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Abstract

We use the nuclear density functional theory to determine nuclear electric

quadrupole and magnetic dipole moments in all one-particle and one-hole

neighbours of eight doubly magic nuclei. We align angular momenta along

the intrinsic axial-symmetry axis with broken time-reversal symmetry, which

allows us to explore fully the self-consistent charge, spin, and current polarisa-

tion. Spectroscopic moments are determined for symmetry-restoredwave func-

tions and compared with available experimental data. We find that the obtained

polarisations do not call for using quadrupole- or dipole-moment operatorswith

effective charges or effective g-factors.

Keywords: nuclear DFT, mean field, magnetic moments, quadrupole moments,

symmetry restoration

(Some figures may appear in colour only in the online journal)

Nuclear electromagnetic moments provide essential information in our understanding of

nuclear structure. Observables such as electric quadrupole moments are highly sensitive to

collective nuclear phenomena [1, 2], while magnetic dipole moments offer sensitive probes
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to test our description of microscopic properties such as those of valence nucleons [3–8] and

the role of nuclear electroweak currents [9, 10]. Although great progress was achieved in the

description of electromagnetic properties of light nuclei [10] and experimental trends in cer-

tain isotopic chains, a unified and consistent description of nuclear electromagnetic properties

remains an open challenge for nuclear theory.

Traditionally, shell model calculations were successful in describing experimental trends of

electromagnetic moments [1, 3, 11–13]. However, these calculations require the use of effec-

tive nuclear charges and effective g-factors that are most often phenomenologically adjusted

to data and sometimes lead to marked disagreements in different regions of the nuclear chart

[4, 14–16]. The nuclear DFT calculations in even–even nuclei have demonstrated a good over-

all description of nuclear charge radii, see, e.g., references [17–20] and electric quadrupole

moments (in deformed nuclei BE2(2
+
1 → 0+1 ) transitions) [21, 22] across the nuclear chart. An

analogous global DFT description of the magnetic dipole moments [23–30] has not been fully

developed so far.

In this letter, we employ the nuclear DFT to address the challenge of describing the electric

and magnetic moments globally, that is, without adjusting interactions, coupling constants,

valence spaces, or effective charges/g-factors separately in different regions of the nuclear

chart. In particular, our work provides the first global adjustment of nuclear DFT’s time-odd

mean-field sector to magnetic dipole moments. To minimize the possible pairing or beyond-

mean-field effects, such as, e.g., the coupling to collective motion, we chose to look at the

simplest possible cases of one-particle and one-hole neighbours of the doubly magic nuclei.

In addition, to check if the data indicate a need for corrective terms, we used the simplest

one-body magnetic-moment operator. Here we note that the two-body-current extensions of

the Gamow–Teller transition operator were shown to bring important improvement to the

agreement with data [9, 31]. Establishing the baseline for including analogous corrections to

the magnetic-moment operator is, therefore, of paramount importance. The deformed DFT

approach is probably close to a spherical quasiparticle-phonon interaction method [32–38],

with an explicit coupling of spherical quasiparticles and phonons replaced by the use of

symmetry-restored deformed DFT configurations. However, a dedicated comparative analysis

of prospective links is not available yet.

In nuclear DFT, properties of odd nuclei can be analyzed in terms of the self-consistent

polarisation effects caused by the presence of the unpaired nucleon. Indeed, the non-zero

quadrupole moment of the odd nucleon induces deformation of the total mean field and thus

generates quadrupole moments of all remaining core nucleons. The latter enhance the defor-

mation of the mean field even more, which in turn influences the quadrupole moment of the

odd nucleon. In the self-consistent solution, these mutual polarisations are effectively summed

up to infinity, whereupon the final total electric quadrupole moment Q is generated [39].

In a similar way, non-zero spin and current distributions of the odd particle influence those of

all other nucleons; in the self-consistent solution they lead to a specific polarisation of the sys-

tem and give the total magnetic dipolemomentμ. All nucleons contribute to the total moments,

Q and μ, of the system, with their individual contributions depending on polarisation responses

to the deformed and polarisedmean fields. The broken-symmetrynuclear DFT used here opens

up a possibility of studying polarisation effects in full. We note that approaches that start from

unpolarised spherical states are bound to treat the polarisation effects perturbatively, see, e.g.,

references [11, 28, 35]. In this letter, we show that the inclusion of self-consistent DFT spin

and current polarisation effects removes the necessity of introducing an effective spin g-factor

from the description of nuclear magnetic dipole moments.

