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Abstract——The scheduled electric vehicle (EV) charging flexi‐
bility has great potential in supporting the operation of power
systems, yet achieving such benefits is challenged by the uncer‐
tain and user-dependent nature of EV charging behavior. Exist‐
ing research primarily focuses on modeling the uncertain EV
arrival and battery status yet rarely discusses the uncertainty
in EV departure. In this paper, we investigate the EV charging
scheduling strategy to support load flattening at the distribu‐
tion level of the utility grid under uncertain EV departures. A
holistic methodology is proposed to formulate the unexpected
trip uncertainty and mitigate its negative impacts. To ensure
computational efficiency when large EV fleets are involved, a
distributed solution framework is developed based on the alter‐
nating direction method of multipliers (ADMM) algorithm. The
numerical results reveal that unexpected trips can severely dam‐
age user convenience in terms of EV energy content. It is fur‐
ther confirmed that by applying the proposed methodology, the
resultant critical and sub-critical user convenience losses due to
scheduled charging are reduced significantly by 83.5% and
70.5%, respectively, whereas the load flattening performance
has merely been sacrificed by 17%.

Index Terms——Electric vehicle (EV), EV fleets, uncertain de‐
parture, user convenience, distributed solution.

I. INTRODUCTION

THE climate change due to greenhouse gas emissions
from substantive consumption of fossil fuels is threaten‐

ing human societies worldwide [1]. As a countermeasure, re‐
ducing carbon emissions from burning fossil fuels is attract‐
ing much attention [2], [3]. Since the transportation sector is
accountable for a significant proportion of carbon emissions
[4], internal combustion engine vehicles are being gradually
replaced by electric vehicles (EVs) along with the global
transportation decarbonization trend [5]. As the number of
EVs increases, EV charging demand is also growing rapidly
[6]. The ever-increasing stock of EVs with the uncontrolled
charging mode can yield undesirable impacts on the distribu‐
tion networks, such as exacerbated load fluctuations, elevat‐
ed load peaks [7], and transformer overloading [8]. Mean‐
while, studies have shown that the connecting time of EVs
usually exceeds the time that is required for charging [9],
[10]. Thus, EVs can offer opportunities for effective demand-
side management regarding their charging power and time
through smart charging [11]. Smart charging can add flexibil‐
ity in the operation of power system by providing control to
EV users and the power system operator. To implement
smart charging, enablers including technology and EV user
cooperation are required. The technology enablers should
provide functionalities that can make the system intelligent
in operation, such as artificial intelligence and data-driven
techniques. Besides, the EV user cooperation should allow
the charging operator to affect the user charging behavior to
a certain extent. Such cooperation can be achieved by active
interactions between charging operators and EV users
through real-time communication.

Given the great potential of EV charging in improving the
operational performance of the power grid, various technolo‐
gies and mechanisms have been proposed in the literature.
To improve reliability, durability, and user-friendliness, wire‐
less charging systems have been investigated to charge the
EVs inductively [12], [13]. Besides, with the increased charg‐
ing speed demand, the charging power of EVs has been im‐
proved from level 1 AC charging (typical charging power up
to 2 kW) to level 2 AC charging (typical power up to 20
kW) and level 3 DC charging (typical power up to 130 kW)
[14], [15]. Meanwhile, to improve the flexibility of the EV
charging process, instead of simply considering the unidirec‐
tional grid-to-vehicle (G2V) mode, bidirectional vehicle-to-
grid (V2G) technology has been intensively studied [16] -
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[18]. Except for developing smart charging technologies, a
lot of smart charging strategies have also been proposed in
the literature to enhance the performance of the power grid
from various aspects. Under the electricity market environ‐
ment, the EV charging flexibility can be utilized for minimiz‐
ing both the energy generation cost [19] and EV charging
cost [20], reducing the parking fees [21], and maximizing
the total profit of an EV aggregator [22]. From the system
operator's point of view, EV charging scheduling can be
used to mitigate the pressure of networks on requiring inter‐
vention [23], provide secondary frequency regulation [24],
stabilize the grid operation to avoid or delay heavy invest‐
ment costs for strengthening the grid [14], [25], [26], and re‐
duce voltage deviations of the electricity distribution net‐
work [27].

As a promising EV charging flexibility application scenar‐
io, load flattening-oriented charging scheduling at the distri‐
bution level of the utility grid can not only improve the eco‐
nomic performance of the system by reducing the start-up
and operating costs of the generators [28], but also enhance
the network security by avoiding the substation transformer
overloading [29] and stabilizing the grid. Hence, the optimal
charging resource management problem for supporting load
flattening operation is investigated in this paper.

