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A physical wiring diagram for the human 
immune system

  

Jarrod Shilts1 ✉, Yannik Severin2, Francis Galaway1, Nicole Müller-Sienerth1, 

Zheng-Shan Chong1, Sophie Pritchard3, Sarah Teichmann3, Roser Vento-Tormo3, 

Berend Snijder2 & Gavin J. Wright1,4 ✉

The human immune system is composed of a distributed network of cells circulating 

throughout the body, which must dynamically form physical associations and 

communicate using interactions between their cell-surface proteomes1. Despite their 

therapeutic potential2, our map of these surface interactions remains incomplete3,4. 

Here, using a high-throughput surface receptor screening method, we systematically 

mapped the direct protein interactions across a recombinant library that 

encompasses most of the surface proteins that are detectable on human leukocytes. 

We independently validated and determined the biophysical parameters of each 

novel interaction, resulting in a high-confidence and quantitative view of the receptor 

wiring that connects human immune cells. By integrating our interactome with 

expression data, we identified trends in the dynamics of immune interactions and 

constructed a reductionist mathematical model that predicts cellular connectivity 

from basic principles. We also developed an interactive multi-tissue single-cell atlas 

that infers immune interactions throughout the body, revealing potential functional 

contexts for new interactions and hubs in multicellular networks. Finally, we 

combined targeted protein stimulation of human leukocytes with multiplex 

high-content microscopy to link our receptor interactions to functional roles, in 

terms of both modulating immune responses and maintaining normal patterns of 

intercellular associations. Together, our work provides a systematic perspective on 

the intercellular wiring of the human immune system that extends from systems-level 

principles of immune cell connectivity down to mechanistic characterization of 

individual receptors, which could offer opportunities for therapeutic intervention.

The human immune system must maintain the same coordination 
and cohesion as the body’s other homeostatic organ systems despite 
being composed of highly migratory and circulating cell types that are 
distributed throughout the body. Diverse arrays of cell-surface proteins 
organize immune cells into interconnected cellular communities, link-
ing cells through physical interactions that act both for signalling com-
munication and for structural adhesion5. The immune system has been 
described from one perspective as carefully coordinated networks of 
cell types6,7, where by extension it is these physical linkages that hold the 
network together3. Consequently, immune receptors regulate virtually 
all stages of cellular activation and are appreciated as critical mediators 
of a variety of homeostatic and pathological processes, which range 
from tumour surveillance, to autoimmunity, to infection control. For 
these reasons, along with their accessibility to systemically adminis-
tered medicines, immune surface proteins and their interactions are 
particularly attractive therapeutic targets2,8.

Although the interaction networks that involve secreted proteins 
have already been systematically catalogued9,10, in the immune system 

and more generally across existing protein interaction databases, 
there remains a substantial under-representation of the interac-
tions between cell-surface proteins11,12. Specialized methods have 
been developed that tackle individual challenges stemming from 
membrane-embedded surface proteins, such as their typically weak 
binding affinities13,14 and the low tractability of these proteins for 
many classic biochemical approaches15,16. These methods, however, 
generally lack the throughput to systematically characterize whole 
cell-surface proteomes, or have only had success for specific protein 
families rather than the full diverse spectrum of surface protein topolo-
gies and complexes17,18. Thus, how complete our understanding is of 
extracellular immune receptor interactions has remained unknown. 
Moreover, many immune receptors of clinical importance have been 
left as ‘orphans’, with their physiological ligands undiscovered despite 
in some cases decades of study19–22. Without a systematic picture of 
the physical interactions that link immune cells, any efforts at present 
to generate truly systems-level views of immune function will remain 
patchwork at best.
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Building a surface protein interactome

To enable a systematic survey of the surface protein interactions between 
immune cells at scales that approach the size of whole cell-surface pro-
teomes, we first developed an optimized method for testing binary inter-
actions of all possible pairings of recombinant surface proteins (Fig. 1a).  
Our method, the scalable arrayed multi-valent extracellular interaction 
screen (SAVEXIS), simultaneously addresses several key limitations of 
previous methods to make it possible to screen hundreds of thousands 
of interactions while consuming minute amounts of protein (Extended 

Data Fig. 1). By exploiting multimerization around streptavidin, both 
immobilized ‘baits’ and reporter-linked ‘preys’ for screening can be 
produced from a single construct instead of two, and the design is 
attuned for detecting even low-affinity interactions across the range 
of structural classes that cell-surface proteins span.

We assembled a detailed library that encompassed the full ectodo-
mains of cell-surface proteins detectable in a previous high-resolution 
proteomics survey of peripheral immune cells1 plus all CD-numbered 
proteins that were compatible with our recombinant expression 
platform (Supplementary Table 1). The design of each expression 
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Fig. 1 | A leukocyte receptor network by systematic protein interaction 

mapping. a, SAVEXIS enables efficient and high-throughput screening for 

protein binding interactions between recombinant extracellular domains.  

b, Schematic showing the diverse structural architectures of leukocyte surface 

proteins within the pan-leukocyte library of 630 proteins. The number of 

proteins from each class is noted above, and the recombinant expression 

strategy is illustrated below. c, Summarized matrix of protein–protein pairs  

for immune receptors with interactions either identified by screening or 

previously reported in the literature. The average signal intensity for a given 

bait–prey measurement orientation across the primary and secondary screens 

is indicated by the shaded intensity, and the colour indicates which 

interactions are novel. d, Screening successfully finds most previously 

reported interactions with minimal false positives. Receiver operating 

characteristic (ROC) curve for average measurements of protein–protein  

pairs against reference sets of expected positive and randomized negative 

interactions. AUC, area under the curve. e, Organized interaction network  

of immune receptor interactions. The colour indicates which interactions are 

novel, and the line thickness is proportional to the magnitude of evidence from 

the screening measurements.
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construct was tailored to accommodate the structural class of the 
protein, with six different bespoke designs for functionally express-
ing different receptor topologies and multicomponent complexes 
(Fig. 1b). This library of 630 different proteins or protein complexes 
(such as all known integrin combinations) was expressed in human 
cells, purified and quality-checked (Extended Data Fig. 2a,b and 
Supplementary Fig. 1). We tested all possible protein pairings in both 
bait–prey orientations for every protein expressed (Extended Data 
Fig. 2c and Supplementary Table 2). Positive interactions identified 
from this comprehensive primary screen were then re-tested in a 
secondary screen with independent protein preparations from a sepa-
rate cell strain, consisting of an all-versus-all matrix of 187 proteins 
(Extended Data Fig. 2d) togive a final matrix of reproducible inter-
actions (Fig. 1c). In benchmarks against a hand-curation of the pub-
lished literature (Supplementary Table 3), our screen independently 
captured a majority of all previously reported interactions at a false 
positive rate below 1 in 10,000 (Fig. 1d and Extended Data Fig. 3a,b). 
We identified 28 new interactions that were not in our literature cura-
tion, expanding the total number of known high-confidence interac-
tions in the human immune system by 20% (Fig. 1e). Notably, these 
include endogenous non-tumour ligands for the previously orphan 
immune checkpoint receptor VISTA, comprising the non-classical 
MHC molecules HLA-E and HLA-F. As these measurements constitute 
a highly systematic view of surface interactions for an exemplar cell 
system, our data also suggest answers to the general properties of 
surface receptor networks. In the set of immune receptors, 57% of 
binding pairs are unique, without either protein having another bind-
ing partner. Exclusivity is particularly common among proteins that 
are generally considered to have primarily signalling roles, whereas 
the largest interconnected group features integrins and other adhe-
sion molecules.

Quantifying total receptor engagement

To validate these discoveries, every interaction was assessed by 
orthogonal approaches. First, we tested protein binding to the com-
plementary receptor when displayed on a human cell surface following 
transfection with a cDNA that encodes the receptor (Fig. 2a). This was 
followed by two rounds of surface plasmon resonance (SPR) to char-
acterize direct binding (Fig. 2b and Supplementary Fig. 2). All of the 
top-ranked 28 interactions were supported by at least one additional 
method (Extended Data Fig. 3c). We realized that we could combine 
the binding affinities measured in our SPR data with measurements 
that we methodically extracted from the literature to assemble not 
only a systematic physical interaction network, but also a uniquely 
quantitative one (Fig. 2c and Extended Data Fig. 4). We integrated this 
quantitative receptor interaction network with proteomics expression 
in leukocytes to gain insight into the patterns of binding kinetics across 
the immune system (Fig. 2d and Supplementary Table 4). For example, 
in their contacts with antigen-presenting cells, we found that circulat-
ing T lymphocytes show a subtle preference for higher-affinity recep-
tors when pairing with B cells compared to dendritic cells (Extended 
Data Fig. 5a). We also established that the overall distribution of sur-
face interactions has affinities centred in the low micromolar range, 
although with a long tail of higher-affinity interactions (Extended Data 
Fig. 5b). In a test of previous theoretical predictions23,24 we found that 
higher expression levels do negatively correlate with binding strength, 
although only weakly (Extended Data Fig. 5c,d). Of note, we also found 
that immune activation is accompanied by a broad transition in cellular 
interaction strengths. Higher-affinity interactions predominate in an 
inflamed state, and these are replaced with more transient interac-
tions in a resting state, possibly to support the need for more dynamic 
responses when sensing potential threats (Fig. 2e). We confirmed this 
‘affinity switch’ in human leukocyte receptor preferences using an 
independent transcriptomic dataset (Extended Data Fig. 6).

Our quantitative wiring diagram, if truly systematic to the point 
of approaching completeness, should make it possible to derive a 
reductionist model that explains how circulating immune cells asso-
ciate with each other solely from receptor-binding mechanisms and 
physics-based formulas. We built a coarse yet principled mathematical 
model that integrates quantitative proteomics expression, binding 
kinetics and published cell parameters to summarize the contributions 
of individual protein interactions to a given cellular interaction (Fig. 2f 
and Supplementary Equations). Using equations based on the law of 
mass action, the model then computes how the overall probability of 
binding between two cell types emerges from the distinct spectrum 
of cell-surface receptors that connect them (Extended Data Fig. 7). 
Although greatly simplistic, our model could still infer the relative 
frequencies at which human immune cells physically interact with 
sufficient precision to be consistent with published empirical measure-
ments25 (Fig. 2g and Extended Data Fig. 7d).