In this work, we determined the electric quadrupole moments Q and magnetic dipole

moments μ of 32 nuclei that are one-particle or one-hole neighbours of eight doubly magic
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nuclei: 16O, 40Ca, 48Ca, 56Ni, 78Ni, 100Sn, 132Sn, and 208Pb.We employed code hfodd (v3.07h)

[40] for three Skyrme functionals, UNEDF1 [41], SLy4 [42], and SkO′ [43]; for the Gogny

functional D1S [44]; and for the regularized functional N3LO (REG6d.190617) [45]. We used

the spherical basis of N0 = 16 shells.

We begun our analysis by selecting in doubly magic nuclei the spherical orbitals that were

closest to the Fermi energies, that is, the lowest particle or highest hole orbitals were selected in

odd-particle or odd-hole nuclei, respectively. As it turned out, this rule gave the same orbitals

irrespective of which of the five functionals were considered. In addition, this rule gave orbitals

corresponding to the ground-state spins and parities of odd nuclei, whenever they were exper-

imentally known. The exception was the I = 3
2

+
experimental ground state of 131Sn, whereas

the I = 11
2

−
state was used in the present study.

Next, relative to the doubly magic nuclei, configurations of odd-particle (odd-hole) nuclei

were fixed by occupying (emptying) deformed substates that originated from a given spher-

ical orbital and had the highest-positive (lowest-negative) value of Ω, where Ω denotes the

eigenvalue of the projection of the single-particle angular-momentum operator on the axial-

symmetry axis. The chosen single-particle occupations thus always corresponded to the max-

imally aligned total angular momenta, Ω = +I. Such occupations yielded the oblate (prolate)

self-consistent intrinsic shapes for odd-particle (odd-hole) I > 1
2
nuclei and vice versa for

I = 1
2
. For the configurations defined in this way, fully self-consistent [46, 47] unpaired solu-

tions were obtained for all odd nuclei considered in this work. The convergencewas stabilized

by fixing specific partitions of occupations among differentΩ blocks, as described in detail in

[40].

By occupying specific odd orbitals having good quantum numbersΩ, we aligned the angu-

lar momenta of odd unpaired nuclei along the axial-symmetry axis of a deformed nucleus. This

choice of occupations requires explicit breaking of the time-reversal symmetry in the intrin-

sic reference frame. As the direction of alignment with respect to the nuclear shape strongly

impacts the spin and current polarisation effects [48], this choice of occupations constitutes an

essential element of the DFT approach to magnetic moments [23, 24, 26].

The aligned configurations were strictly axial, which allowed us to determine the angular-

momentum-projected states |IM〉 [49] by employing a one-dimensional integration over the

Euler angle β only,

|IM〉 = NIM

∫ π

0

dβ dIMΩ(β) exp
(

−iβÎy
)

|Ω〉, (1)

where dIMΩ are the Wigner functions [50],M is the projection of the angular momentum on the

laboratory z-axis, Îy denotes the y-component of the angular-momentum operator, |Ω〉 denotes
the self-consistent deformed intrinsic state defined above, and NIM is a normalization factor.

Instead of relying on approximate relations between the intrinsic and spectroscopic nuclear

moments, we determined the standard magnetic μ and quadrupole Q spectroscopic moments

of the angular-momentum-projected states |IM〉 as [46]

μ =

√

4π

3
〈II|M̂10|II〉, Q =

√

16π

5
〈II|Q̂20|II〉, (2)

where M̂1ν and Q̂2ν are the νth magnetic components of the correspondingM1 and E2 electro-

magnetic operators [51], respectively. In this way, we could compare the calculated magnetic

and quadrupole moments directly with experimental data.

