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a b s t r a c t 

Treatment at the end of life forms a major component of aggregate health care expendi- 

ture. Expenditure, however, begins to increase several years before death and varies sub- 

stantially across individuals. This paper investigates heterogeneity in expenditure profiles 

across a 36 month period preceding death using group-based trajectory models. A mix- 

ture of generalised linear models with four components fits the data best, and identifies 

decedents in to high cost late rise, medium-high cost late rise, medium-low cost, and low 

cost late rise expenditure profiles. Approximately 35% of the sample is allocated to the 

high cost late rise trajectory with average monthly expenditure of £493 36 months prior 

to death rising linearly for about 28 months before exponential growth to £40 0 0 in the 

month preceding death. Health conditions at the beginning of the period increase the risk 

of being in a higher cost trajectory with cancer having the largest impact. The existence of 

concurrent morbidities substantially raises the probability of membership to the high-cost 

late rise profile group. A better understanding of the determinants of expenditure profiles 

in the run up to death contributes to informing policies aimed at mitigating costs while 

not compromising quality of care. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Rising health care expenditures in many high income countries has raised concerns over the fiscal sustainability of health 

systems and their ability to meet population health care needs. Over the past 20 years or so, the average annual growth rate 

of public health spending in OECD countries has exceeded corresponding growth in GDP ( OECD, 2015 ). The increasing share 

of expenditure relative to national income places pressure on systems to control expenditure growth, while ensuring the 

efficient use of resources. Supply-sides policies to promote greater sustainability of services without compromising quality 

of care include innovation in the configuration and management of health care provision, and the greater adoption of cost- 

effective technologies and medicines as they become available. It has long been recognised that health care spending near 

the end of life (EoL) represents a major component of aggregate medical expenditures. A multi-country study ( French et al., 

2017 ) estimated spending during the final 12 months of life being between 8.5% and 11.2% of total health care costs. For 

the English NHS, Aragon et al. (2016) found that expenditure summed across individuals within the final three years of life 
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represented one-fifth of the national total inpatient expenditure. It is not surprising, therefore, that many policy makers 

across the world have advocated reductions in the cost of care during the final year of life as a means to alleviate pressures 

on health care budgets. For others, improving EoL care is a key driver for understanding differences in patient experiences 

(for example, for England see Health, 2008; England, 2014; Palliative and Partnership, 2015 ). However, focusing attention 

on the final year of life is likely to be too restrictive to fully understand how expenditures change in the run up to death. 

Studies have shown that health spending starts to increase several years before death ( Seshamani and Gray, 2004b ) and that 

the majority of patients in the highest expenditure groups are not in their final year of life ( Aldridge and Kelley, 2015 ). The 

literature has identified three main determinants of health care spending: age, remaining lifetime, and morbidity. Because 

these factors interact in a dynamic and complex way, EoL spending over a longer period exhibits significant heterogeneity. 

In this paper, we aim to identifying distinctive trajectories (or profiles) of spending during the last three years of life and 

explore factors that account for their distinctiveness. This is informative of clinical areas where care delivery might be 

considered for further investigation to reduce costs without compromising quality. 

We account for heterogeneity in expenditure profiles by applying a specific type of mixture growth model 

( Vermunt, 2007 ) developed by Nagin and colleagues ( Nagin, 1999; 2005; Nagin and Odgers, 2010a; 2010b ) known as group 

based trajectory models (GBTM). GBTMs assume that the population is composed of a mixture of distinct unobserved groups. 

A single response variable is measured across T occasions and the overall probability density of the T responses of an indi- 

vidual is a weighted average of group-specific densities where the group proportions serve as weights. Each group specific 

density is specified as a function of time with the parameters of time differing across latent groups. Accordingly, GBTM 

models between-class heterogeneity while individuals within a group are treated as homogeneous with respect to their 

trajectory over time. 

It is well established that modelling health care costs is challenging. Distributions are non-negative and typically asym- 

metric and right-hand skewed, on occasion with long, thick tails, with some patients exhibiting extremely high costs ( Jones 

et al., 2014; 2016 ). Furthermore, responses to covariates are likely to be nonlinear. These characteristics pose challenges to 

modelling expenditure profiles adopting the finite mixture modelling approach of GBTM. In this paper, we estimate GBTMs 

to model individual-level heterogeneity in EoL expenditure and characterise the emerging expenditure profiles into meaning- 

ful groups such as persistent users or late risers of health care use. We contribute to the literature in three important ways. 

First, the two studies we are aware of that model health expenditures using GBTMs ( Davis et al., 2016; Hansen et al., 2020 ) 

both model trajectories as a mixture of normal distributions for log-transformed health care costs. We extend the GBTM 

approach by considering two flexible distributions (compared to the Gaussian) to fit better non-negative skewed health care 

data. More specifically, we apply finite mixtures of Generalised Linear Models (GLMs) and Lomax distributions. These distri- 

butions allow health care expenditures to be modelled directly without the need for a log (or other) transformation. Hence, 

results are obtained on the natural cost scale and do not require a re-transformation inherent in log transformed models 

(for example, see Duan, 1983 ). This allows us to categorise patients into distinct latent expenditure profile groups on the 

basis of observed health care use at the EoL. Second, in addition to modelling how individual characteristics such as de- 

mographic and health conditions determine group trajectory profile membership we explore the impact of various clinical 

events, for example, the subsequent occurrence of chronic kidney disease and/or cancer for patients suffering from diabetes, 

in dynamically altering the shape of expenditure trajectories. Finally, we explain the role of age, morbidity and TTD in the 

context of the identified expenditure profiles. 

We find that a mixture of GLMs with four components fit the data best identifying decedents into expenditure profiles 

characterised as high-cost late rise, medium-high cost late rise, medium low cost, and low cost late rise. We identify risk 

factors associated with membership to a trajectory group by allowing for the probability of trajectory group membership 

to depend on morbidities and other patient characteristics measured at 36 months before death (i.e. prior to modelling the 

trajectory profiles). We demonstrate the role of time-varying covariates by analysing how morbidities occurring during the 

course of a trajectory impact on the shape of the trajectory. Patients with a cancer diagnosis during the 36 months are 

most likely to be categorised in the highest cost trajectory group. These findings on the shape of expenditure profiles and 

the characteristics that determine profile membership are essential to target the cost-effective use of resources, for defining 

optimal patient pathways, and the adoption of new technologies that lower the intensity of care needed, for example, for 

cancer patients. This patient group presents a high opportunity cost for EoL care, and where policies may be aimed to 

achieve substantive cost savings while preserving quality. 

2. Health care expenditure in proximity to death 

Early research identified population ageing as the main factor of rising health care spending ( Heller et al., 1986 ). In a 

seminal study, Zweifel et al. (1999) using Swiss data found that the impact of age on health care costs diminishes once 

an individual’s remaining lifetime (or time to death (TTD)) is taken into account. In the final two years of life, age was 

irrelevant in determining health care expenditures. The hypothesis that age is a red herring that acts as a proxy for TTD 

(known as the red herring hypothesis) is supported by a number of studies ( Seshamani and Gray, 2004b; Zweifel et al., 

2004; Seshamani and Gray, 2004a; Felder et al., 2010; Geue et al., 2014; Wong et al., 2011; Hazra et al., 2018 ). The rationale 

behind the red herring hypothesis is that the positive relationship between age and health care expenditure is observed 

because as individuals age they get closer to death and during the terminal years they receive more aggressive and expensive 

treatments. Therefore, closeness to death is more important than age in predicting health care costs. 
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The relative importance of age and TTD in determining health care costs is closely related to morbidity and disability. 

If the most serious morbidities and disabilities are experienced closer to death (rather than several years before) then TTD 

captures EoL morbidity and disability and is the main predictor of health care expenditures with ageing having a less rel- 

evant role (see for example, Howdon and Rice, 2018 ). In contrast, age might be a stronger predictor of health care costs 

incurred over a prolonged period of living with a given set of morbidities and disabilities. This may explain why the litera- 

ture has, in general, found a more significant role for ageing in patients using long-term care ( Werblow et al., 2007; Karlsson 

and Klohn, 2011; Colombier and Weber, 2011; Meijer et al., 2011 ). 

Payne et al. (2007) discussed the complex dynamics between ageing, morbidity, and TTD in relation to the healthy ageing 

hypotheses which describe the relationship between life expectancy and morbidities. The compression of morbidity hypoth- 

esis ( Fries, 1980 ) states that increases in life expectancy resulting from medical progress and improvements in lifestyle and 

socioeconomic conditions are accompanied by larger increases in the number of years lived in good or mild ill health. There- 

fore, the onset of chronic diseases and disability are compressed into an ever-decreasing proportion of an individual’s life. 

The expansion of morbidity hypothesis ( Olshansky et al., 1991 ), on the other hand, states that medical progress has limited 

impact on the incidence of disease but successfully improves the survival probabilities for a number of chronic diseases 

requiring life-long treatment. Therefore, if life expectancy increases, the years spent in ill health or disability also increase. 

Between the compression and expansion of morbidity lies the dynamic equilibrium hypothesis ( Manton, 1982 ) stating that 

as life expectancy increases, the absolute number of years lived in good health or mild ill health increases by an amount 

equivalent to the increased life expectancy. These healthy ageing hypotheses have implications for the trajectories of health 

care costs. Since the compression of morbidity hypothesis predicts that the most serious morbidities are postponed towards 

EoL, it implies that cost trajectories have higher expenditures emerging closer to death. The expansion of morbidity hypoth- 

esis assumes that even when life expectancy increases, the onset of diseases continues to occur several years before death, 

and is therefore more suitable to explaining persistent and stable cost trajectories. 

The above literature suggests that heterogeneity in health care expenditures arises because age, TTD, and morbidity 

vary (and interact differently) across patients and because different healthy ageing hypotheses are appropriate for different 

populations groups and care settings. While the literature has used a variety of approaches to estimating health care costs 

that account for the specific nature of expenditure data (for a summary of cost regressions see Jones et al. (2015) and 

Jones et al. (2016) ), they have investigated only contemporaneous effects of patient characteristics on costs. 

Modelling expenditure trajectories has been the focus of few studies. Two notable examples are Davis et al. (2016) who 

identified trajectories of health care expenditure among Medicare decedents in the last year of life and 

Hansen et al. (2020) who identified the most common health care trajectories over the last five years of life among older 

Danes. Both studies apply GBTM and assume that the population is composed of a mixture of distinct trajectory groups. 

Expenditures are specified on a log-transformed scale modelled through a mixture of normal distributions. Each trajectory 

is specified as a polynomial function of time and heterogeneity in expenditure trajectories is captured by differences in the 

parameters across polynomials. 1 We extend the GBTM approach as outlined above using linked primary (GP practice) and 

secondary (hospital) health care expenditures for a sample of English NHS patients within the final three years of life. 

3. Data and empirical sample 

We use primary care data from the Clinical Practice Research Datalink (CPRD) database linked at patient level to sec- 

ondary care data from Hospital Episodes Statistics (HES) and mortality data from the Office of National Statistics (ONS). 