Integrating multicellular networks

Although our library used circulating immune cells as a source, the 
immune system traverses a broad repertoire of organs, each of which 
may be key to understanding the biological role of an interaction. We 
therefore sought to contextualize the interactions of our network 
by creating an interactive atlas that charts where these receptor and 
ligand pairs have been detected across single-cell expression datasets 
of human tissues (Fig. 3a). Our integrated atlas is available at https://
www.sanger.ac.uk/tool/immune-interaction/immune-interaction and 
allows multiple kinds of analysis, which range from summarizing the 
overall cellular connectivity of different tissue immune populations to 
inferring which cell–cell pairs are capable of carrying out a particular 
receptor interaction (Fig. 3b and Extended Data Fig. 8a).

Through this systematic multi-organ atlas, we could determine 
whether immune receptor interactions proceed through shared struc-
tures or are distinct between tissues. We found a recurring motif in which 
myeloid-lineage cells act as hubs across several cellular interaction  
networks. Quantified across multiple primary and secondary lymphoid  
tissues, myeloid cells have consistently higher network centrality scores 
(Fig. 3c), despite expressing similar numbers of surface ligands to other 
cell types (Extended Data Fig. 8b). This suggests that resident myeloid 
cells may adapt their receptor repertoire to serve as central integra-
tors of local interactions in their tissue niche. Considering the breadth 
of pathological conditions that exhibit immune dysregulation, we  
reasoned that these same integrated approaches could also inform how 
the physical interactions that we catalogued between immune cells 
may change in disease. We incorporated paired diseased and reference 
samples where available in our atlas, which can be used to generate 
hypotheses on which interactions (cellular or molecular) may differen-
tially appear in diseased states. For example, we could see phagocyte 
populations shifting a large fraction of their total cellular contacts 
within the tumour microenvironment of kidney samples (Extended 
Data Fig. 8c), including upregulation of APLP2 and APP ligands that we 
characterized (Supplementary Table 6). Our novel receptor interac-
tions could also be integrated with known signalling pathways to infer 
cellular communication pathways that appear differentially active in 
diseased states26, which implicated the newly discovered JAML interac-
tion in potentially regulating anti-tumour immunity (Extended Data 
Fig. 8d). To investigate whether the interactions that we discovered in 
our network manifest themselves under physiological settings in the 
human body, we finally examined the spatial colocalization of receptors 
and ligands in a lymph-node spatial transcriptomics dataset. Although 
this reflects only a snapshot of these dynamic cellular populations, 
both our set of new interactions and the previously reported inter-
actions were significantly more likely to be spatially proximal than 
randomized networks (Fig. 3d). In follow-up experiments, we could 
verify that novel interacting pairs we identified, such as JAG1–VASN, are 

https://www.sanger.ac.uk/tool/immune-interaction/immune-interaction
https://www.sanger.ac.uk/tool/immune-interaction/immune-interaction
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distributed in bordering regions of the immune-cell-rich compartments 
of human lymph nodes (Fig. 3e). This confirms that these interactions 
have the potential to occur between immune cells in vivo (Extended  
Data Fig. 9a).

Assigning functions to binding targets

We finally asked whether the reagents and receptor interactions that 
we characterized could have a potential clinical use in modulating 
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the immune system. Soluble recombinant proteins with activity to 
bind specific immune cell receptors have shown promise as immuno-
therapies27,28. As a first step towards potential therapeutic applications 

and functional classifications on modes of action, we performed 
high-throughput cellular phenotyping assays on isolated human 
immune cells that were treated with recombinant forms of the proteins 
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identified in our molecular wiring map. To reflect the wide array of 
interactions and leukocyte subtypes included in our investigation, 
we adapted an approach for measuring leukocyte activation and cel-
lular interaction phenotypes by high-content microscopy29, which 
captures all major cell populations in a single multiplex experiment 
(Extended Data Fig. 9c,d). We incubated pools of human leukocytes 
in the presence of purified proteins from our recombinant surface 
receptor library, imaging at 4 and 24 h to measure changes in both 
cell–cell interactions and the proportions of activated cells elicited 
by each protein (Fig. 4a and Supplementary Fig. 3). Because the func-
tion of interactions may not be revealed unless in the proper context, 
we measured resting leukocytes and those stimulated by low levels of 
lipopolysaccharide (LPS). Proteins from our set of novel interactors 
elicited diverse responses, including generalized T cell activation by the 
formerly orphan30 TNFRSF21, as well as the adhesion proteins CHL1 and 

CD320 (along with CD58 as previously described31) facilitating natural 
killer (NK) cell activation (Fig. 4b and Extended Data Fig. 10a). These 
phenotypes were generally consistent with the cell-type expression of 
each protein’s newly identified receptor partners, suggesting direct 
effects as opposed to indirect mechanisms mediated by an intermediate 
leukocyte type within the mixed pools of cells (Extended Data Fig. 10b).

The perturbation experiments also provided high-dimensional 
data on changes in cellular connectivity triggered by infusing soluble 
receptor-binding proteins (Fig. 4c). The landscape of immune interac-
tions across these conditions provides a rare view into the functional 
roles of previously described and novel immune surface proteins. This 
includes large-scale shifts away from cellular contacts between T cell 
populations from CD58 along with increased monocyte contacts from 
SIRPA (consistent with our previous biological understanding32,33); an 
inhibition of interactions between monocyte–lymphocyte pairs from 
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SLITRK4; and several ligands that we implicated in adhesion such as 
NRCAM, CD93 and CDH2 converging on facilitating early B cell interac-
tions (Fig. 4d). In line with results reported previously for changes in 
the interactions of leukocytes after drug administration25,29, infusing 
our recombinant proteins triggered changes that generally fit within 
a distinct set of modules of action (Extended Data Fig. 10c). Our in 
silico model of immune connectivity allowed us to rationalize which 
molecular changes would have been likely to lead to the observed  
phenotypes. We compared these experimentally measured perturba-
tions to mathematical predictions as to which cell–cell pairs would have 
the greatest perturbations. Although as before there were some gaps 
in the accuracy of our model for particular conditions, nevertheless,  
for most stimuli we observed significantly greater magnitudes of  
connectivity perturbations in our experimental data for cell pairs that 
the model predicted would be most perturbed (Fig. 4e).

Discussion

The immune system is distinctive for being a distributed system.  
It is not fixed to a single localized organ in the body, but rather is made 
up of numerous specialized cell types that must adaptably organize 
their intercellular connections to respond to pathogens and other 
threats wherever they may appear. We provide a systematic and quan-
titative view of the cell-surface proteins that enable immune cells to 
dynamically wire their interactions. The receptor interactions that 
we report in our network each merit further individualized study to 
characterize their full roles in health and disease. Of particular note 
are our discovery of HLA-E and HLA-F (but probably not HLA-G) as 
endogenous non-tumour ligands for the immune checkpoint receptor 
VISTA; the ability of vasorin to act as a receptor for Jagged ligands; and 
immunoglobulin family receptors binding members of the amyloid 
precursor protein family. Notably, members of this same family of 
non-classical MHC class I molecules that includes HLA-E and HLA-F 
have previously been identified as key ligands for maintaining innate 
immune quiescence34, which our findings extend to raise the possibility 
that they may similarly act as regulators of adaptive immune quies-
cence through VISTA35. Our functional screening on blood immune cells 
further points to pathways worth greater consideration; for example, 
a role of SLITRK4 in lymphocyte responses. While we were preparing 
this study, independent groups have provided supporting evidence for 
several of the interactions that we characterized here17,18,36, including 
PVR as the ligand for the formerly orphan KIR2DL5A and CD146 as an 
adhesive ligand for CNTN1.

Because our physical wiring diagram encapsulates the diversity 
of surface protein architectures found across all major subsets of  
leukocytes, it can be integrated with publicly available expression data 
both qualitatively and quantitatively. The physical interaction landscape 
that we provide in our single-cell expression atlas offers an interactive 
platform for deriving insights out of our systematic receptor network. 
Although other studies have provided useful views of interactions that 
are differentially regulated in particular cell types37,38, we provide a sys-
tematized catalogue of all biological contexts in which an interaction 
is inferred to be possible, including complementary views directed 
at particular cell subsets or receptor proteins. This provides material 
for generating hypotheses about multicellular immune circuits. These 
same integrated datasets can resolve broader questions in the field. 
For example, we have shown that immune cell activation is accompa-
nied by broad shifts in the affinity profiles of cell-surface interactions, 
with rapid kinetics predominating during the early stages of immune 
responses (matching previous conceptual models for optimal antigen 
sampling39 and propagating signals to other cells40,41), which switchto 
higher-affinity contacts in an inflamed state to match the changing 
demands of a forceful inflammatory response. This raises parallels with 
findings of disease-associated variants that modulate the balance of 
adhesive receptor affinity42–44. We could also show that the previously 

theorized link between receptor affinity and abundance—in which low- 
affinity receptors are compensated for by their high abundance24—may 
indeed exist, but appears not to be sufficient to account for why certain 
receptors have evolved the binding kinetic rates we observe.

Out of this integrative approach, we could construct a proof-of- 
concept mathematical model that predicts the behaviour of collections 
of leukocytes from first principles. Although considerable study has 
been devoted to particular specialized cell-to-cell contacts such as the 
immunological synapse45, the overall connectivity of immune cells and 
their dynamic approaches and disengagements has been neglected. 
Our core model opens up considerable scope for dissecting in a prin-
cipled way the mechanisms by which immune cells directly associate. 
In addition, the discrepancies between the model compared to experi-
ments offer opportunities for refining our mechanistic understanding 
of cell–cell interactions by comparing how elaborations to this core 
model further improve prediction accuracy.