To achieve the load flattening target using the EV charg‐
ing flexibility, challenges induced by the uncertain and user-
dependent nature of EV charging behavior [30] should be
first addressed. To cope with this challenge, different ap‐
proaches have been proposed in the literature to describe the
uncertainties in EV charging behavior. In [31], the uncertain
EV arrival time is formulated as a Markov chain decision
process. In [32], a stochastic simulation method is presented
to generate EV charging profiles including the battery status
and charging point selection. In [33], the charging start time
and battery type are modeled using scenarios generated from
a stochastic framework using the Monte Carlo simulation
method. In [34], the uncertain EV charging demand and the
number of connected EVs are modeled using stochastically
generated scenarios based on past data. In [35], the uncertain
EV arrival time is modeled by scenarios complying with the
Poisson distribution. In [36], the EV arrival and charging de‐
mand are simulated using a stochastic process. In [37], the
uncertainty in EV energy requirement is captured by a sce‐
nario-wise ambiguity set with a family of distributions.

Though previous works have made fruitful achievements
in handling uncertain EV charging behavior, the departure
time of EVs is assumed to be a known parameter provided
by EV users upon arrival [38], [39]. However, this assump‐
tion may be too optimistic since unexpected trips may occur
in real life when EV users need to leave earlier for unexpect‐
ed events. Considering that unexpected trips are inevitable,
this paper intends to develop an optimal EV charging sched‐
uling strategy for supporting load flattening under the condi‐
tion that some EVs may experience unexpected trips.

To this end, understanding the impact of and preparing for
unexpected trips are vital for designing and assessing the EV
charging scheduling strategies. When unexpected trips occur,
on the one hand, the shorter charging time may result in en‐

ergy deficiency of EVs and range anxiety of EV users, on
the other hand, the scheduled charging can worsen the ener‐
gy-deficient issue by reducing the power of charging or post‐
poning the time of charging. Hence, only charging the EVs
to the required energy level before their scheduled time of
departure (e.g., [19], [29], [40]) is not enough, the energy de‐
ficiency induced by unexpected trips must also be handled
in the charging scheduling problems. To address this chal‐
lenge, this paper is dedicated to developing a methodology
such that the impact of energy deficiency on EV users is
controlled below acceptable degrees in the charging schedul‐
ing process.

Since a large number of EVs are connected at the distribu‐
tion level, the dimensional disaster [41] that challenges the
solution process needs to be addressed. To handle the dimen‐
sional problem, a distributed solution framework that in‐
cludes a hierarchical reformulation and an alternating direc‐
tion method of multipliers (ADMM) based solution method
is proposed.

The contributions of this paper are summarized as follows.
1) An optimal EV charging scheduling strategy is pro‐

posed for supporting the load-flattening operation at the dis‐
tribution level of the utility grid, in which the uncertainties
especially the unexpected trips in EV charging are explicitly
considered.

2) A holistic methodology for describing uncertain unex‐
pected trips and restricting their negative impacts is devel‐
oped.

3) A distributed solution framework including a hierarchi‐
cal reformulation and an ADMM-based solution method is
proposed to ensure computational efficiency for large EV
fleets.

4) The effectiveness of the proposed methodology is com‐
prehensively analyzed from multiple aspects under different
uncertainty levels.

The remainder of this paper is organized as follows: Sec‐
tion II describes the load flattening-oriented EV charging
scheduling problem of the distribution network operators
(DNOs). In Section III, the proposed methodology for han‐
dling unexpected EV trips is provided and applied to the
load flattening problem. In Section IV, a distributed solution
framework is provided. The simulation results and discus‐
sions are presented in Section V. Section VI concludes this
paper

II. DESCRIPTION OF LOAD FLATTENING-ORIENTED EV
CHARGING SCHEDULING PROBLEM OF DNOS

A. System Description

The structure of the studied distribution system is shown
in Fig. 1. In this system, we consider two different types of
loads. The first type of load is from residential appliances
that cannot be interrupted so as not to disturb people's daily
lives [42], [43], and the second type of load is flexible EV
charging load with continuously controllable charging rates
[44]. The V2G operation is not considered in this paper be‐
cause the V2G infrastructure is still underdeveloped, and fre‐
quent discharging can accelerate battery degradation.
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The DNO aims to utilize the flexible EV charging demand
to smooth the load profile of the distribution system. For the
residential load, only the forecast information is available to
the DNO. For the flexible EV charging load, information
about the initial state-of-charge (iSOC), EV battery capacity,
maximum charging power, and planned time of departure is
obtained from each EV upon arrival. In this context, the
DNO directly receives the charging information from EVs
and sends charging control signals to them, forming a cen‐
tralized control structure between the DNO and EVs.

The centralized control is feasible for scheduling a small
number of EVs. However, when large EV fleets are in‐
volved, solving such a centralized optimization problem is
challenged by the complexity of the problem. Thus, this pa‐
per proposes a two-layer control framework by clustering
the EVs into different groups and introducing group operat‐
ing agents. The group operating agents act as intermediary
control systems, which can be considered as distributed com‐
putation nodes that work cooperatively to share the computa‐
tional burden of the DNO. This two-layer control framework
can bring two benefits, which are improving the computa‐
tional efficiency of the DNO and reducing the communica‐
tion burden between the DNO and the EVs.

