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Abstract

In the Supplementary Information we provide further details of (1) the processing and correction

of Advanced Very High Resolution Radiometer (AVHRR) and MODerate-resolution Imaging

Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data introduced in

Section 2.2 (Article), (2) an analysis of potential errors in the total annual precipitation estimates

(Section 2.3.2, Article), (3) details on the local and regional regression models used to estimate

the sensitivity of forest extent to climate change (Section 3.4, Article), and (4) the results of the

regional regression sensitivity analysis (compare with Fig. 9, Section 3.4; Article).

S1. Processing and correcting AVHRR and MODIS NDVI Data

NDVI data are frequently used to obtain information about spatial and temporal variations

in the amount and vigour of vegetation to support ecological, biogeochemical and hydrological

studies (Pettorelli, 2013). NDVI is derived from red and near-infrared radiation reflected by the

land surface that is measured by a satellite sensor: NDVI = (ρ2 − ρ1)/(ρ2 + ρ1) with ρ1 being the

red reflectance and ρ2 the near-infrared reflectance (Tucker, 1979). Healthy vegetation has unique

spectral properties; it reflects solar radiation in near-infrared wavelengths and absorbs radiation

in red wavelengths. A large difference between near-infrared and red reflectance indicates the

presence of dense green vegetation, other land surfaces tend to reflect near-infrared and red

radiation in near-equal amounts which results in a NDVI close to zero.

Fourier Adjusted, Solar and sensor zenith angle corrected, Interpolated and Reconstructed

(FASIR) Advanced Very High Resolution Radiometer (AVHRR) NDVI data (8 km resolution,

monthly time step, 1982–1999) are derived from Pathfinder AVHRR Land data (James and

Kalluri, 1994) and are corrected for the effects of sensor degradation and intercalibration dif-

ferences in successive AVHRRs using invariant desert targets (Los, 1993, 1998), viewing-angle

and illumination-angle effects in the NDVI (Los et al., 2005), and atmospheric scattering and ab-

sorption by stratospheric aerosols (Los et al., 2000; Vermote et al., 2001). Outliers are removed

and missing data filled in using Fourier series (Sellers et al., 1996). The residual error in FASIR-

NDVI at its maximum is about 0.05 NDVI (Los et al., 2000). To obtain NDVI data for the summit

of Mt Marsabit, the greenest region in its wide surroundings, we selected the maximum NDVI

of a 3 by 3 pixel maximum filter; this avoids low NDVI values as a result of geo-location errors
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which can be in the order of 1 pixel. Moderate-resolution imaging spectroradiometer (MODIS)

Terra 1 km and 250 m 16-day normalised difference vegetation index (NDVI) data (2001–2015)

for Mt Marsabit and its surroundings are obtained from the United States Geological Survey

(USGS) Land Processes Distributed Active Archive Center (LPDAAC; https://lpdaac.usgs.gov).

These data are filtered and interpolated to a monthly time step using the Fourier Adjustment.

To integrate MODIS data for the summit with AVHRR NDVI data, anomalies are calculated for

the monthly means of the first 8 years of MODIS data and of the last 8 years of AVHRR data.

Anomalies of MODIS data are scaled using the ratio of the standard deviation of the last 8 years

of AVHRR anomaly data and of the first 8 years of MODIS data; scaled MODIS anomalies are

added to the mean monthly values of the last 8 years of AVHRR data; these data are used in

Sections 3.1 and 3.2 (Article). For the analyses in Sections 3.3 and 3.4 (Article) and Section S6,

which explore associations between NDVI, precipitation and cloud-base height for the Marsabit

region, we use entire MODIS scenes from 2000–2015; only the Fourier Adjustment is applied to

these MODIS data.

S2. Error analysis of estimates of total and occult precipitation

We consider four alternative explanations for our estimate of occult precipitation on Mt

Marsabit (the magnitude of their associated errors is summarised in Table 1, Supplementary

Information): (1) the rainfall measurements at the Marsabit weather station are not representa-

tive of rainfall measurements in the forest, (2) the AVHRR NDVI data are not representative

of the forest, (3) fog occurrence decreases evapotranspiration, which leads to overestimates of

occult precipitation, and (4) fog occurrence increases the proportion of diffuse light which leads

to higher photosynthetic rates, higher carbon allocation to leaves and higher NDVI values, effec-

tively changing the relationship between NDVI and precipitation. These combined effects need

to be in the order of 900 mm per year to explain the excessive greenness of 0.35 NDVI of the

forest.