For the Skyrme functionals, one can separately adjust coupling constants in the time-odd

mean-field sector of the functional [52]. The impact of the time-odd mean-field sector of the

3
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Figure 1. Calculated electric quadrupole momentsQ, panel (a), compared with 15 exper-
imentally measured values (the inset shows values that are outside the area of the main
plot, as visualized by the dashed-line square drawn inside). Panel (b) shows analogous
results obtained for the magnetic dipole moments μ compared with 23 experimentally
measured values (the arrows mark the outlier cases discussed in the text). Full circles
(squares) show results obtained for N-odd (Z-odd) nuclei. Calculated values shown in
this figure were derived within the Bayesian model averaging (BMA) analysis. Apart
from one point, the corresponding theoretical error bars are always smaller than the
sizes of symbols.

Skyrme functional on time-even observables (masses, radii, etc), or single-particle energies

or spins and parities of ground states is small, and smaller than overall deviations of these

observables from data, see, e.g., [53]. Here we focus on studying the simplest terms in the

time-oddmean-field sector, which correspond to the spin–spin interactionsσ1 · σ2. Following

[54], we parameterize these terms by the standard isoscalar and isovector Landau parameters

g0 and g
′
0, respectively. Since variations of the isoscalar Landau parameter g0 do not change

the results, we fixed it at g0 = 0.4, which was the value recommended in [54].

An important aspect of this work was to consistently follow given configurations in func-

tion of the Landau parameter g′0. This was possible in all cases but for a few difficult ones

encountered for functional SkO′. In particular, in 101Sn, the converged solutions could not be

obtained at any value of g′0 and in
47K at g′0 > 1.7. This was caused by a strongmixing with the

neighboring deformed substates that had the same values ofΩ. In addition, converged solutions

obtained in 57Ni and 57Cu turned out to have unusually large deformations and thus became

incomparable to those obtained for the remaining four functionals studied here.

Theoretical uncertainties of the calculated magnetic moments were estimated using the

Bayesianmodel averaging (BMA) analysis [55]. In our implementationof the BMA, the unique

variable parameter was assumed to be the Landau parameter g′0, for which, based on references

[54, 56], we adopted a Gaussian prior distribution of mean 1.2 and of variance 0.5. Theoretical

BMA error bars shown below correspond to the posterior estimates of the uncertainties of the

g′0 optimum values obtained for Skyrme functionals UNEDF1 and SLy4 in 101Sn, 47K, 57Ni,

and 57Cu and for Skyrme functionals UNEDF1, SLy4, and SkO′ in all other nuclei.

Our study combines several aspects of the DFT approach to nuclear moments that were

never simultaneously considered so far. For example, previous studies determined the intrinsic

and not spectroscopic moments [23, 24, 26, 29, 30], used phenomenological description of the

core contributions [25, 28–30], or neglected time-reversal breaking [27, 29, 30] or deformation

[25, 28] in the intrinsic reference frame.

Before presenting details of our results, in figure 1 we show an overview of the comparison

with the presently available experimental data. We see that owing to the use of the whole
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unabridged single-particle phase space, nuclear functionals properly account for the charge

and spin polarisations without invoking effective charges or effective g-factors.

In tables 1 and 2, we collected all results obtained for electric quadrupole and magnetic

dipole moments, respectively. There we also showNilsson labels and orbitals corresponding to

the configurations used, experimental data along with the corresponding references to the orig-

inal publications or compilations thereof, and averages and RMS deviations of results obtained

for the five functionals used in this study. In table 2, we also show results obtained within the

BMA analysis.

As indicated above, we used the standard single-particlemagnetic-dipole-momentoperator,

µ̂ ≡ M̂1 = g
p
ℓ L̂p + gns Ŝn + gps Ŝp, (3)

where L̂p is the proton orbital angular-momentum operator and Ŝp (Ŝn) is the proton (neutron)

spin operator, and where the bare proton and neutron orbital and spin gyromagnetic factors

read

g
p

ℓ = μN, gns = −3.826μN, gps = +5.586μN. (4)

Since the total angular momentum Î =
∑

ν=n,p(L̂ν + Ŝν) is conserved, it is convenient to sub-

tract I μN from the spectroscopicmagnetic dipole moments of odd-Z nuclei while leaving those

of odd-N nuclei unchanged. In this way, we define the ‘spin’ magnetic dipole moments as

μS
odd−Z ≡〈µ̂〉 − I μN = gn′ℓ 〈L̂n〉+ gn′s 〈Ŝn〉+ gp′s 〈Ŝp〉, (5)