After clustering the EVs, the DNO makes charging sched‐
uling decisions for each group in the upper layer based on
the group parameters to reduce the total load fluctuation. In

the lower layer, the group operating agents dispatch the
charging power of the EVs to meet the load requirements of
the DNO. In each group, the individual EV charging con‐
straints such as power limits and energy requirements will
be explicitly involved.

For such a smart charging control system, information ex‐
changed between EV users and the DNO is a critical prob‐
lem. Hence, some communication protocols such as the open
charging point interface protocol are key enablers to achiev‐
ing efficient information exchange. Besides, to achieve real-
time control of EV charging rates, technologies like charging
service provider apps need to be adopted. In this paper, only
the level 2 charging rates are considered because the level 1
charging rate is too slow and the level 3 charging infrastruc‐
ture is not widely deployed. In the early stages of develop‐
ing such a smart charging system, incentives may be needed
to encourage EV users to adopt the habit of declaring their
charging information

B. Rolling Horizon Scheduling

Rolling horizon technique is used to indicate that a time-
dependent model is solved repeatedly, and in which the
scheduling interval is moved forward in time during each so‐
lution step. In the studied distribution system, the DNO
needs to determine the EV charging rate under the uncertain‐
ties in EV charging information and residential loads. Be‐
sides, the charging decisions need to be made in a period-by-
period manner to keep pace with the updated EV charging
information. Hence, a rolling horizon charging scheduling
model is adopted to solve the charging scheduling problem
[45]. In the rolling horizon charging scheduling model, data
are divided into three categories, i.e., past knowledge, solu‐
tion data, and future forecast. The past knowledge includes
the completed EV charging scheduling operation. The solu‐
tion data are the charging decisions obtained by solving the
current rolling horizon optimization models. The future fore‐
cast is the residential load forecast information. In this pa‐
per, the residential load forecast horizon of the DNO is set
to be 8 hours. Besides, under the level 2 charging rate, 8
hours are enough to allow most EVs to be fully charged.
Hence, for each repetition of the rolling horizon charging
scheduling model, the scheduling horizon of the DNO is set
to be 8 hours. As in [45], the optimization resolution is set
to be 15 min. Under this parameter setting, the scheduling
horizon of the optimization problem is 8 hours, and the prob‐
lem will be solved every 15 min. Meanwhile, to update the
continuously changing EV information at the same pace as
the rolling horizon charging scheduling model, only the first
step of the scheduling solution is implemented.

C. Centralized Problem Formulation

In the centralized charging scheduling optimization model,
the charging information of each EV is explicitly incorporat‐
ed. The DNO optimizes the scheduling problem to determine
the EV charging power based on the residential load forecast.

min
Pkt
∑
tÎ T(∑k

Pkt +Prest -Pave) 2

(1)

s.t.

Fig.1. Structure of studied distribution system.
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where Pkt and Prest are the charging power of EV k and the
residential load at time t, respectively; Pave is the average to‐
tal load across the scheduling horizon; T is the total schedul‐
ing horizon; tkin and tkd are the arrival time and departure
time of EV k, respectively; SOCktis the state-of-charge
(SOC) level of EV k at time t, which is bounded by its low‐
er and upper limits [ - -- -----SOC - -- -----

SOC ]; iSOCkis the initial SOC

when EV k arrives. Ek is the energy capacity of EV k; and η
is the charging efficiency.

In the objective function, the total load variation across
the rolling horizon is minimized. The EV charging power is
limited by (2). The average load is calculated by (3). Con‐
straints (4)-(6) are SOC constraints of EVs.

Since EVs may experience unexpected trips, the departure
time of the EVs becomes uncertain parameters. The range of
the EV departure time is given by:

tkin £ tkd £ tkout (7)

where tkout is the user-provided departure time of EV k.
When the EV departure time is uncertain, postponing the
time of charging or decreasing the power of charging can
cause energy deficiency of EVs. Hence, the DNO needs to
charge the EVs as fast as possible to reduce the range anxi‐
ety of EV users, making the EV charging load uncontrolla‐
ble. To cope with this problem, a holistic methodology is
proposed in the next section to find a compromise solution
that balances the load flattening target of the DNO and EV
user conveniences. In the developed methodology, part of
the charging flexibility is sacrificed to ensure that the energy
deficiency is controlled below acceptable degrees, whereas
most of the flexibility can still be utilized to support the
load-flattening operation.

III. PROPOSED METHODOLOGY

In this section, an estimation model for occurrence proba‐
bility of unexpected trips (PUT) is firstly proposed to de‐
scribe the uncertainty in unexpected EV trips. Then, a multi-
level user convenience model is presented. Based on the un‐
certainty and user convenience models, a novel risk-con‐
strained segmental charging strategy is proposed. The new
formulation of the load flattening problem using the pro‐
posed methodology is presented at the end of this section.