More broadly, the integrated approaches that we pioneered here 
for disentangling the immune system provide a framework for future 
systematic investigations. Using our high-throughput biochemical 
method for interaction screening (SAVEXIS) and the strategies that we 
describe here to characterize interactions by combinations of multiplex 
cellular assays and genomics datasets, a range of other cellular com-
munities in the human body could similarly be quantitatively mapped. 
To our knowledge, our study is among the first to systematically map 
and model how the collective actions of individual receptor molecules 
through physical laws could explain and predict cellular connectivity 
on a scale as large as the circulating immune system. Our analysis and 
the methods that we developed provide a template for future studies 
looking at physical cell wiring networks in detail. From these combined 
approaches, we may finally begin to disentangle cellular circuits in 
immunity and beyond, bridging from individual protein molecules 
to multicellular behaviour.
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Methods

Culture and transfection of HEK293 cells

Human embryonic kidney 293 (HEK293) cells were maintained in sus-
pension culture with Freestyle medium (Gibco 12338018) supplemented 
by 1% heat-inactivated fetal bovine serum (Sigma F2442) at 37 °C, 5% 
carbon dioxide and 70% humidity as previously described46. For all 
transient transfections, cells were seeded 24 h before transfection at a 
density of 2.5  × 105 cells per ml, then transfected with 0.5 μg DNA per ml 
cells as previously described46. Protein expression was done in vented 
conical flasks (Corning) ranging from 30 ml cells for the primary screen 
to 100 ml cells for other applications. Transfections for cell-binding 
assays were typically done in a volume of 1 ml cells in 96-well deep plates 
(Corning 3960). Where expressed proteins were to be enzymatically 
biotinylated, the culture medium was supplemented with d-biotin 
(Sigma B4501) to 100 μM and a plasmid encoding secreted BirA bio-
tin ligase was co-transfected at 30 ng per ml cells47. Transfections for 
protein complexes such as integrins were done using equimolar ratios 
of plasmids encoding both chains, except for HLA-related complexes 
for which only 10% of the total plasmid encoded β2 microglobulin. For 
most experiments, the EBNA1-containing HEK293-E cell line was used, 
except for proteins produced for the secondary binding screen, which 
were expressed in the serum-free modified HEK293-6E line48. Both cell 
lines were provided by Y. Durocher. Cell lines were regularly tested for 
mycoplasma (Surrey Diagnostics) and found to be negative.

Purification of recombinant proteins

After transfected cells were incubated for times ranging from 90 to 
120 h, they were centrifuged at 2,000g for 20 min. Supernatants were 
filtered through 0.22-μm filters and purified by nickel-ion affinity chro-
matography, with the exact procedure differing slightly by the intended 
downstream experiment. Proteins for high-throughput interaction 
screening were purified using His MultiTrap plates (GE Healthcare 
28-4009-89) via a previously described 96-position pneumatic press49. 
Each supernatant was supplemented to a final imidazole concentration 
of 16 mM and an NaCl concentration of 250 mM before purification, and 
the plates were prepared by rinsing with 500 μl pure water and washing 
twice with 500 μl 20 mM imidazole phosphate buffer following the 
manufacturer’s instructions. Once all samples had loaded, plates were 
washed again twice with 500 μl 20 mM imidazole phosphate buffer 
and eluted with 200 μl 200 mM imidazole phosphate buffer. Proteins 
for the secondary interaction screen and SPR were purified using an 
ÄKTA Pure automated chromatography instrument (GE Healthcare) 
loaded with 1 ml HisTrap HP columns (GE Healthcare) as previously 
described50. Proteins for cell-based experiments were manually purified 
with HisPur Ni-NTA resin (Thermo Fisher Scientific 88221). Resins were 
pre-washed twice in 20 mM imidazole phosphate buffer, then resus-
pended in supernatant supplemented with 1 mM imidazole. The slurry 
was incubated rotating overnight at 4 °C, before two further washes in 
20 mM imidazole phosphate buffer and finally eluted in 200 mM imi-
dazole phosphate buffer. After initial purifications, proteins intended 
for use in immune cell assays were dialysed against phosphate-buffered 
saline overnight at 4 °C using a 12–14-kDa molecular mass cut-off D-tube 
dialyser (Millipore 71505). Proteins intended for use as SPR analytes 
were further resolved by gel filtration with an ÄKTA Express machine on 
a Superdex 200 Increase 10/300 GL size-exclusion column (GE Health-
care) to remove any aggregated protein that may interfere with kinetic 
measurements. To avoid precipitation on the column, analyte samples 
were pre-dialysed in HBS-EP buffer (GE Healthcare BR100669). All pro-
teins were stored at 4 °C until use.

Protein gel electrophoresis

Samples were denatured in lithium dodecyl sulfate (NuPAGE NP0007) 
and dithiothreitol (NuPAGE NP0004) to a total volume of 10 μl before 
heating at 70 °C for 10 min. Samples were resolved on Bis-Tris 4–12% 

polyacrylamide gradient SDS–PAGE gels (NuPAGE NP0329) at 200 V 
for 50 min in MOPS buffer (NuPAGE NP0001). As a marker, 4 μl of 
pre-stained SeeBlue Plus2 protein standard (Invitrogen LC5925) 
was added to each gel. For Coomassie staining of total protein, gels 
were briefly rinsed in water then incubated in brilliant blue G-250 dye 
(Abcam ab119211) over 24–36 h. Before imaging under visible light, 
gels were briefly rinsed twice in water. For immunoblots, proteins were 
transferred to a methanol-activated PVDF membrane (GE Healthcare 
10600029) in transfer buffer (NuPAGE NP0006) over 60 min at 300 mA. 
Blots were briefly washed in HEPES buffered saline (HBS) with 0.1% (v/v) 
Tween-20 (Sigma P2287), blocked with 2% (m/v) bovine serum albu-
min (BSA; Sigma A9647), stained with 1:5,000 anti-His tag C terminus 
antibody conjugated to HRP (Invitrogen R931-25, clone 3D5) for 16 h 
at 4 °C, washed an additional three times, and exposed to chemilumi-
nescent substrate (Thermo Fisher Scientific PI34577). Images were 
developed on photographic film (GE Healthcare 28906835) for 45–90 s. 
To automate our comparisons of the molecular masses observed by 
electrophoresis to the computationally expected masses, we made a 
custom Python script that translates each expression construct using 
the Biopython library and identifies post-translational processing sites 
through automated queries to Uniprot.

Bradford concentration normalization

Standard curves of pure BSA (Pierce 23209) spanning from 1,200 to 
7 ng μl−1 were prepared in clear flat-bottom 96-well plates (Thermo 
Fisher Scientific 11349163). In general, 20 μl of each standard curve 
and purified protein sample was added to wells of the plate. All wells 
had 250 μl of Bradford reagent (Pierce 23236) added and were gently  
agitated for 60 s, then incubated for 30 min before measuring the 
absorbance at 595 nm with a Tecan Spark plate reader. All raw absorb-
ance signals had the average background of buffer-only controls sub-
tracted before further processing. The standard curve data were fit with 
fifth-order polynomials with the intercept fixed at (0,0). The curves 
were manually inspected for their fits and residuals before using the 
polynomial equation to calculate the concentration of each sample. 
These values were converted to molar concentrations by using the 
molecular masses calculated through the automated Python script, 
except excluding the added mass of glycan modifications.

ELISA tetramerization assays

Both as a check on Bradford-based molarity calculations and for deter-
mining how to form cell-staining tetramers, biotinylated recombinant 
proteins were quantified by a competitive ELISA. Dilution series of 
the target proteins were made in 96-well plates, then incubated with 
a known constant quantity of a conjugated avidin (SAV–HRP for bind-
ing assay calculations, SAV–PE for cell-binding cytometry reagents 
and neutravidin for immune cell perturbation assays). After at least 
45 min at 20 °C, these pre-incubated samples were transferred to a 
BSA-blocked streptavidin-coated 96-well plate (Greiner 655990). After 
another 45 min or longer incubation, plates were washed three times 
with HBS and 0.1% (v/v) Tween-20. Primary antibody, typically 1 μg ml−1 
of an OX68 monoclonal against the protein epitope tags51, was prepared 
in 100 μl 2% (m/v) BSA in HBS, incubated for 60 min and then washed 
three times. Secondary antibody of goat anti-mouse IgG conjugated 
to alkaline phosphatase (Sigma A3562) was similarly incubated at 
0.2 μg ml−1 for 30 min before another three washes were performed. 
Finally, 60 μl of 1.5 mg ml−1 p-nitrophenyl phosphate (Sigma P4744) in 
diethanolamine buffer was added and the absorbance at 405 nm was 
measured after 30–60 min by a Tecan Spark plate reader.