μS
odd−N ≡〈µ̂〉 =g

p
ℓ〈L̂p〉+ gns 〈Ŝn〉+ gps 〈Ŝp〉, (6)

where symbols 〈〉 denote the standard matrix elements that define spectroscopic moments (2),

and

gn′ℓ = −μN, gn′s = −4.826μN, gp′s = +4.586μN. (7)

The spin magnetic dipole momentsμS (5) and (6) can be trivially evaluated for experimental

and theoretical results. They allow for comparing odd-N and odd-Z nuclei on an equal footing

and in the same scale.Moreover, values ofμS obey a simple rule that defines their signs, namely,

those for an odd proton in a j = ℓ+ 1
2
configuration or for an odd neutron in a j = ℓ− 1

2

configuration are positive and otherwise, they are negative. Therefore, without any loss of

information, we can meaningfully plot and compare the absolute values |μS| only. In this way,
by plotting |μS| in figure 2 we can show and discuss our results in a much finer scale than that

used in the overview figure 1(b).

The main thrust of our study is in the dependence of the results on the isovector Landau

parameter g′0. This is what we show in figures 2 and 3 for the UNEDF1 spin magnetic dipole

moments |μS| and residuals μthe − μexp, respectively. The magnetic dipole moments obtained

for the 32 nuclei considered in this study allow for grouping them into three distinct sets that

illustrate themechanismof the spin polarisation induced by the isovector spin–spin interaction.

The first group (dashed lines in figure 2) contains eight lightest nuclei around 16O and 40Ca,

which are characterized by all spin–orbit partners located on the same side of the Fermi energy.

In these nuclei, irrespective of whether an odd proton or an odd neutron, or a hole or particle

state, or a high or low spin state are occupied, no tangible polarisation of the spin distribution is

obtained and no ensuing dependence of themagnetic dipolemoment on the isovector spin–spin

interaction is visible. As a result, in this group, all magnetic dipole moments stay quite rigidly

5
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Table 1. Experimental values of the electric quadrupole moments Q compared with those calculated for functionals UNEDF1, SLy4, SkO′, D1S,
and N3LO.

Electric quadrupole moment Q (b)

Nuclide Iπ [NnzΛ]K Orbital EXP References UNEDF1 SLy4 SkO′ D1S N3LO Average

17O 5
2

+
[202]5/2 1d5/2 −0.0256(2)a [57] −0.0108 −0.0087 −0.0086 −0.0085 −0.0098 −0.0093(9)

17F 5
2

+
[202]5/2 1d5/2 −0.076(4)a [57] −0.0712 −0.0721 −0.0720 −0.0730 −0.0691 −0.0715(13)

39Ca 3
2

+
[202]3/2 1d3/2 0.036(7) [57] 0.0075 0.0070 0.0070 0.0073 0.0072 0.0072(2)

41Ca 7
2

−
[303]7/2 1 f7/2 −0.0665(18) [57] −0.0323 −0.0270 −0.0270 −0.0263 −0.0288 −0.028(2)

39K 3
2

+
[202]3/2 1d3/2 0.0585(6) [57] 0.0546 0.0580 0.0565 0.0576 0.0555 0.0564(13)

41Sc 7
2

−
[303]7/2 1 f7/2 −0.145(3)a [57] −0.1199 −0.1255 −0.1218 −0.1266 −0.1211 −0.123(3)

47Ca 7
2

−
[303]7/2 1 f7/2 0.084(6) [4] 0.0460 0.0395 0.0441 0.0379 0.0415 0.042(3)

49Ca 3
2

−
[301]3/2 2p3/2 −0.036(3) [4] −0.0104 −0.0084 −0.0094 −0.0079 −0.0103 −0.0093(10)

49Sc 7
2

−
[303]7/2 1 f7/2 −0.159(8) [58] −0.1545 −0.1455 −0.1496 −0.1408 −0.1393 −0.146(6)

55Ni 7
2

−
[303]7/2 1 f7/2 0.1637 0.1486 0.1661 0.1274 0.1336 0.148(16)

57Ni 3
2

−
[301]3/2 2p3/2 −0.0685 −0.0511 −0.1622 −0.0434 −0.0518 −0.054(9)b

55Co 7
2

−
[303]7/2 1 f7/2 0.2254 0.2241 0.2371 0.2086 0.2091 0.221(11)