S2.1. Representativeness of rainfall measured at Marsabit

Rainfall measurements from the Marsabit weather station may not be representative of rainfall

in the forest for a number of reasons. Because of the high windspeeds the raingauge may catch

only a proportion of rainfall or rainfall may be higher in the forest (above 1500 m a.s.l.). than at

the raingauge (1345 m a.s.l.) because of the difference in altitude.

Wind-induced undercatch of rainfall. The average wind speed at Marsabit is 8 ±3 m s−1. We do

not have detailed information about the raingauge on Mt Marsabit which hampers estimation of

the undercatch; the calculation below therefore serves as an illustration. Wind speed measured at

10 m is adjusted to the height of the rain gauge (Yang et al., 1998); for the purpose of comparison

here assumed to be 1 m above the surface:

U(h) = U(H) ln(h/z0)/ ln(H/z0) (S1)

with U(h) the estimated daily wind speed (m s−1) at the opening of the gauge; U(H) the measured

daily wind speed at 10 m (m s−1), h and H are the heights (m) of the gauge and anemometer,

respectively and z0 is the surface roughness (m). Undercatch for a raingauge with a 20 cm

diameter opening is approximated by:

Rs = exp(4.606 − 0.041U(h)0.69) (S2)

Ru = exp(4.605 − 0.062U(h)0.58). (S3)
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with Rs being the catch ratio for a shielded gauge and Ru the catch ratio for an unshielded gauge

(Yang et al., 1998).

The above correction was developed for rain gauges in Alaska using the World Meteorological

Organization (WMO) recommended method for measuring undercatch; the above equations were

derived for a wide range of conditions in terms of wind speed, temperature, rain intensity and

droplet size (Yang et al., 1998). The correction was found to improve measurement accuracy for

other areas and climates as well (Sieck et al., 2007).

From average daily wind speeds at Mt Marsabit, we find an average undercatch of 75 mm y−1

for an unshielded raingauge and an average undercatch of 81 mm y−1 for a shielded raingauge; the

undercatch is similar in magnitude to that found elsewhere (Yang et al., 1998; Sieck et al., 2007)

and is larger than a correction of 2% applied to global data (Adam and Lettenmaier, 2003). The

estimated undercatch is an order of magnitude smaller than our estimate of occult precipitation

and is therefore not an alternative explanation for the excessive greenness of Mt Marsabit. It is

important to note that no correction was incorporated in the processing stream of the CRU data

for wind effects (Harris et al., 2014), since it is unlikely that the station data used to assemble

the CRU precipitation data were corrected for undercatch. By not implementing a correction

for undercatch we compare like with like, i.e. uncorrected rainfall data at the Marsabit weather

station with uncorrected CRU data for the tropics.

Orographic effect on rainfall. The orographic effect is estimated using the CRU data for the

larger Marsabit region (latitude 1 ◦S–8 ◦N; longitude 35–42 ◦E). A regression with the mean an-

nual precipitation data for 1973–2013 as dependent variable and elevation from the 0.5 degree

hydro1k data finds a mean orographic effect of 0.44 mm m−1 (± 0.2 mm m−1). The elevation

of the top of Mt Marsabit is 1707 m a.s.l. The maximum height in the Space shuttle Radar To-

pography Mission (SRTM) data, which have a spatial resolution of 90 m, is 1689 m a.s.l. The

maximum average height for an area the size of a Glbal Area Coverage (GAC) AVHRR pixel

(4.4 by 1.1 km) is 1509 m a.s.l. The elevation difference between the maximum average height

of a GAC pixel (1509 m a.s.l.) and Marsabit weather station (1345 m a.s.l.) is 164 m, hence the

mean orographic effect is about 73 mm which we added to measurements of annual precipitation

to adjust for its effect. A similar analysis of station data in the region (not shown) showed a

smaller orographic effect.