A. Estimation Model for PUT

EV user charging behavior is affected by many factors

such as the age of users, EV type, iSOC, and dwelling peri‐
od [46]-[49]. Among these factors, some information such as
EV type, EV initial SOC, and EV dwelling period can be ac‐
quired easily. Some information such as EV user characteris‐
tics is hard to access due to privacy concerns. Hence, the es‐
timation model in this paper selects the EV type, iSOC, and
dwelling period as explicit factors and treats other factors by
using an aggregated factor. Notably, to estimate the contribu‐
tions of each factor to the PUT of EV users, real-world EV
charging data are required. The data that need to be collect‐
ed should at least include EV type, EV dwelling time, iSOC,
and historical data of having unexpected trips. After acquir‐
ing the real-world charging data, the contributions of each
factor to the PUT of EV users can be estimated by using re‐
gression models. At this moment, it is not possible to collect
detailed EV charging data. Hence, it is assumed that the con‐
tributions of each factor to the final PUT of EV users are
known and are uniformly distributed to each considered fac‐
tor, as shown in Fig. 2.

Three types of EVs are considered in this paper, including
public buses, commercial EVs, and private EVs. Among the
three types of EVs, public buses are considered the least
likely to have unexpected trips since they have a stable rou‐
tine. Because of the highly uncertain personal behaviors
[46], private EVs are assumed most probable to experience
unexpected trips. Finally, the likelihood of commercial EVs
having unexpected trips lies between the public buses and
the private EVs. The iSOC can affect the charging behavior
of EV users [50], and it is assumed that a linear relationship
exists between the PUT and the iSOC in this model. That is,
when other factors are fixed, EV users with lower iSOC will
have smaller PUTs. For the dwelling period, each day is di‐
vided into three sets of periods, including the resting period
Tr (hours 1-8), the working period Tw (hours 9-17), and the
after-work period Taw (hours 18-24). Among the three peri‐
ods, unexpected trips are most unlikely to occur during the
resting period with low human activity. Since people have a
relatively fixed routine during the working period, the unex‐
pected trip is an event with medium probability during this
period. The unexpected trips are most likely to occur during
the after-work period since human activities become highly
unpredictable in this period. For other factors, a random val‐

Fig. 2. Contribution of each factor to final PUTs of EV users.
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ue is generated to represent their contributions in the estima‐
tion model. The above statements can be summarized as:

πUT = α + β × iSOC + (aLr + bLw + cLaw )+ γ (8)

where πUT is the PUT; α and β are the estimation parameters
of PUT for EV types and iSOC, respectively; iSOC is the
iSOC of EV; a, b, and c are PUT parameters for resting,
working, and after-work periods, respectively; and Lr, Lw,
and Law are the numbers of dwelling intervals in resting,
working, and after-work periods, respectively. Based on pre‐
vious discussions, it is assumed that relationships of the esti‐
mation parameters of the PUT for public buses αbus, commer‐
cial EVs αcom, and private EVs αpri are αpri = 2αcom and αcom =
2αbus. Meanwhile, the relationships of the estimation parame‐
ters of the PUT for different dwelling periods are assumed
to be 2a = b and 2b = c.

The PUT indicates how likely an EV user will leave earli‐
er than the planned time. In this paper, it is assumed that all
unexpected trips are induced by unexpected events featured
with nonanticipativity. Besides, it is assumed that the proba‐
bilities of EVs having unexpected trips in different periods
are consistent with the parameter settings in the estimation
model. Therefore, for a connected EV, its probability of hav‐
ing an unexpected trip in each single interval π si

UT can be ex‐
pressed by:

π si
UT =

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï

ï

a
πUT

aLr + bLw + cLaw

tÎ Tr

b
πUT

aLr + bLw + cLaw

tÎ Tw

c
πUT

aLr + bLw + cLaw

tÎ Taw

(9)

B. Multi-level User Convenience Model

When unexpected trips occur, EVs may experience energy
deficiency due to shorter charging time and charging sched‐
uling. Such energy deficiency can increase the range anxiety
of EV users and reduce EV user convenience. In existing
works, user conveniences are normally considered from the
perspective an individual EV user, e. g., the time sensitivity
of EV user in [21] and the energy sensitivity of EV user in
[51]. However, this paper investigates the charging schedul‐
ing problem from the perspective of the DNO, which is
more concerned about the overall user satisfaction level in‐
stead of individual user convenience levels. Hence, the user
convenience in this paper is defined as the proportions of
EVs with energy content above the predefined levels by the
time they are unplugged:

ul =
nl

N
´ 100% (10)

where ul is the lth user convenience level; nl is the number
of EVs with energy content above the lth required level; and
N is the total number of EVs. Under this model, multiple
levels can be defined regarding different critical impact lev‐
els on user convenience. In this paper, the critical one-trip
and sub-critical two-trip SOC levels are used as the criteria
for evaluating user convenience, as shown in Fig. 3. Accord‐
ing to the data reported in [9], each trip approximately con‐
sumes 28% of the battery capacity and the lowest allowed

SOC level is 0.10. Therefore, it can be inferred that the mini‐
mum one-trip SOC level is SOC1 = 0.38 and the two-trip
SOC level is SOC2 = 0.66. In this paper, the one-trip SOC is
defined as the critical SOC level (level-1 SOC) and the two-
trip SOC is defined as the sub-critical SOC level (level-2
SOC).