High-throughput SAVEXIS screening

The following is the procedure for the final SAVEXIS technique used 
for screening, as established by extensive optimization of each assay 
parameter following several iterations during its development. 
Streptavidin-coated 384-well plates (Greiner 781990) were washed once 



Article

briefly in 80 μl HBS with 0.1% Tween-20 (HBS-T), then blocked in 2% (m/v) 
BSA in HBS (10 mM HEPES, 1 mM MgCl2, 2 mM CaCl2, 5 mM KCl, 140 mM 
NaCl, pH 7.4) for at least 30 min at 20 °C. Purified bait proteins were 
diluted in 2% BSA in HBS such that each 50-μl well would contain 100 fem-
tomoles of biotinylated protein. All screening plates were arrayed from 
a set of stock source plates using a custom-programmed Biomek FXp 
robot (Beckman Coulter) and manually inspected to correct any wells 
missed. Baits were left to be captured for 16 h at 4 °C. In parallel, multi-
meric preys were assembled by mixing 6.25 fmol of streptavidin–HRP  
(Pierce 21130) with the calculated stoichiometric equivalent of 25 fmol 
recombinant protein. Preys were prepared in fresh 2% BSA in HBS for at 
least 30 min at 20 °C before applying to plates (or alternatively at least 
60 min at 4 °C). After removing baits from plates, they were washed 
three times in 50 μl HBS-T supplemented with 0.8 μM desthiobiotin  
(Sigma D1411) to gently block any unoccupied biotin-binding sites. 
To each well, 50 μl of prepared prey multimers were then added. 
After a 60-min incubation at 20 °C, two further 75-μl washes in HBS-T 
with desthiobiotin were followed by a final wash in 75 μl HBS. Immedi-
ately after, 30 μl of TMB chromogenic substrate (Millipore ES001) was 
dispensed and allowed to incubate at 20 °C for 40 min. To stabilize the 
signal at this standardized time point, the reaction was halted by adding 
an additional 30 μl of 0.3% (m/v) NaF (Sigma 201154). Plates were then 
measured on a Tecan Spark plate reader for absorbance at 650 nm. The 
identity of each plate and well was then unblinded by a custom R script 
that stitched all measurements together and matched their numeric 
barcodes to the proteins they correspond to. All washing steps were 
performed with multidrop dispenser units (for example, Thermo Fisher 
Scientific 5840300), and in between washes, plates were centrifuged at 
10g for 30 s upside-down with absorbent padding (Kimberly-Clark 7338) 
layered underneath to remove all trapped bubbles. As controls, every 
plate had at least one well with no bait added, one well with a tag-only 
bait construct and two wells of the Plasmodium falciparum P41 protein 
over which dilutions of the complementary protein P12 presented as a 
prey were manually added as positive controls for sensitivity52.

Cell-based binding assays

HEK293-E cells were transiently transfected with full-length human 
cDNA expression constructs (OriGene) for 42–46 h before staining. 
Ninety microlitres of cells were transferred to U-bottom 96-well plates 
(Greiner 650161), then washed on ice in 110 μl DPBS (HyClone SH30264). 
Cells were centrifuged at 300g for 3 min, the supernatant was removed, 
then resuspended in tetramers of biotinylated recombinant protein 
complexed with R-phycoerythrin-conjugated streptavidin (BioLeg-
end 405245). Typically, a series of four tetramer quantities were used, 
ranging from 30 pmol to 1 pmol in a volume of 100 μl DPBS (including 
around 1 mM calcium and magnesium ions) with 1% BSA. Cells were 
incubated with tetramers for 45 min on ice before washing with DPBS. 
Washing consisted of topping each well with an additional 150 μl DPBS, 
centrifuging, resuspending in 250 μl cold DPBS, then centrifuging 
again to remove supernatant. Cells were resuspended in 100 μl DPBS 
with 1% BSA before being analysed on a LSR Fortessa flow cytometer 
(BD). Recorded events were gated for size and to remove doublets by 
their forward scatter and side scatter profiles using FlowJo software 
(v.10.6.1) as previously described46. Generally, around 20,000 gated 
events were collected for each well condition.

Surface plasmon resonance

Both kinetic and equilibrium measurements were done on a Biacore 
8K SPR instrument as previously described53. Biotinylated protein 
ligands were immobilized on streptavidin-coated Series S CAP chips 
(GE Life Sciences 28920234) to approximately 200 response units or the 
closest achievable level. A tag-only negative control was immobilized 
to an approximately equimolar level. Within 24 h of being purified by 
size-exclusion chromatography, analytes were injected at 100 μl per 
minute to derive kinetic data, or at 20 μl per minute for equilibrium 

measurements. Experiments were performed at 37 °C in HBS-EP buffer 
(GE Healthcare BR100669). A dilution series of analytes were tested 
along with at least one concentration in duplicate to check for consist-
ency, plus a buffer-only cycle as a negative control. Response traces 
were analysed using the manufacturer’s evaluation software (v.1.1). 
Response units were reference-subtracted and sensorgram data was 
fit using default parameters.

Assembly of expression constructs

The full library of constructs for recombinant expression was assem-
bled by a combination of cloning and gene synthesis. For cloned 
sequences, cDNA templates (OriGene) were amplified by PCR with prim-
ers delineating the extracellular domain. Overhangs on the primers 
introduced NotI and AscI restriction sites, which enabled ligation into 
the appropriate vector backbone. All assembled inserts not produced 
de novo by synthesis were verified by Sanger sequencing. Constructs 
that were not cloned from existing DNA templates were ordered as syn-
thetic DNA (Twist Biosciences and Thermo Fisher Scientific GeneArt). 
Synthesized codons were optimized for human cell expression. Opti-
mal Kozak consensus nucleotide sequences were included in all con-
structs, which occasionally required mutating the second amino acid 
of the endogenous signal peptide to alanine. Plasmids were prepared 
to transfection-grade quantity using midiprep or maxiprep kits (for 
example, Invitrogen K210007).

Protein library design

The cell-surface proteomes of blood immune cells were defined by two 
sources. First, the full dataset of a previous high-resolution proteomics  
survey of 28 leukocyte populations in resting and activated states 
(for 44 cell types and states total, covering all major categories)1 was 
merged against a previously established manually curated list of every 
cell-surface protein in the human genome54,55. The cell-surface pro-
teome list was manually reviewed to verify that each protein does not 
have publications measuring its localization that contradict a presence 
on the cell surface. Every protein that was detected was included regard-
less of how low the expression counts were, with the exception of highly 
polymorphic proteins such as HLA-A. Second, we added all proteins 
with a designated CD number as of the 10th human cell differentiation 
molecule workshop56. The amino acid sequences and topologies57 of 
these proteins were manually inspected to determine the extracellular 
regions and in which structural class the protein belonged (out of type I  
single-pass/GPI-anchored, type II single-pass, multi-pass, and pro-
teins that function as obligate dimers such as integrins). Proteins that 
lacked a single contiguous extracellular region of at least 20 amino acids 
after signal peptide processing were excluded. Similarly, multi-pass 
proteins without a clear contiguous extracellular domain to express 
were excluded as incompatible with our recombinant expression sys-
tem. Constructs were produced as synthetic DNA sequences by Twist 
Biosciences or Thermo Fisher Scientific GeneArt, optimizing codons 
for human cell expression. As previously described, proteins were 
cloned into pTT3 expression vectors matching the intended topology49. 
Single-pass proteins with N-terminal extracellular domains retained 
their endogenous signal peptides in cases in which a well-annotated 
or SignalP-predicted signal peptide could be found. Otherwise, an 
exogenous signal peptide based on the mouse kappa antibody secre-
tion sequence was inserted. Proteins with N-terminal domains had tags 
attached to their C terminus, whereas the inverted design was used for 
type II C-terminal proteins58. All proteins were produced as fusions 
with an established recombinant linker comprising domains 3 and 4 
of rat CD4 in place of the original transmembrane sequence (termed 
rCD4)59, along with a biotin-acceptor site for covalent modification 
and a hexahistidine tag for purification purposes as described14. In the 
case of proteins that exist as dimeric complexes, including integrins, 
HLA-related molecules, CD1, CD8, GPIb, CD79 and CD94 family NK 
receptors, we relied on a previously determined design in which one 



chain would lack any tags, thus directing the purification of full com-
plexes, particularly in cases in which the tagged chain is not secreted 
on its own60. Proteins with an intrinsic multimerizing ability owing to 
intermolecular disulfide bonds, including the TNF-superfamily CD27 
and HVEM trimers or B7-family ICOS and CD28 dimers, were expressed 
with the appropriate cysteine residues intact and allowed to form func-
tional complexes after cell secretion.

Processing of data from the binding screen

The matrix of bait versus prey raw absorbance values from the SAVEXIS 
screen was processed through a two-way median polish. The two sepa-
rate phases of screening were processed separately then combined 
to remove per-phase batch effects. Median-polished signals for each 
protein pair were summed across the two bait–prey orientations (or 
doubled in the case of homophilic interactions), then all interactions 
that gave a signal of at least 1.0 were selected to be re-measured in the 
secondary screen, with the exception of proteins that gave a highly 
variable background signal in the primary screen. Median-polished 
signals from the secondary and primary screens were combined by 
a weighted sum that valued the lower-throughput secondary screen 
measurements three times more than the high-throughput primary 
screen measurements. Every protein that gave a clearly reproducible 
signal in at least one orientation (32 interactions total, identified using 
our ROC analysis) was then followed-up with validation assays. We 
excluded interactions with proteins that were highly promiscuous in the 
screen; that is, appearing more than 20 times in the top 1,000 ranked 
interaction pairs. Most of these have known mechanisms explaining 
their lack of specificity, such as being known lectins. Our list of proteins 
that frequently recur in binding assays may be useful in guiding the 
interpretation of future screen results, as we note that many of them 
(for example, CLEC receptors, certain CEACAMs, NRP1, IGF2R, FGFRs 
and LDLR) are frequently also reported to be binding partners in the 
context of other published studies.

Manual curation of literature interactions

Interactions involving proteins in our immune library were systemati-
cally compiled in a three-step process. First, every protein was checked 
across published reference manuals of immune surface molecules to 
see whether any interactions were claimed61,62. Second, for each pro-
tein, its name and applicable synonyms were searched in Google and 
PubMed using standardized search terms including <“protein name” 
AND (binding OR interaction OR affinity)> and <“protein name” AND 
(SPR OR kinetics)>. Finally, existing databases were evaluated, including 
CellphoneDB, IntAct, PCDq, BioGRID, OmniPath and other published 
lists63,64. Claims identified through these methods were manually veri-
fied by identifying the original publications behind each claim. Only 
interactions supported by citable experimental results were included. 
In the process, false positives in these databases were removed, such 
as common falsely claimed interactions based on mouse experiments 
that are demonstrated not to be conserved in humans, mistakes made 
by databases mapping protein names, issues arising from considering 
single genes instead of functional surface protein complexes, or out-
dated interaction claims that have since been rejected by a consensus 
of later studies. Wherever quantitative measurements of monomeric 
binding affinities were available, these were extracted from the original 
papers. In the process of this manual curation, other relevant results 
mentioned in the papers were also documented, including if an interac-
tion measurement gave a demonstrably negative result.