Comparison Marsabit rainfall with forest data. Rainfall for 3 rainy seasons between October

2014 and December 2015 measured at the Marsabit weather station (1120 mm) and at the lodge

by AC-S (1140 mm) only differed by a small amount. The partial correlations between rainfall

at Marsabit station and NDVI did not decline with distance. We therefore conclude that rainfall

measured at Marsabit is representative of the forest and that rainfall variability at the station is

representative of rainfall variability for the wider region.

S3. Representativeness of AVHRR NDVI data

AVHRR NDVI data are coarse-resolution data (1.1 by 4.4 km AVHRR Global Area Coverage

(GAC) data — 4.84 km2) that are navigated to an 8 km (64 km2) resolution with an error smaller

than 4 km latitude and 8 km longitude (James and Kalluri, 1994; Young and Anyamba, 1999); the

forest area is approximately 120 km2. We selected the maximum NDVI of a 3×3 pixel window

to obtain a best estimate of forest greenness since the summit of Mt Marsabit is the greenest

area in the region. Selection of a pixel further away from the summit would result in selecting a
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lower NDVI value, which would lower our estimate of total precipitation. Other errors in NDVI

reduce its value as well (Holben, 1986; Los et al., 1994); hence the NDVI can underestimate the

amount of occult precipitation but is unlikely to overestimate it. The residual error in AVHRR

NDVI data, after a range of corrections have been applied (Los, 1993, 1998; Los et al., 2000,

2005; Sellers et al., 1996; James and Kalluri, 1994; Vermote et al., 2001), is around 0.05 NDVI

(Los et al., 2001) which is equivalent to 135 mm precipitation. This is 6 times smaller than

our estimate of occult precipitation and is incorporated in the overall uncertainty of our method

(±265 mm).

The NDVI climatology for April, the month of highest rainfall and highest occurrence of fog,

shows a lower value than that of the preceding month. In most of the tropics the response in

NDVI lags the occurrence of precpitation by 2–4 weeks, in line with the 1-month lag in occult

precipitation and 0-month lag with rainfall (Fig. 2 and 8; Article). In the unlikely case that the

depressed April NDVI value is caused by sub-pixel cloud contamination, we can estimate its

maximum effect on the estimation of occult precipitation as follows. We assume the correct

value for April is the highest value of the time series, i.e. we replace 0.68 with 0.72. This will

increase the mean annual NDVI by 0.0034 and our annual estimate of occult precipitation by

11 mm. This error is an order of magnitude smaller than the uncertainty of the method and is

therefore ignored in our estimates of occult precipitation.

S4. Effect of fog on evapotranspiration

Evapotranspiration is reduced during fog because of lower down-welling solar radiation, lower

surface air temperatures and increased atmospheric humidity. We estimate this reduction using

data from 1985–1998. This period shows the highest agreement between the number of annual

fog days obtained from the Kenya Meteorological Service (KMS) and the number of annual fog

days calculated from the Marsabit ISD record held at NOAA. A fog day is identified from the

ISD log (under field AY1 or AY2), or from visibility values lower than 900 m. The coefficient

of correlation between the ISD and KMS number of fog days per year is 0.94, the root-mean-

square error is 16 days per year and the bias 2.2 days per year (KMS has higher values). We use

the Makkink and Priestley-Taylor methods to estimate potential evapotranspiration (McMahon

et al., 2013). The Penman-Monteith equation is deemed less desirable for our case because its

use can result in large errors when it is not properly calibrated to local conditions (De Bruin,

1987; De Bruin et al., 2010). Average wind speed under fog conditions is 9.0 m s−1 and under

non-fog conditions 9.2 m s−1; this results in a very small difference in evapotranspiration when

a dependency of evapotranspiration on wind speed is considered as per the Penman-Monteith

equation.

Temperature, humidity and cloudiness data are obtained from the NOAA ISD Marsabit data;

net shortwave radiation is estimated from cloud cover and latitude (McMahon et al., 2013). For

the Priestley-Taylor method the ground heat flux is set to zero and albedo is set to 0.16. Daily po-

tential evapotranspiration rates are calculated for 1985–1998. The evapotranspiration is averaged

both for each fog and each fog-free Julian day between 1985–1998, resulting in a 1-year fog-free

and a 1-year fog climatology. There are three fog-free Julian days missing in 1985–1988 (days

