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ABSTRACT

A major problem of structural health monitoring (SHM) has been the
prognosis of damage and the definition of the remaining useful life of a
structure. Both tasks depend on many parameters, many of which are often
uncertain. Many models have been developed for the aforementioned tasks
but they have been either deterministic or stochastic with the ability to take
into account only a restricted amount of past states of the structure. In the
current work, a generative model is proposed in order to make predictions
about the damage evolution of structures. The model is able to perform in a
population-based SHM (PBSHM) framework, to take into account many past
states of the damaged structure, to incorporate uncertainties in the modelling
process and to generate potential damage evolution outcomes according to
data acquired from a structure. The algorithm is tested on a simulated
damage evolution example and the results reveal that it is able to provide
quite confident predictions about the remaining useful life of structures within
a population.

1. INTRODUCTION

Structures are a major part of everyday life and activities and therefore their
performance and safety should be monitored. Structural health monitoring
(SHM) is the discipline of structural dynamics that aims in monitoring
structures and maintaining their condition [1]. SHM is performed in various
ways which can be summarised by Rytter’s hieararchy [2]:

1. Is there damage (existence)?

2. Where is the damage in the system (location)?

3. What kind of damage is present (type/classification)?

4. How severe is the damage (extent/severity)?

5. How much useful (safe) life remains (prognosis)?

The first step of Rytter’s hierarchy has been widely addressed in many ways
[3] and their application has been quite successful. The steps of localisation
and classification have also been addressed in a similar data-driven manner [4].
However, the final two steps of the hierarchy are arguably the most difficult
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to deal with. In order to infer the extent of damage from measurements and
estimate the remaining useful life of a structure, a thorough understanding of
the existing damage mechanism is required as well as sufficiently accurate
modelling of the environmental and loading conditions of the structure in
the future [5]. The task is quite complicated for both physics-based and
data-driven approaches. Especially, because of the uncertainty in the future
environmental and loading conditions, the model, most probably, has to be
stochastic. Approaches have been developed to perform such estimations
following a particle filtering approach [6]. However, such approaches are based
on a Markov chain assumption, i.e. the next state of the structure depends
only on the current state (or a predefined number of previous states). This is
a restriction, as the structure and the way that damage evolves might depend
on states a few steps behind the previous measurements and the actual patent
that affects the next step might even vary according to the current conditions.

In the current work, to deal with such issues, a data-driven approach is
followed, which aims in creating a generative model that acts as a Turing
mirror of a structure [7] with presence of evolving damage. A model is
considered a Turing mirror if it can pass the Turing test [8]. The test has
two participants, the interrogator and the oracle. The interrogator presents
questions to the oracle and the latter answers. If the interrogator is not able
to distinguish whether the oracle is a human or a machine, then the oracle is
considered to pass the test [9]. The proposed algorithm is able to operate
within a population-based SHM (PBSHM) framework. The algorithm to be
used is a variation of the generative adversarial networks (GANs) [10]. The
algorithm variation, which is designed to act on time-series of data is the
Time-series generative adversarial networks (TimeGANs) [11] and is designed
to generate artificial time-series that look real. It is also an attempt to create
sequential models that are truly generative, since autoregressive approaches
so far are useful in the context of forecasting but are not generative, they are
deterministic [11]. The algorithm presented herein aims at providing the users
with potential outcome scenarios to the evolution of damage in a structure.

2. TIME-SERIES GENERATIVE ADVERSARIAL NETWORKS
(TIMEGAN)

Generative adversarial networks [10], where initially developed in order to
generate images that look real to the human eye. The algorithm is based on
the idea of adversarial training, which is a competition between too agents.
The two agents in this case are two neural networks, the generator and the
discriminator. The first is trying to transform random noise into image
samples that look real and the second is trying to distinguish whether an
image sample is indeed real or artificial. After training and because of the
competition of the two, they both become better at their tasks. As a result,
the generator should be able to fool the discriminator into classifying artificial
images as real. It is expected that the human eye will also be fooled by the

2



generated images and in many cases it is proved that the quality and the
resemblance to reality of the generated images is impressive [12, 13]. The
discriminator is often an auxiliary network that is not used for some purpose,
other than to train the generator.

