data 3 is K = 1226.
Therefore, subsequent to the changepoint, the distribution of outcomes in
roulette data 3 has changed from uniform distribution to one that has a
single mode (at pe = 5.305 with angular position r ~ 31). Such a bias
might be resulting from a slight “tilt” in the roulette wheel downwards to
favour such a mode. In Section 4.1.2, we also look at a different type of bias,
possibly resulting from “wobble” of a roulette wheel.

Testing Streaming Consistency Further, to see how early the change-
point would have been detected, we treat the spins as streaming data by
increasing the number of spins sequentially by 500. So, we apply the same
changepoint detection procedure on partial data sequences of roulette data
3, i.e. spins 1 : u for u € {500, 1000, 1500, ...,8000,8106}. Figure 2 shows
the plots of the 95% hpd intervals, posterior mean for ps and mode for K
for different choices of the upper bound. We can see that starting from an
upper bound of 4000 onwards, the 95% credible interval for ps appears to be
removed from 0, and for 5500 onwards it is even more clearly removed from
0. Correspondingly the posterior mode for K is settled somewhere between
1000 and 2000. Also, the 95% hpd for K appears to be stabilize for the
data range 1:5500 and after. So, while we start detecting the change weakly
based on the first 4500 outcomes, the evidence becomes stronger as we start
including outcomes 1:5500 and after.

We now comment on how our work is basically different from some other
work on circular change point detection. Pewsey and Garcia-Portugués
(2021) have given a survey of changepoint detection with continuous an-
gular data, but our method is for discrete circular data. There has been
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Figure 2: Results of changepoint analysis based on different partial data
ranges for Data 3. plot (i) shows posterior summaries for ps and (ii) for K
plotted against data range upper bound. In each plot, solid lines mark the
95% credible intervals. The dotted line in plot (i) shows the posterior mean
for py and in plot (ii) shows the posterior mode for K

other work in this area motivated by control charts, e.g. Lombard and
Maxwell (2012), Laha and Gupta (2011) and Rao and Girija (2020). Com-
pared to these approaches, our strategy is different as it is model-based with
unknown parameters, whereas the method in Lombard and Maxwell (2012)
is nonparametric. Further, control charts, e.g. Laha and Gupta (2011) and
Rao and Girija (2020), are not suitable for testing uniformity for the fol-
lowing reasons. Broadly speaking, in their method, given a distribution, n
samples of size n; are generated. For each sample, based on the n; observa-
tions, the circular mean is computed. Then two quantities are found after
sorting the n values, viz. (a) CCR (clockwise control ray) by eliminating
the first a percent values and (b) ACR (anti-clockwise control ray) by elim-
inating the last o percent values. Such an approach may not be suitable
for checking deviation from uniformity because the ACR and CCR will be
wide and symmetric around 7 and so it will not have any observations that
fall in the rejection region if the data is actually coming from a distribution
concentrated around 7. Although their work is also based on some model
assumptions, it requires a priori fixing of parameter values to determine the
ACR and CCR.

4.1.2.  Analysis of the Cumulative Frequency Data 4. Here, we consider
Data 4 where only a cumulative frequency roulette outcomes is available, i.e.
instead of a streaming sequence we only have the frequency distribution of
outcomes. As part of an industrial consulting project at University of Leeds,
Baines (1990) recommended a protocol for certifying a casino roulette wheel
as “unbiased” using five different statistical tests, two based on chi-square
statistic and the other three based on variations of the Rayleigh test (see
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Supplement Section Ab5.4 for detailed description of these tests which were
given by K. V. Mardia in a personal correspondence). As per the protocol,
if all five statistical tests resulted in the acceptance of the Null Hypothesis
(Hp) (i.e. no evidence of bias), then the wheel would be certified as having
passed the randomness test. However, if any of the five statistical tests
resulted in the acceptance of the Alternative Hypothesis (Hj)(i.e. evidence
of bias), a second series of at least 370 spins would be collected and the five
statistical tests repeated on the new data as well as the combined data from
the two series. The choice of the level for the tests would be contextual, i.e.
chosen between 5% and 0.1% depending on the acceptable risk of wrongly
concluding that the wheel is biased. The cost implications also influence the
number of runs to be considered for such tests.