57Cu 3
2

−
[301]3/2 2p3/2 −0.1207 −0.1143 −0.1919 −0.1077 −0.1096 −0.113(5)b

77Ni 9
2

+
[404]9/2 1g9/2 0.1600 0.1305 0.1555 0.1197 0.1275 0.139(16)

79Ni 5
2

+
[402]5/2 2d5/2 −0.0797 −0.0601 −0.0825 −0.0513 −0.0581 −0.066(13)

77Co 7
2

−
[303]7/2 1 f7/2 0.2075 0.1847 0.2121 0.1874 0.1778 0.194(13)

79Cu 3
2

−
[301]3/2 2p3/2 −0.1033 −0.0962 −0.0853 −0.0940 −0.0910 −0.094(6)

99Sn 9
2

+
[404]9/2 1g9/2 0.1719 0.1628 0.1773 0.1507 0.1575 0.164(10)

101Sn 5
2

+
[402]5/2 2d5/2 −0.0927 −0.0842 −0.0788 −0.0920 −0.0870(6)b

99In 9
2

+
[404]9/2 1g9/2 0.2848 0.2935 0.3040 0.2865 0.2848 0.291(7)

(continued on next page)

6



J.
P
h
ys.

G
:
N
u
c
l.
P
a
rt.

P
h
ys.

4
9
(2
0
2
2
)
11
LT

01

Table 1. Continued.

Electric quadrupole moment Q (b)

Nuclide Iπ [NnzΛ]K Orbital EXP References UNEDF1 SLy4 SkO′ D1S N3LO Average

101Sb 7
2

+
[404]7/2 1g7/2 −0.2936 −0.2975 −0.2858 −0.2921 −0.2903 −0.292(4)

131Sn 11
2

−
[505]11/2 1h11/2 0.203(4) [59] 0.1737 0.1616 0.1780 0.1507 0.1596 0.165(10)

133Sn 7
2

−
[503]7/2 2 f7/2 −0.145(10) [13] −0.0919 −0.0845 −0.0979 −0.0815 −0.0941 −0.090(6)

131In 9
2

+
[404]9/2 1g9/2 0.31(1) [8] 0.2615 0.2664 0.2815 0.2712 0.2589 0.268(8)

133Sb 7
2

+
[404]7/2 1g7/2 −0.304(7) [16] −0.2549 −0.2566 −0.2503 −0.2609 −0.2508 −0.255(4)

209Pb 9
2

+
[604]9/2 2g9/2 −0.27(17) [57] −0.1514 −0.1450 −0.1348 −0.1325 −0.1510 −0.143(8)

209Bi 9
2

−
[505]9/2 1h9/2 −0.47(5)c [57, 60] −0.3710 −0.3736 −0.3661 −0.3835 −0.3643 −0.372(7)

aSign not measured; calculated sign was assigned.
bFunctional SkO′ excluded.
cAverage of −0.516(15) [57] and −0.418(6) [60] with the error bar reflecting uncertainties of the atomic theory.
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Table 2. Same as in table 1 but for the magnetic dipole moments μ.

Magnetic dipole moment μ (μN)

Nuclide Iπ [NnzΛ]K Orbital EXP References UNEDF1 SLy4 SkO′ D1S N3LO Average BMA

15O 1
2

−
[101]1/2 1p1/2 0.719 51(12)a [61] 0.6366 0.6372 0.6384 0.6369 0.6352 0.6369(10) 0.6375(8)

17O 5
2

+
[202]5/2 1d5/2 −1.893 79(9)a [61] −1.9081 −1.9092 −1.9090 −1.9098 −1.9091 −1.9090(6) −1.9087(5)

15N 1
2

−
[101]1/2 1p1/2 −0.283 0569(14)a [62] −0.2632 −0.2638 −0.2651 −0.2632 −0.2616 −0.2634(12) −0.2642(8)

17F 5
2

+
[202]5/2 1d5/2 4.7223(12)a [61] 4.7878 4.7890 4.7881 4.7895 4.7889 4.7887(6) 4.7882(6)

39Ca 3
2

+
[202]3/2 1d3/2 1.021 68(12) [61] 1.1465 1.1468 1.1476 1.1472 1.1469 1.1470(4) 1.1470(5)