The whole procedure can also be applied in order to generate common
vector data, but has also been used in order to generate time-series data.
Following the same scheme as with images and using the appropriate type of
neural networks for time-series (recurrent neural networks), in [14] a GAN
that generates music is presented. In [15], another approach is presented,
which generates time-series for medical data according to some conditional
variables, similar to conditional GANs [16]. However, for the current work,
the TimeGAN [11] algorithm was chosen to be used on order to generate the
desired time-series. The specific algorithm, as will be shown, is able to learn
temporal characteristics of the time-series, as well as to generate potential
outcomes of some incomplete time-series.

The TimeGAN algorithm is trained in order to learn two types of proba-
bility density functions. Firstly, the algorithm learns to generate timeseries
x1:t, which look real. This yields the first condition that the algorithm is
trying to satisfy, which is given by,

min
p̂

D(p(C,x1:T )||p̂(C, x̂1:T )) (1)

where C is some input condition vector variable that partially controls the
timeseries, p(C,x1:T ) is the real probability density function of the timeseries,
p̂(C, x̂1:T ) is the probability density function of the artificial timeseries, x̂1:T

are the artificial timeseries and D is a distance metric of the probability
density functions. By satisfying this condition, the timeseries, if considered
as a whole, look real by some critic, in this case the discriminator, and, after
completion of training, some human critic.

The second condition that the algorithm tries to satisfy is to learn temporal
characteristics of the timeseries. This condition is based on the physics that
define the potential next steps, given a set of existing steps of the timeseries.
This condition shall prove quite useful, when one wants to generate potential
outcomes of the timeseries, conditioned on some recorded values up to timestep
t. The second condition is given by,

min
p̂

D(p(xt|Ct,x1:t−1)||p̂(xt|Ct,x1:t−1)) (2)

where p(xt|Ct,x1:t−1) is the probability density function of the value of the
timeseries for timestep t, given the timeseries so far x1:t−1 and the value of the
condition variableCt, p̂(xt|Ct,x1:t−1) is the probability density function of the
potential next steps of the timeseries, as it is generated by the algorithm and
D is some appropriate distance measure of the probability density functions.

The framework followed in order to achieve a generator model that satisfies
the above conditions is slightly different to the one followed in classic GANs.
The main difference is that according to the TimeGAN framework, both
a latent and noise space are used. The general framework is schematically
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Figure 1: General framework followed in order to train the TimeGAN
algorithm.

shown in Figure 1. At first, timeseries from the real space x1:t are converted
into corresponding timeseries in the embedding space h1:t ∈ H using an
embedding function e given by,

ht = e(Ct,h1:t−1,x1:t) (3)

where Ct are the input variables that partially control the timeseries. As
described by the above equation, the embedding depends on the embeddings
up to the previous timestep and on the values of all the timeseries steps so far.
This forces the algorithm to learn the embeddings of the timeseries according
to patterns that can even be as long as the timeseries. Together with the
embedding function, a function that restores the embedded timeseries back
to the real space X . The restoration function is given by,

x̂1:t = r(h1:t) (4)

where x̂1:t is the approximation of the reconstruction of the embedded time-
series h1:t. In practical applications, both functions are recurrent neural
networks [17] and more specifically recurrent neural networks with long-short
term memory (LSTM) units [18] or gated recurrent units (GRU) [19]. The
specific types of neural networks can efficiently learn dependencies between
distant timesteps of the timeseries.

In a similar manner, the generator and the discriminator of the algorithm
are defined. The generator transforms timeseries from the noise space Z to
timeseries in the embedding space H. The equation of the generator is given
by,

ĥt = g(Ct, ĥ1:t−1, z1:t) (5)
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where t is the current timestep, g is the generator network, ĥ1:t−1 is the
generated timeseries in the embedding space up to timestep t−1 and zt is the
noise vector which is sampled from a pre-defined distribution (in the current
work, the uniform distribution is used, i.e. zt ∼ U (−1, 1)).

Similarly, the discriminator tries to identify whether a timeseries is real
or artificial. This is done by taking as input the whole embedded timeseries
h1:t and the potential input variables C1:t. The equation of the discriminator
is given by,

y = d(C1:t,h1:t) (6)

where d is the discriminator network. The prediction y of the discriminator
is one for timeseries that it considers to be real and zero for fake or artificial
timeseries. The discriminator and the generator are also recurrent neural
networks with LSTM or GRU units.