CPRD is a UK-based research service that collects fully coded and de-identified patient electronic health records from a 

network of GP practices. 2 Patients in CPRD are broadly representative of the English general population in terms of age, 

sex, ethnicity, and body mass index ( Herrett et al., 2015; Campbell et al., 2013 ). CPRD includes records of clinical events in 

primary care such as medical diagnoses, referrals to specialists and secondary care settings, prescriptions, records of immu- 

nisations, diagnostic testing, and all other types of care administered as part of routine general practice. Clinical information 

in CPRD is captured as Read codes ( Booth, 1994 ) - a hierarchical clinical data coding system used in primary care in the UK 

that classifies diseases, patient characteristics, procedures, and tests ( Chisholm, 1990 ). Read codes are recorded by practice 

staff (doctors, nurses, administrative staff etc.) as part of routine data entry. 

The linked HES data provide detailed information about the patient’s demographic characteristics, medical conditions, 

and type of care received in inpatient, outpatient and A&E settings. Medical diagnoses in HES are captured using Interna- 

tional Classification of Disease (ICD-10) codes. 

Our study population consists of 48,073 patients who met the following criteria: i) their records met an acceptable 

standard based on recording of registration, clinical events, and demographic details, ii) they were registered at English 

practices that are eligible for linkage with HES inpatient, HES outpatient, HES A&E, and ONS datasets, iii) they died at age 

60 or over between 01/01/2012 and 31/12/2014, iv) on the follow-up start date (36 months before death) patients were 

already registered with a practice that was up-to-standard (considered to have continuous high quality data fit for use in 

research), v) on the follow-up end date (death date) patients were still registered with the practice and data were still 

1 The focus of GBTM analysis is on between-class heterogeneity. Individuals within each latent class are assumed to start at the same value and exhibit 

the same general pattern of response over time. 
2 Specifically we use data from CPRD GOLD. 
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collected for this practice, and vi) there was information on the Index of Multiple Deprivation for the Lower Level Super 

Output Area of the patient’s area of residence. 

We followed individuals who died between 2012 and 2014 for a period from 36 months before death to death. We 

observe patients monthly costs for primary care activities (consultations, diagnostic tests, prescriptions) and secondary care 

activities (inpatient stays, outpatient appointments, and A&E visits). We also observe their demographic, socioeconomic, and 

clinical characteristics both 36 months before death and over their trajectory to death. 

3.1. Variables 

3.1.1. Expenditure data 

We generated costs per patient within primary and hospital care based on patients use of health services beginning 36 

months before death. We identified three types of primary care activity from CPRD data: consultations, drugs prescribed, and 

diagnostic tests. Linked HES data were used to identify episodes of inpatient, outpatient, and A&E activity. The methodology 

we used to cost health care activities is detailed in the appendix. A similar approach has been used elsewhere ( Ride et al., 

2020 ). 

For each individual we allocated expenditure to each of the 36 months of the observation period as follows. For inpatient 

hospital activity we used the inpatient episode start and end date to determine the interval of care. Where the entire interval 

belonged to a specific month, episode expenditures were allocated to that month. Where the interval of care extended over 

two or more months, episode expenditures were apportioned uniformly into months (i.e. based on the proportion of total 

episode days in each month). For A&E, outpatient, and primary care, we allocated expenditures to the appropriate month 

based on the date of the activity (e.g. A&E arrival date, outpatient appointment date, GP consultation date, diagnostic test 

date and prescription date). Finally, for each decedent we aggregated their primary and secondary health care expenditures 

in each of the 36 months prior to their death, effectively obtaining a panel dataset. 

3.1.2. Covariates 

The set of control variables includes age at death, gender, ethnicity, small area deprivation profile based on patients 

residence, region, and twelve morbidities: asthma, cancer, cardiac heart disease, congestive heart failure, chronic kidney 

disease, COPD, cerebrovascular disease, dementia, diabetes, hypertension, hypothyroidism, and peripheral artery disease. 

For ethnicity and morbidities we used information from both CPRD 3 and HES data while for all other variables informa- 

tion was obtained from CPRD. All variables were measured at the follow-up start date (36 months before death). Morbidities 

were also measured over the entire trajectory path of the patient. 

4. Empirical models estimation approach 

We set out below the group based trajectory model. Let Y i = ( y i 1 , y i 2 , . . . , y iT ) denote the longitudinal sequence of health 

care expenditures on individual i ( i = 1 , . . . , N ) over T months. The observed responses, Y 1 , Y 2 , . . . , Y N , are assumed to come 

from J distinct groups with density functions, f 1 , f 2 , . . . , f J , in proportions, π1 , π2 , . . . , πJ . That is, the unconditional proba- 

bility of observing individual i ′ s longitudinal sequence of health care costs, Y i , is: 

f ( Y i ) = 

J 
∑ 

j=1 

π j f 
j ( Y i ) , (1) 

where f j ( Y i ) is the probability of Y i given membership in group j, and π j is the probability of a randomly chosen individual 

belonging to group j. 

The model relies on the conditional independence assumption, which states that for each individual within a given tra- 

jectory group the distribution of expenditures in a given period is independent of the expenditures in prior periods: 4 

f j ( Y i ) = 

T 
∏ 

t=1 

f j ( y it ) . (2) 

3 The Read codes used to identify morbidities are obtained from the Cambridge Clinical Codes ( www.phpc.cam.ac.uk/pcu/research/research-groups/ 

crmh/cprd cam/codelists/v11) except from hypothyroidism which was obtained from the University of Manchester clinical codes repository (clinical- 

codes.rss.man.ac.uk) 
4 Time dependency has been incorporated into other growth mixture models ( Vermunt, 2007 ) by including random effects in each group’s trajectory 

specification and therefore allowing for serial correlation arising from the time invariant error component. However, we do not pursue this approach since 

the addition of random effects within a group-based model would allow for more within group variability in individual-level trajectories at the expense 

of clearly discerning trajectory groups, resulting in fewer distinct trajectories from which to infer trajectory profiles. In part, the objective of GBTM, is 

to minimise within-group variability in order to identify groups of individuals who follow approximately the same developmental trajectory ( Nagin and 

Odgers, 2010a ). 
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The probabilities of group membership, π1 , π2 , . . . , πJ , are parameterised as follows: 

π j = 
exp 

(

θ j 

)

1 + 
∑ J 

j=2 
exp 

(

θ j 

) , (3) 

for j = 2 , . . . , J, and where π1 = 1 −
∑ J 

j=2 
π j . θ j are parameters that can take any value. 

Combining Eq. (1) –(3) , the likelihood for the entire sample of N individuals is, 

L = 

N 
∏ 

i =1 

{

1 

1 + 
∑ T 

i =1 exp (θ j ) 

T 
∏ 

t=1 

f 1 ( y it ) + 
exp (θ2 ) 

1 + 
∑ T 

i =1 exp (θ j ) 

T 
∏ 

t=1 

f 2 ( y it ) 

+ . . . + 
exp (θJ ) 

1 + 
∑ T 

i =1 exp (θ j ) 

T 
∏ 

t=1 

f J ( y it ) 

}

. (4) 

The parameters defining the trajectories and the probabilities of group membership are estimated jointly via maximum 

likelihood. 

4.1. Normal, GLM and lomax distributions 

In the simplest form of the model, the trajectory distributions, f 1 , f 2 , . . . , f J , in Eq. (4) are specified as Normal distribu- 

tions, such that, 

f j ( y it ) = 
1 

σ j 
ϕ 

(

y it − X it β j 

σ j 

)

(5) 

where X it = [1 t t 2 . . . t ̺  ] is a vector of time polynomials, and β j = [ β j0 β j1 . . . β̺ ] 
′ is a conformable vector of 

parameters to be estimated, and σ j is the standard deviation. 

It is well established however, that health care expenditure data is complex and presents challenge to empirical research 

(for example, see Deb et al., 2017 ). In particular, distributions of expenditures are very often non-negative, heteroscedas- 

tic, positively skewed and leptokurtic, which has led to an expanding array of alternative parametric and non-parametric 

approaches to estimation that provide potentially superior methods for handling heavy-tailed and non-normal distributions 

( Jones et al., 2014; 2015; 2016 ). 5 

A normal distribution fails to account for skewness typically observed in expenditure data (particularly apparent in hos- 

pital costs due to infrequent heavy users of care). Log transformations, and to a lesser extent a square-root transformation, 

have been used to achieve greater symmetry in the distribution ( Jones, 2015 ). However, these produce predictions on a 

transformed scale which typically is unhelpful for interpretation. Accordingly, predictions are retransformed to their natural 

expenditure scale, but this requires the application of a smearing adjustment that often requires some knowledge of the 

form (as a function of covariates) of heteroscedasticity in the errors (see Duan, 1983 ). A more appealing approach is to 

use methods that estimate on the natural cost scale that explicitly model the variance as a function of covariates, and that 

can also incorporate an appropriate link function. Generalised linear models (GLM) offer such an approach, where a link 

function relates the index of covariates to the conditional mean of the outcome, and the distribution function describes the 

variance and a function of the conditional mean. We consider a GLM with a log-link function and a gamma distribution, 

with probability density function given by: 

f j ( y it ) = 
1 

Ŵ
(

a j 
)

[ 
1 
a j 
exp 

(

X it β j 

)

] a j 
y 

(a j −1) 

it 
exp 

( 

−
y it 

1 
a j 
exp 

(

X it β j 

)

) 

, (6) 

where 1 
a j 

exp 
(

X it β j 

)

is a scale parameter, a is a shape parameter, and Ŵ( . ) is the gamma function. 

We also consider a Lomax distribution ( Lomax, 1954 ). This is a two-parameter distributed nested within the more flex- 

ible four-parameter generalised beta of the second kind (GB2). The GB2 distribution offers flexibility in modelling health 

care costs as its three shape parameters (one scale parameter) allow greater precision in modelling higher moments of the 

distribution via skewness and kurtosis (see Kleiber and Kotz, 2003 ). This is however, at the expense of increased compu- 

tational burden, and particularly where a more parsimonious nested distribution may provide a better fit to the data. The 

Lomax distribution has been used in a number of applications to model heavy-tailed data, including income and wealth 

( Atkinson and Harrison, 1978 ), firm size data ( Corbellini et al., 2010 ), reliability and life testing ( Harris, 1968 ). Importantly, 

for health care cost data, the support of the distribution begins at zero. 6 The Lomax probability density function is defined 

5 Also see Basu et al. (20 04, 20 06) , Buntin and Zaslavsky (2004) , Deb and Burgess (2003) , Hill and Miller (2010) Manning et al. (2005) for comparisons 

of alternative regression-based approaches to estimating healthcare costs. 
6 For our application this is not an issue since for all individuals and months we observe positive costs. This is not surprising given we focus on 

expenditure at the end of life. However, for more general modelling of expenditure profiles, zero costs may be incurred over specific time intervals. 
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as follows: 

f j ( y it ) = 
q j / exp 

(

X it β j 

)

(

1 + 
y it 

exp ( X it β j ) 

)(1+ q j ) 
, (7) 

where q j is a shape parameter, and exp 
(

X it β j 

)

is a scale parameter. 

Maximum likelihood is used for estimation. For the GLM specification, starting values are obtained from GLM models 

estimated on four subgroups of equal size. The subgroups are created by categorising the standard deviation of individual 

costs over time by its quantiles. 