Benchmarking screen results

Processed binding signals from the arrayed screens were benchmarked 
against reference sets derived from the detailed manual curation of the 
literature. Positive reference sets were defined either as every interac-
tion with a claim in the literature, or more stringently as every claim with 
validation by either a quantitative method (for example, SPR, analytical 

ultracentrifugation or radiolabelling) or a co-crystal structure (for 
example, X-ray crystallography or cryogenic electron microscopy). 
Negative reference sets were either based on experimentally measured 
negative interactions, or by defining a random negative reference set as 
previously recommended11. ROC and precision-recall curves were calcu-
lated using the PRROC package in R. For these ROC and precision-recall 
curves, the performance of every possible threshold for converting the 
median-polished absorbance measurements from the screens into a 
binary classification of ‘interacting’ or ‘not interacting’ is evaluated 
against the respective benchmark. The area under the curve (AUC) is 
reported as an overall summary of screen performance. Only proteins 
with detectable evidence of recombinant expression were considered 
when calculating classification performance in the main figures.

Integration of expression data and binding matrices

Because our protein–protein interaction network largely represents 
molecular connections that would occur between cells, we integrated 
our interaction matrices identifying which cell-surface proteins bound 
each other with expression data identifying which cell-surface proteins 
were present on different cells. Expression data included proteomics 
from bulk-sorted immune cell types and single-cell RNA datasets. We 
iterated through all possible pairs of cell types in the expression dataset 
and all pairs of proteins with identified interactions in our binding data-
set between those cell-type pairs. From this, we created a master data 
key that lists all detected molecular interactions between all cell pairs. 
The mappings of gene identifiers to the Uniprot accessions used in the 
interaction network files were manually verified to ensure no errors 
or missed values. From the full listing of cell–cell interactions and the 
molecules mediating them, we could then perform quantitative or quali-
tative analyses by either using the expression values or binarized lists of 
detected interactions. For binarization, gene or protein expression matri-
ces were generally expressed in the form of percentages of replicates 
(for bulk datasets) or cells (for single-cell datasets) in which expression 
was detectable in that cell type. Binarization of expression then could be 
standardized by setting a minimum per cent threshold (that is, for most 
bulk datasets, expression detected in at least a majority of replicates; or 
for single-cell datasets, following a common precedent of thresholding at 
10% detection54,65). When comparing diseased to control tissue samples, 
this process would be repeated separately for the control and disease 
expression data, and then for each interaction whether it was detected 
according to these standards in one, both or neither condition could be 
determined. All integrations were performed in R.

Processing of single-cell RNA-sequencing data

Single-cell RNA-sequencing (RNA-seq) datasets were processed fol-
lowing a standard data-cleaning pipeline using the Scanpy package in 
Python (v.1.4.5)66. Cells with more than 10% of all reads coming from 
mitochondrial sequences were removed, as were cells with fewer than 
a minimum of 200 genes or more than a maximum of 3,000 genes. 
Genes that were detected in fewer than two cells were not considered. 
Cell-type labels taken from the original published studies were always 
retained when available. Cell types in the bone marrow dataset were 
manually annotated after Louvain clustering on the top 1,000 highly 
variable genes following a previously described pipeline67,68. Cell-type 
clusters with fewer than 10 total cells were not included in subsequent 
analyses. For Circos-style plots, the ShinyCircos package was used to 
display the integrated single-cell RNA and interaction matrix data. Link-
ages on the Circos-style plots are drawn where two cell types express 
an interacting cell-surface protein pair above a threshold requiring a 
minimum of 10% of single cells in a cell-type cluster to have at least one 
mRNA read detected for the surface protein. For visualization, ubiq-
uitous interactions are not displayed, but users can explore different 
visualization criteria on our interactive website. Signalling analysis was 
done using the NicheNet package in R (v.1.0.0) with the ligand–target 
matrix constructed off the immune receptor interactome (known plus 
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novel) described in this manuscript using all default settings for custom 
model construction with no parameter optimization26. Differential 
expression testing between diseased and paired reference tissue was 
done with the Seurat package (v.3.1.5)69 using a non-parametric Wilcoxon 
rank sum test. Genome-wide multiple testing correction was applied.

Immune activation differential expression

Cell types with proteomics measurements in both activated and resting 
states were used for differential expression calculations. The DESeq2 
package in R was used to model expression counts and compute Wald 
test statistics70. From these results, the set of differentially expressed 
cell-surface proteins upon immune activation were determined by 
setting a fold change threshold of greater than 2. Alternatively, we 
also compared using adjusted P value thresholds, which gave similar 
results (that is, Extended Data Fig. 6). Each protein was mapped to its 
measured binding affinity for the interaction(s) it participates in. For 
proteins with multiple interactions, this ambiguity was addressed by 
including the affinity of every binding interaction as separate points. 
These affinity values for each cell type were then grouped on the basis 
of whether their corresponding proteins were upregulated or down-
regulated upon immune activation. The affinities of upregulated and 
downregulated interactions were compared by Welch’s t-test.

Mathematical model based on cell-binding kinetics

Details of the kinetic model and derivations of equations can be found 
in the Supplementary Equations. For each blood immune cell type 
to be modelled, published parameters about its physical geometry, 
proportions and protein expression were compiled. When cell types 
were to be matched with experimental data containing less subtype 
resolution than the proteomics expression dataset, expression values 
were estimated as the weighted average of all of a cell type’s constituent  
subtypes, weighted by their measured proportions in blood (for exam-
ple, if total CD56+ NK cells were measured in the experiment, the ‘NK 
dim’ and ‘NK bright’ subtypes measured in the proteomics would be 
proportionally averaged in the model). Absolute protein counts per cell 
from the expression data were converted to average protein density per 
surface area by assuming that all protein is present on an approximately 
spherical cell surface. Per quantified interaction, a relative equilib-
rium density of bound protein molecules was calculated through the 
Michaelis–Menten equation71. To determine the relative connection 
affinities of different cell types, the sums of all interactions calculated 
were compared for different pairs of cells.

Binding-perturbation model using differential equations

Although the core kinetics model can calculate relative cellular affinities, 
by formulation it cannot on its own predict the outcomes of specific 
perturbations to proteins (for example, its predictions from removing 
a surface protein would all uniformly be decreases in binding, or predic-
tions from a strengthening in affinity would all be increases). Thus, when 
making perturbation predictions, the relative cellular affinities were 
passed as parameters to a system of differential equations based on the 
law of mass action. Specifically, all cell types were assumed to collide and 
form connections at a constant rate, and the dissociation rate for that 
cell–cell bond was inversely proportional to the relative affinity deter-
mined by the core kinetics model. As initial conditions, all cells were 
assumed to be unbound at frequencies that match literature-reported 
values for human blood. Numerical integration proceeded until equilib-
rium was reached. Calculations were performed using the PySB pack-
age in Python (v.1.11)72. Our initial perturbation studies have simulated 
removing particular surface proteins by setting the expression values 
for that protein to zero across all cell types.

Network centrality calculations

Counts of binarized interactions following integration of expression 
datasets with the interaction table were converted into a weighted 

undirected network graph using the igraph package in R (v.1.2.5). Eigen-
vector centralities were calculated for each cell type in the graph. Each 
tissue with a single-cell resolution dataset available was computed 
separately. To compare myeloid cell populations to other lineages, we 
performed two-sided Welch’s t-tests on the centrality metrics. P value 
corrections for the multiple tissues tested were done by the Benjamini–
Hochberg procedure. For these and all other box plots, the central box 
displays the 25th, 50th and 75th percentiles, with whiskers extending 
to 1.5 times the interquartile range.

Spatial transcriptomics analysis

Lymph-node spatial transcriptomic data were downloaded from 
10x Genomics and processed using a standard cleaning pipeline in 
Python with the Scanpy package. Measured spots on the array were 
constrained to have between 4,000 and 36,000 total transcript 
counts, with fewer than 20% of reads derived from mitochondrial 
sequences, and at least 2,000 different genes detected. Genes were 
constrained to be detected in at least five spots. A radius of 150 units 
on the spatial coordinates was empirically determined to encompass 
only the immediately connected neighbouring spots to a given spot’s 
centre, and used when determining neighbour relationships. Iterat-
ing through all protein pairs in the interaction network, spots were 
marked for whether they detectably expressed at least one count of 
either a single protein of the pair, both proteins or neither. The num-
ber of instances in which both proteins of an interacting pair were 
detected in physically connected spots (either directly adjacent spots 
or the same spot containing cells expressing both, owing to how the 
resolution of spots means that each spot on average contains more 
than one cell) was tabulated, as was the number of physically con-
nected spots in which both expressed only the same protein but not 
an interacting pair. To calculate colocalization scores for each pair of 
protein-coding genes in a receptor–ligand interaction, the fraction 
of pairings that are ‘interaction-capable’ (that is, having physically 
neighbouring expression of the receptor and ligand) was calculated 
over the entire lymph-node tissue section. To test our experimentally 
found interaction list against a null hypothesis of randomly paired 
cell-surface proteins, we took the same proteins as in our true inter-
action network and randomly permuted which were paired together. 
The colocalization scores from this permuted null distribution were 
compared against both the scores from our literature-curated interac-
tion list and our empirically discovered interactions. Statistical testing 
consisted first of an omnibus one-way ANOVA between these three 
sets of colocalization scores, followed by a post-hoc Tukey’s honestly 
significant difference test.

