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Abstract

Artificial intelligence (AI) is playing an ever-increasing role in radiology (more so in the adult world than in pediatrics), to the

extent that there are unfounded fears it will completely take over the role of the radiologist. In relation to musculoskeletal

applications of AI in pediatric radiology, we are far from the time when AI will replace radiologists; even for the commonest

application (bone age assessment), AI is more often employed in an AI-assist mode rather than an AI-replace or AI-extend mode.

AI for bone age assessment has been in clinical use for more than a decade and is the area in which most research has been

conducted. Most other potential indications in children (such as appendicular and vertebral fracture detection) remain largely in

the research domain. This article reviews the areas in which AI is most prominent in relation to the pediatric musculoskeletal

system, briefly summarizing the current literature and highlighting areas for future research. Pediatric radiologists are encouraged

to participate as members of the research teams conducting pediatric radiology artificial intelligence research.
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Introduction

Simply put, artificial intelligence (AI) can be defined as soft-

ware that automates (or semi-automates) a cognitive task. AI

applications in the musculoskeletal system can be fully auto-

mated (e.g., bone age assessment) or semi-automated (e.g.,

vertebral fracture assessment). Although AI tools in general

can be categorized as AI-assist (helping the radiologist), AI-

replace (replacing the radiologist) or AI-extend (exceeding the

capability of the radiologist) [1], as far as the author is aware,

no clinical tool functions in the AI-extend mode in pediatric

musculoskeletal radiology practice.

Existing AI tools can help to improve image quality; aid in

the measurement of lengths, angles and volumes; or aid in the

detection of pathological processes, the last through

recognition and classification of morphological or textural

abnormalities.

Of the 144 AI products that are CE (Conformité

Européenne) marked and commercially available, 74 also

have United States Food and Drug Administration (FDA) ap-

proval and 18 are related to the musculoskeletal system [2]. Of

these 18, one is for image enhancement and post-processing

rather than being a diagnostic aid, per se. Considering the

remaining 17 AI musculoskeletal products, the majority (14)

have been designed for aiding diagnosis from radiographs,

while use in pediatric radiology is only explicitly stated in

the information available for 3 of the 17 tools. Table 1 sum-

marizes these 17 available musculoskeletal AI tools; all 3 tools

intended for use in pediatric radiology are for bone age assess-

ment [2].

Although commercially available tools are currently

only for bone age assessment, ongoing and published

research pertains to tasks such as fracture diagnosis (ap-

pendicular and vertebral), scoliosis and leg-length dis-

crepancy measurements. Other areas where pediatric re-

search is being performed include determining bone

health using the bone health index and diagnosing

metopic craniosynostosis and developmental dysplasia

of the hip. These emerging applications could achieve

commercial release within the next decade.
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This review also identifies and briefly discusses areas in

which very little AI research has been conducted but in which

there is potential for AI to play a significant role; these areas

include inflicted injury (child abuse) and skeletal dysplasias.

The main focus of this article is on diagnosis/detection of

pathology. For AI applications related to image-quality im-

provement, image post-processing, quality control, etc., the

reader is directed to other articles in this special issue and to

the 2019 review by Koska [3].

Current applications: bone age assessment

Although three bone age assessment AI tools are on the mar-

ket, the oldest and probably best known is BoneXpert

(Visiana, Hørsholm, Denmark). Indeed, BoneXpert is the

oldest musculoskeletal AI-replace software tool on the market

(Table 1), and more than 150 departments are using

BoneXpert in day-to-day clinical practice across Europe, each

performing more than 100 analyses per year (personal com-

munication with H.H. Thodberg and P. Bak, November

2020).

BoneXpert automatically calculates bone age according to

the Greulich and Pyle and the Tanner and Whitehouse stan-

dards in a process that takes less than 15 s per hand and wrist

radiograph. The method is based on traditional machine-

learning methodology and involves prediction of bone age

based on shape, intensity and texture scores as derived from

principal component analysis. It is worth noting that there are

no General Data Protection Regulation (GDPR)-related is-

sues, because BoneXpert is configured as a Digital Imaging

and Communications in Medicine (DICOM) node for local

Table 1 Currently available CE-marked musculoskeletal radiology artificial intelligence (AI) toolsa

Date on

market

Company Product name Disease targeted Modality Pediatricsb CE

class

FDA

Mar 2009 Visiana (Hørsholm,

Denmark)