C. Risk-constrained Segmental Charging Scheduling Strategy
To respect the user convenience defined in (10), a risk-

constrained segmental charging strategy is proposed to make
customized charging plans for EV users based on the esti‐
mated PUTs. First, for EV k with scheduled energy content
less than a predefined energy level SOCl at time tl, its risk
of leaving with an energy content less than SOCl at time tl is
determined by its cumulative PUT until tl. Based on this, the
risk limit π l is defined as the cumulative PUT limit for charg‐
ing EVs to reach predefined critical energy level SOCl. In
the proposed strategy, it is ensured that by the time the cu‐
mulative PUT of EV k reaches the risk limit π l, the energy
content of EV k is above the predefined critical energy level
SOCl. To achieve this target, the scheduling results need to
guarantee that each EV is charged to the desired energy lev‐
el SOCl before its cumulative PUT exceeds the risk limit π l,
as described in (11) and (12).

SOCtl
³ SOCl (11)

∑
t = tin

tl

π si
UT £ π l £∑

t = tin

tl + 1

π si
UT (12)

where tl is the time slot after which the cumulative PUT of
the EV just exceeds the lth risk level, and the SOC level at tl

is denoted by SOCtl
.

Constraint (11) ensures that at the time slot tl, the sched‐
uled EV energy content SOCtl

is above the desired energy

level SOCl. Constraint (12) calculates the time slot tl for
each EV based on their estimated PUTs.

In the proposed strategy, part of the EV charging flexibili‐
ty is sacrificed, as illustrated in Fig. 4. The outer parallelo‐
gram represents the full EV charging flexibility [52]. Under
the proposed strategy, part of the EV charging flexibility is
lost due to the restrictions on energy levels at certain sched‐
uling time slots. The lost flexibility is plotted as the shaded
area in Fig. 4.
D. Segmental Charging-based Load Flattening

By applying the proposed methodology to the load flatten‐
ing problem, the user convenience-oriented problem be‐
comes:

Fig. 3. Illustration of segmental charging strategy.
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min
Pkt
∑
tÎ T(∑k

Pkt +Prest -Pave) 2

(13)

s.t.
(2)-(7) (14)

(9), (11), (12) (15)

iSOCk +
η
Ek
∑
t = tkin

tkl

Pkt ³ SOCl (16)

The segmental charging requirements are stated in con‐
straints (15) and (16). Constraint (16) ensures that the ener‐
gy content of EV k at tkl is no less than the predefined ener‐
gy level SOCl. In the centralized model, the DNO needs to
consider all the EV charging information to make custom‐
ized charging scheduling decisions. Solving such a problem
for large EV fleets is computationally challenging. In the
next section, a hierarchical framework of the problem (13)-
(16) is developed.

IV. PROPOSED DISTRIBUTED SOLUTION FRAMEWORK

In this section, a clustering method is proposed to divide
EVs into different groups. The EV groups and DNO form a
hierarchical model as shown in Fig. 1. An ADMM-based so‐
lution method is then developed to obtain the charging
scheduling solution in a distributed way.

A. EV Clustering Method

The charging scheduling decisions are made in a rolling
horizon fashion with 32 scheduling intervals. Since all EVs
should be fully charged by the time they plan to be un‐
plugged, EVs with the same remaining planned dwelling
time are clustered as a group considering they have the same
scheduling length. The group parameters to be identified
when clustering the EVs include the power range, the total
energy demand, and the aggregated segmental energy re‐
quirement imposed by the proposed strategy. The power
range of group g can be acquired by summing up the power
of all the EVs belonging to that group:

0 £Pgt £ P̄gt =∑
kÎ g

P̄k (17)

where Pgt is the aggregated charging power of group g,
which is bounded by its upper limit P̄gt; and P̄k is the maxi‐

mum charging power of EV k.
The energy demand E d

k for EV k is the energy needed to
fully charge that EV. The energy demand E d

g for each group
g is the summation of individual EV energy demand E d

k in
that group, as shown in (18).

E d
g =∑

kÎ g

E d
k (18)

The minimum required energy before a specific time inter‐
val for a group can be obtained by summing up all the seg‐
mental energy requirements of EVs before that time, as illus‐
trated in Fig. 1. For individual EVs, the lth level of energy re‐
quirement E r

kl for EV k can be calculated as:

E r
kl = (SOCl - iSOCk )Ek (19)

After obtaining E r
kl for every EV in group g, the aggregat‐

ed segmental energy requirement E r
gtn

of group g before the

nth time interval tn can be obtained by:

E r
gtn
=∑

kÎ g

E r
kl tl £ tn (20)

B. ADMM-based Solution Method

The ADMM algorithm can solve optimization problems in
the following separable form:

min
xÎXzÎZ

( f (x)+ g(z)) (21)

s.t.