4.2. Identification of trajectories 

To calculate the probability that an individual with a given profile belongs to a specific trajectory group we derive the 

posterior probability of group membership. This quantity is different from the probability of group membership, π j , that 

measures the proportion of the population that belongs to group, j, or equivalently the probability that a random individual 

belongs to trajectory, j. Applying the Bayes rule, the posterior probability of group membership is: 

P ( j| Y i ) = 
P ( Y i | j ) π j 

∑ J 
j=1 

P ( Y i | j ) π j 

, 

where the probabilities of group membership, π j , and probabilities of observing costs, Y i , for individuals who are members 

of group j, P (Y i | j) , are calculated using the estimated parameters, ˆ θ j and ˆ β j , respectively. 

We assign each individual to the trajectory group for which the individual’s posterior probability is largest. We then 

construct the profiles of individuals in each identified trajectory group by producing summary statistics of individual-level 

demographic and clinical characteristics for each group. 

4.3. Including covariates 

We extended the base model by adding covariates in two ways. 

4.3.1. Group membership 

First, we include individual-level characteristics to estimate their impact in determining membership to a trajectory 

group. In contrast to creating individual profiles after the trajectories are formed (in the post-estimation phase), the re- 

lationship of individual-level characteristics to trajectory group membership is estimated jointly with the trajectories. The 

advantage of explicitly modelling the effects of covariates is that it allows us to quantify the relationship between the 

individual characteristics and the probability of group membership and avoid reliance on statistical tests for cross-group 

differences that assume no classification error in group identification. 

Since trajectory groups describe costs over a long period, individual characteristics that are added to the model as pos- 

sible predictors of group membership are measured at the first observation period of the trajectories (36 months before 

death). 

To include covariates, Z i = [ Z 1 i , . . . , Z Li ] , of trajectory group membership, Eq. (3) of the base model is modified to a multi- 

nomial logit model: 

π j ( Z i ) = 
exp 

(

Z i θ j 

)

1 + 
∑ J 

j=2 
exp 

(

Z i θ j 

) , 

for j = 2 , . . . , J and π1 ( Z i ) = 1 −
∑ J 

j=2 
π j ( Z i ) . Note that here, the coefficients, θ j , estimate the influence of risks factors on the 

probability of membership in the jth trajectory group relative to membership in the comparison group. We adopt different 

scenarios involving various levels of the predictor variables, Z i , to assess their overall impact on group membership. 

4.3.2. Trajectory profiles 

Second, we allow for conditions that are diagnosed during the course of a trajectory to alter the trajectory itself. 

Equation (5) is modified to describe the trajectory distributions as functions of both time polynomials and time varying 

morbidities, M it , such that, 

f j ( y it ) = 
1 

σ j 
ϕ 

(

y it −W it δ j 

σ j 

)

, 

where W it = [1 t t 2 . . . t ̺  M 1 ,it . . . M K,it ] , and δ j is a conformably dimensioned vector of parameters, δ j = 

[ β j0 β j1 β j2 . . . β j̺ γ j1 . . . γ jK ] 
′ . 

The coefficients of the conditions are group specific so that the model allows for differential profile effects of conditions 

on each trajectory. Since in the base model, the shape of a trajectory does not depend on any clinical events, the time 
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Table 1 

Trajectory groups estimates: Linear. 

HC-LR MHC-LR MLC LC 

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Constant 1.054 ∗∗∗ (0.010) 0.582 ∗∗∗ (0.004) 0.257 ∗∗∗ (0.003) 0.079 ∗∗∗ (0.001) 

t -0.121 ∗∗∗ (0.001) -0.075 ∗∗∗ (0.001) -0.024 ∗∗∗ (0.000) -0.004 ∗∗∗ (0.000) 

t 2 0.005 ∗∗∗ (0.000) 0.003 ∗∗∗ (0.000) 0.001 ∗∗∗ (0.000) 0.000 ∗∗∗ (0.000) 

log(σ ) 0.784 ∗∗∗ (0.001) 0.048 ∗∗∗ (0.002) -0.886 ∗∗∗ (0.005) -2.345 ∗∗∗ (0.004) 

logit(π ) -0.288 ∗∗∗ (0.012) -0.860 ∗∗∗ (0.014) -1.278 ∗∗∗ (0.016) 

∗p < 0 . 1 , ∗∗p < 0 . 05 , ∗∗∗p < 0 . 01 . 

parameters capture the development path of the trajectory group members averaged over all clinical events (and other 

contingencies) that might cause variation about the trajectory. In contrast, in the extended model, the time parameters 

describe the trajectory if no clinical events occurred during the development path. 

In the context of GBTM, model selection concerns decisions about the number of trajectory groups and the shape of each 

group’s trajectory. Our choice set consists of specifications with two to five groups and first (linear) to third (cubic) order 

time polynomials. We adopt a two-stage selection procedure as outlined in Nagin (2005) that compares models on the basis 

of the Bayesian Information Criterion (BIC) and prioritises the choice of the number of groups over the shape of the groups. 

Model specifications with five trajectory groups failed to converge and BIC support models with four groups. Two sets of 

time polynomial specifications were favoured based on BIC: a) all groups defined in terms of quadratic time polynomials 

and b) two groups specified as quadratic and two as cubic time functions. For uniformity we chose the former set. 

5. Results 

5.1. Descriptive statistics 

The sample consists of 48,084 patients from 321 practices. This constitutes a sufficiently large sample to identify and 

analyse expenditure trajectory groups consisting of groups as small as about 1% of the full sample (about 500 individuals). 

All patients were followed from 36 months before death to death. A breakdown of the number of patients by explanatory 

variable is provided in Table A.1 . 

All patients incurred drug costs throughout the 36-month period (see Fig. A.1 ). The percentage of patients having outpa- 

tient and test expenditures declined during the last month before death. In contrast, there was a dramatic increase in the 

percentage of patients with inpatient costs (from 33% to 63%) and A&E costs (19% to 46%) in the last month before death. 

The percentage of patients with primary care costs also increased sharply during the last two months before death from 

62% to 74%. 

Inpatient costs (£146) and drug costs (£57) contribute most of the patient’s total cost of care (£270) 36 months before 

death but in the last month of life inpatient costs (£3203) account for the majority of total costs (£3634) (see Figs. A.2 and 

A.3 ). In general, inpatient, A&E, tests, and primary care costs appear to increase more rapidly at around 8 months before 

death while outpatient costs take off from 36 months before death exhibiting a relatively more linear trend. Drug costs 

appear to be the most stable over time increasing by less than three times over the study period. In contrast, inpatient costs 

increased by 22 times and A&E costs by 18 times. 

Average costs by morbidity and broken down by setting of care are shown in Fig. A.4 . Costs are calculated at the first 

month of the follow-up period, i.e. 36 months before death and conditions ordered from the highest (Cancer, £432) to the 

lowest (Dementia, £243) average cost. The most frequent condition is hypertension with 30,127 patients having the condition 

incurring monthly costs of £303 on average. However, these expenditures are for people recorded as having hypertension 

and all the other conditions that they suffer. The cost is not for treating hypertension alone. For all conditions, inpatient and 

drug costs account for the largest proportion of average costs. Average costs varied little over age bands (see Fig. A.5 ) due 

to our sample consisting of individuals aged 60 years or over who are approaching the end of life. 

5.2. Trajectory estimates 

Tables 1, 2 , and 3 present estimates for the linear, GLM and Lomax specifications containing time polynomials only (i.e 

without covariates). For all models we identify four distinct trajectory groups. 

For each model, we calculate the posterior probabilities of group membership and apply the maximum posterior prob- 

ability assignment rule to allocate each individual to a trajectory group. The groups identified by the three models do not 

consist of the same individuals but there are similarities in their trajectories. 

All time coefficients are significant. The negative linear and positive quadratic terms imply that all trajectories follow 

an upward-facing parabola. The probabilities of group membership for the GLM model (derived from the estimated logit 

parameter) are 0.36 for the first group (HC-LR), 0.34 for the second group (MHC-LR), 0.10 for the third group (MLC) and 

0.20 for the final group (LC-LR). Group labels are defined below. Therefore, an individual is more likely to be randomly 
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Table 2 

Trajectory groups estimates: GLM . 

HC-LR MHC-LR MLC LC-LR 

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Constant -0.527 ∗∗∗ (0.007) -1.220 ∗∗∗ (0.008) -2.150 ∗∗∗ (0.009) -2.716 ∗∗∗ (0.011) 

t -0.009 ∗∗∗ (0.001) -0.107 ∗∗∗ (0.001) -0.059 ∗∗∗ (0.001) -0.176 ∗∗∗ (0.001) 

t 2 0.001 ∗∗∗ (0.000) 0.004 ∗∗∗ (0.000) 0.002 ∗∗∗ (0.000) 0.008 ∗∗∗ (0.000) 

α 0.445 ∗∗∗ (0.001) 0.752 ∗∗∗ (0.003) 1.412 ∗∗∗ (0.007) 0.520 ∗∗∗ (0.001) 

logit(π ) -0.065 ∗∗∗ (0.013) -1.313 ∗∗∗ (0.018) -0.592 ∗∗∗ (0.014) 

∗p < 0 . 1 , ∗∗p < 0 . 05 , ∗∗∗p < 0 . 01 . 

Table 3 

Trajectory groups estimates: Lomax. 

Lomax HC-LR MHC-LR MLC-LR LC-LR 

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Constant -0.622 ∗∗∗ (0.012) -1.236 ∗∗∗ (0.010) -2.913 ∗∗∗ (0.012) -4.784 ∗∗∗ (0.015) 

t -0.008 ∗∗∗ (0.001) -0.058 ∗∗∗ (0.001) -0.073 ∗∗∗ (0.001) -0.098 ∗∗∗ (0.002) 

t 2 0.001 ∗∗∗ (0.000) 0.003 ∗∗∗ (0.000) 0.003 ∗∗∗ (0.000) 0.004 ∗∗∗ (0.000) 

log(q ) 0.548 ∗∗∗ (0.005) 0.628 ∗∗∗ (0.004) 0.216 ∗∗∗ (0.005) -0.140 ∗∗∗ (0.005) 

logit(π ) 0.639 ∗∗∗ (0.016) 0.410 ∗∗∗ (0.016) -0.657 ∗∗∗ (0.021) 

∗p < 0 . 1 , ∗∗p < 0 . 05 , ∗∗∗p < 0 . 01 . 

Fig. 1. Trajectory plots Linear. 

assigned to the HC-LR group. In contrast, the linear and Lomax models suggest that an individual is more likely to be 

randomly assigned to the MHC-LR groups (with probability 0.41 and 0.39 respectively). 

The average (over the members of each group) monthly costs are plotted for each group over the course of the sample 

period, and presented in Figs. 1 , 2 , and 3 . We characterise a group as high (HC), medium-high (MHC), medium-low (MLC) 

or low cost (LC) based on the average costs 36 months before death. At the beginning of the sample period, monthly costs 

range between £458 and £624 for the high cost groups, £220-£268 for the medium-high cost groups, £93-£155 for the 

medium-low cost groups, and £40-£63 for the low cost groups. We further characterise groups that exhibit an exponential 

increase in costs towards the end of life as ‘late rise’ (LR) groups. Six patterns of cost trajectories emerge across the three 
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Fig. 2. Trajectory plots GLM. 

models: high cost with late rise (HC-LR), medium-high cost with late rise (MHC-LR), medium-low cost with late rise (MLC- 

LR), medium-low cost (MLC), low cost with late rise (LC-LR), and low cost (LC). 