41Ca 7
2

−
[303]7/2 1 f7/2 −1.5942(7) [61] −1.9088 −1.9099 −1.9098 −1.9098 −1.9098 −1.9096(4) −1.9096(4)

39K 3
2

+
[202]3/2 1d3/2 0.391 47(3) [61] 0.1259 0.1256 0.1249 0.1251 0.1255 0.1254(4) 0.1254(4)

41Sc 7
2

−
[303]7/2 1 f7/2 5.431(2)a [61] 5.7886 5.7897 5.7888 5.7896 5.7895 5.7892(5) 5.7890(5)

47Ca 7
2

−
[303]7/2 1 f7/2 −1.4064(11) [4] −1.4113 −1.3232 −1.2991 −1.4894 −1.4248 −1.39(7) −1.33(10)

49Ca 3
2

−
[301]3/2 2p3/2 −1.3799(8) [4] −1.6506 −1.6494 −1.6530 −1.7090 −1.6607 −1.66(2) −1.65(4)

47K 1
2

+
[220]1/2 2s1/2 1.933(9) [61] 2.2040 2.0786 2.2958 2.4801 2.5769 2.33(18) 2.13(7)b

49Sc 7
2

−
[303]7/2 1 f7/2 5.539(4) [58] 5.3409 5.4636 5.6621 5.6127 5.4734 5.51(11) 5.50(14)

55Ni 7
2

−
[303]7/2 1 f7/2 −0.98(3)a [63] −1.1009 −1.0923 −1.0309 −1.3596 −1.1638 −1.15(11) −1.06(13)

57Ni 3
2

−
[301]3/2 2p3/2 −0.7975(14)a [61] −1.3267 −1.4371 −0.4178 −1.5227 −1.4261 −1.43(7)b −1.40(8)b

55Co 7
2

−
[303]7/2 1 f7/2 4.822(3)a [61] 4.9296 4.8991 4.8016 5.1811 4.9969 4.96(13) 4.86(15)

57Cu 3
2

−
[301]3/2 2p3/2 3.1759 3.2968 2.0319 3.4081 3.2944 3.29(8)b 3.26(8)b

77Ni 9
2

+
[404]9/2 1g9/2 −1.2069 −1.1768 −1.1414 −1.4322 −1.2563 −1.24(10) −1.16(13)

79Ni 5
2

+
[402]5/2 2d5/2 −1.5128 −1.5542 −1.4924 −1.6529 −1.5754 −1.56(6) −1.51(8)

77Co 7
2

−
[303]7/2 1 f7/2 4.9185 4.9234 4.7569 5.1730 4.9936 4.95(13) 4.85(16)

79Cu 3
2

−
[301]3/2 2p3/2 3.2102 3.3391 3.3742 3.4565 3.3927 3.35(8) 3.31(8)

99Sn 9
2

+
[404]9/2 1g9/2 −1.2018 −1.1918 −1.1477 −1.4448 −1.2608 −1.25(10) −1.17(13)

(continued on next page)
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Table 2. Continued.

Magnetic dipole moment μ (μN)

Nuclide Iπ [NnzΛ]K Orbital EXP References UNEDF1 SLy4 SkO′ D1S N3LO Average BMA

101Sn 5
2

+
[402]5/2 2d5/2 −1.4674 −1.4968 −1.5824 −1.4956 −1.51(4)b −1.50(8)b

99In 9
2

+
[404]9/2 1g9/2 6.0398 6.0097 5.9342 6.2765 6.1021 6.07(12) 5.98(14)

101Sb 7
2

+
[404]7/2 1g7/2 2.2721 2.1716 2.1604 2.1313 2.1465 2.18(5) 2.20(8)

131Sn 11
2

−
[505]11/2 1h11/2 −1.267(1) [59] −1.2443 −1.2301 −1.2174 −1.4868 −1.3184 −1.30(10) −1.22(13)

133Sn 7
2

−
[503]7/2 2 f7/2 −1.410(1) [13] −1.5391 −1.5607 −1.5775 −1.6580 −1.5713 −1.58(4) −1.55(8)

131In 9
2

+
[404]9/2 1g9/2 6.312(14) [8] 6.0340 6.0133 5.9055 6.2650 6.0926 6.06(12) 5.97(15)