For the purposes of satisfying the two conditions of equations (1) and (2),
three different loss functions are used during training. The first one is defined
for the training of the embedding and reconstruction of the timeseries. The
reconstruction loss LR is given by,

LR = E[
∑

t

‖xt − x̂t‖2] (7)

which is essentially the mean square error between the original and the
reconstructed values of the timeseries. This loss function is similar to when
training an autoencoder [20].

The second loss function is for the adversarial training part of the algo-
rithm. It is considered an unsupervised training and its goal is to force the
discriminator and the generator to perform their tasks. The unsupervised
loss function LU is given by,

LU = Ex1:T∼p[
∑

n

log yn] + Ex1:T∼p̂[
∑

n

log(1− ŷn)] (8)

where p is the probability density function of the real timeseries and p̂ is the
probability denity function of the generated timeseries, which should after
training match the one of the original samples.

The third loss function used is targeted to imposing the condition of
equation (2). The algorithm should be able to provide a range of potential
next steps, given a set of observations up to some timestep. In order to
impose this ability to the algorithm, the supervised loss function LS is used
and is given by,

LS = EC,x1:t∼p[
∑

t

‖ht − g(C,h1:t−1, zt)‖2] (9)

where ht is the embedding of the values of the timeseries at timestep t. This
latter loss function enforces the understanding of the physics of the timeseries
to the algorithm. Generated steps are random because of the random input
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variables zt to the generator, but are also informed by the underlying physics
of the timeseries up to step t − 1, since the generator is trained using the
supervised loss function LS.

For the purposes of the current work, a fourth loss function is used. This
last loss function does not affect the training procedure of the algorithm, but
is used to train a model k that embeds real timeseries x1:t into the noise
space Z . The embedding loss function Le is given by,

Le = E ‖x1:t − r(g(k(z1:t)))‖
2 (10)

where r is the recovery model, g is the generator and k is the embedding
model. During training using this loss function, only the model k is trained,
which is also a recurrent neural network. The parameters of every other
model are considered constant for this later loss function. The model k will
be particularly useful in order to embed timeseries in the noise space and
generate potential next steps for them.

By using the specific algorithm on data that reflect the evolution of dam-
age, the models are expected to learn the physics of the damage progress.
At the same time, they are expected to incorporate the uncertainty of the
process, since they are generative models and are able to generate potential
outcomes. The algorithm should be able to match the probability density
function of the next steps of a timeseries conditioned on the observed steps,
according to the real uncertainty of the procedure, as it is reflected by the
sample timeseries of the dataset, which will be used to train the TimeGAN.

3. TIMEGAN FOR REMAININGUSEFUL LIFE ESTIMATION

Approaches have been developed in order to model damage evolution under
uncertainty. In [21] an example is given about calculating the remaining useful
life of structures with cracks in them. The approach is taking into account
uncertainty, but yields quite wide intervals about the potential remaining
useful life and is constrained to a specific type of damage, cracks, which
should also be measurable. In [6], a first-order Markov chain assumption is
made in order to define a model of the damage evolution. Although such
approaches for some applications suffice a common drawback is that the
first-order assumption may restrict the potential of the algorithm to locate
dependencies between distant timesteps.

In order to address such issues, in the current work, the TimeGAN model
is studied in order to model the evolution of damage. Such a model is
considered herein to be a Turing mirror of a structure [7]. A Turing mirror is
a model that behaves so similarly to the real structure, that an interrogator
cannot distinguish whether the data come from real structures or from the
Turing mirror model. In the case of the TimeGAN (or when training a GAN
model in general) the discriminator or some human plays the role of the
interrogator. Using LSTM units for the various models that are included
in the TimeGAN framework, it is expected that they will be able to learn
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long dependencies in the data and efficiently generate potential outcomes for
damage scenarios.

The algorithm is even more appealing within a PBSHM framework [22,
23, 24, 25]. Such a framework allows exploiting data from different structures
in order to perform inference about some structure that sufficient data might
not be present. For damage prognosis and remaining useful life estimation,
this might even be the only way to perform these tasks in a data-driven
manner. Data from deployment until failure of a structure are definitely not
available if the structure itself has not failed. Therefore, it is necessary to
exploit data from similar structures in order to perform inference without
including some physics in the inference procedure.

Following such a PBSHM framework, the form of a dataset D that can
be used is given by,

D = {(Si,x
i
1:Ti

) i = 1, 2..., N, Ti ∼ pT} (11)

where Si is the ith structure, xi
1:Ti

is the timeseries of some damage-sensitive
feature monitored, Ti is the total lifetime of the ith structure, pT is the
probability density function of the total lifetime of all structures in the
population and N is the number of structures in the population.