BoneXpert Bone age Radiography Y I N

2012 Medimaps (Geneva, Switzerland) TBS iNsight (Osteo) Osteoporosis Radiography N IIa II

Nov 2017 Aidoc (Tel Aviv, Israel) C-Spine C-spine fracture CT N I II

May 2018 VUNO (Seoul, Korea) VUNO Med-BoneAge Bone age Radiography Y IIa N

Jan 2019 QUIBIM (Valencia, Spain) 2D Bone Microarchitecture

QTS Score

Osteoporosis

Oncology

Osteopenia

Radiography N IIa N

Jan 2019 QUIBIM 2D Bone Microarchitecture

QTS Score

Osteoporosis

Oncology

Osteopenia

CT, MRI N IIa N

Jan 2019 QUIBIM Cartilage T2 Mapping Osteoarthritis

Degeneration

Sports diseases

MRI N IIa N

Jan 2019 QUIBIM Texture Analysis Tumors

Osteoporosis

Osteopenia

Osteoarthritis

Radiography, CT,

MRI, PET, US,

SPECT

N IIa N

Jun 2019 AZMed (Paris, France) Rayvolve Fracture Radiography N I N

Aug 2019 ImageBiopsy Lab

(Vienna, Austria)

IB Lab KOALA Osteoarthritis (knee) Radiography N I II

Nov 2019 Radiobiotics (Copenhagen,

Denmark)

RBknee Osteoarthritis (knee) Radiography N I N

Feb 2020 Arterys (San Francisco, CA) Chest/MSK AI Fracture

Dislocation

Radiography N IIa N

Mar 2020 Gleamer (Paris, France) BoneView Fracture Radiography N IIa N

Oct 2020 ImageBiopsy Lab IB Lab HIPPO Hip measurements Radiography N I N

Oct 2020 ImageBiopsy Lab IB Lab LAMA Leg geometry Radiography N I N

Nov 2020 ImageBiopsy Lab IB Lab PANDA Bone age Radiography Y I N

U Zebra (Kibbutz Shefayim,

Israel)

Bone Health Vertebral compression

fractures

CT N U II

CE Conformité Européene, FDA United States Food and Drug Administration approval, MSK musculoskeletal, N no, PET positron emission tomog-

raphy, SPECT single-photon emission computed tomography, U unknown, Y yes
aDerived from [2]
bOnly includes those tools for which pediatric use is explicitly stated
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picture archiving and communication systems (PACS) and is

an image-analysis application only. In other words,

BoneXpert does not store data, share data or transfer data

outside the local PACS. The pathway and output are illustrat-

ed in Figs. 1 and 2, respectively, and the terminology used in

the output is explained in Table 2.

Although launched in 2009 as an AI-replace tool, approx-

imately 70% of departments that have the software installed

use BoneXpert as an AI-assist tool (A. Offiah, unpublished

work). The reason for this is simple: while BoneXpert rejects

radiographs with significant abnormality (e.g., poor position-

ing, abnormal bone morphology, poor image quality), it does

not reject radiographs with subtle abnormality of morphology

(e.g., early rickets) or abnormality of texture (e.g.,

metaphyseal striations). If a radiologist does not review the

radiographs, then these subtle changes will be missed. The

detection of such abnormalities is outside the scope of the

software as developed, and radiologists are advised to bear

this in mind.