133Sb 7
2

+
[404]7/2 1g7/2 3.070(2) [16] 2.2813 2.1792 2.2088 2.1125 2.1379 2.18(6) 2.23(9)

207Pb 1
2

−
[501]1/2 3p1/2 0.5906(4) [64] 0.6059 0.6021 0.6129 0.6120 0.5972 0.606(6) 0.606(11)

209Pb 9
2

+
[604]9/2 2g9/2 −1.4735(16) [61] −1.5270 −1.5539 −1.6222 −1.6556 −1.5664 −1.59(5) −1.56(9)

207Tl 1
2

+
[400]1/2 3s1/2 1.876(5) [61] 2.5797 2.6036 2.6051 2.6475 2.6135 2.61(2) 2.59(4)

209Bi 9
2

−
[505]9/2 1h9/2 4.092(2) [65] 3.2065 3.1027 3.1249 3.0136 3.0522 3.10(7) 3.15(9)

aSign not measured; calculated sign was assigned.
bFunctional SkO′ excluded.
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Figure 2. Absolute values of the UNEDF1 spin magnetic dipole moments |μS|,
equations (5)–(6), calculated in function of the Landau parameter g′0 for N-odd–Z-even
(a) and Z-odd–N-even (b) nuclei. Dashed, solid, and dotted lines denote nuclei belonging
to the first, second, and third group discussed in the text, respectively. Values obtained for
17O and 17F are hidden behind those obtained for 41Ca and 41Sc, respectively. Doubled
ground-state spin and parity are given in the legends. Full and empty symbols denote
particle and hole states, respectively.

fixed at the Schmidt limits [66]. Corrections to the Schmidt values were already studied, see,

e.g., [67], with a moderate level of success in describing the experimental data.

The second group (solid lines in figures 2 and 3) contains nuclei around heavier doubly

magic nuclei, which are characterized by the Fermi energies separating pairs of the spin–orbit

partners from one another, and by a hole or a particle created in one of the spin–orbit part-

ners. In all such nuclei, irrespective of whether the nucleus contains an odd-proton or an

odd-neutron, the dependence of the magnetic dipole moments on the isovector spin–spin inter-

action is strong. Two exceptions from this rule are the cases of 47Ca and 49Sc, where only the

neutron pair of spin–orbit partners is available for polarisation and the response to the isovec-

tor spin–spin interaction is somewhat weaker. With increasing values of g′0, the calculated

magnetic dipole moments significantly depart from the Schmidt limits.

The third group (dotted lines in figures 2 and 3) contains nuclei in which particles or holes

are created in non-intruder states or their partners. Then, the spin polarisation of the spin–orbit

partners becomes weaker and, as a result, the dependence of the magnetic dipole moments on

the isovector spin–spin interaction weakens too. For 1
2

±
states, such dependence is particularly

weak.

In figures 3(a) and (b), we show nuclei whose magnetic dipole moments as functions of

g′0 can and cannot, respectively, be brought down to experimental data. In particular, 57Ni,
133Sb, 207Tl, and 209Bi are clear outliers, with the calculated magnetic dipole moments strongly

deviating from experiment, see discussion below.
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Figure 3. The UNEDF1 magnetic dipole moments μ calculated in function of the Lan-
dau parameter g′0 relative to the experimental values. Panels (a) and (b) show results that
do and do not cross the line of μthe = μexp, respectively. Solid and dotted lines denote
nuclei belonging to the second and third group discussed in the text, respectively. Sym-
bols × 1/3 denote outlier values multiplied by a factor of 1/3 to fit in the scale of the
figure.

Figure 4. RMS (a) and average (b) deviations δμ between the calculated and experi-
mental values of magnetic dipole moments.

For the other two Skyrme functionals considered in this work, SLy4 and SkO′, the pattern

of dependence of the magnetic dipole moments on the Landau parameter g′0 is fairly similar.

The optimum values of the Landau parameter g′0, for which the RMS deviations between the

calculated and measured magnetic dipole moments are smallest, see the full dots in figure 4(a),

are equal to g′0 = 1.0, 1.3, and 1.7 for SkO′, SLy4, and UNEDF1, respectively. Below we

present results calculated at these particular values of g′0. It is rewarding to see that within

the estimated uncertainties, the optimum values are not only compatible with one another but

also with the estimate derived in references [54, 56] from the analysis of the Gamow–Teller

resonances and β decays.