Based on an analysis of different sub-series of roulette spins as well as the
combined series, Al Baines and Kanti Mardia reported evidence to suggest
that the roulette had a quadri-modal bias with possible modes at the roulette
slot positions 12,20,30 and 21, which correspond to angular positions r €
{4,13,22,32}. However, his methodology is not based on a statistical model,
so it does not systematically identify the nature of the specific alternative in
Hy, in particular the positions of modes and their likelihood.

To allow some flexibility to capture the multimodal aspect of this data
and to achieve the highest log pseudo marginal likelihood (see e.g. Carlin
and Louis, 2009, p. 215), we chose J = 4 to fit the CDTS model as in (2.36)
to the combined series of roulette outcomes used in Baines (1990). We refer
to this as ‘Data 4’ and give its frequency distribution in row (iv) of Table 1.
We find it convenient to estimate the model using a Bayesian approach with
a standard MCMC approach based on a random walk Metropolis-Hastings
algorithm. Figure 3 shows the fitted model along with the frequency distri-
bution of the data. The fitted model suggests modes at angular positions
r € {4,13,23,31}, which is somewhat consistent with Al Baines’ conclusion
of 4 equi-spaced modes, although our finding suggests that the successive
modes may not exactly be equi-spaced. As per our model, the angle sub-
tended between successive modes (in degrees) are 87.6, 97.3, 77.8 and 97.3
respectively. The roulette slots corresponding to these angular positions are
12, 20, 11, 2, with estimated probabilities 0.0279, 0.0319, 0.0289 and 0.0305
respectively. So, our finding goes a bit beyond Baines (1990) to suggest that
the roulette wheel possibly has an asymmetric wobble (i.e. modes that are
not exactly equi-spaced and with unequal probabilities).

4.2.  Acrophase Data: Ambulatory BP Monitoring Systolic blood pres-
sure (SBP) has a circadian rhythm. To monitor it, patients wear ambulatory
devices that regularly measure and record blood pressure. In non-invasive
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B (I

probabily

Figure 3: CDTS model fit to the combined series of roulette outcomes in
Baines (1990)

smart health monitoring, these readings are typically recorded at predeter-
mined, possibly irregular, discrete time points during daytime and nighttime.
Our objective is to analyze “acrophase”, the time at which maximum SBP is
attained in a day. Monitoring the acrophase can provide an automated early
warning of a possible medical condition before it becomes clinically obvious.
Typically, the readings taken by industrial monitoring devices are more frequent
during daytime (e.g. each half hour) than at nighttime (e.g. each hour). For
more details, see Acrophase Times https://www.londoncardiovascularclinic.
co.uk/cardiology-info/investigation /24-hr-ambulatory-blood-pressure.

Therefore, the resulting acrophase data is circular, discrete and sup-
ported on an irregular lattice on the circle.

We use acrophase data on SBP based on readings taken for an individual
from 3-31-1998 to 7-7-2000, collected by the Halberg Chronobiology Center
(University of Minnesota). We note that for a few days, there were multiple
time points where maximum SBP was achieved. In such cases, we retained
all such time points, thus resulting in a total of 880 data points. As men-
tioned in the introduction, typically, acrophase data is extracted from SBP
measurements at each half hour during daytime (8 am to 8 pm) and each
hour during nighttime (8 pm to 8 am). If we map 8 am to 0 radians and 8
pm to mw radians, the acrophase times get mapped to an irregular support of
m = 36 points on the circle given by

27r 27y
—r=0,1,2,...,24 S r=26,28,...,44,46 ;. 4.
{48”” 0,1,2,..., }U{4g”” 6,28,..., ,6} (4.3)