The linear model identifies trajectory groups exhibiting the HC-LR, MHC-LR, MLC, and LC patterns. The average cost over 

the entire period is £1049 for the HC-LR group, £454 for the MHC-LR group, £207 for MLC group, and £72 for the LC 

group (see Table A.2 ). Individuals in the LC group exhibit low costs throughout the 36-month period with costs exceeding 

significantly the group average only in the final month prior to death (£246). Costs for individuals in the MLC group are 

relatively stable around £150 in the first two years. From the beginning of the third year, they start increasing gradually 

exceeding the group’s average six months before death (£213) and doubling it one month before death (£426). Although 

costs jump to £1249 in the last month, overall cost increase is gradual for this group. 

Individuals in the HC-LR group have significantly higher costs than those in the other three groups throughout the sample 

period. Costs for this group increase almost linearly for two and a half years from £458 in the first month to £1126 in month 

29. After this point they take off exponentially to reach £2940 one month before death and £6363 in the last month. The 

MHC-LR group stands between the MLC and HC-LR groups. Individuals in this group have lower costs than those in the 

HC-LR group (and higher than those in the MLC group) but their trajectory mirrors the trajectory of the HC-LR group. 

Costs increase steadily for two and a half years until they exceed the group average in month 30 (£471), thereafter they 

increase steeply reaching £1321 one month before death and £3542 in the last month. An important observation is that the 

trajectories of the three groups do not intersect. Throughout the 36-month period, average costs for the HC-LR group are 

higher than average costs for the MHC-LR group which are in turn higher than average costs for the MLC and LC groups. 

Like the linear model, the GLM identifies groups that exhibit late rise patterns for the two higher cost groups. The HC- 

LR and MHC-LR trajectories are very similar across the two models with average monthly costs across the entire period 

around £10 0 0 for the HC-LR group and around £450 for the MHC-LR group. However, the trajectories of the lowest cost 

groups identified by the linear and GLM differ significantly. In the linear LC group, average costs remain relatively stable at 

below £100 until the last month while average costs in the GLM LC-LR group start from £40 but they exponentially increase 

during the third year, and exceed £30 0 0 in the last month (see Table A.3). This late rise component explains the difference 

in average monthly costs across the entire period (£72 for the linear vs £255 for the GLM). In both the linear and GLM 

medium-low cost groups, average costs increase during the last 3 months but this change is not as dramatic as in the high 

cost groups and therefore these groups are not considered late risers. However, the two groups differ in that average costs 

are consistently higher in the linear MLC group. 

The groups identified by the Lomax model follow similar trajectories with those of the GLM groups for the HC-LR, MHC- 

LR, and LC-LR groups. The average costs across the entire period are also comparable for these groups across the linear and 

Lomax models. However, the medium-low cost group for the Lomax model has a late rise component that distinguishes it 
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Fig. 3. Trajectory plots Lomax. 

Table 4 

Overlap of trajectory groups identified by the linear and 

GLM models. 

Linear/GLM HC-LR MHC-LR MLC LC-LR 

HC-LR 10,170 2978 0 1546 

(21.2%) (6.2%) (0.0%) (3.2%) 

MHC-LR 6780 8814 14 4016 

(14.1%) (18.3%) (0.0%) (8.4%) 

MLC 397 4532 1300 2069 

(0.8%) (9.4%) (2.7%) (4.3%) 

LC 1 65 3374 2028 

(0.0%) (0.1%) (7.0%) (4.2%) 

from the linear and GLM models. Average costs across the entire period are also significantly higher for the Lomax MLC-LR 

(£350) compared with then linear and GLM MLC groups (see Table A.4). 

The sizes of the groups vary significantly across models with Lomax identifying the smallest HC-LR group (20.19%) and 

the largest medium-low cost group (30.16%). For the GLM model, the HC-LR group consists of 17,348 individuals (36.08%), 

the MHC-LR group consists of 16,389 individuals (34.08%), and the MLC and LC-LR groups consist of 4688 (9.75%) and 9659 

(20.09%) individuals respectively. 

Table 4 shows the degree to which the trajectory groups (ordered from high to low costs) identified by the linear and 

GLM models overlap. Trajectory groups of the same order may reflect similarities in the trajectory patterns (e.g. HC-LR 

groups) or just similarities in the initial costs (e.g.linear LC-LR group and GLM LC group). Therefore, the overlap between the 

various groups is only indicative of the degree of agreement in classifying patients across models. About 47% of individuals 

are identified to groups of the same order by the linear and GLM models. About 59% of patients assigned to the HC-LR 

group by the GLM model are also assigned to the linear HC-LR group. 

5.3. Model selection and diagnostics 

To compare the models in terms of quality of predictions, we use three metrics that are commonly used to assess models 

in the health care expenditure literature ( Andersen et al., 20 0 0; Austin et al., 20 03; Duan, 1983; Hill and Miller, 2010; Jones 

et al., 2016 ). The mean prediction error (MPE), the root mean square error (RMSE), and the mean absolute prediction error 
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Fig. 4. Mean Square Error. 
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where ˆ y j t denotes either the mean or median predicted cost for a patient at time t in trajectory group j (calculated using 

the estimated coefficients for group j). Allocation to group j is based on the maximum posterior probability of membership 

across the J groups. 7 y it is the corresponding observed cost. 

MPE assesses the overall bias. In Figs. 1, 2 , and 3 , MPE at each month is the difference between the solid and dotted lines 

(also see A.6 in the appendix). It is clear that the GLM results in significantly lower bias for the first three groups compared 

to the linear model. The drawback of MPE is that very low bias might be observed in models with low predictive precision 

when large positive errors are offset by large negative errors. 

RMSE and MAPE are measures of predictive accuracy. RMSE promotes unbiased forecasts but penalises more heavily 

larger errors and therefore it is more sensitive to outliers. The RMSE favours the linear model (1.395) over the GLM (1.409) 

and the Lomax (1.442) while the MAPE favours the GLM model (0.623) over the Lomax (0.625) and linear (0.644). As the 

overall RMSE and MAPE do not provide overwhelming support for one of the models, we explore the performance of the 

models by calculating the mean square error (MSE) and MAPE for each trajectory group and each month. Results are sum- 

marised in Figs. 4 and 5 and Table 5 . Note that here we count months from the start of our observation period for each 

individual. Accordingly, month 1 represents the observation at 36 months prior to death, and month 36 is the month of 

death. 

7 Note, there are alternative ways to define M PE, RM SE, and M APE. For example, by forming predictions, ˆ y it , based on a weighted average across the J

groups at time t, with weights determined by the posterior probability of group J ( j = 1 , . . . , J ) membership. That is, ˆ y it = 
∑ J 

j=1 P ( j| y it ) ̂ y 
j 
t . Due to the models 

being able to discriminate between group membership for a given individual, in practice this alternative method of calculating the three metrics leads to 

negligible differences. 
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Fig. 5. Mean Absolute Prediction Error. 

Table 5 

Model comparison: MSE and MAPE. 

MSE MAPE 

Linear GLM Lomax Linear GLM Lomax 

Average in 

HC-LR 4.798 3.700 3.996 1.249 1.119 1.272 

MHC-LR 1.099 1.264 1.661 0.538 0.447 0.500 

MLC/MLC-LR 0.169 0.033 1.523 0.208 0.077 0.464 

LC/LC-LR 0.009 1.083 1.560 0.060 0.294 0.317 

Overall 1.945 1.986 2.079 0.644 0.623 0.625 

The overall MSE (MAPE) for each model is calculated by adding up the group 

MSE (MAPE) averages-across-time using group sizes as weights. The square 

root of the overall MSE is the RMSE. 

For the HC-LR groups, the GLM performs significantly better than the linear model in terms of both MSE and MAPE from 

the beginning of the third year onwards. As a result, the average (across months) MSE and MAPE are larger for the linear 

model (4.798, 1.249) compared to the GLM (3.700, 1.119). For the MHC-LR groups, the GLM performs better in terms of 

MSE until month 28. Thereafter, the linear model performs significantly better. As a result, the average MSE across months 

favours the linear (1.099) over the GLM (1.264) and Lomax (1.661). In terms of MAPE, the GLM is dominant over a longer 

time period, and it is only in month 33 that the linear performs better. This is reflected in the average across months which 

favors the GLM (0.447) over the Lomax (0.500) and the linear (0.538). The GLM is a clear winner of the MLC groups as 

both MSE and MAPE are lower over the entire period while the linear model claims the LC groups as both MSE and MAPE 

increase exponentially in the last 6 months for the GLM and Lomax models. 

To shed more light on model performance, skewness calculated for each trajectory group and each month is presented 

in Fig. 6 . The HC-LR groups identified by the GLM and the linear model exhibit comparable levels of skewness. On the 

other hand, the LC-LR group identified by the GLM exhibits much higher skewness compared to the LC group identified 

by the linear model. It appears that the predictive accuracy of the models is a combination of how they slice the data to 

determine group membership (which affects skewness within groups) and their ability to fit skewed costs. Because the GLM 

fits skewed data better it outperforms the linear model except where differences in skewness are considerably large. This is 

the case in the LC-LR/LC groups. The GLM tries to fit a much more skewed LC-LR group - if it was applied to the LC group 

generated by the linear model it would dominate. 
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Fig. 6. Skewness. 

Differences in skewness can also explain why the GLM performs better in the MHC-LR group until the quarters close to 

death (the part of the EoL trajectory where differences in skewness are relatively small) while the linear dominates in the 

months nearer to death. 

Across these criteria, our preferred specification is the GLM; it is more flexible (it deals better with skewness), and 

performs better in the HC-LR category. The only group where the linear model outperforms the GLM is the LC groups. 

However, this group is of less concern for our analysis since it contains patients for whom cost savings are less likely to be 

gained. 

The capacity of the GLM to accurately identify trajectory groups is assessed in three ways. First, the proportion of the 

sample that is assigned to a group on the basis of the largest posterior probability is within two decimal places to the 

estimated probability of group membership (HCLR: 0.36; MHC-LR: 0.34; MLC: 0.10; LC-LR: 0.20). Second, we calculate the 

average posterior probability (APP) of membership in each group for those individuals who were assigned to the group 

based on the maximum posterior probability assignment rule. APP approaching 1 implies that all individuals in the group 

are assigned to the group with certainty. We find APP close to 1 for all groups (HC-LR: 0.98; MHC-LR: 0.96; MLC: 0.97; LC- 

LR: 0.98). Third, we calculate the odds of correctly classifying individuals into group j on the basis of the maximum posterior 

probabilities over the odds of correctly classifying individuals into group j based on random assignment as follows: 

OOC j = 
AP P j / 

(

1 − AP P j 
)

π j / 
(

1 − π j 

) (8) 

If the maximum probability assignment rule has no predictive capacity beyond random chance then OCC j = 1 . Larger 

values of OCC j indicate higher model accuracy with OCC j → ∞ when the maximum posterior probability rule assigns indi- 

viduals into groups with certainty, that is, when AP P j → 1 . We found large OCC values for all groups (HC-LR: 69; MHC-LR: 

43; MLC: 287; LC-LR: 165). 