In figure 5we show the complete set of ourmagnetic dipolemoments calculated for theD1S,

N3LO, and UNEDF1 functionals and compared with the Schmidt values and experimental

11
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Figure 5. Absolute values of the spin magnetic dipole moments |μS|, equations (5)–(6),
calculated for the D1S, N3LO, and UNEDF1 functionals and compared with the Schmidt
values and experimental data.

data. The shaded bands displayed in the figure correspond to the averages and 1σ deviations

computed within the BMA for the three considered Skyrme functionals.

As one can see in figures 4 and 5, the non-local functionals D1S and N3LO, which have not

been explicitly adjusted to time-odd observables, are characterized by somewhat lower values

of the Landau parameter g′0 [68] and deliver values of the magnetic moments in between of

those for UNEDF1 and Schmidt values, most often away from data. This calls for performing

such adjustments of novel non-local functionals, even though parameters thereof cannot be

explicitly separated into two distinct classes characterizing the time-even and time-odd mean-

field sectors.
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Figure 6. Effective spin g-factors geff , equation (8), that would have been needed for
bringing the calculated UNEDF1 magnetic dipole moments μ to the 23 experimentally
measured values.

In many theoretical approaches determining nuclear magnetic dipole moments μ so far, the

bare spin gyromagnetic factors of equation (4) were multiplied by the so-called effective spin

g-factor geff , that is,

gns = −3.826μN × geff, gps = +5.586μN × geff. (8)

The DFT results obtained in this work do not support the necessity of using an effective spin g-

factor for the description of nuclear magnetic dipole moments. Indeed, in figure 6 we show val-

ues of geff that would have been needed for bringing the calculated UNEDF1 magnetic dipole

moments to measured values. One can clearly see that the average value of ḡeff = 0.98(10),
determined without the outlier cases identified in figures 1(b) and 3(b), is compatible with

geff = 1 and within ±20% covers all results.

Very small outlier values of geff � 0.7 rather call for a specific configuration-mixing expla-

nation (as already noted long ago [69, 70] and widely discussed thereafter) than for a global

modification of the single-particle magnetic-moment operator. We note here that deformed

and polarised DFT states automatically include admixtures of large classes of states that in the

spherical symmetry must be added explicitly. Nevertheless, mixing of different deformed and

polarised DFT configurations [71] is an option that still needs to be considered.

In conclusion, we showed that the nuclear DFT provides a correct global description of

nuclear electric quadrupole and magnetic dipole moments in one-particle and one-hole neigh-

bours of doubly magic nuclei. A fair agreement of calculated magnetic dipole moments with

data was achieved by adjusting one coupling constant in the time-odd mean-field sector of

the nuclear functional. An essential element of the agreement is the self-consistent spin and

current polarisation, operating in a whole single-particle phase space, which induces correct

dipole moments for bare spin gyromagnetic factors. Our study indicates that the use of effec-

tive g-factors in previous DFT approaches [26, 29, 30] may be unjustified and that the studies

neglecting the time-odd mean fields [27, 29, 30] may be missing an important element of the

description. The effective g-factors, commonly used in the valence-space approaches, like the

shell model, can probably be attributed to the missing single-particle phase space. For the
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quadrupolemoments, the analogous role played by the effective charges has been known since

long [39]; here we demonstrated it for the magnetic moments.

Our results provide a baseline for more extensive adjustments in the poorly-known time-

odd mean-field sector. Such adjustments may further reduce the scatter of calculated magnetic

dipole moments around the experimental values. This, in turn, may be the starting point for

the DFT deformed-configuration interaction calculations, especially regarding large outlier

deviations of the magnetic dipole moments currently obtained in 57Ni, 207Tl, 133Sb, and 209Bi.

Prospective global DFT adjustments and deformed-configuration interaction would open

up the possibility of quantifying the roles played by the meson-exchange and/or two-body cur-

rents in redefining the magnetic-moment operator. These are of marked importance for the

interpretation of modern high-precision experiments such as neutrino physics [31] or dark

matter searches [72]. Future measurements of electromagnetic moments of isotopes around

doubly magic nuclei will be important to test our theoretical predictions and further constrain

DFT developments.
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