Note that unlike the case of regular support where the points in the sup-
port are expressed in terms of Z,,, here the points in the irregular support
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are expressed as 27r/48 to accommodate the half-hour and one-hour time
points. Table 4 shows the frequency distribution of this acrophase data.
Our initial interest is to estimate the centering and concentration parame-
ters for this data. While the centering parameter will be indicative of the
most likely timing of acrophase, the concentration parameter will indicate
the extent of variability around that timing. We adapt CD distributions to
an irregular support as follows and prefix such distributions by ICD, that
is, for example, ICDVM stands for the CDVM with irregular support. Let
S = {6o,02,...,0,_1} denote the irregular circular lattice support (4.3).
The conditionalized discrete probability function for any given parent pdf
f() on the irregular support S, ICD, is given by

f(9z)
PO) = o TG

Table 5 shows the estimated centering () and concentration (k) for the
ICDVM model. We found it computationally convenient to estimate the
parameters using a Bayesian approach by assuming non-informative priors
on the parameters, specifically we take uniform priors for u € [0, 27). Since
the concentration parameter in CDVM is k, a mapping is done to an equiv-
alent value of p based on matching of first moment between von Mises and
wrapped Cauchy distributions. To get a prior for x, we first map it to p and
use a uniform prior on p € [0,1). From Table 5, we note that the estimates
are

0, €8. (4.4)

= 2462 (~ 17 : 30 hrs), k = 1.114, p = 0.48

so there is moderate concentration. Further, we note that the approximate
99% confidence interval for u is 17 : 30 hours £33 minutes, slightly different
from the mode of 19:00 hrs observed in the data in Table 4. This can be
the effect of skewness in the data as seen in its histogram given in Fig. 4,
which has led us to explore the analysis with the parent as a skew circular
distribution since one of our objectives is a construction that allow flexible
families of plausible discrete circular distributions.

We have selected the circular distribution of Kato and Jones (2015),
which has four parameters that control the first four trigonometric moments,
leading to unimodal symmetrical as well as skew distributions as particular
cases. This family also has an analytically tractable normalizing constant
and its pdf is given by

1 cos(6 — u) — pcos A
gxs(0) = — <1+27 0w —p

1+ p2—2pcos(@ —p—N)

), —r<0<m (4.5)
2
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Table 5: Parameter estimates for ICDVM on irregular support for the
acrophase data

Parameter Estimate se 95% interval
1 2.462 (=~ 17 : 30 hrs) 0.049 [2.367, 2.554]
K 1.114 0.060 [0.994, 1.230]
P 0.485 0.020 [0.444, 0.522]

where the parameters are constrained by

0<p<1,0<y<(1+4p)/2, -7 < pu,X<m, and pycos A > (p*+2v—1)/2.

(4.6)

The conditionalized discrete distribution from (4.5), is given by the prob-
ability function

1 s(%—u)—pcos/\
p(rim, p, p, v, A) = oo (1 +2’yl+p2 —2pcos(% S 7 € L,
(4.7)
where
D*:m<1+27pm_1cos(m(u+)\)—)\)—,omcos)\) ’ (4.8)
L+ p?m —2p™ cos(m(p + A))

with the same constraints on parameters as in (4.6). The normalizing con-
stant D* is derived in the supplement (corollary A2). We will call this family,
the conditionalized discrete Kato-Jones family, or briefly as CDKJ family.
The CDWC is obtained as a special case when A = 0 and v = p. Note that
the constraints ensure that the probability function in (4.5) is positive and
hence also for the discretized version (4.7). We can now obtain from (4.4),
the probability function for ICDKJ.

Adapting the method of moments approach in Kato and Jones (2015),
we can obtain the estimates to use in the probability function of ICDKJ.
The moment estimates are

~

fi = 2.248,\ = 0.816, p = 0.495,4 = 0.584.

Figure 4 shows the histogram for the acrophase data along with the fitted
ICDKJ probability function with these estimates. It can be seen that the
mode of the fitted ICDKJ distribution is 18:30 hours approximately, which
is roughly what is seen in the histogram. Also, visually, the fit captures the
skew behaviour in the data adequately.
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Figure 4: Histogram for the acrophase data along with the fitted ICDKJ
probability function in solid line

5 Model Misspecification

In this section, we present some insights into the effect of model mis-
specification, specifically where a true model is a given discrete model but
we apply statistical methodology developed for continuous circular distri-
butions. As we have mentioned in Section 1, in any application with dis-
crete data in Linear Statistics, one usually takes into account the discrete
nature of the underlying population so the same principle applies here for
Directional Statistics but due to lack of developments of Discrete Circular
Statistics, Statistical Methodology for continuous circular statistics has been
used in the literature and it is of some interest to learn where this use could
lead to conflicting inference. The simulations experiments (where necessary)
are given to provide some preliminary insight only and presenting elaborate
simulation studies is far beyond the scope and the core of this methodology
paper.