5.4. Understanding the role of relevant covariates 

Table A.5 summarises the profiles of individuals in the four groups identified by the GLM. The prevalence of morbidi- 

ties at the beginning of the three-year period is clearly associated with the relative position of the trajectories. For most 

morbidities, the percentage of individuals that have a record of the morbidity 36 months before death is the highest in the 

HC-LR group followed by the MHC-LR, MLC, and LC-LR groups. The incidence for asthma and COPD is particularly low among 

people in the LC-LR group compared to the other three groups. A remarkable exception is dementia which is recorded in 

27.2% of individuals in the MLC group compared to only 6.3% of individuals in the HC-LR group. Deprivation and region are 

comparable across all groups. Interestingly, individuals in the HC-LR group are on average about 3–4 years younger than 
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Table 6 

Estimates for trajectory group membership: GLM. 

MHC-LR MLC LC-LR 

Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Constant -1.977 ∗∗∗ (0.132) -3.625 ∗∗∗ (0.198) 0.808 ∗∗∗ (0.141) 

Age at death 0.023 ∗∗∗ (0.001) 0.048 ∗∗∗ (0.002) 0.010 ∗∗∗ (0.001) 

White -0.106 (0.065) -1.594 ∗∗∗ (0.067) -1.318 ∗∗∗ (0.058) 

Male 0.017 (0.024) -0.324 ∗∗∗ (0.038) 0.007 (0.029) 

IMD 

Quint 1 (reference) 

Quint 2 -0.002 (0.035) -0.005 (0.053) 0.037 (0.042) 

Quint 3 -0.020 (0.036) 0.039 (0.054) 0.028 (0.043) 

Quint 4 0.048 (0.037) 0.010 (0.058) 0.151 ∗∗∗ (0.044) 

Quint 5 0.011 (0.040) 0.061 (0.061) 0.104 ∗∗ (0.048) 

Morbidities 

Asthma 0.046 (0.033) -0.207 ∗∗∗ (0.055) -0.842 ∗∗∗ (0.054) 

Cancer -0.247 ∗∗∗ (0.029) -0.699 ∗∗∗ (0.054) -1.128 ∗∗∗ (0.043) 

CHD -0.046 ∗ (0.027) -0.072 ∗ (0.042) -0.505 ∗∗∗ (0.038) 

CHF -0.144 ∗∗∗ (0.034) -0.115 ∗∗ (0.054) -0.589 ∗∗∗ (0.054) 

CKD -0.008 (0.026) -0.313 ∗∗∗ (0.041) -0.244 ∗∗∗ (0.035) 

COPD 0.120 ∗∗∗ (0.031) -0.135 ∗∗ (0.054) -1.274 ∗∗∗ (0.056) 

Cerebrovascular dis 0.005 (0.030) 0.081 ∗ (0.044) -0.520 ∗∗∗ (0.043) 

Dementia 0.260 ∗∗∗ (0.045) 1.428 ∗∗∗ (0.049) -0.147 ∗∗ (0.057) 

Diabetes 0.092 ∗∗∗ (0.029) -0.040 (0.047) -0.895 ∗∗∗ (0.045) 

Hypertension 0.122 ∗∗∗ (0.026) -0.084 ∗∗ (0.039) -0.349 ∗∗∗ (0.030) 

Hypothyroidism 0.019 (0.037) 0.076 (0.054) -0.475 ∗∗∗ (0.053) 

Peripheral artery dis -0.131 ∗∗∗ (0.037) -0.183 ∗∗∗ (0.064) -0.468 ∗∗∗ (0.059) 

Region 

East (ref) 

East Midlands -0.019 (0.142) 0.155 (0.217) 0.328 ∗∗ (0.159) 

London -0.156 ∗∗∗ (0.052) -0.401 ∗∗∗ (0.083) -0.271 ∗∗∗ (0.063) 

North East -0.083 (0.083) -0.117 (0.134) -0.079 (0.101) 

North West 0.037 (0.048) 0.019 (0.075) 0.001 (0.058) 

South East 0.161 ∗∗∗ (0.044) 0.298 ∗∗∗ (0.068) 0.201 ∗∗∗ (0.052) 

South West 0.044 (0.049) 0.244 ∗∗∗ (0.074) -0.017 (0.059) 

West Midlands 0.049 (0.050) 0.073 (0.078) 0.050 (0.059) 

Yorkshire Humber -0.030 (0.085) -0.058 (0.138) 0.028 (0.102) 

Estimates capture the effect of a variable on the probability of an individual following each trajectory 

group relative to membership in the HC-LR group. Note that the interpretation of the estimates are in 

terms of predicted probabilities, not posterior probabilities that are calculated post-estimation. Estima- 

tions based on full sample of 1,731,024 observations (48,084 patients by 36 months). ∗p < 0 . 1 , ∗∗p < 0 . 05 , 
∗∗∗p < 0 . 01 . 

individuals in the other three groups (age at death is 80.8 for the HC-LR group, 82.7 for the MHC-LR group, 85.6 for the 

MLC group, and 80.7 for the LC-LR group). This is mainly driven by the low proportion of elderly over 90 years old in the 

HC-LR group. The individual profiles emerging form the groups identified by the linear and Lomax models are shown in the 

appendix in Tables A.6 and A.7 . 

Table 6 reports the estimates for the model with time invariant covariates. Each coefficient estimate measures how this 

variable influences the probability of membership in the particular trajectory group relative to membership in the HC-LR 

group. For all trajectory groups, most of the conditions recorded 36 months before death increase the risk for following the 

HC-LR trajectory. The risk increases the most relative to the LC-LR trajectory and the least relative to the MHC-LR trajectory. 

This is in line with the profiles shown in Table A.5 . A higher proportion of individuals residing in London display a HC-LR 

trajectory compared to individuals living in the East. Being from an ethnic minority is associated with greater probability 

of being categorised into the MLC and LC-LR groups relative to the HC-LR and MHC-LR groups. Males are more likely to 

follow the HC-LR trajectory relative to the MLC and LC-LR trajectories. Older individuals are less likely to follow the HC-LR 

trajectory. Individuals from the most deprived quintile are less likely to belong to the HC-LR group. For comparison, group 

membership estimates for the linear and lomax models are presented in the appendix ( Tables A.8 and A.9 ). 

To assess the collective impact of morbidities on group membership we consider 13 scenarios involving various combi- 

nations of conditions for an 82 year old white male from an area in the South East region of England that falls into the third 

deprivation quintile. The first scenario assumes that individuals have none of the twelve conditions at the beginning of the 

three-year period; in scenarios 2–8 individuals have only one condition; in scenario 9 individuals have CHD, diabetes, and 

hypertension; in scenario 10 individuals have cancer, COPD, and CVD; in scenario 11, individuals have the six conditions in 

scenarios 9–10; scenario 12 assumes individuals have all conditions but dementia (eleven in total); and scenario 13 assumes 

individuals have all twelve conditions. 
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Table 7 

Predicted probability of group membership under various scenarios. 

Scenarios HC-LR MHC-LR MLC LC-LR 

Randomly chosen individual 0.36 0.34 0.1 0.2 

Individual with: 

1: No conditions 0.25 0.24 0.44 0.07 

2: Cancer 0.40 0.31 0.23 0.05 

3: CHD 0.31 0.29 0.33 0.08 

4: COPD 0.35 0.39 0.17 0.08 

5: CKD 0.28 0.27 0.39 0.06 

6: Diabetes 0.33 0.35 0.24 0.09 

7: Hypertension 0.28 0.31 0.34 0.07 

8: Dementia 0.20 0.26 0.31 0.23 

9: CHD, diabetes, hypertension 0.37 0.43 0.11 0.08 

10: Cancer, COPD, CKD 0.48 0.41 0.06 0.04 

11: CHD, diabetes, hypertension, cancer, COPD, CVD 0.47 0.48 0.01 0.03 

12: All conditions but dementia 0.53 0.44 0.00 0.03 

13: All conditions 0.44 0.47 0.00 0.09 

Fig. 7. Impact of time-varying morbidities on trajectories. 

Results are presented in Table 7 . Scenarios 1–7 show that all conditions except dementia increase the probability of 

membership to the HC-LR group. Cancer has the largest impact - even larger than CHD, diabetes and hypertension com- 

bined (scenario 9). Concurrent presence of morbidities results in more substantial changes in the probability of membership 

in the HC-LR group as shown in scenarios 10–11. When all morbidities but dementia are present (scenario 12), the shift in 

the probability of membership in the HC-LR group relative to the no-conditions scenario is dramatic, doubling from 0.25 to 

0.53. Dementia is a notable exception to the pattern formed by other conditions. It is alone responsible for increasing the 

probability of following the LC-LR trajectory from 0.07 to 0.23. This is likely to be due to a large number of dementia patients 

reside in nursing homes and utilise fewer secondary care services. It has been reported that practices with higher propor- 

tions of nursing home patients have lower emergency admissions for dementia and elective admissions ( Kasteridis et al., 

2015 ). 

The first row in Table 7 shows the estimated probabilities of group membership for a randomly chosen individual. The 

randomly chosen individual is an 82 year old white male with 2–3 morbidities from an area in South East that falls into 

the third deprivation quintile, i.e. an individual whose profile is closer to scenario 9. Indeed, the probabilities of group 

membership under scenario 9 are close to those in the first row of the table. 
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In addition to affecting the probability of group membership, morbidities may also alter the shape of the group’s trajec- 

tory. To investigate this, we allow morbidities to enter the trajectory equations as time varying covariates. We assume that 

after a morbidity is diagnosed for first time, it remains present in all following periods. The estimates from a model that 

includes three time-varying morbidities: diabetes, CKD, and cancer are presented in A.10 in the appendix. 

Figure 7 visualises the impact of the three morbidities. Each graph refers to one of the four trajectory groups. The lines 

represent three scenarios. In all three, patients are assumed to suffer from diabetes throughout the follow-up period. Under 

the first scenario (solid lines), they have no other condition. In the second scenario, they are diagnosed with CKD two years 

before death (dashed lines). In the third scenario, they are diagnosed with CKD two years before death and with cancer one 

year before death (dotted lines). 

Predictions are carried out using the group-specific parameter estimates of the time-varying morbidities corresponding 

to the above scenarios. The trajectories are identical for all scenarios during the first year of the follow-up period. Focusing 

on the HC-LR group, those diagnosed with CKD 24 months before death experienced a cost increase (relative to those with 

no CKD diagnosis) at a rate of 1.23 each month. This translates to a relative increase of £158 at month 13 and £404 at 

month 36. Comparing the third with the second scenario, a cancer diagnosis at month 25 results in a relative increase in 

monthly cost at a rate of 2.04 (an increase of £1219 at month 25 and £2262 at month 36). 

6. Conclusions 

For many individuals, health care expenditure is far greater at the EoL than at any other point in their lifetime. This has 

often led to the characterisation of EoL expenditure being, in part, wasteful and offering an area where efficiencies may 

be sought while attempting to maintain quality of care. The literature that has estimated EoL expenditure has tended to 

treat all decedents equally and has averaged expenditure within specific time intervals in the run up to death to reveal an 

expenditure profile that is often characterised by a steady increase in expenditure across time followed by a steep rise in the 

months close to death. It is, however, not difficult to perceive that expenditure profiles at EoL will vary across individuals 

and that variation is linked to both the characteristics of the individual and the cause of death. For example, a young person 

who dies from a road traffic accident will not display a health care expenditure profile the same as an elderly individual with 

chronic conditions who dies after experiencing a remitting and recurrent cancer. Observed heterogeneity across individuals 

is, therefore, likely to lead to heterogeneity in expenditure profiles. For some individuals, expenditure growth may be fairly 

stable across the final months and years of life, for others expenditure increases gradually at the EoL, and for others still, 

there is the usual characterisation of a steep rise in the final months before death. Understanding the shape of expenditure 

profiles and the characteristics that determine profile membership is important to target the cost-effective use of resources. 