A naive approach to defining the remaining useful lifetime of the structures
within the population would be to define a trivial probability density function
according to the lifetimes of the structures in the dataset D. By doing so, one
defines a form [22], which describes a general characteristic of the population.
For a more sophisticated approach, such a dataset can be used in order to
train the TimeGAN, which can be considered a Turing mirror of some damage
type evolution process of the population. In order to use the model for some
structure under evaluation, the sequence of data of the structure up to the
current timestep tc is required. To find the noise sequence z1:tc , for which the
generator g generates the testing timeseries x1:tc , a recurrent neural network
is trained, using as a loss function the embedding loss function of equation
(10). Therefore, the embedding for some testing timeseries is given by,

z1:tc = k(x1:tc) (12)

where k is the embedding model.
Since the noise embedding up to the current timestep tc is available,

generation of potential outcomes of the current incomplete timeseries is
needed. To do so, a set of noise codes Dz is defined following,

Dz = {zk
1:Tf

| zk
1:tc

= k(x1:tc), z
k
ti
∼ U (−1, 1) ∀ ti = tc+1, tc+2..., Tf} (13)

where tc is the current timestep of the tested structure and Tf is a number of
timesteps large enough in order for the structure to have certainly reached
its failure point and k = 1, 2..., Na where Na is the number of artificially
generated samples. Subsequently, the codes are used as inputs to the generator
and a dataset Dg

x
with potential outcomes of the currently tested timeseries

is given by,

Dg
x
= {xk

1:Tf
= r(g(zk

1:Tf
))} (14)
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In the dataset defined above, every timeseries is identical up to the current
timestep tc. Now, one can study the potential outcomes in order to see how
the structure might behave in the future, i.e. one can ask the oracle questions,
instead investigating the available data from the population. Moreover, one
can define a criterion based on experience or some understanding in order
to define when each potential outcome reaches the end of the lifetime of the
structure. By collecting all the timesteps at which each outcome reached the
end of the life of the structure, a probability density function can be defined
over the remaining useful lifetime.

4. APPLICATION EXAMPLE

4.1. Description of the simulated dataset

In order to evaluate how effectively can the proposed algorithm provide
estimations of the remaining useful life of a structure, a simulated dataset
is considered. The simulated system is shown in Figure 2. In this system,
damage is simulated as stiffness reductions of springs 2 and 3. In this case
the damage sensitive feature, which is considered to be monitored, is the
frequency response function (FRF) of the acceleration of the second mass.

m1 m2 m3 m4

F

k1 k2 k3 k4

c1 c2 c3 c4

Figure 2: Mass-spring system.

In order to induce some physics into the problem, damage is considered to
be increasing according to some rules. A first assumption is that the structures
that are studied belong to a population (a homogeneous one) of 1000 structures.
The initial and undamaged stiffness parameters of the springs are sampled
from a Gaussian distribution. More specifically, k2, k3 ∼ N (6000, 120). For
the purposes of defining the damage evolution process, a nominal step kn is
uniformly sampled from the interval [42, 90] for every structure. At every
timestep of the damage evolution process, the new value of the stiffness of
the second spring k2 is defined by,

kt+1
2 = kt

2 − (kn + N (0, 0.1× kn)) (15)

where kt+1
2 is the stiffness of the next timestep and kt

2 is the stiffness of the
current timestep. This damage evolution process was selected with a view to
having multiple sources of uncertainty that the algorithm will have to learn.
The first source of uncertainty is the selection of the nominal step, which
however can be approximated as the mean value of the degradation steps
when several timesteps are available. The second source of uncertainty is

8



the last term in the right hand side in equation (15), which cannot be learnt
somehow and the algorithm will have to model it as a random variable.

The limit state of the structures is considered to be when their third
natural frequency reaches a specific point. That point here was the 119Hz,
chosen since most structures had higher third natural frequency than that after
several damage evolution timesteps (it might even be considered a conservative
limit). The selected criterion is based only on human examination of the
data and is aimed at simulating a criterion derived from one’s experience. In
Figure 3, FRFs of a structure as damage progresses are shown. Since the
FRFs are high-dimensional features, in order to train the algorithm faster
and be able to visualise the dataset, principal component analysis (PCA) [26]
was performed on the timeseries of the FRFs and the first three principal
components of a subset of timeseries are shown in Figure 4.
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Figure 3: FRF sample on the beginning of the simulations (left) and FRFs
with increasing damage (right), from low damage (pink) to higher stiffness

reduction (purple).