We will study three situations:

Case 1. The effect on the basic summary statistics.

Case 2. Behaviour of the maximum likelihood estimates. Case 2a
Irregular case; Case 2b Regular case.

Case 3. Power of the test of uniformity.
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We give an overview of these three studies and our selection of n,m, k.
Case 1 is generic and a population based comparison so n is not relevant;
m covers a wide range of values, p = 0, and a fixed moderate concentration
p = 0.5,k = 1.159 (guided by the acrophase data with p = 0.485, k = 1.114).

Case 2 has two parts Case 2a and Case 2b. Case 2a mimics the acrophase
data so the support is irregular as it is for that Example, where the data is
generated with n = 880, u = 0.785 and p = 0.6 (k = 1.516) from the ICDVM
discrete distribution so the ground truth is known. Note that for simplicity,
we have taken here yu = w/4 = 0.785 as the mean parameter can be arbitrary,
and the concentration parameter x = 1.516 computed for the acrophase data
as R = 0.58, so p = 0.6 which maps approximately to x = 1.516.

Case 2b is for regular cases, n = 1000, m = 10,20 and varying values
of the concentration parameter k = 1,2.5,10 so n is nearly same as for the
acrophase data and its concentration parameter is covered in this range but
m is kept lower than the acrophase data of m = 36 as the case is here regular
the effect would be more evident at the lower values of m. The choice of the
distributions are given below in each case.

Case 3 is motivated by the roulette data sets where n is larger and the
concentration parameter is low so we have taken x = 0.05 (p = 0.03), for
each of different choices of n = 1000, 10000 and m = 10, 37.

Case 1. The Effect on the Basic Summary Statistics We carry
out a study, where we sample from the marginalized and conditionalized
wrapped Cauchy distributions with the parameters =0, p = 0.5,k = 1.159
and varying values of m. We study the first two trigonometric moments,
since these are the basic moments to capture the behavior of the distribu-
tion (through F cos(f)) and its first order departure (through E cos(26)).
Table 6 shows these trigonometric moments computed for M DWC'(m, p, j1)
and CDWC(m,p,p) for p = 0.5, p = 0, for different values of m. As a
reference, for wrapped Cauchy, F cos(f) = 0.5 and F cos(20) = 0.25. Thus
discretization matters for MDWC if m is less than 20, i.e. bin with angle
18 degrees. Surprisingly, the effect is a bit smaller for CDWC. Incidentally,
the two moments for CDWC are obtained using the exact results given by
(3.11) and these moments for MDWC were computed using simulated data
of size 200000. Our study gives a specific flavor of the effect rather than the
very broad Sheppard’s correction (Mardia, 1972), which is too generic. Our
conclusion is that discretization matters for m < 20.

It should be noted that this study has broader implications as these
moments indirectly would influence inference problems associated with the
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Table 6: Trigonometric moments computed for MDWC(m,p, ) and
CDWC(m,p,p) for p = 0.5, u = 0, for different values of m. As refer-
ence, for WC, p = Ecos(0) = 0.5 and E cos(260) = 0.25

MDWC* CDWC
m E cos(0) E cos(20) E cos(0) E cos(20)
3 0.159 0.159 0.667 0.667
5 0.368 0.038 0.545 0.364
10 0.466 0.190 0.501 0.254
15 0.485 0.221 0.500 0.250
20 0.493 0.232 0.500 0.250
30 0.495 0.242 0.500 0.250
50 0.497 0.248 0.500 0.250
100 0.503 0.247 0.500 0.250
500 0.499 0.248 0.500 0.250

* For MDWC the moments were computed using simulated data of size 200000

von Mises and the wrapped Cauchy distributions, and specific cases are
examined below in Case 2 and Case 3

Case 2. Behaviour of the Maximum Likelihood Estimates

Case 2a The irregular case.