Ax +Bz = d (22)

where x and z are the decision variables that can be opti‐
mized separately. The augmented Lagrangian optimization
problem can be written as:

min
xÎXzÎZ

Lρ (xzλ)= f (x)+ g(z)-

λT (Ax +Bz - d)+
ρ
2
 Ax +Bz - d

2

2

(23)

where λ is the Lagrangian multiplier vector; ρ is the penalty

factor; and  ·
2

2
is the l2 norm of vectors. By introducing

the scaled dual variable ξ, (23) can be rewritten in its scaled
form:

min
xÎXzÎZ

Lρ (xzξ)= f (x)+ g(z)+
ρ
2
 Ax +Bz - d - ξ

2

2
+C(24)

ξ =
λ
ρ (25)

where C is a constant. Problem (24) and (25) can be solved
in a distributed way using the ADMM algorithm through an
iterative process:

xv + 1 = arg min
xÎX

Lρ (xzvξv ) (26)

zv + 1 = arg min
zÎZ

Lρ (xv + 1zξv ) (27)

ξv + 1 = ξv + (Axv + 1 +Bzv + 1 - d) (28)

where v is the iteration number. As can be observed, vari‐
ables x and z are optimized in separated steps, which en‐
ables distributed optimization of the original problem. At the
end of each iteration, the convergence is checked by examin‐
ing (29).

Fig. 4. EV charging flexibility under proposed strategy.
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 ξv + 1 - ξv

2
£ ε (29)

Based on the ADMM algorithm, a distributed reformula‐
tion of the charging scheduling problem is proposed. In the
reformulated problem, the primary optimization problem for
the DNO only considering the EV group parameters is given
as:

min
Pgtv + 1
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∑
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ü
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2
(30)

s.t.

ì
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î

ïï
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-
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Pgtv + 1 = 0 otherwise
(31)

∑
t = 1

tn

Pgtv + 1 ³E r
gtn

"tn £ tgd (32)

η∑
t

Pgtv + 1 =E d
g (33)

Pave =
∑
tÎ T( )∑

g

Pgtv + 1 +Prest

T

(34)

where Pgtv + 1 is the scheduled group power in the primary
problem at the current iteration; and Pktv is the scheduled
EV charging power from the secondary problem in the last
iteration. In this formulation, the power of each group is con‐
strained by (31). The aggregated segmental energy require‐
ment for each group is fulfilled through (32). The total ener‐
gy demand of each group is satisfied by (33), and the aver‐
age power of the total scheduling horizon is given by (34).

For each EV group, the group scheduling information
Pgtv + 1 is received from the DNO and the charging power of
individual EVs is dispatched to meet the demand of the
DNO. Thus, the secondary problem for each EV group can
be formulated as:
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2

s.t. (2)(4)-(7)(15)(16)

(35)

In this problem, the scaled dual variable is updated accord‐
ing to the differences between the scheduling results of the
DNO and group operating agents:

ξv + 1 = ξv + (∑kÎ g

Pktv + 1 -Pgtv + 1 ) (36)

The charging scheduling problem can be solved using the
ADMM algorithm, in which the DNO and the EV groups op‐
timize their problems separately. The procedure of the dis‐
tributed solution framework is summarized as follows.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed strategy
is evaluated by comparing it with the uncontrolled charging
strategy and conventional load flattening charging strategy
without considering unexpected trips [29].

A. Basic Data

The scaled real-world demand data [53] are used as the
forecast and actual residential load profiles, as shown in
Fig. 5.

The demand data feature high demand in working and af‐
ter-work periods, and low demand in resting periods. Hence,
the selected demand data can well reflect general daily elec‐
tricity consumption patterns. Besides, the EV charging data
are hard to be acquired in the real world. Hence, EV charg‐
ing scenarios are generated by using the typical EV models
and charging behavior probability distributions in [47]. The
highest PUT is set to be 40%. By using the Monte-Carlo
simulation approach [47], a total of 1000 EV scenarios are
generated, and 238 of them leave before their planned depar‐
ture time. The charging efficiency for all the EVs is set to
be η = 0.95 [40]. In the ADMM algorithm, the convergence
threshold is set to be ε = 0.01 and the penalty factor is
ρ = 100. Because some EVs have a high PUT and a low
iSOC, small risk limits are not feasible for them to reach the
predefined energy levels. To make the segmental charging
strategy feasible for all EVs, the minimum risk limits that

Fig. 5. Residential load information.