This might include consideration of optimal patient pathways, particularly for individuals with complex comorbidities; the 

adoption of new technologies which lower the intensity of care needed, for example, as a result of reducing emergency 

hospital readmission rates and innovations to the organisation and delivery of care, for example shifting care across settings 

from inpatient to outpatient, or hospital to primary care. These are likely to prove most effective at reducing the opportunity 

cost of EoL care, while preserving quality, when aimed at well defined patient groups known to be substantive drivers of 

overall health care costs. 

We employed group based trajectory modeling to explore patterns of EoL expenditure for a diverse range of individuals 

across a three-year period prior to death. The method assumes that the population is composed of a mixture of distinct 

groups, each following a unique cost trajectory. That is, heterogeneity in expenditure profiles is modeled as between group 

heterogeneity. We extend the GBTMs literature by considering two flexible distributions (compared to the Gaussian) to fit 

better health care cost data: a GLM with log link and gamma distribution and a Lomax distribution. The predictive accuracy 

of a GBTM depends on how skewed the expenditures are in each trajectory group identified by the model and the model’s 

ability to fit skewed costs. We conclude that the GLM model with log link and gamma error preforms better than the linear 

and Lomax specifications in terms of RMSE and MAPE. 

Our estimates identified four distinct EoL trajectory groups. About 36% of the sample is allocated to the high cost with 

late rise group. Their monthly expenditures start from £493 36 months before death, increase linearly for about 28 months, 

and exponentially during the last 10 months of life exceeding £40 0 0 at the month of death. Individuals allocated in the 

medium-high cost with late rise group (34% of the sample) and the low cost with late rise group (20% of the sample) incur 

lower costs but they exhibit similar expenditure patterns. For individuals in the medium-low cost group (9.75%), expendi- 

tures remain relatively stable over the 3-year period with only a small increase in expenditures during the last 3 months of 

life. 8 

Health conditions, which were recorded 36 months prior to death, increase the risk of an individual following a higher 

cost trajectory with cancer having the largest impact. Dementia is a notable exception to this pattern having a very large 

positive effect on the probability of an individual following a lower cost trajectory. A large number of these patients are 

in nursing homes and consequently utilise fewer secondary care services. Unfortunately, we lack reliable individual level 

8 Descriptive analysis of expenditures by group (determined on the basis of membership based on posterior probabilities) in each of the health care 

settings (inpatient, outpatient, A&E, GP visits, drugs and tests) exhibit similar profiles to total costs. Exceptions are outpatient costs where the HC-LR group 

appears to increase steadily across the duration of the 36 months leading to death, and drug costs for which all profile groups exhibit a late rise at the EoL 

and for which there is a greater demarcation between the LC-LR and MLC groups. 
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social care data to fully reflect all the expenditure for dementia patients. Concurrent presence of morbidities results in more 

substantial changes in the probability of membership in the HC-LR group. We also demonstrate that conditions such as 

cancer have a large impact on the shape of group trajectories. 

Our results illustrate the complex dynamics between ageing, morbidity, and TTD and contribute to the discussion about 

their relative importance. The time variables in the specifications of trajectory groups capture TTD. As death approaches, ex- 

penditures increase for all groups but the effect of TTD varies significantly across groups as shown by the distinct trajectory 

shapes. Our results also suggest that the trajectory groups differ with regard to the morbidity profiles, which confirms that 

the importance of TTD in determining expenditures is closely related to morbidity. 

Healthy ageing hypotheses play an important role in explaining heterogeneity in health care expenditures along with 

age, morbidity and time to death. The expansion of morbidities hypothesis states that medical progress and improvements 

in socioeconomic conditions increase survival probabilities but that the impact on the incidence and onset of chronic con- 

ditions is limited. As a result, extending life will result in more years lived in ill health, which is consistent with persistent 

cost trajectories. On the other hand, the compression of morbidities hypothesis assumes that medical progress increases life 

expectancy but at the same time, it postpones the onset of serious chronic conditions by a larger number of years. This 

is consistent with cost trajectories where high expenditures emerge close to death. At the population level, the trajectory 

of health expenditures depends on which healthy ageing hypothesis holds true. Over time and as life expectancy increases, 

the health cost trajectory of the population may remain unchanged (dynamic equilibrium), or change (compression or ex- 

pansion of morbidities hypothesis). While this is not testable within our analytical framework, our results suggest that the 

population can be divided in group of patients whose cost trajectories resemble those that are consistent with the com- 

pression of morbidities hypothesis (for example, low cost late risers) and other groups whose cost trajectories are similar 

to those implied by the expansion of morbidities hypothesis (moderate low cost). Other profile groups are more nuanced in 

supporting one of the two hypotheses over the other. The relative proportions of individuals within profiles supportive of a 

compression or expansion of morbidity will have profound consequences for long-term projections of health care needs and 

associated expenditure growth. 

In addition to age, TTD, morbidities, and demographics that are taken into account in our empirical model, non- 

demographic and non-health related drivers may also be significant determinants of health care expenditures. For instance, 

Laudicella et al. (2020) found that technological progress and changes in medical practice can explain about 60% of the in- 

crement in health care expenditure in Denmark over a period of roughly 10 years. However, we expect that their role should 

be weaker over the shorter period of 3 years. Unobserved characteristics such as physician beliefs and patient preferences 

could also explain membership to specific trajectories but likely negligible impact on the shape of trajectories. Conceptually, 

the predictors of trajectory group membership are time stable and do not carry information about the specific form of the 

trajectory over time. 

The identification of distinct expenditure profiles at EoL raises the possibility of the better targeting of individuals (or 

their trajectory groups) that may be more amenable to efficiency gains. The majority of the decedents in our sample exhibit 

profiles that are best characterised by either high cost with late rise, or medium-high costs with late rise. Unsurprisingly, 

the occurrence of multiple comorbidities raises the risk of membership to these profile groups. Such patients are known 

to have greater contact with health services ( Marengoni et al., 2011 ), and are increasingly relevant in explaining the rise in 

expenditure for admitted care services ( Aragon and Rice, 2021 ). 

A research focus on multimorbidity has gained much traction ( Whitty et al., 2020 ). Related to this is a need to classify 

multiple comorbidity into useful clusters of conditions that are meaningful in terms of their health care resources implica- 

tions. Our research strengthens claims that a productive avenue for research is to consider clusters of conditions defined not 

on population prevalence but on the costs they generate in care setting ( Stokes et al., 2021 ). 

When considering potential areas for expenditure savings, EoL care is an obvious target due to the additional costs this 

often entails. It is important, however, to recognise heterogeneity in EoL expenditure and how different requirements for 

care lead to different expenditure trajectories in the run-up to death. Identifying and understanding health care expenditure 

patterns in the years preceding death enables policy makers to develop better strategies to mitigate costs without compro- 

mising EoL care quality. For example, policies to achieve cost savings in the treatment of chronic conditions associated with 

persistent use of care, may free resources that can be used to support high quality terminal care (e.g palliative care) during 

the last few months of life. Such strategies will not only be ethically acceptable but will also represent an efficient use of 

resources. 
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Appendix A 

A1. Costing health care activity 

A1.1. Primary care activity 

For each individual we identified primary care activity since 36 months before death from CPRD data. We used Read 

codes to identify three types of primary care activity: consultations, drugs prescribed, and diagnostic tests. 

Consultations We considered multiple consultations in a day for a patient to a single staff member as duplicates, but 

allowed for consultations to different staff members on the same day. We costed each consultation as the product of the 

consultation duration times the cost per minute of consultation. 

The CPRD visit duration variable is based on the time that a patient’s electronic record is open for use by a member 

of practice staff, and our use of this variable assumed that GPs and nurses would open the electronic file when they were 

about to see the patient and close it at the end of the consultation. We capped the maximum duration at 120 min, assuming 

that this reflected a file being left open but without ongoing patient care. 

Table A.1 

Descriptive statistics. 

Variable N patients (%) 

Age at death 

60–69 (ref) 6423 13 

70–79 11,525 24 

70–89 18,545 39 

> = 90 11,591 24 

White 45,218 94 

Male 22,757 47 

IMD 

Quint 1 (ref) 9856 20 

Quint 2 10,753 22 

Quint 3 10,538 22 

Quint 4 9016 19 

Quint 5 7921 16 

Morbidities 

Asthma 7149 15 

Cancer 7907 16 

CHD 13,258 28 

CHF 6392 13 

CKD 14,231 30 

COPD 7946 17 

Cerebrovascular dis 8696 18 

Dementia 4447 9 

Diabetes 8976 19 

Hypertension 30,127 63 

Hypothyroidism 5135 11 

Peripheral artery dis 4717 10 

Region ∗

East (ref) 4243 9 

East Midlands 360 1 

London 5241 11 

North East 1168 2 

North West 8451 18 

South East 13,990 29 

South West 7187 15 

West Midlands 6360 13 

Yorkshire Humber 1084 2 

The table shows the number and percent- 

age of patients for each of the covariates. 
∗Region denotes the Strategic Health Author- 

ity for practices within England 
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Fig. A.1. Percentage of patients with positive costs by month and setting The figure shows the percentage of patients with positive cost for each health 

care setting and each of the 36 months prior to death. 

Fig. A.2. Average costs by month and setting: inpatient, drug and total The figure shows the average costs for each of the 36 months prior to death for 

inpatients, drug and total costs. 

Fig. A.3. Average costs by month and setting: outpatient, A&E, GP visits and tests The figure shows the average costs for each of the 36 months prior to 

death for outpatients, A&E, GP visits and diagnostic tests. 
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Table A.2 

Average monthly costs by trajectory group: Linear. 

Linear 

HC-LR MHC-LR MLC LC 

N 14,694 19,624 8298 5468 

Month 

1 458 235 155 63 

2 474 248 148 61 

3 490 244 149 61 

4 497 247 145 62 

5 519 235 145 59 

6 531 235 142 60 

7 533 235 144 61 

8 540 243 150 61 

9 571 249 141 60 

10 584 241 150 60 

11 573 254 145 60 

12 603 255 150 61 

13 611 259 151 61 

14 627 267 147 60 

15 652 266 150 62 

16 673 270 157 61 

17 706 279 156 63 

18 721 278 156 64 

19 747 295 156 65 

20 756 295 161 64 

21 802 298 164 63 

22 824 313 160 65 

23 864 314 166 65 

24 870 335 167 64 

25 944 348 172 67 

26 995 371 178 71 

27 1023 385 180 70 

28 1088 407 188 72 

29 1126 438 192 73 

30 1252 471 204 76 

31 1362 517 213 75 

32 1481 585 235 80 

33 1764 695 263 85 

34 2188 877 313 92 

35 2940 1321 426 106 

36 6363 3542 1249 246 

1 to 36 1049 454 207 72 

The table shows the average monthly costs for each 

trajectory group. Individuals are classified into tra- 

jectory groups based on the highest posterior proba- 

bility of group membership. Month 1 represents the 

beginning of the observation period for an individ- 

ual, that is 36 months prior to death. Month 36 is 

the month of death. 