We first assess the effect of using VM vs ICDVM via a sampled drawn
from ICDVM which mimics the acrophase data, that is the irregular support,
and the same data size (n = 880) and call it “simulated acrophase data”
where we take the true value of ICDVM to be p = 0.785 , k = 1.516,
and p = 0.6. Table 7 shows the estimation of centering parameter (u) and
concentration parameter (k) for this simulated acrophase data. Parts (a)
and (b) of Table 7 do not consider the discrete nature of the data. Part
(a) uses sample statistics along with bootstrap (1000 resamples) standard
errors, namely the circular mean of the data for p and the mean resultant
length R for p. Part (b) estimates the parameters by assuming a continuous
model, namely von Mises. Both (a) and (b) are unable to closely estimate
the true p and k (p) parameters unlike the discrete ICDVM model shown
in part (c). Especially, the 95% interval for £ in parts (a) and (b) do not
capture the true value. Thus the inappropriateness of applying techniques
that are otherwise meant for continuous data become even more apparent
when we are dealing with discrete circular data on an irregular support. In
summary, this experiment clearly illustrates that using methods meant for
continuous data on discrete data can be misleading.
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Table 7: Estimated center and concentration parameters for data sampled
from ICDVM with the same irregular support as acrophase data. The true
values of parameters are y = 0.785, p = 0.6, kK = 1.516

Parameter Estimate se 95% interval
(a )Sample statistics with bootstrap standard errors
L 0.912 0.045 [0.822, 1.008]
p 0.493 0.020 [0.457, 0.532]
K 1.139 0.061 [1.031, 1.265]
(b) von Mises model
7 0.910 0.046 [0.822, 1.001]
p 0.491 0.020 [0.451, 0.529]
K 1.131 0.060 [1.014, 1.253]
(c) ICDVM model on irregular support
7 0.812 0.033 [0.747, 0.877]
p 0.608 0.015 [0.578, 0.637]
K 1.553 0.063 [1.429, 1.676]

Case 2b The regular case.

We use CDVM (CDWC) as the true model so samples are drawn from
this distribution and VM (WC) as the misspecified model and calculate the
mle for m = 10, 20 with different values of the concentration parameter using
the VM model. We find that the mle using the misspecified model leads to
biased estimates especially when there is a high concentration parameter in
the true model.

The details are as follows. We simulate 1000 datasets, each of size n = 1000
for each choice of m € {10,20} and € {1,2.5,10} for CDV M (m, k, u=0),
and p € {0.5,0.6,0.8} for CDWC(m, p,n = 0). We compute the mle from
the conditionalized discrete model and compare it with that obtained from
the continuous model. Table 8 shows the comparison of bias, standard devi-
ation(sd) and mean squared error (mse)calculated based on the 1000 simu-
lated datasets under different scenarios of m and the concentration param-
eter (k or p). Part (a) of the table compares CDVM with VM, and part
(b) compares CDWC with WC. We used the “CircStats” library in R to
compute the mle under von Mises and wrapped Cauchy models.

In part (a) of Table 8 we can see that for m = 10, the bias, sd and mse
for CDVM are comparable with that of VM for x = 1, 2.5, but much smaller
than that of VM for x = 10 (i.e larger concentration parameter). However,
as m increases to 20, the differences between CDV M and VM decrease.
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Table 8: Bias, SD and MSE for the mle for the concentration parameter (x
in (a), p in (b)) computed based on 1000 datasets, each of size n = 1000 for
each choice of m € {10,20} and k € {1,2.5,10} for CDV M (m,k,u = 0),
and p € {0.5,0.6,0.8} for CDWC(m, p, u = 0)