Algorithm 1

1. Initialize v = 0, ξ0 = 0, ρ = 100, ε = 0.01, Pkt0 = 0"kt

2. while (29) is false, v¬ v + 1 do

3. Solve (30)-(34) with (Pktvξv ) to obtain Pgtv + 1

4. Solve (35) for each EV group parallelly with (Pgtv + 1ξv )to obtain Pktv + 1

5. Update ξv + 1 = ξv + (∑kÎ g

Pktv + 1 -Pgtv + 1 )
6. end while

7. Return Pktv + 1

7



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XX XXXX

enable all the EVs to reach the predefined energy levels are
selected. Based on this criterion, the risk limits for the criti‐
cal and sub-critical levels of user convenience are set to be
π1 = 3% and π2 = 7%, respectively.
B. Results and Discussions

The total loads of the studied charging strategies are pre‐
sented in Fig. 6. In the uncontrolled charging strategy, the
peak demand is observed during hours 16 to 22, which corre‐
sponds to the period when most EVs are plugged to charge.
The period between midnight and morning (hours 1 to 7)
has the lowest load demand throughout the day. For the con‐
ventional load flattening charging strategy, the load differ‐
ence between the peak demand hours and other periods is
minimized and no obvious peak is observed. But a valley
still exists between hours 2 to 6, which is induced by the in‐
sufficient regulating capability of EVs. For the proposed
strategy, part of the charging load between peak demand
hours is shifted to valley demand hours compared with the
uncontrolled charging strategy. However, a lower peak still
exists in the load profile of the proposed strategy. The un‐
shaved load is necessary for satisfying the segmental energy
requirement of EVs and thus cannot be shifted to valley de‐
mand hours.

Figure 7 presents the SOC levels of EVs that leave earlier
than planned departure time. The conventional load flatten‐
ing charging strategy gives most violations against the re‐
quired energy levels. Under this strategy, a total of 94 EVs
fail to satisfy the critical one-trip SOC level and 183 EVs
fail to meet the sub-critical two-trip SOC level, which con‐
sist of 9.4% and 18.3% of the total EV fleet, respectively.
Compared with the conventional load flattening charging
strategy, the proposed strategy substantially reduces the num‐
ber of violations against the predefined SOC levels (with on‐
ly 18 violations for level 1 and 78 violations for level 2). In
Fig. 7, a long flat segment can be observed for the proposed
strategy, which corresponds to the sub-critical SOC level of
0.66. Although the uncontrolled charging strategy can mini‐
mize the energy-deficient problem of EVs compared with
other charging strategies, it is still inevitable that some EVs

would experience critical or sub-critical energy deficiency.

The scheduling results of the studied charing strategies are
displayed in Table I and summarized in Fig. 8.

Compared with the conventional load flattening charging
strategy, the load flattening performance of the proposed
strategy is reduced by 17% (from reducing 87% of the load
variance to reducing 70% of the load variance). Though the
conventional load flattening charging strategy performs bet‐
ter than the proposed strategy in reducing the load fluctua‐
tions, it has severely damaged user convenience by causing
91 critical energy-deficient users and 149 sub-critical energy-
deficient users, respectively. Whereas the proposed strategy

 

Fig. 6. Total loads of studied charging strategies..

 

Fig. 7. SOC levels of EVs leaving earlier than planned departure time.

TABLE I
SCHEDULING RESULTS OF STUDIED CHARING STRATEGIES

Strategy

Uncon‐
trolled

Proposed

Load
flattening

Peak
load
(kW)

16933

14222

12738

Peak-to-
valley ratio

2.2638

1.5684

1.3609

Normalized
load varia‐

tion

1.00

0.30

0.13

Level 1 user
convenience

(%)

99.7

98.2

90.6

Level 2 user
convenience

(%)

96.6

92.2

81.7

Fig. 8. Comparison of scheduling results of studied charing strategies.
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only results in 15 critical and 44 sub-critical energy-deficient
users, respectively. Compared with the conventional load flat‐
tening charging strategy, the proposed strategy reduces the
charging scheduling-resulted energy-deficient users by
83.5% (from 91 to 15) for the critical user convenience lev‐
el, and 70.5% (from 149 to 44) for the sub-critical user con‐
venience level, respectively.

The convergence rate of the developed distributed solution
framework is illustrated in Fig. 9 for six consecutive time in‐
tervals (intervals 41-46), which confirms that the problem
converges quickly with the proposed distributed solution
framework.

C. Impact of Customization
This paper utilizes individual PUT information to make

customized charging plans for each EV user, which compli‐
cates the scheduling problem and increases the workload. To
validate the necessity of customization, a non-customized
segmental charging strategy is applied. In this strategy, the
PUT for all EVs is considered identical and is equal to the
proportion of EVs having unexpected trips. For this strategy,
the critical and sub-critical user convenience levels are
97.5% and 91.6%, respectively. Compared with the custom‐
ized strategy, we can find that the non-customized segmental
charging strategy can increase the number of scheduling-re‐
sulted critical (from 18 to 22) and sub-critical (from 44 to
50) energy-deficient users. By using the non-customized seg‐
mental charging strategy, the peak load, peak-to-valley ratio,
and normalized load variance are 14355 kW, 1.6391, and
0.36, respectively. Compared with the uncontrolled charging
strategy, the non-customized segmental charging strategy can
achieve 15.2% of peak load reduction, 27.6% of peak-to-val‐
ley ratio reduction, and 63.9% of load variance reduction, re‐
spectively. However, compared with the customized segmen‐
tal charging strategy, the non-customized strategy increases
the peak load, peak-to-valley ratio, and normalized load vari‐
ance by 0.9% (14222 kW to 14355 kW), 4.3% (1.5684 to
1.6391), and 6.1% (0.30 to 0.36), respectively. Hence, it can
be concluded that customization is an important measure to
further enhance both the user convenience and load-flatten‐

ing performances of the proposed strategy.