4.2. Application of the TimeGAN on the simulated dataset

The TimeGAN model is considered as a model to define the remaining
useful life of the structures. The neural networks of the model were all
chosen to be LSTM neural networks with two LSTM units. Each LSTM
network had neural networks with 128 neurons in their hidden layer and all
the activation functions of the networks were hyperbolic tangent activation
functions, except for the activation function of the discriminator, which was
a sigmoid activation function. The sampling space Z was selected to be
a three-dimensional space and the embedding space H a 128-dimensional
space. The real space was three-dimensional, since a PCA was performed on
the FRFs before the training of the algorithm and the three first principal
components explained 96% of the variance of the data. In order to perform
training, the Adam optimiser was used [27].

A standard and overall defined validation process for training generative
adversarial networks has not been established. In contrast to traditional
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Figure 5: Probability density function of the total lifetime of the real
samples (blue) and of the artificial samples (orange).

regression or classification tasks, where a cross-validation scheme can be
followed, the performance of generative adversarial networks is often evaluated
according to how real do images look like or how close are the generated
data distributions to the distributions of the real data. In absence of such a
validation scheme, in the current work, a metric chosen to evaluate whether
the TimeGAN is properly trained was the distribution of the total lifetime
of the timeseries. In Figure 5, a comparison between the PDF of the real
samples and 1000 artificially generated by the TimeGAN algorithm samples
is shown. The PDF was calculated using a kernel density estimation and
the bandwidth was calculated using Silverman’s algorithm [28]. The KL
divergence [29] between the two distributions is equal to 0.25, which for the
purposes of the current work was considered to be low enough.

After training the model, the algorithm which was described in the previous
section was applied. In order to evaluate the ability of the algorithm to provide
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estimations of the remaining useful life of the structures, a second testing
population of structures is considered using the same characteristics as the
population used for training. The testing population was generated using the
same characteristics for the random distributions of the structural parameters,
as well as the same procedure of random damage evolution. Afterwards, for
every timestep of every structure before its failure, the algorithm was used to
estimate the remaining life of the structures. In Figure 6, the evolution of
the predicted PDF of the total lifetime of some structure is shown, as the
algorithms acquires more information at every timestep. In the same Figure,
the red vertical line indicates the real total lifetime of the specific structure.

In order to holistically evaluate the algorithm, the mean probability
assigned to the real remaining lifetime at every timestep is calculated from,

P =
1

ntest

ntest∑

i=1

p(Ti) (16)

where ntest is the total number of testing timesteps and p(Ti) is the real
lifetime of the testing structure i. This metric for the testing population was
equal to 0.058. Following a naive approach and considering the PDF shown
in blue in Figure 5 as a form [22] in order to assign a probability density to
the remaining life of structures within the population, the metric of equation
(16) is equal to 0.037. This means that the TimeGAN algorithm proposed
provides predictions with higher confidence.

5. DISCUSSION

In the current work, a method to estimate the remaining useful life of struc-
tures within a PBSHM framework was presented. The algorithm is based
on creating a Turing mirror model that is also a form of a homogeneous
population. The model is about the evolution of damage that is observed on
the structures. It is expected to learn the mechanism of the damage evolution
and incorporate the uncertainty of the procedure. The core model used
(TimeGAN) is a stochastic model that learns to generate artificial time-series
according to rules learnt from a dataset incorporating any uncertainties that
might be present in the procedure. The major advantage of the algorithm is
that it learns to generate new points in the time-series taking into account
previous states without a Markov assumption.

In the simulated example presented, the algorithm yielded quite encourag-
ing results. Even though the way the data were generated may not resemble
some realistic situation, similar damage evolution mechanisms are expected to
be observed in fatigue damage situations. The algorithm is expected to learn
to model the uncertain quantities of the procedure, such as environmental
conditions and random events. Moreover, the algorithm is able to provide the
user with potential future timeseries. Therefore, one has the chance to study
them according to his knowledge and make appropriate decisions about the
future of the structure.
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Figure 6: Real lifetime of tested structure (red vertical line) and evolution of
predicted total life-time PDF using data from one more time-step in every

figure; from left to right and from top to bottom.
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