In situ hybridization of lymph nodes

Fresh, unfixed tissue samples were flash-frozen in OCT using 
dry-ice-cooled isopentane and morphology was checked by haema-
toxylin and eosin staining. For RNAScope, 10-μm-thick cryosections 
were cut onto SuperFrost Plus slides, fixed for 15 min with chilled 4% 
paraformaldehyde (PFA) followed by 90 min in room temperature in 
4% PFA, then dehydrated through an ethanol series (50%, 70%, 100% 
and 100% ethanol). Slides were then processed using the RNAScope 2.5 
LS multiplex fluorescent assay (ACD, Bio-Techne) on the Leica BOND 
RX system (Leica) with protease III treatment. Initially, RNAScope 
positive and negative control probes were tested on sections, before 
proceeding to probes of interest with fluorophores opal 520, opal 
570 and opal 650 at 1:1,000 concentration. All probes were previously 
established and are commercially available under the catalogue num-
bers 546188-C3 (JAG1), 845158-C1 (VASN), 491518-C4 (VISTA; also known 
as VSIR), 457368-C1 (HLA-E), 460048-C2 (PLXNA4), 418328-C1 (APP), 
442598-C1 (CNTN1), 601738-C3 (MCAM) and 601998-C4 (CD45; also 
known as PTPRC). These were then imaged at 20× magnification on 
a Perkin Elmer Opera Phenix High Content Screening System with 
water immersion.



Isolation of human PBMCs

Blood buffy coat from a healthy donor was obtained by the Blutspende 
Zurich, under a study protocol approved by the cantonal ethical com-
mittee Zurich (KEK Zurich, BASEC-Nr 2019-01579). To obtain PBMCs, 
the sample was diluted 1:1 in PBS (Gibco) and cells were isolated with a 
Histopaque-1077 density gradient (Sigma-Aldrich) according to the man-
ufacturer's instructions. Subsequently, cells at the interface were col-
lected, washed once with PBS and resuspended in RPMI 1640 + GlutaMax  
medium (Gibco) supplemented with 10% human serum (Chemie  
Brunschwig). Immune cells were seeded and cultured in CellCarrier 
384 Ultra, clear-bottom, tissue-culture-treated plates (PerkinElmer) 
at a density of 2 × 104 cells per well in 50 μl per well and incubated at 
37 °C and 5% CO2. Cell number and viability was determined by use of 
a Countess II Cell Counter (Thermo Fisher Scientific).

Leukocyte protein perturbation and fixation

Isolated leukocytes were incubated with purified recombinant proteins 
tetramerized around neutravidin (Thermo Fisher Scientific 31000) at 
doses of 80 pmol (1.6 μM) to 200 pmol (4 μM) per well. Additional nega-
tive controls of buffer-only, a tag-only tetramer and the elution material 
from the supernatant of mock-transfected cells were included. All proteins 
for which a novel interaction was identified and that could be sufficiently 
expressed to provide a 4 μM concentration were included, along with 
CD209, CD58, ICAM1 and SIRPA as previously characterized controls. 
Assay plates were created in a fully randomized layout and prepared by 
an Echo 555 Liquid Handler. Four assays were done with five replicates per 
condition per assay, including 4 h and 24 h time points with and without 
the addition of 1 pg μl−1 LPS. The assay was stopped by fixing and per-
meabilizing the cells with 20 μl per well of a solution containing 0.5% 
(w/v) formalin (Sigma-Aldrich), 0.05% (v/v) Triton X-100 (Sigma-Aldrich), 
10 mM sodium(meta)periodate (Sigma-Aldrich) and 75 mM l-lysine 
monohydrochloride (Sigma-Aldrich). After a 20-min incubation at room 
temperature, the fixative-containing medium was aspirated by use of a 
HydroSpeed plate washer (Tecan). The cells were then blocked (50 μl 
per well) with PBS supplemented with 5% fetal bovine serum (Gibco) and 
photobleached for 4 to 24 h at 4 °C to reduce background fluorescence 
by illuminating the fixed cells with conventional white light LED panels.

Immunostaining and imaging

For immunohistochemistry staining, all primary antibodies were 
diluted 1:300 in PBS with 6 μM DAPI (Sigma-Aldrich) for nuclear 
detection. Antibodies used were anti-CD3 Alexa Fluor 647 (BioLegend, 
Clone UCHT1), anti-CD4 FITC (BioLegend, clone SK3), anti-CD8 PE (BD 
Biosciences, clone SK1), anti-CD19 FITC (BioLegend, clone SJ25C1), 
anti-CD56 PE (Beckman Coulter, clone N901), anti-CD16 PE (BioLegend, 
clone 3G8), anti-CD14 Alexa Fluor 647 (BioLegend, clone HCD14) and 
anti-CD20 PE (BD Biosciences, clone 2H7). Per well, 20 μl of the anti-
body cocktail was added and incubated for 1 h at room temperature. 
For imaging, a PerkinElmer Opera Phenix automated spinning-disk 
confocal microscope was used and each well of a 348-well plate was 
imaged at 20× magnification with 5 × 5 non-overlapping images, cover-
ing the whole well surface. The images were taken sequentially from 
the bright-field (650–760 nm), DAPI/nuclear signal (435–480 nm), 
GFP signal (500–550 nm), PE signal (570–630 nm) and APC signal 
(650–760 nm) channels. Raw .tiff files were exported for analysis.

Image processing and quality filtering

Cell detection and single-cell image analysis was performed using Cell-
Profiler (v.2)73. Nuclear segmentation was performed by thresholding on 
DAPI intensity. Cellular outlines were estimated by a circular expansion 
from the outlines of the nucleus. In addition, a second and larger expan-
sion from the nuclei was performed to measure the local area around 
each single cell (local cellular background). Standard CellProfiler-based 
intensity, shape and texture features of the nucleus, cytoplasm and the 

local cell proximity were extracted for each measured channel. Raw 
fluorescent intensities were log10-transformed and normalized towards 
the local cellular background as previously described25.

Cell-type image classifier

An 8-class 71-layer deep convolutional neural network with an adapted 
ResNet architecture74 was implemented using 48 × 48 × 5 input images 
in MATLAB’s Neural Network Toolbox (v.R2020a). For all morphology 
classifiers (B cell, NK cell, T cell) a 2-class 39-layer deep convolutional 
neural network (CNN) with an adapted ResNet architecture was used. 
Input images of 48 × 48 × 3 were used, in which all images contained the 
DAPI and the bright-field channel whereas the third channel contained 
the respective channel with the lineage marker. In the case of dendritic 
cells, the absence of all other lineage markers was used. In all CNN clas-
sifications, 48 × 48 pixel sub-images around each nuclei centre were 
generated. Cells closer than 24 pixels to the border of an image were 
excluded from all classifications. Network training, evaluation and 
classification were performed as previously described29.

Image processing for cell interactions

For extracting cell–cell interactions from image data, a simplified ver-
sion of a previously published25 method was used. Cell–cell interaction 
analysis was conducted over all different image sites within the same 
well. Cells were scored as interacting if their nuclear centroids were 
within a Euclidean distance of 40 pixels. To calculate the interaction 
score of a cell with type A interacting with a cell of type B, we first cal-
culated specific interactions and total interactions per well. We define 
specific interactions as the total count of type B cells within the defined 
radius around a cell of type A. Total interactions are considered as the 
total count of all interacting cells in that well. To calculate the final 
interaction score, specific interactions were divided by the product 
of (the fraction of type A cells of all cells) × (the fraction of type B cells 
of all cells) × total interactions.

Pharmacoscopy data processing and analysis

For graphical displays, observed cell state and cell–cell interaction 
frequencies were first normalized against their respective controls. 
Recombinant protein conditions were normalized against an average of 
the control wells for each respective time point, dose and background 
immune activation. Protein controls consisted of a buffer-only mock 
treatment well, a well with carryover from purifying an empty transfec-
tion and a well stimulated with only the protein epitope tags. As previ-
ously described for pharmacoscopy experiments, normalizations were 
calculated as the observed value minus the control average, divided 
by the maximum of those two values to give a metric bounded from 
[−1, 1] with 0 representing no change relative to control. For statisti-
cal analysis, the raw measurements across all available control con-
ditions were compared against all replicates of each corresponding 
perturbation condition by Welch’s t-test. To adjust for multiple testing, 
the Benjamini–Hochberg test was used and a 10% false discovery rate 
threshold was set for delineating significant effects. These calculations 
are shown both for each individual dose applied, as well as when all 
doses of a given protein treatment were aggregated. The same overall 
analysis procedure was done for both the cell state frequencies and 
the cell–cell interaction datasets, primarily differing in which time 
point (24 h or 4 h, respectively) was chosen for focused statistical 
analyses. The non-classical CD16-positive monocyte population was 
omitted from all final plots as the extremely low numbers of these cells 
that were detected in each experiment led to inconsistent and often 
non-finite effect sizes (for example, changes from 0 cells found to 1 
cell found between condition and control).

Model comparison to microscopy interaction data

The cell types measured in the pharmacoscopy experiments were all 
incorporated into the system of differential equations in the model to 
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determine both baseline cell–cell interaction frequencies and to predict 
changes when single surface proteins were removed from the model. 
The model-calculated frequencies of cells in unbound and all possible 
interacting paired configurations were processed into interaction 
scores by following the same equations used to process the microscopy 
image data. Data from the 4-h time point with no background LPS stimu-
lation were used for all protein conditions. Because our recombinant 
proteins could either trigger or suppress a given receptor pathway, 
we compared the absolute magnitudes of the normalized interaction 
scores to quantify the extent of perturbation. For the final analyses, we 
restricted the set of proteins to compare to only those for which the 
model predicted that perturbing that protein would produce meaning-
ful changes in cell–cell interactions (defined as the model prediction 
maximum for a condition being no lower than one-fifth of the median 
perturbation prediction maximum across the full set of proteins for 
which we gathered experimental data). The top third of cell pairs that 
were predicted to have the greatest perturbation magnitude according 
to the model were contrasted with the remaining cell pairs that were 
predicted not to be strongly changed after perturbation. A one-sided 
t-test was then done to determine whether the observed changes in 
interaction score after the addition of recombinant proteins in our 
experiment for the cell pairs that were predicted by our model to be 
perturbed were significantly greater than the baseline interaction 
score changes of all other cell pairs that were not predicted to change. 
P values were adjusted using the Benjamini–Hochberg procedure.