The percentage of radiographs rejected by BoneXpert be-

cause of abnormal anatomy depends on the types of patients

seen, ranging from approximately 0.4% in general hospitals to

up to 3% in hospitals specializing in skeletal dysplasias. The

percentage of radiographs rejected by BoneXpert because of

poor image quality is generally very low (reflecting radiogra-

pher competence). However, departments in which significant

edge-enhancement is applied as part of the post-processing of

images might see rejection rates of up to 10%, accompanied

by the error message, “Too sharp” (personal communication

with H.H. Thodberg and P. Bak, April 2021). The software

has been tested in multiple populations and ethnicities, includ-

ing Caucasian, African American, Hispanic, Asian Chinese

and Saudi Arabian populations [4–9]; while generally appli-

cable to all ethnicities, some caution is advised, but this is

related to the applicability of the standards (Greulich and

Pyle, Tanner and Whitehouse 3) and not to the BoneXpert

software itself. The latter claim can be made based on diag-

nostic accuracy studies that have compared manual to

Fig. 1 BoneXpert workflow. The radiographer who has performed the

left hand and wrist radiograph sends it to the picture archiving and

communication system (PACS) in the usual way. The reporting

radiologist (or radiographer) transfers the image to BoneXpert, where

the automated bone age estimation is performed. BoneXpert then

returns the annotated image to the PACS. The reporting radiologist now

not only has access to the BoneXpert-derived Greulich and Pyle and the

Tanner and Whitehouse 3 bone age assessments, but he or she can also

review the original radiograph for disease-related abnormality (e.g.,

evidence of a skeletal dysplasia). Image courtesy of Peter Bak and Hans

Henrik Thodberg (Visiana). CR computed radiography, DICOM digital

imaging and communications in medicine, DR digital radiography

Fig. 2 Posteroanterior left hand and wrist radiograph in a 3-week-old

boy, following interpretation of bone age by BoneXpert. The figures in

the small white boxes represent the Greulich and Pyle bone ages of the

individual bones. BA (GP) Greulich and Pyle bone age (gender), BA SDS

Bone age standard deviation score (ethnicity), BA (TW3) Tanner and

Whitehouse three-bone age, BHI bone health index (digital X-ray

radiogram), BHI SDS bone health index standard deviation score

(ethnicity), CauEu Caucasian European, M male, N/A not available (no

ossified carpal bones in this child), y years. See also Table 2

Pediatr Radiol (2022) 52:2149–2158 2151



automated bone age assessments [10–17], with reported root

mean square errors being as low as 0.63 [18].

In 2017, the Radiological Society of North America

launched a Machine Learning Challenge, making freely avail-

able a set of more than 14,000 hand and wrist radiographs

[19]. The best-performing entry achieved a concordance cor-

relation coefficient of 0.99 and differed from ground truth by

only 4.3 months, compared to 7.3 months for radiologists

[20]. It is possible for readers to test the application for them-

selves but note that it is for demonstration purposes only (i.e.,

it is not for clinical use) [21].

Other bone age tools have also been tested and found to

be reliable and accurate and to reduce reporting times

[22–26] and it is worth pointing out the encouraging results

obtained for bone age estimation of the index finger alone

(as opposed to the entire left hand and wrist radiograph)

when using a neural-network-based AI application, which

paves the way for hand-held bone age estimation machines

[26].

While some authors have focused their work on AI deter-

mination of bone age from other sites, such as the pelvis [27]

or knee [28], and other modalities, such as MRI [29–32], a

relatively recent systematic review highlighted the lack of

such studies, in addition to the need for more research

assessing potential socioeconomic and ethnic variations on

the performance of such AI tools [33].

Emerging/future applications

Bone health index

There is no reliable method of predicting fracture risk in

children. While dual-energy X-ray absorptiometry is the

gold standard for bone mineral density assessment in chil-

dren, it has limitations [34–36]. As such, other quantitative

bone imaging techniques have been developed including

AI applications (predominantly related to adults; Table 1).

Of relevance to pediatrics is radiogrammetry. Originally

performed manually [37], this technique lends itself to au-

tomation because it measures cortical thickness of the

phalanges in relation to their lengths, thereby producing

an index of bone strength.

In addition to determining bone age, the BoneXpert soft-

ware discussed in the previous section also performs “dig-

ital X-ray radiogrammetry,” providing an indication of

bone health called the “bone health index” or “BHI”

(Fig. 2 and Table 2). Bone health index is derived from a

measurement of the cortical thickness, width and length of

the three middle metacarpals. A standard deviation score is

also provided, allowing comparison with the bone health

index of healthy Caucasian children of the same age and

gender.

While a few studies have been performed with favorable

results [38–41], the clinical role of the bone health index in

monitoring and assessing bone strength in children (of any

ethnicity) has not been elucidated. In a recent systematic re-

view, peripheral quantitative computed tomography (pQCT),

bone health index and quantitative ultrasound (QUS) were

compared with dual-energy X-ray absorptiometry. Meta-

analysis showed BHI to have the strongest correlation with

dual-energy X-ray absorptiometry, with a pooled estimate of

correlation of 0.71 compared to 0.57 for both pQCT and QUS

[42]. These results encourage further research into the poten-

tial clinical application of BHI.