D. Sensitivity Analysis of PUT Levels

The PUT level is an indication of EV user credibilities,
namely, to which extent can the information provided by EV
users be trusted. In this subsection, the impacts of the PUT
levels on the scheduling results are analyzed for different
PUT levels ranging from 10% to 50%.

Figure 10 gives the evolution results of peak loads and
the peak-to-valley ratios for the studied strategies under dif‐
ferent PUT levels. It can be observed that changing the PUT
level has limited impacts on the load profiles of both the un‐
controlled charging and the conventional load flattening
charging strategies. On the contrary, the performance of the
proposed strategy is significantly affected by the PUT level.
As the PUT level increases from 10% to 50%, the peak
loads and the peak-to-valley ratios of the uncontrolled charg‐
ing and the conventional load-flattening charging strategies
remain almost unchanged. In contrast, for the proposed strat‐
egy, the peak load increases from 12956 kW to 14803 kW,
and the peak-to-valley ratio increases from 1.3344 to 1.6183.
The same result is also observed for the normalized load
variances presented in Fig. 11. The normalized load variance
of the conventional load flattening charging strategy only
ranges between 0.09 and 0.15 with increasing PUT level,
whilst that of the proposed strategy increases from 0.11 to
0.38. This evolution trend suggests that when EV users be‐
come less trustworthy, more charging flexibility will be sacri‐
ficed to guarantee user convenience. As a result, the load-
flattening performance of the proposed strategy is under‐
mined.

Figure 12 gives the analysis results of user convenience
under different PUT levels. It can be observed that the un‐
controlled charging strategy performs the best and the con‐
ventional load flattening charging strategy performs the
worst. For these two strategies, their user convenience levels
will decrease as the PUT level increases. This is because EV
users are more likely to experience unexpected trips under

 

Fig. 9. Convergence rate of proposed distributed solution framework.

 

Fig. 10. Evolution results of peak loads and peak-to-valley ratios with dif‐
ferent PUT levels.
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higher PUT levels. However, for the proposed strategy, we
can find that user convenience levels are constrained in a
certain range instead of simply decreasing with increased
PUT levels. The constraining ranges are defined by the risk
parameters π l and affected by the actual EV charging scenari‐
os.

From the sensitivity analysis of PUT levels, it may be no‐
ticed that as the PUT level moves closer to 0, the proposed
strategy degrades to the conventional load-flattening charg‐
ing strategy. This is because the segmental restrictions in‐
duced from unexpected trips are relaxed and the flexibility
loss approaches 0. Therefore, it may be concluded that the
conventional load flattening charging strategy is an ideal
form of the proposed strategy where the planned trips of all
EV users are uninterrupted.

VI. CONCLUSION

This paper studies the load flattening-oriented charging
scheduling strategy for EVs under the assumption that some
EV users may leave earlier than planned. Compared with the

existing literature, this assumption is more realistic since ran‐
domness in human activity is inevitable. In the proposed
methodology, the DNO first estimates the PUT of EV users
based on the information provided by EV users, then sched‐
ules the charging rates of EVs to flatten the load profile
while ensuring EV user convenience.

The numerical results suggest that completely ignoring un‐
expected trips of EV users can severely affect their user con‐
venience, and the proposed methodology is proven efficient
in enhancing user convenience by reducing 83.5% of critical
and 70.5% of sub-critical user convenience loss, respective‐
ly. From the perspective of the DNO, the proposed segmen‐
tal charging strategy can achieve 16.0 % of peak load reduc‐
tion, 30.7% of peak-to-valley ratio reduction, and 70.0% of
load variance reduction, respectively. Besides, customization
is an important measure to enhance the performance of the
proposed methodology. By making customized charging
plans for different EVs, the load variance is further reduced
by 6.1%, and the user convenience levels are also improved.
Though customization can worsen the dimensional disaster
for large-scale EV fleets, the proposed distributed solution
framework can solve the optimization problems effectively.
The sensitivity analysis against the PUT level shows that as
trip plans of EV users become more reliable, more charging
flexibility can be preserved for reducing system load fluctua‐
tions without undermining user convenience levels.

Finally, the proposed methodology is used to restrict the
impacts of unexpected trips on EV user convenience while
ensuring smart charging performances. Hence, for smart
charging strategies in which energy deficiency caused by un‐
expected trips cannot be ignored, the proposed methodology
can be included to improve the applicability of these smart
charging strategies.
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