Fig. A.4. Average cost by setting across conditions The figure shows the average costs for each health care setting by diagnostic condition. 
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Fig. A.5. Costs by setting across age groups The figure shows the average costs for each health care setting by age group. 

Fig. A.6. Mean Prediction Error. 
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Costs per minute of consultations conducted by doctors (e.g. salaried partner, senior partner, associate, locum) and by 

nurses (e.g. practice nurse, community nurse, midwife) were obtained from the Personal Social Services Research Unit 

(PSSRU) unit costs ( Curtis, 2014 ). 

The cost of £3.60 per minute of patient contact for GPs included travel and qualification costs but excluded direct care 

staff costs since we were separately accounting for these through counting nurse visits separately. The cost of £0.88 per 

minute of patient contact for practice nurses included qualification costs. 

Tests Utilisation volume of each test was taken from Read terms recorded in the Test section of the CPRD dataset. These 

were classified into groups that corresponded to the NHS Reference Costs categories using the classification proposed in 

Ride et al. (2020) . National average unit costs for diagnostic tests were taken from the NHS Reference Costs 9 ( Health, 2014 ). 

Prescriptions We costed all prescriptions included in the therapy section of the CPRD dataset. Prescription costs were 

taken from the Prescription Costs Analysis (PCA) published by NHS Digital. 10 PCA provides details of the net ingredient cost 

(NIC) of all prescriptions dispensed in the community in England listed by British National Formulary (BNF) therapeutic class 

( Committee, 2013 ). NIC is the price listed in the national Drug Tariff. It is the basic cost of the drug and does not include any 

contract prices or discounts, dispensing fees, or adjustment for income. We identified about 15 million drug prescriptions in 

CPRD for the population and period of interest. About 79% of them were matched with PCA cost files at subparagraph level 

(the most detailed hierarchy level). The remaining were matched at the most specific BNF level available: paragraph (9%), 

section (12%), chapter (0.1%). 

A1.2. Hospital activity 

Linked HES data were used to identify episodes of inpatient, outpatient, and A&E activity. These were costed via Health- 

care Resource Groups (HRGs) and the Reference Cost Grouper software for the relevant financial year. 

Inpatient activity (core, high cost, and long stay) All episodes of care were assigned to one of more than 20 0 0 core HRGs 

based on the clinical and demographic information of the patient. In the grouping process, procedures (OPCS codes) are 

ranked based on severity (5 up to 40). HRG allocation is determined by the procedure with the highest hierarchy value. If 

no procedure codes with hierarchy value 5 or more is recorded, the HRG is determined by the diagnosis code (ICD-10 code) 

with the highest value. 

Separate unbundled HRGs were assigned to episodes with high cost elements of treatment such as high cost procedures, 

chemotherapy, diagnostic imaging, and high cost drugs. 

HRGs may contain episodes with much higher length of stay than the average episode in the group. To deal with these 

long-stay outliers an upper trimming point was calculated by adding 1.5 times the inter-quartile range to the third quartile. 

Any day exceeding the upper trim point is reimbursed at the excess bed days rate. 

Costs of the core, unbundled and excess bed day activity were taken from the hospital reported Reference Costs (RC). All 

NHS hospitals report RCs for each HRG broken down by setting (eg. general surgery) and type of activity (day-case, elective, 

non-elective). As our research does not relate to the variation in costs across hospitals or settings, we aggregated RCs only 

by HRGs and type of activity. Unbundled costs were aggregated on the HRG level only. 

A&E and outpatient activity A&E activity was grouped similarly to inpatient activity with the exception that the clinical 

information needed for grouping comes from treatment and investigation codes rather than procedure and diagnosis codes. 

Costing HES outpatient activity differs in that RCs for non-procedural activity (outpatient activity for which no procedure 

is recorded) are separated into RCs for consultant led and non-consultant led activity. However, this separation of activity 

requires consultant codes, which were not available to us. Instead, we took a weighted average of consultant led and non- 

consultant led RCs for each known HRG, which we used to match to HES outpatient activity. 

9 Reference costs are the average unit costs to National Health Service trusts and NHS foundation trusts of providing defined services in a given financial 

year to NHS patients. 
10 https://digital.nhs.uk/data- and- information/publications/statistical/prescription- cost- analysis . 
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Table A.3 

Average monthly costs by trajectory group: GLM. 

GLM 

HC-LR MHC-LR MLC LC-LR 

N 17,348 16,389 4688 9659 

Month 

1 493 220 93 40 

2 527 212 91 35 

3 543 206 91 34 

4 565 192 89 34 

5 581 181 88 31 

6 594 178 87 29 

7 594 181 89 31 

8 617 176 87 30 

9 644 178 86 29 

10 654 174 86 29 

11 660 172 86 29 

12 683 176 88 29 

13 693 178 87 30 

14 716 176 85 30 

15 733 181 89 30 

16 754 186 88 31 

17 786 191 88 32 

18 790 198 91 34 

19 822 206 89 36 

20 828 209 90 38 

21 861 220 89 39 

22 886 227 91 43 

23 906 243 89 49 

24 916 261 91 52 

25 957 294 91 66 

26 994 321 97 84 

27 993 355 94 102 

28 1009 404 100 140 

29 1005 449 101 192 

30 1067 501 107 261 

31 1101 576 109 340 

32 1131 674 116 457 

33 1266 839 125 612 

34 1477 1080 137 879 

35 1870 1606 174 1414 

36 4006 4027 540 3801 

1 to 36 937 440 109 255 

The table shows the average monthly costs for each 

trajectory group. Individuals are classified into tra- 

jectory groups based on the highest posterior proba- 

bility of group membership. Month 1 represents the 

beginning of the observation period for an individ- 

ual, that is 36 months prior to death. Month 36 is 

the month of death. 
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Table A.4 

Average monthly costs by trajectory group: Lomax. 

Lomax 

HC-LR MHC-LR MLC-LR LC-LR 

N 9708 18,599 14,724 5053 

Month 

1 624 268 115 46 

2 639 283 116 42 

3 684 270 115 40 

4 703 263 121 42 

5 713 265 115 44 

6 728 266 115 42 

7 743 261 113 52 

8 745 275 117 45 

9 790 277 114 55 

10 804 267 128 45 

11 807 266 130 48 

12 840 279 126 48 

13 843 282 133 50 

14 856 284 141 66 

15 908 278 144 55 

16 915 285 154 74 

17 954 301 156 63 

18 965 294 170 71 

19 992 310 181 72 

20 1019 310 175 67 

21 1035 320 201 76 

22 1077 320 212 79 

23 1089 330 233 92 

24 1108 346 231 99 

25 1174 362 258 113 

26 1195 387 289 138 

27 1230 390 303 160 

28 1250 421 343 182 

29 1277 446 362 218 

30 1395 480 401 274 

31 1439 530 461 339 

32 1516 593 535 396 

33 1737 714 646 503 

34 1982 934 841 686 

35 2412 1352 1268 1188 

36 4554 3505 3350 3167 

1 to 36 1160 473 350 244 

The table shows the average monthly costs for each 

trajectory group. Individuals are classified into trajec- 

tory groups based on the highest posterior probability 

of group membership. Month 1 represents the begin- 

ning of the observation period for an individual, that 

is 36 months prior to death. Month 36 is the month 

of death. 
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Table A.5 

Trajectory group profiles: GLM. 

HC-LR MHC-LR MLC LC-LR 

Age at death 

60–69 (ref) 0.151 0.097 0.075 0.193 

70–79 0.270 0.234 0.167 0.231 

70–89 0.377 0.424 0.375 0.340 

> = 90 0.202 0.245 0.384 0.236 

White 0.967 0.965 0.880 0.879 

Male 0.499 0.475 0.351 0.483 

IMD 

Quint 1 (ref) 0.202 0.205 0.212 0.206 

Quint 2 0.221 0.223 0.226 0.228 

Quint 3 0.219 0.217 0.234 0.216 

Quint 4 0.186 0.190 0.174 0.193 

Quint 5 0.171 0.164 0.154 0.159 

Morbidities 

Asthma 0.175 0.180 0.128 0.059 

Cancer 0.214 0.174 0.106 0.087 

CHD 0.315 0.309 0.270 0.152 

CHF 0.158 0.149 0.138 0.059 

CKD 0.317 0.334 0.281 0.201 

COPD 0.198 0.206 0.134 0.053 

Cerebrovascular dis 0.189 0.201 0.236 0.104 

Dementia 0.063 0.088 0.272 0.066 

Diabetes 0.213 0.221 0.178 0.085 

Hypertension 0.648 0.681 0.632 0.492 

Hypothyroidism 0.112 0.118 0.133 0.065 

Peripheral artery dis 0.121 0.108 0.082 0.049 

Region 

East (ref) 0.090 0.087 0.084 0.089 

East Midlands 0.007 0.007 0.007 0.009 

London 0.124 0.104 0.090 0.100 

North East 0.027 0.024 0.020 0.022 

North West 0.184 0.179 0.158 0.165 

South East 0.265 0.295 0.321 0.318 

South West 0.148 0.150 0.174 0.140 

West Midlands 0.131 0.133 0.126 0.136 

Yorkshire Humber 0.024 0.022 0.019 0.022 

The table shows the prevalence of each of the individual charac- 

teristics across the four trajectory groups. For example, 49.9% of 

individuals in the HC-LR group are male, only 35.1% are male in 

the MLC group. 
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Table A.6 

Trajectory group profiles: Linear. 

HC-LR MHC-LR MLC LC 

Age at death 

60–69 (ref) 0.171 0.113 0.111 0.142 

70–79 0.297 0.224 0.213 0.182 

70–89 0.373 0.406 0.392 0.338 

> = 90 0.158 0.257 0.285 0.339 

White 0.965 0.965 0.947 0.776 

Male 0.519 0.471 0.451 0.392 

IMD 

Quint 1 (ref) 0.205 0.203 0.209 0.205 

Quint 2 0.218 0.225 0.230 0.226 

Quint 3 0.216 0.218 0.219 0.232 

Quint 4 0.189 0.190 0.182 0.184 

Quint 5 0.172 0.165 0.159 0.154 

Morbidities 

Asthma 0.177 0.150 0.135 0.091 

Cancer 0.207 0.164 0.141 0.085 

CHD 0.311 0.275 0.261 0.206 

CHF 0.153 0.134 0.118 0.100 

CKD 0.313 0.307 0.287 0.222 

COPD 0.195 0.174 0.146 0.084 

Cerebrovascular dis 0.174 0.183 0.184 0.188 

Dementia 0.039 0.081 0.121 0.234 

Diabetes 0.222 0.183 0.168 0.133 

Hypertension 0.653 0.634 0.611 0.552 

Hypothyroidism 0.110 0.108 0.101 0.102 

Peripheral artery dis 0.122 0.097 0.086 0.058 

Region 

East (ref) 0.094 0.087 0.082 0.089 

East Midlands 0.007 0.008 0.008 0.007 

London 0.133 0.103 0.085 0.102 

North East 0.025 0.026 0.021 0.021 

North West 0.179 0.181 0.174 0.150 

South East 0.248 0.298 0.331 0.322 

South West 0.150 0.144 0.154 0.161 

West Midlands 0.142 0.129 0.124 0.130 

Yorkshire Humber 0.022 0.025 0.021 0.019 

The table shows the prevalence of each of the individual charac- 

teristics across the four trajectory groups. For example, 51.9% of 

individuals in the HC-LR group are male, only 45.1% are male in 

the MLC group. 
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Table A.7 

Trajectory group profiles: Lomax. 