Fracture assessment

Appendicular fractures

The few studies that have assessed the utility of AI for appen-

dicular fracture detection in children have predominantly con-

centrated on the elbow joint, possibly because of the complex-

ity of the elbow joint and multiple unossified epiphyseal cen-

ters that are found in children. England et al. [43] used a

relatively small set of lateral radiographs to train (657 images),

validate (115 images) and test (129 images) a convolutional

neural network for the identification of elbow joint effusions.

Compared to the reference standard of radiologists’ reports,

the network had sensitivity, specificity and accuracy of 0.91.

In a significantly larger study consisting of 21,456

anteroposterior and lateral elbow radiographs, Rayan et al.

[44] determined the feasibility of deep learning to correctly

classify elbow radiographs as normal or abnormal. The true

positive rate (i.e., those radiographs correctly classified as ab-

normal) was highest for supracondylar fractures (0.996) and

lowest for osteochondral lesions (0.000), although it should be

noted that there were only two cases of osteochondral lesions

in the entire dataset. Most recently, Choi et al. [45] assessed

the ability of a convolutional neural network to correctly iden-

tify supracondylar fractures from 1,266 anteroposterior and

lateral elbow radiographs.

The results of these three studies (summarized in Table 3;

[43–45]) are encouraging. However, particularly given their

Table 2 BoneXpert outputs

Term Interpretation

BA (GP) Greulich and Pyle bone age (gender)

BA SDS Bone age standard deviation score (ethnicity)

BA (TW3) Tanner and Whitehouse three-bone age

Age Chronological age

BHI Bone health index (digital X-ray radiogram)

BHI SDS Bone health index standard deviation score (ethnicity)
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relatively low positive predictive values, the current role of

such AI tools would appear to be in the initial triage of elbow

radiographs following trauma in children, in areas where a

(pediatric) radiologist is not immediately available. Future re-

search could also be directed toward determining the feasibil-

ity of AI tools for fracture detection in children at other ap-

pendicular sites, in a similar way to ongoing investigations in,

e.g., the wrist [46] and proximal femur [47] of adults.

Axial fractures

A decision tree might be seen as a flowchart-like structure, with

each branch representing a potential outcome. Optimal trees are

predictive AI algorithms that limit the number of outcomes while

encompassing as much of the available data as possible [48].

Bertsimas et al. [49] used an optimal trees artificial intelligence

approach to predict cervical spine trauma in children. However,

this model was based on history and clinical parameters (includ-

ing Glasgow Coma Scale) and used imaging interpretation by

radiologists as an outcome measure for presence or absence of

fracture, rather than using the algorithm to classify radiographs.

Given the difficulty associated with obtaining adequate views

(particularly in younger children) and complexity of the cervical

spine [50], thiswould be aworthy field for the development of an

AI diagnostic tool.

Other studies assessing AI tools for detecting vertebral

fractures in children relate to osteoporotic compression frac-

tures rather than post-traumatic fractures and are briefly

reviewed next.

The diagnosis of vertebral crush fractures from dual-energy

X-ray absorptiometry scans is termed vertebral fracture assess-

ment, and the Lunar iDXA machine (GE Healthcare Lunar,

Buckinghamshire, UK) has been shown to be as reliable as

radiographs for vertebral crush fracture diagnosis in children

at a lower radiation dose penalty [51, 52]. The use of software

tools to diagnose vertebral fractures from dual-energy X-ray

morphometry scans is termed morphometric vertebral analysis

[52]. Such software tools are widely available for clinical use in

adults; however, they have not been licensed for use in chil-

dren. Given both the wide variability in diagnosis of vertebral

fractures in children [53] and that the recognition of vertebral

shape (morphometry) lends itself to AI applications, re-

searchers have assessed the accuracy and reliability of existing

adult software, specifically SpineAnalyzer (Optasia Medical,

Cheadle, UK) and AVERT (Optasia Medical) in the diagnosis

of vertebral fractures in children [54–56]. The AI tools

SpineAnalyzer and AVERT are semi-automated; they require

an individual to identify and label the centers of vertebral bod-

ies T4 to L4 (any non- or poorly visible vertebrae can be omit-

ted). The tools then automatically outline the vertebral bodies

using 6 (SpineAnalyzer) or 33 (AVERT) points and provide an

output indicating normal or fractured vertebrae and severity of

fracture based on height loss ratios (Fig. 3; [56]). The reader

can manually reposition any points that were erroneously iden-

tified by the software. The conclusion of these studies is that the

diagnostic accuracy of existing adult (semi-automated) soft-

ware tools for vertebral fracture assessment in children is insuf-

ficiently adequate for clinical use (Table 4). Reasons for this

include unossified ring apophyses, variation in vertebral

shape with age and normal variants in children, all issues

that are less problematic (if at all) in adults. The adult tools

were trained using the radiographs of post-menopausal

women and (despite the misleading final column in Fig. 3,

which suggests otherwise) are based on the Genant et al.