109, 118 and 332); evapotranspiration rates for these three days is estimated by linear interpo-

lation of values from the previous and subsequent days. Annual potential evapotranspiration for

the fog-free year is between 1213 mm (Makkink) and 1724 mm (Priestley-Taylor) and for the

fog year between 918 mm (Makkink) and 1395 mm (Priestley-Taylor). We estimate a reduction

in potential evapotranspiration of 0.8 mm per fog day using the Makkink method and of 0.9 mm
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per fog day using the Priestley Taylor method. This translates to a maximum overestimate of

occult precipitation between 160–180 mm per year for the 1980s (about 200 fog days) and be-

tween 80–90 mm per year after 2000 (about 100 fog days). There is uncertainty in estimating

the reduction of actual evapotranspiration during fog, e.g. in a recent study in a montane forest

in Taiwan it was found that actual evapotranspiration increased during fog by about 0.2 mm per

day (Beiderwieden et al., 2008). We conclude that the effect of fog on evapotranspiration is too

small to be an alternative explanation for our estimate of occult precipitation.

S5. Effect of fog on gross primary productivity (GPP) and NDVI

Fog affects plant photosynthesis in a number of ways: it increases the proportion of diffuse

radiation which stimulates GPP; but it also reduces the total amount of solar radiation which

reduces GPP (Alton et al., 2007). Fog also affects photosynthesis since it increases atmospheric

humidity and decreases air temperatures. Similar to section S4 (above), we calculate a clima-

tology of cloud cover, temperature and humidity for a non-fog year and a fog year by taking

the average values for non-fog days and fog days for each Julian day from 1985–1998. Down-

welling radiation is calculated from cloud cover, surface air temperature, relative humidity, time

of year and latitude (McMahon et al., 2013). The diffuse and direct fraction of down-welling

solar radiation is estimated using Paltridge and Platt (1976):

fd = Rd/(Rb + Rd) (S4)

Rd = (0.00913 + 0.0125(90 − θ) + 0.723 ∗Co) cos θ

Rb = 3.42286[1 − exp(−0.075(90 − θ))],

with Rd and Rb being the diffuse radiation and direct radiation respectively, fd the diffuse fraction,

θ the solar zenith angle (in degrees) and Co the cloud octa. We use the model of Roderick et al.

(2001) to calculate annual gross primary productivity:

P′G = e′ f ′
APAR

C′R′s (S5)

e′ ≈ 0.024 + 0.11Rd/Rs − 0.018(Rd/Rs)
2

with P′
G

being the annual gross primary productivity (mol CO2 m−2 y−1); e′ the efficiency of the

canopy (mol CO2 mol−1 photosynthetically active radiation — PAR), and fAPAR the fraction

of photosynthetically active radiation (here 0.95 to obtain a maximum estimate), Rd the diffuse

radiation calculated as above, and C = 2.3 mol PAR MJ−1 converting the global solar irradiance

Rs (M J y−1) to quanta in the PAR region.

For 365 fog days we estimate a 15% to 19 % lower GPP than for non-fog days; this indicates

that annual GPP during fog days is reduced by 8% to 10 % in the early 1980s (200 fog days per

year) and by 4% to 5% after 2000 (100 fog days per year). A change in annual GPP is propor-

tional to a change in the mean annual fraction of photosynthetically active radiation intercepted

by the vegetation canopy (Monteith, 1972; Monteith and Moss, 1977; Potter et al., 1993) and is

near-linearly related to the mean annual NDVI (Tucker and Sellers, 1986; Myneni et al., 1995).

Therefore, we approximate the error of fog occurrence on annual precipitation from the linear re-

lationship between NDVI and annual precipitation (Fig. 5 Article). Since we underestimate GPP,

and hence NDVI, on Mt Marsabit, we need to add 200 mm to our estimates of occult precipitation

during the 1980s (about 10 % of NDVI) and 100 mm after 2000 (about 5% of NDVI). Because
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the estimate of the effect of diffuse radiation on NDVI is opposite in sign and of equal magnitude

to the effect of fog on evapotranspiration, we ignore both factors. This results in a residual uncer-

tainty equivalent to about 20 mm precipitation per year which is an order of magnitude smaller

than the uncertainty in the relationship shown in Fig. 5 (Article).