(a) MLE : CDVM vs. VM

CDVM VM
m K Bias SD MSE Bias SD MSE
10 1 0.004 0.055 0.055 0.002 0.053 0.053
10 2.5 0.002 0.092 0.092 —0.003 0.092 0.092
10 10 0.008 0.385 0.385 1.513 0.690 1.663
20 1 0.000 0.052 0.052 —0.002 0.051 0.051
20 2.5 0.005 0.095 0.095 —0.000 0.094 0.094
20 10 0.035 0.432 0.433 0.042 0.433 0.435
(b) MLE : CDWC vs. WC
CDWC WC
m P Bias SD MSE Bias SD MSE
10 0.5 0.001 0.016 0.016 0.013 0.019 0.023
10 0.6 —0.000 0.013 0.013 0.058 0.024 0.063
10 0.8 —0.000 0.007 0.007 *0.200 0.000 0.200
20 0.5 —0.001 0.017 0.017 —0.000 0.017 0.017
20 0.6 0.000 0.014 0.014 0.001 0.014 0.014
20 0.8 —0.000 0.007 0.007 0.063 0.020 0.066

* mle, on using the program mle.wrappedcauchy() in R converged to p = 1 for this case

In part (b) of Table 8, the differences are more pronounced. For m = 10,
we see that the bias, sd and mse for CDWC are comparable with that of
WC for p = 0.5, but bias, sd and mse are much less than that of WC for
p = 0.6 and 0.8. With increasing m to 20, the differences decrease at p = .6
decrease but remain at p = 0.8 which indicates that a larger m would be
required for the two to match. So, using the continuous model for discrete
data with possibly high concentration and moderate m can lead to highly
biased and inaccurate estimation of parameters. Further, how large m needs
to be for a continuous approximation to work depends on the concentration
parameter. For example, in problems such as mixture estimation, where the
underlying nature of concentration parameters are apriori unknown, it is
more appropriate to work with the discrete distribution, as inferences from
(the approximate) continuous model can be misleading.
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Case 3. Power of the Test of Uniformity Here we will concentrate
on testing uniformity on highly dispersed data, as we have for our roulette
data (Section 4.1.1). The test based on a discrete distribution, CDVM or
CDWC, and the Rayleigh test based on a continuous distribution, will lead
to similar conclusions (see the supplement, Section 5).

Recall that the test of uniformity for a discrete location family ((2.27) in
the paper) is formulated as Hy : 7 = 0 vs. Hy : 7 # 0, where 7 = k for CDVM
and 7 = p for CDWC. This can be tested based on the discrete distribution
using the test statistic T" as discussed in Section A5. An alternative approach
is to use the Rayleigh test based on test statistic R. Table 9 shows the power
computed for a 5% test based on either statistic at a specific alternative, viz.
(k = 0.05, 4 = 0) for CDVM and (p = 0.03, u = 0) for CDWC, for each of
different choices of data-size n € {1000, 10000} and m € {10,37}. The 5%
critical values and the power for T' are computed based 10000 simulated
datasets under the null and alternative hypothesis respectively, from the
conditionalized discrete distribution (CDVM in (a) and CDWC in (b) with
a given value of m) of the given data-size n. The 5% critical values and the
power for R are computed based 10000 simulated datasets under the null and

Table 9: shows the power computed for a 5% test based on the statistics
T and R at a specific alternative, viz. (k = 0.05, 4 = 0) for CDVM and
(p = 0.03,u = 0) for CDWC, for each of different choices of data-size n €
{1000, 10000} and m € {10,37}. The 5% critical values and the power for T'
are computed based 10000 simulated datasets under the null and alternative
hypothesis respectively

(a) CDVM: Hy: k=0 H;:k#0

Power for 5% test at k = 0.05, u = 0

n m T Rayleigh (R)
1000 10 0.1445 0.1606
1000 37 0.1637 0.1668

10000 10 0.8976 0.8967
10000 37 0.8997 0.8992

(b) CDWC: Hy: p=0 Hy:p#0
Power for 5% test at p =0.03, 4 =0

n m T Rayleigh (R)
1000 10 0.207 0.212
1000 37 0.214 0.209
10000 10 0.974 0.976

10000 37 0.976 0.976
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alternative hypothesis respectively, from the continuous distribution (VM in
(a) and WC in (b)) of the given data-size n. For both CDVM and CDWC,
we find that the power of the test based on T is comparable to that based
on R (i..e Rayleigh).