HC-LR MHC-LR MLC-LR LC-LR 

Age at death 

60–69 (ref) 0.167 0.092 0.116 0.273 

70–79 0.325 0.223 0.204 0.240 

70–89 0.381 0.426 0.371 0.289 

> = 90 0.127 0.258 0.309 0.198 

White 0.960 0.960 0.939 0.835 

Male 0.520 0.465 0.437 0.520 

IMD 

Quint 1 (ref) 0.206 0.205 0.207 0.198 

Quint 2 0.215 0.218 0.232 0.235 

Quint 3 0.213 0.222 0.222 0.213 

Quint 4 0.185 0.187 0.189 0.188 

Quint 5 0.180 0.168 0.150 0.166 

Morbidities 

Asthma 0.236 0.183 0.086 0.037 

Cancer 0.276 0.172 0.113 0.071 

CHD 0.365 0.323 0.228 0.073 

CHF 0.186 0.160 0.100 0.025 

CKD 0.355 0.335 0.272 0.109 

COPD 0.272 0.213 0.081 0.031 

Cerebrovascular dis 0.199 0.218 0.164 0.058 

Dementia 0.041 0.112 0.118 0.044 

Diabetes 0.293 0.221 0.126 0.034 

Hypertension 0.705 0.678 0.613 0.324 

Hypothyroidism 0.132 0.127 0.092 0.029 

Peripheral artery dis 0.145 0.113 0.074 0.025 

Region 

East (ref) 0.091 0.088 0.086 0.094 

East Midlands 0.008 0.007 0.008 0.007 

London 0.141 0.103 0.094 0.114 

North East 0.029 0.025 0.023 0.019 

North West 0.191 0.183 0.165 0.152 

South East 0.248 0.285 0.319 0.313 

South West 0.143 0.157 0.150 0.135 

West Midlands 0.126 0.132 0.133 0.142 

Yorkshire Humber 0.024 0.022 0.021 0.025 

The table shows the prevalence of each of the individual characteris- 

tics across the four trajectory groups. For example, 52% of individu- 

als in the HC-LR group are male, only 43.7% are male in the MLC-LR 

group. 
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Table A.8 

Estimates for trajectory group membership: Linear. 

HC-LR MLC LC 

Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Constant 2.241 ∗∗∗ (0.126) -0.744 ∗∗∗ (0.149) 0.317 ∗ (0.171) 

Age at death -0.034 ∗∗∗ (0.001) 0.005 ∗∗∗ (0.002) 0.008 ∗∗∗ (0.002) 

White 0.126 ∗∗ (0.062) -0.474 ∗∗∗ (0.065) -2.159 ∗∗∗ (0.054) 

Male 0.048 ∗∗ (0.024) -0.043 (0.028) -0.201 ∗∗∗ (0.035) 

IMD 

Quint 1 (ref) 

Quint 2 -0.065 ∗ (0.035) 0.004 (0.041) 0.006 (0.050) 

Quint 3 -0.055 (0.035) -0.001 (0.041) 0.081 (0.050) 

Quint 4 -0.110 ∗∗∗ (0.037) -0.034 (0.044) 0.024 (0.053) 

Quint 5 -0.097 ∗∗ (0.039) 0.008 (0.047) 0.031 (0.057) 

Morbidities 

Asthma 0.143 ∗∗∗ (0.033) -0.031 (0.042) -0.293 ∗∗∗ (0.057) 

Cancer 0.287 ∗∗∗ (0.029) -0.154 ∗∗∗ (0.038) -0.607 ∗∗∗ (0.055) 

CHD 0.125 ∗∗∗ (0.028) -0.001 (0.033) -0.094 ∗∗ (0.042) 

CHF 0.156 ∗∗∗ (0.035) -0.079 ∗ (0.044) -0.026 (0.056) 

CKD 0.090 ∗∗∗ (0.027) -0.079 ∗∗ (0.032) -0.338 ∗∗∗ (0.041) 

COPD 0.005 (0.032) -0.142 ∗∗∗ (0.041) -0.523 ∗∗∗ (0.058) 

Cerebrovascular dis 0.004 (0.031) -0.005 (0.036) 0.039 (0.043) 

Dementia -0.588 ∗∗∗ (0.053) 0.400 ∗∗∗ (0.045) 1.214 ∗∗∗ (0.045) 

Diabetes 0.133 ∗∗∗ (0.029) -0.051 (0.037) -0.277 ∗∗∗ (0.048) 

Hypertension 0.115 ∗∗∗ (0.026) -0.073 ∗∗ (0.030) -0.204 ∗∗∗ (0.035) 

Hypothyroidism 0.065 ∗ (0.037) -0.096 ∗∗ (0.045) -0.028 (0.054) 

Peripheral artery dis 0.173 ∗∗∗ (0.038) -0.036 (0.049) -0.174 ∗∗∗ (0.067) 

Region 

East (ref) 

East Midlands -0.148 (0.135) 0.095 (0.160) -0.005 (0.202) 

London 0.209 ∗∗∗ (0.050) -0.160 ∗∗ (0.065) -0.195 ∗∗ (0.076) 

North East -0.146 ∗ (0.081) -0.145 (0.102) -0.036 (0.123) 

North West -0.128 ∗∗∗ (0.047) 0.040 (0.057) -0.077 (0.070) 

South East -0.269 ∗∗∗ (0.044) 0.157 ∗∗∗ (0.052) 0.126 ∗∗ (0.062) 

South West 0.004 (0.048) 0.134 ∗∗ (0.058) 0.194 ∗∗∗ (0.069) 

West Midlands 0.017 (0.049) 0.017 (0.060) 0.053 (0.072) 

Yorkshire Humber -0.190 ∗∗ (0.084) -0.099 (0.103) -0.092 (0.127) 

The table shows the coefficients and standard errors for the effect covariates on trajectory group mem- 

bership. All estimates are contrasted against the baseline group of MHC-LR. ∗ denotes significance at 10% 

level, ∗∗ at the 5% level and ∗∗∗ at the 1% level. 
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Table A.9 

Estimates for trajectory group membership: Lomax. 

HC-LR MHC-LR MLC-LR 

Estimate Std. Error Estimate Std. Error Estimate Std. Error 

Constant -0.574 ∗∗∗ (0.199) -3.468 ∗∗∗ (0.180) -3.111 ∗∗∗ (0.177) 

Age at death -0.030 ∗∗∗ (0.002) 0.021 ∗∗∗ (0.002) 0.027 ∗∗∗ (0.002) 

White 1.541 ∗∗∗ (0.078) 1.440 ∗∗∗ (0.065) 0.986 ∗∗∗ (0.059) 

Male -0.089 ∗∗ (0.042) -0.122 ∗∗∗ (0.038) -0.170 ∗∗∗ (0.038) 

IMD 

Quint 1 (ref) 

Quint 2 -0.225 ∗∗∗ (0.061) -0.195 ∗∗∗ (0.056) -0.095 ∗ (0.055) 

Quint 3 -0.208 ∗∗∗ (0.063) -0.092 (0.057) -0.036 (0.057) 

Quint 4 -0.333 ∗∗∗ (0.065) -0.180 ∗∗∗ (0.059) -0.050 (0.059) 

Quint 5 -0.385 ∗∗∗ (0.069) -0.234 ∗∗∗ (0.063) -0.159 ∗∗ (0.063) 

Morbidities 

Asthma 1.566 ∗∗∗ (0.087) 1.352 ∗∗∗ (0.085) 0.736 ∗∗∗ (0.088) 

Cancer 1.993 ∗∗∗ (0.066) 1.288 ∗∗∗ (0.064) 0.673 ∗∗∗ (0.067) 

CHD 1.232 ∗∗∗ (0.069) 1.104 ∗∗∗ (0.066) 0.834 ∗∗∗ (0.066) 

CHF 1.274 ∗∗∗ (0.112) 1.105 ∗∗∗ (0.110) 0.820 ∗∗∗ (0.111) 

CKD 0.833 ∗∗∗ (0.060) 0.627 ∗∗∗ (0.057) 0.484 ∗∗∗ (0.057) 

COPD 2.307 ∗∗∗ (0.094) 2.104 ∗∗∗ (0.092) 1.060 ∗∗∗ (0.096) 

Cerebrovascular dis 1.033 ∗∗∗ (0.075) 1.023 ∗∗∗ (0.071) 0.709 ∗∗∗ (0.072) 

Dementia 0.285 ∗∗∗ (0.099) 1.079 ∗∗∗ (0.083) 1.014 ∗∗∗ (0.082) 

Diabetes 2.258 ∗∗∗ (0.094) 1.973 ∗∗∗ (0.092) 1.321 ∗∗∗ (0.094) 

Hypertension 1.172 ∗∗∗ (0.045) 1.006 ∗∗∗ (0.040) 0.858 ∗∗∗ (0.040) 

Hypothyroidism 1.546 ∗∗∗ (0.103) 1.409 ∗∗∗ (0.099) 1.057 ∗∗∗ (0.100) 

Peripheral artery dis 0.909 ∗∗∗ (0.107) 0.756 ∗∗∗ (0.104) 0.550 ∗∗∗ (0.106) 

Region 

East (ref) 

East Midlands 0.003 (0.243) -0.059 (0.225) 0.279 (0.216) 

London 0.383 ∗∗∗ (0.088) 0.032 (0.082) -0.056 (0.082) 

North East 0.385 ∗∗ (0.154) 0.281 ∗ (0.145) 0.314 ∗∗ (0.145) 

North West 0.163 ∗ (0.084) 0.185 ∗∗ (0.077) 0.192 ∗∗ (0.077) 

South East -0.196 ∗∗ (0.076) 0.001 (0.069) 0.132 ∗ (0.068) 

South West 0.138 (0.086) 0.204 ∗∗∗ (0.078) 0.164 ∗∗ (0.077) 

West Midlands -0.044 (0.086) 0.022 (0.078) 0.072 (0.077) 

Yorkshire Humber -0.109 (0.146) -0.123 (0.132) -0.080 (0.131) 

The table shows the coefficients and standard errors for the effect covariates on trajectory group mem- 

bership. All estimates are contrasted against the baseline group of LC. ∗ denotes significance at 10% level, 
∗∗ at the 5% level and ∗∗∗ at the 1% level. 

Table A.10 

Estimates for time-varying morbidities. 

Diabetes CKD Cancer 

Estimate Std. Error Estimate Std. Error Estimate Std. Error 

HC-LR 0.307 ∗∗∗ (0.006) 0.205 ∗∗∗ (0.005) 0.712 ∗∗∗ (0.006) 

MHC-LR 0.432 ∗∗∗ (0.006) 0.273 ∗∗∗ (0.005) 1.010 ∗∗∗ (0.006) 

MLC 0.476 ∗∗∗ (0.008) 0.262 ∗∗∗ (0.007) 1.152 ∗∗∗ (0.008) 

LC-LR 0.544 ∗∗∗ (0.009) 0.437 ∗∗∗ (0.007) 1.319 ∗∗∗ (0.007) 

The table shows the coefficients and standard errors for the effect of diabetes, chronic 

kidney disease and cancer when entered as time-varying covariates in the trajectory pro- 

files. 
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