[56] classification for vertebral fractures. If morphometric

vertebral analysis is to be accurate in children, then any tool

developed must be trained using the spine radiographs of a

cohort of healthy children [57].

Inflicted fractures (child abuse)

Inflicted metaphyseal and rib fractures in infants and young chil-

dren are often difficult to detect and yet are highly predictive of

abuse [58, 59]. United Kingdom national guidelines (adopted by

the European Society of Paediatric Radiology) advise that im-

ages be double-reported by at least one pediatric radiologist [60,

61]; therefore in centers where this is not possible because of

staffing issues, it would be helpful to have an AI-assist tool, if

only to highlight suspicious areas for closer review by the radi-

ologist on either skeletal surveys performed for suspected abuse

or (perhaps more important) on radiographs performed for other

indications, e.g., a chest radiograph for cough. Work has been

Table 3 Diagnostic accuracy of

artificial intelligence (AI)

applications for elbow trauma in

children

Author [reference] Sensitivity Specificity Accuracy Positive

predictive value

Negative

predictive value

England et al. 2018 [43] 0.91 0.91 0.91 – –

Rayan et al. 2019 [44] 0.91 0.84 0.88 0.87 0.89

Choi et al. 2020 [45]

(temporal test set)

0.93 0.92 – 0.80 0.98

Choi et al. 2020 [45]

(geographic test set)

0.10 0.86 – 0.70 0.10

Pediatr Radiol (2022) 52:2149–2158 2153



done on the AI-assisted detection of rib fractures in adults, with

encouraging results [62–65], including the development of fully

automated convolutional neural networks to perform this task

[66, 67]. However, to the author’s knowledge, no such studies

have been carried out for suspected abusive fractures in infants

and young children. Research in this area should be encouraged.

To assist radiologists and others in the field, a web-based

tool to unify the investigative protocol in suspected abuse and

to support training and multicenter national and international

research, a knowledge base to be populated with clinical in-

formation, radiographs and radiographic information has been

described [68] and continues to be developed (ongoing work

of author).

Other emerging/future pediatric musculoskeletal
applications

Developmental hip dysplasia

Two studies have assessed the ability of neural networks to

diagnose developmental hip dysplasia in children [69, 70]. Li

et al. [69] used a training set of 11,473 anteroposterior pelvic

Table 4 Diagnostic accuracy of

artificial intelligence (AI)

applications for morphometric

vertebral fracture assessment in

childrena

Author [reference] Sensitivity Specificity False-positive

rate

False-negative

rate

Kappa

Crabtree et al. 2017 [52]

(6-point techniqueb)

0.79 0.71 0.13 0.27 0.24–0.60

Alqahtani 2019 [54]

(SpineAnalyzer)

0.31 0.96 0.04 0.69 0.16–0.44

Alqahtani 2019 [54] (AVERT) 0.41 0.91 0.09 0.59 0.26–0.46

Alqahtani 2020 [55] (AVERT)

Single radiographer

Additional observers

0.80

0.89

0.90

0.79

0.10

0.21

0.20

0.11

-

0.29–0.69

a From dual-energy X-ray absorptiometry scans
bThe precise software tool used was not specified

Fig. 3 Lateral spine dual-energy

X-ray absorptiometry scan in a

12-year-old boy, left, with

deformity results right.