Access to human tissue

Human lymph nodes were obtained from deceased transplant organ 
donors by the Cambridge Biorepository for Translational Medicine 
(CBTM) with informed consent from the donor families and approval 
from the NRES Committee of East of England – Cambridge South 
(15/EE/0152). This consent includes the generation of open-access 
genetic sequencing data and publication in open-access journals in 
line with Wellcome Trust policy. CBTM operates in accordance with 
the guidelines of the UK Human Tissue Authority. Blood samples from 
anonymized healthy donors were provided by the Blutspende Zurich, 
under a study protocol approved by the cantonal ethical committee 
Zurich (KEK Zurich, BASEC-Nr 2019-01579).

Reporting summary

Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability

The data files required to generate the figures and analyses in this paper 
are provided in the GitHub repository accompanying this manuscript: 
https://github.com/jshilts/shilts-et-al-2022-immunoreceptors.

Code availability

The custom code files used for this study are publicly available in the 
GitHub repository accompanying this manuscript: https://github.com/
jshilts/shilts-et-al-2022-immunoreceptors.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Developing SAVEXIS. a. Design of expression vectors 

and recombinant protein constructs for SAVEXIS screening of divergent 

architectural classes of cell-surface proteins. For heterodimers, the exact 

formulation of each chain will depend on the receptor subunit’s topology  

(e.g. using the Type I vector for integrins, and Type II for CD94/NKG2). b. 

Empirically gauging streptavidin multimerization stoichiometry by ELISA. 

Schematic of the procedure for measuring tetramerization around streptavidin 

by titrating soluble streptavidin (SAV) against a fixed concentration of 

biotinylated protein before transferring to a streptavidin-coated plate for an 

ELISA. The measured dilution at which signal ceases represents the optimal 

tetramerization stoichiometry. c. Calculated stoichiometric equivalence points 

of 6 example biotinylated proteins incubated with streptavidin. The 4:1 

stoichiometric equivalence point inferred mathematically based on molecular 

mass calculations is indicated on the x axis as “1”. A dashed line indicated the 

empirically measured median equivalence point. A set of 6 Danio rerio Jam 

proteins were measured, with the average indicated by a dashed line.  

d. Titrating prey concentrations identifies a common prey activity with 

optimal sensitivity. For 4 known zebrafish receptor–ligand interactions of 

varying affinity (colour shades, ordered by known binding affinity expressed 

as dissociation half-life), the ratio of raw absorbance signal for the specific 

interaction against non-specific interactions (y axis) is measured across prey 

concentrations (y axis). Error bars represent the standard error of the mean. 

n = 6 technical replicates. e. Applying soluble desthiobiotin greatly enhances 

the assay signal to noise ratio by sealing unoccupied biotin-binding sites. 

Measurements of a set of 3 example interactions compared without applying 

any sealing step in between bait and prey incubations (“Original”), applying 

biotinylated rCD4 tag at either IC50 or plate-saturation concentrations, or 

applying a molar equivalent of saturation with either biotin or desthiobiotin. 

The ratio between mean signal to noise is indicated above each condition. Error 

bars represent the standard error of the mean. n ≥ 5 independent wells.  

f. Immobilizing lower quantities of bait protein can reduce off-target signals. 

Example interaction assays with baits saturating each well (top) or baits at half-

maximal dilutions (bottom). A dilution series of prey is applied across each 

column. The top two rows are specific interactions (binding half-lives listed in 

green), and the bottom two are known non-interactors. g. Assay 

miniaturization into 384-well plates can retain and enhance performance. 

Different assay miniaturization strategies to adapt from 96-well format to 

384-well format are indicated along the x axis, including reducing by a half or a 

third all volumes and protein amounts proportionally (left two), or only 

reducing volumes while concentrating the samples so the total protein 

quantities applied are conserved (right two). The ratio between mean signal to 

noise is indicated above each condition. Error bars represent the standard 

error of the mean. n ≥ 12 independent wells. h. Representative screening 

example for human receptors. The appearance of the raw screening plate (left) 

is shown alongside absorbance values following median polish normalization 

(right). Bold borders indicate interactions that are expected based on 

literature publications. One protein, corresponding to a construct later found 

to be incorrectly labelled, is omitted. i. SAVEXIS consumes small enough 

quantities of protein that thousands of assays are possible from small input 

sizes. For a sample set corresponding to all measured proteins from the 

leukocyte surface receptor library, the amount of interaction tests that could 

be performed for each protein based on its expression yield was calculated. As 

a typical case illustration in which protein is purified from a 30 mL cell culture, 

the median number of interaction tests possible is indicated by a dashed line.



Extended Data Fig. 2 | Interaction screen quality controls testify to robust 

measurements. a. Recombinant proteins produced at scale match their 

expected molecular masses. Observed molecular masses from denaturing 

protein gel electrophoresis (x axis) are compared against computationally 

predicted molecular mass. Predictions were made by taking the known masses 

of each amino acid in the protein after processing of its signal peptide, with 

2.5 kDa added per predicted N-linked glycosylation site. Shading indicates the 

95% compatibility interval for the least-squares linear regression fit. Full 

images for all gel electrophoresis samples are provided in Supplementary 

Fig. 1. b. Quantitative protein concentration measurements by Bradford assay 

agree with qualitative estimates of protein concentration based on 

densitometry of Coomassie-stained protein gels. Measured concentration 

percentiles (y axis) are compared against discretized expression categories 

based on staining intensity (y axis and colour shade). c. Control wells included 

on every screening plate indicate high consistency across the primary 

interaction screen. Boxplots of plate measurements for negative control wells 

(blank baits and tag-only rCD4 baits), positive control wells (the known 

interaction between P. falciparum P12 and P41 at either a 1x or 3x dilution), and 

loading control wells (OX68 antibody) that capture prey proteins by 

recognizing their rCD4 tag. n = 1,262 wells per condition. d. Positive 

interactions from the primary screen were reproducible in a secondary screen 

with independently produced and measured proteins. For each protein–

protein pair measured, the processed signal in the primary screen (x axis) is 

correlated against the signal in the secondary screen (y axis). Pairs previously 

described as being interactors are denoted by red colouration.
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Extended Data Fig. 3 | Interactome validation summaries. a. Precision-recall 

curve corresponding to Fig. 1d. Colour shading indicates the cut-off for the 

summed screen signal across both bait–prey orientations. The performance of 

a random classifier is shown by the dotted line, and grey shading indicates the 

valid range between perfect performance and a random classifier. This curve 

only considers proteins for which expression was detectable, and defines a 

positive set based on previously published interactions and a negative set 

based on randomized interaction pairs. b. ROC curves of screen performance 

are consistent across possible definitions of positive and negative sets. These 

curves consider all proteins regardless of whether they were detectably 

expressed. Columns provide different positive reference sets, and rows 

delineate possible negative reference sets. High-quality support refers to 

interactions with experimental support by SPR, isothermal titration 

calorimetry, analytical ultracentrifugation, or a co-crystal structure.  

c. Overview of evidence for newly identified interactions. Data from both 

measured bait–prey orientations in the primary and secondary screen are 

indicated in pink. Results from cell-binding experiments and SPR are 

categorized for each interaction along a simple qualitative scale of green to red 

for ease of comparison. This includes whether a binding response was 

detectable in SPR equilibrium experiments, if the binding response in SPR 

experiments was sufficiently quantifiable that 1:1 binding models could be fit, 

and whether gains in cell-surface binding were observed in cell-based assays 

when the counter-receptor was overexpressed. The full experimental results 

that are summarized here can be found in Extended Data Fig. 4.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Orthogonal binding assays to confirm each 

interaction. a. Full set of cell-binding traces, extended from Fig. 2a. For each 

interaction pair, the protein named on the right of the title was transfected into 

human cells and the protein named on the left was tested for binding as a 

fluorescently linked recombinant protein tetramer. Tetramer binding to cells 

(x axis) was measured by flow cytometry at different tetramer concentrations 

(y axis). The traces in blue are cells overexpressing the indicated receptor, and 

red shows binding to the mock-transfected control cells. Because cDNAs may 

express to widely varying levels or not at all, and some proteins may bind to 

endogenously expressed HEK293 surface proteins, some experiments give 

inconclusive binding data. For example, HLA-F is known to be predominantly 

sequestered intracellularly75,76, whereas soluble APP is known to already have 

strong baseline binding activity to cell lines77. b. Full set of SPR sensorgrams, 

extended from Fig. 2b. For each interacting pair, the sensorgram on the left 

side shows kinetic binding measurements, and the sensorgram on the right 

shows equilibrium binding measurements. The protein used as the analyte is 

named on the left and the immobilized ligand is on the right. Association and 

dissociation constants from a 1:1 binding model fit (red line) are displayed 

where applicable on the kinetic traces. All analytes were resolved by gel 

filtration immediately prior to use in binding experiments to reduce the 

influence of protein aggregates, which otherwise can dominate binding 

kinetics (Supplementary Fig. 2). Some analytes show clear evidence of two-

phase binding kinetics such as PTPRF and MCAM.