We now give some general remarks

REMARK 1. A key takeaway from these comparison studies is that dis-
creteness of the data cannot be ignored in general and such data may need
to be modeled using discrete circular distributions. At least, these discrete
distributions provide a bench mark to assess any loss incurred in using con-
tinuous distribution.

REMARK 2. MD distributions are more relevant for the rounded circular
data, whereas for any naturally circular discrete data, CD distributions are
more appropriate.

REMARK 3. For limm — oo, the CD and MD distributions tend to their
parent distribution as these are the Riemannian sums.

We have dealt here with the model misspecification problem between
continuous and discrete distributions as this is the main focus of the paper;
at the same time we have used both CDVM and CDWC in our compari-
son study wherever relevant. Incidentally, Mardia and Sriram (2020) show
comparison among various different discrete circular models. For example,
a comparison study of choices among conditionalized discrete distributions
is based on divergence measures such as Kullback-Leibler, L1 and Lo. It is
found that CDVM and CDWC can be very different from each other but the
CDVM and conditionalized discrete wrapped normal are very close to each
other. These results are similar to the well known results for their respective
continuous parent circular distribution: the von Mises, wrapped normal and
wrapped Cauchy distributions.

6 Discussion

We have proposed flexible families of circular discrete distributions en-
compassing well established continuous circular distributions, such as von
Mises and wrapped Cauchy. Our analysis of model misspecification
(Section 5) highlights the importance of using discrete circular models for
discrete data. We have selected the marginalized and conditionalized ap-
proaches for our analysis, but other constructions such as the centered
wrapped families can be explored further. Also one can further explore
the Beran family, in particular Bs and Bs given in Section 2.1. We have
derived some insightful theorems interrelating the different methods of con-
structions. In particular, we have given an interesting characterization that
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under some regularity conditions, marginalized and conditionalized discrete
distributions will be the same if and only if the parent circular distribu-
tion is uniform (leading to the discrete uniform). The marginalized and
conditionalized families of distributions have a significant potential for fur-
ther development beyond Directional Statistics. For example, we have also
proved a characterization on the line that under some conditions, these two
approaches lead to the same discrete distribution if and only if the parent is
the exponential distribution (see supplement Section A7).

We note that some properties of the parent distributions such as uni-
modality and symmetry are inherited by the circular MD and CD. Also,
maximum entropy characterization of the von Mises distribution is inherited
by CDVM. However not everything carries over, namely, the normalizing
constant for the CDVM depends on both the parameters, the Rayleigh test
is no longer the likelihood ratio test for CDVM (supplement Section A5.1),
and for CDWC the trigonometric moments are not as simple.

It is worth noting that Karl Pearson recognized that the roulette wheel
data goes beyond coin tossing data experiments and raises some difficult
inference problems in assessing unbiasedness (see Supplement A4 for more
details). Perhaps due to the unavailability of adequate discrete circular
models , it did not have much impact at the time. Also, bias in a roulette
wheel can be due to a “tilt” or can due to “wobble” as we have seen in our
examples. It could be said that wherever there is a wheel, there is inherently
a natural circular discrete data, for example, a wheel used in some TV shows-
Wheel of Fortune and other shows, in Industries (bicycle wheel, umbrella,
and so on).

The field is full of new challenges in statistical methodology, for exam-
ple, the marginalized and conditionalized approaches are amenable to ex-
tensions. We have outlined some extensions in Mardia and Sriram (2020),
namely, alternative approaches to allow for an irregular lattice support, and
extensions to higher manifolds such as the torus. However, it turns out that
regular discretization on the sphere is not straightforward (see supplement,
Section A6), and there can be multiple ways of constructing conditionalized
discrete distributions.

Our overall recommendation from this paper is that “If you
have circular discrete data, you should start with a discrete model”.

7 Supplementary material

Online supporting material for this paper includes a supplement pdf file
that gives details as referenced in the main paper.
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