Morphometric vertebral fracture

assessment using SpineAnalyzer

identifies four mild (T4, T10,

T11, L1) and three moderate (T9,

T12, L3) fractures. Bicon.

biconcave, SQ semi-quantitative

score (of Genant et al. [56])
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radiographs and a test set of 101 images for the diagnosis of

developmental dysplasia of the hip based on the Sharp angle

(acetabular index). They found that accuracy was similar

when compared to orthopedic surgeons and required less time,

and they concluded that their AI tool could potentially replace

orthopedic surgeons [69]. Zhang et al. [70] used 9,081

anteroposterior pelvic radiographs as their training set and a

further 1,138 anteroposterior pelvic radiographs as their test

set for the diagnosis of developmental hip dysplasia based on

the acetabular index. They concluded that their deep-learning

system improved consistency, convenience and effectiveness

compared to clinician-led diagnosis and suggested that it

might simplify current screening pathways [70].

As far as can be ascertained, neither of these tools was

compared to a reference standard of pediatric radiologists. In

the author’s opinion, this would be an important next step

before widespread use of such AI tools by pediatric radiology

departments.

Spinal alignment

Several studies have been conducted to determine the degree

of scoliosis and other measurements of the spine using con-

ventional radiographic images [71], biplanar radiographic im-

ages [72] or moiré images [73]. All such studies have shown

promising results and indeed automated spine and lower limb

measurements are performed by the biplanar imaging system

installed at the author’s institution.

Other authors have assessed the ability of AI to predict

scoliosis progression [74], assess the Risser stage [75], detect

evidence of scoliosis treatment from radiographs [76] and to

automate three-dimensional (3-D) spine reconstructions from

biplanar images [77].

Miscellaneous

A few other studies conducted in children (or children and

adults) and assessing AI applications in the musculoskeletal

system are worthy of mention and include determining leg-

length discrepancy from radiographs [78], quantifying the de-

gree of metopic craniosynostosis from skull CT scans [79],

predicting the presence of discoid lateral menisci from radio-

graphs [80], determining muscle mass from dual-energy X-

ray absorptiometry scans in cerebral palsy [81] and discerning

sexual dimorphism from hand and wrist radiographs [82].

Further applications of some of these tools are obvious, e.g.,

diagnosis of premature fusion of sutures other than the

metopic suture and determination of muscle mass in other

conditions such as myopathies and juvenile dermatomyositis.

The clinical utility of a tool that identifies gender from hand

and wrist radiographs is limited to forensic imaging, perhaps

helping with the identification of bodies destroyed by mass

disasters, but it is significant because (to the author’s

knowledge) it is the only example of a potential AI-extend

tool in pediatric musculoskeletal imaging (i.e. a tool that per-

forms a task over and above the capability of radiologists).

Computer-assisted diagnosis of skeletal dysplasias might

be based both on AI-assisted morphological analysis and on

the creation of “ontologies” in the skeletal dysplasia domain.

An ontology organizes large datasets into sets of categories/

concepts and forms relationships between them [83].

Ontologies related to skeletal dysplasias include the Human

Phenotype Ontology [84], the Bone Dysplasia Ontology [85]

and the dynamic Radiological Electronic Atlas of

Malformation Syndromes (dREAMS) [86].

Pertaining to AI-assisted diagnosis of skeletal dysplasias

based on skeletal morphometry, preliminary work using ra-

diographs of infants from the dREAMS database has shown

an accuracy of 78.0% to 87.5% for lateral spine, 68.0% to

75.0% for anteroposterior spine and 87.5% to 88.0% for

anteroposterior chest radiographs in dichotomizing images to

“achondroplasia” or “not achondroplasia” categories [87].

Accuracy and confidence intervals would be expected to im-

prove using a dataset larger than that used by the authors (40

lateral spine, 16 anteroposterior spine and 26 anteroposterior

chest radiographs in a ratio of 70% to 30% for training and

testing, respectively). Nevertheless, the results provide proof

of concept and suggest that the task is worth pursuing.

Conclusion

Bone age assessment tools are the only pediatric musculo-

skeletal AI tools available on the market. In recent years,

increasing research has been conducted in areas such as

elbow fractures, developmental hip dysplasia and scoliosis

assessment. However, there is significant scope for more

work, particularly in areas such as the diagnosis of vertebral

fractures, inflicted injury, skeletal dysplasias and musculo-

skeletal oncology. Pediatric radiologists are encouraged to

be members of the research teams conducting such studies,

so that the reference standard used is the diagnostic accura-

cy of pediatric radiologists, rather than the diagnostic accu-

racy of clinicians from other specialties, which is the case in

some publications. AI tools will not replace the pediatric

musculoskeletal radiologist in the near future, if ever.
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