Extended Data Fig. 5 | Distribution of immune receptor binding affinities. 

a. Antigen-presenting cells vary in their receptor contacts with circulating T 

lymphocytes. Each dot is a cell–cell pair comprising T cells (including all CD4 

and CD8 subsets) with either a B cell (red distribution) or dendritic cell (blue 

distribution). Statistics are overlaid for a Welch’s t-test. b. The overall 

distribution of immune receptor binding affinities is centred in the range of 

micromolar dissociation constants. All quantified immune interactions in our 

network are plotted as a log-scale distribution of binding dissociation 

constants (KD). c. Cell surface receptor–ligand binding affinities weakly 

correlate with protein expression level. For all immune cell types measured by 

proteomics and all protein interaction pairs measured in our study, the 

equilibrium binding constant (y axis) is correlated to the summed expression 

of the two proteins. Weaker interactions (corresponding to higher KD values) 

are associated with higher expression. Owing to the number of points, a hex 

plot is shown with the number of unique combinations of cell type and protein 

pairs represented by colour shading. A least-squares linear regression line is 

overlaid in blue. d. Within individual cell types, a surface protein’s expression 

level weakly and variably correlates with its binding affinity. Instead of all pair 

combinations, each cell type measured by proteomics is individually 

presented. One point is placed for each detectable protein with an interaction 

in that cell type. In cases in which a single protein has multiple interactions of 

varying affinities, one point is drawn per binding interaction that protein 

participates in. Least-squares linear regression fit lines and 95% compatibility 

intervals are overlaid for each cell type. p-values for the Pearson correlation fit 

are accentuated for conditions where p < 0.10.
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Extended Data Fig. 6 | Average receptor affinity increases after immune 

activation. a. Extended version of Fig. 2e, showing all cell subtypes identified 

in the original proteomics study1 instead of higher-level cell-type categories. 

Each point represents the strength of a protein’s interaction for proteins that 

are either differentially downregulated upon activation (“Down”) or 

differentially upregulated upon activation (“Up”). To be classified as 

differentially expressed, the protein must have more than a 2-fold change upon 

activation. Data are shown as Tukey boxplots with Holm-corrected p-values 

calculated from a two-sided Welch’s t-test. b. Combined analysis of all cell types 

for which paired activated and resting expression data is available. As in panel 

a, differential expression was defined by more than 2-fold changes upon activation 

(n = 4 blood donors). Statistics are overlaid for a two-sided Welch’s t-test.  

c. Same as panel b except setting as the criterion for differential expression  

that the protein must have a corrected p-value below 0.05 across the  

4 proteomics replicates available per condition. Statistics are overlaid for a 

two-sided Welch’s t-test. d. Same analysis as panel b performed on an 

independent dataset of RNA-seq measurements on sorted and stimulated 

immune cell populations83. Statistics are overlaid for a two-sided Welch’s t-test 

(n = 4 blood donors). e. Same analysis as panel a, performed on an independent 

dataset of RNA-seq measurements (Calderon et al. 2019). Every leukocyte 

subpopulation measured in activated and resting states is show as a separate 

box. Data are shown as Tukey boxplots with Holm-corrected p-values 

calculated from a two-sided Welch’s t-test.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Internal representations of the quantitative cellular 

interaction model and additional validations. a. Interaction spectra 

showing how individual receptor interactions (x axis) contribute to the  

overall connection strength between cell pairs. The model output per  

pair, which corresponds to the calculated density of proteins in a bound 

configuration at a theoretical equilibrium, is shown on the y axis in log10 scale. 

b. Relative contributions of different protein–protein interactions to a cell 

pair’s overall connection scores. The colour shading indicates the percent  

of the total calculated interactions between a given cell pair (x axis) that are 

attributable to each specific protein–protein interaction (y axis). c. Null 

distribution of correlations to published data when the model’s cell-surface 

protein interaction pairs are randomized. Histogram bins representing 

correlations equal to or greater than the fit of the true model are shaded in  

light blue after 1,000 random permutations were performed. d. Distribution  

of model correlation coefficients to previously published leukocyte binding 

data following a complete leave-one-out analysis of each surface protein. The 

histogram bin that includes the observed correlation in Fig. 2g is shaded in 

lighter blue. The two proteins leading to the greatest change in correlation 

(ICAM1 and PECAM1) are labelled. e. Model fits remain robust on 

independently measured datasets of leukocyte cellular contacts. Following  

an analogous approach to Fig. 2g, the kinetic model’s predictions for baseline 

leukocyte interaction rates were compared to empirical data generated during 

our pharmacoscopy experiments. Only negative control conditions treated 

with PBS instead of recombinant protein were included, with interaction s 

cores calculated following the same methodology as the previously published 

study25 described in Fig. 2g. Shading indicates the 95% compatibility interval  

of the least-squares linear regression fit. f. Differential equation model output 

simulating cell pairs reaching a binding equilibrium. Each colour is either a cell 

type in an unbound state or a cell pair. The absolute proportions in blood  

(y axis) were tracked over an arbitrary time scale (x axis) until equilibrium is 

reached.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Integrating single-cell expression atlases with 

cellular interactions. a. Interactively searching immune interactions in 

human tissues through our web tool. This screenshot depicts the core features 

of the website, including a drop-down menu to select one of eight different 

tissue datasets, adjustable sliders for expression cut-off thresholds when 

determining interactions, and multiple tabs offering different kinds of views 

for both cellular and molecular interaction types. b. Myeloid-lineage cells do 

not express any greater quantity of interaction-capable surface proteins than 

non-myeloid cells. Each dot represents a specific measured cell type in the 

indicated dataset, which are grouped into categories as myeloid or non-

myeloid (x axis). The absolute number of cell-surface proteins for which at least 

one interaction is annotated with another cell-surface protein (y axis) is 

compared between categories. p-values from a two-sided Welch’s t-test are 

shown alongside their corresponding false discovery rate-corrected q values. 

Tissues match those shown in Fig. 3c. c. Changes in cellular interaction 

frequencies among immune cells isolated from cancerous versus healthy 

kidney implicate cellular contacts with potential relevance to pathology.  

The total number of interactions detected in a single-cell sequencing dataset 

of paired healthy kidney and kidney tumours are compared across immune 

populations. d. Comparisons of interactions detected in paired samples of 

healthy and diseased tissue can suggest functional targets. Human lung tissue 

from healthy donors and patients with asthma were processed in identical ways 

through our web tool’s functions. At the indicated expression cut-off which 

requires the mRNA encoding an interacting surface protein be detected in at 

least 5% of cells from a given cell type, interactions between cells were 

categorized based on whether they were present in both healthy and asthmatic 

samples (purple), only healthy (green), or only asthma (red). Although more 

qualitative than differential expression based tests, this approach may have 

utility in conducting more sensitive exploratory analyses of interaction sets.  

e. Intercellular signalling pathways in tumour-infiltrating immune cells 

inferred by NicheNet analysis. Two analyses are shown on a single-cell RNA-seq 

dataset of immune cells isolated from kidney for cell-surface signals that 

differentially regulate gene expression in plasmacytoid dendritic cells (pDCs) 

and helper T cells within kidney tumours when compared to adjacent healthy 

kidney tissue. In the larger box, intercellular signals being received by pDCs are 

shown (left), matched to genes inferred to be regulated by those signals. In the 

smaller inset box, the finding that tumour pDCs upregulate JAML is expanded 

by analysing pDC communication specifically with helper T cells. Targets in our 

gene regulatory analysis were filtered to exclude those which recurred non-

specifically in more than half of all cases.



Extended Data Fig. 9 | Microscopy readouts identify that receptor binding 

partner transcripts are colocalized in human lymph nodes, and that 

polarization of B and NK cells serves as a marker of classical activation 

pathways. a. Single-molecule fluorescent in situ hybridization in human lymph 

node demonstrates that cells transcribing genes encoding surface proteins 

found to physically interact in biochemical assays are also physically 

colocalized in the lymph node. A lymphoid follicle is shown for 4 different 

transcript pairs encoding proteins that directly interact. Each experiment  

was repeated on tissue from two donors. The scale bar is 100 μm and applies  

to all images. b. Polarization of B cells relative to PBS-treated controls after 

treatment with cytokines and other immunomodulatory molecules.  

As expected IL-4 and IL-6 are strong B-cell specific activators78,79, whereas IL-15 

and LPS activate both NK and B cells80. Data are shown as Tukey boxplots with 

Holm-corrected p-values calculated from a one-sided t-test. n = 7 blood donors. 

c. Polarization of NK cells relative to PBS-treated controls after treatment with 

cytokines and immunomodulatory molecules. As has been reported for NK cell 

activation, IL-15 invokes the strongest activation of NK cells81, whereas there are 

no effects from IL-4 and IL-6. The NK cells are also inhibited by the steroid 

dexamethasone (Dex), consistent with known pharmacology82. Data are shown 

as Tukey boxplots with Holm-corrected p-values calculated from a one-sided 

t-test. n = 7 blood donors.
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Extended Data Fig. 10 | High-content microscopy datasets show human 

leukocyte phenotypes after infusion of purified proteins. a. Full dataset of 

changes to cellular state proportions, extended from Fig. 4b. The proportions 

of measured cell types and cell states (x axis) are compared across different 

protein doses, timepoints, and with or without background LPS activation  

(y axis). Points are sized by their adjusted p-values, and shaded to show relative 

change compared to controls. n = 5 wells. b. Observed immunomodulatory 

phenotypes match the expression profiles of the cell types expressing the 

applied protein or its identified binding receptor. For every statistically 

significant phenotype upon protein application that is described in Fig. 4b 

(grey top bars), the protein itself and all its identified interaction partners 

(columns) had their expression in lymphocyte populations (x axis) compared 

according to quantitative proteomics measurements (y axis). The lymphocyte 

populations are coloured blue if they match the cell type for which the 

significant phenotype was found. c. Clustering on the full set of cell-to-cell 

connectivity changes identifies recurring modules of cellular shifts. All protein 

conditions and timepoints (y axis) were hierarchically clustered by the 

complete linkage method. As above, changes in each cell pair’s interactions  

(y axis) are indicated by the provided colour scale and sized based on their 

adjusted p-values. n = 10 wells.
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