Table S1: Error estimates for occult precipitation related to undercatch of rain because of wind effects, the effects of

fog, orographic effects and systematic errors in NDVI caused by residual clouds. Fog on Mt Marsabit reduces both

evapotranspiration and photosynthesis (Gross Primary Productivity — GPP), which potentially affects the NDVI and the

estimate of total precipitation derived from it. Effects of fog on evapotranspiration and photosynthesis are of opposite sign

and similar in magnitude and are therefore ignored. Numbers under “PPN (Precipitation) equivalent” and “Correction”

need to be added to estimates of occult precipitation. Orographic effect, EO, is added to annual rainfall as a positive

number (see eq. 3, Article).

Estimate PPN equivalent Correction

Undercatch 12% -80 mm 0

Evapotranspiration 80–180 mm -80 – -180 mm 0

GPP -20 % +100 – +200 mm 0

Orographic effect 40 mm / 100 m -73 mm -73 mm

Cloud contamination (April) 0.0034 +11 mm 0

S6. Estimation of climate change sensitivity

We used two models to study the sensitivity of forest extent on Mt Marsabit to changes in

cloud-base height, rainfall and atmospheric humidity; one is a local regression model and the

other a regional regression model

Local regression model. For the local regression model, monthly NDVI is estimated per

250 m×250 m pixel from monthly rainfall (zero lag) and monthly cloud-base height (leading

NDVI by 1 month) using:

Vi, j = β0,i, j + β1,i, jPR + β2,i, jzC , (S6)

with Vi, j being the monthly NDVI for pixel with coordinate i, j, β0,i, j and β1,i, j the regression co-

efficients for coordinate i, j; PR the monthly rainfall measured at Mt Marsabit, and zC the mean

monthly cloud-base height calculated from Mt Marsabit temperature and dew-point temperature

data with eq. 1 (Article). Missing precipitation and cloud-base height data (data missing for 3

months) are replaced with climatological averages. Equation 1 (Article) allows calculation of the

sensitivity of cloud-base height to a change in surface air temperature. Coefficients for equa-

tion S6 are estimated using canonical correlation to avoid reducing the variance in the dependent

variable Vi, j (Draper and Smith, 1998). The amount of variance explained by the local regression

model (using 401 × 401 equations) is 86 %.

Regional regression model. For this model, NDVI is estimated from rainfall, cloud-base height,

location and altitude using one equation for the entire region. Coefficients are estimated using
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Figure S1: a. Average NDVI of the Marsabit region for 2000–2015; NDVI = 0.7 coincides with the lower boundary

of the xeromorphic forest. b. Projected NDVI for the LGM. c. Change in LGM NDVI compared to current conditions

(b. - c.). d. Reduction in LGM NDVI resulting from lower atmospheric CO2 concentrations e. Change in LGM NDVI

caused by a 500 m lower cloud-base height. f. Change in LGM NDVI as a result of 30 % lower rainfall. g. Change in

LGM NDVI caused by a change in lapse rate (Loomis et al., 2017). h. Projected NDVI as a result of a 250 m increase in

cloud-base height caused by 2 ◦C warming. (Sinusoidal projection; Easting — distance from the Greenwich meridian;

Northing — distance from equator.) See Fig. 9 (Article) for comparison.

canonical correlation:

V = β0 + β1PR + β2PRx + β3PRy + β4PRxy + (S7)

β5zC + β6zC x + β7zCy + β8zC xy +

β9h + β10hx + β11hy + β12hxy +

β13hPR + β14hPRx + β15hPRy + β16hPRxy +

β17hzC + β18hzC x + β19hzCy + β20hzC xy +

β21x + β22y + β23xy,
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with V being a three dimensional array (401 by 401 pixels of 250 m×250 m and 180 months) of

NDVI data from 2000–2015, and PR an array of the same size as V filled with monthly rainfall

data at zero lag with the NDVI observation (t = 0), zC an array with cloud-base height data from

the Mt Marsabit station for the month leading the NDVI data; x, y and h arrays of the same di-

mensions as V filled with the x-coordinate, the y-coordinate and elevation, respectively. Spatial

variation in rainfall and variation in rainfall with elevation are taken into account by the inter-

action terms PRx, PRy, PRh, PRxy, PRhx, PRhy and PRhxy and spatial and height dependencies

in cloud-base height by the interaction terms zC x, zCy, zCh, zC xy, zChx, zChy and zChxy. Spatial

and height interactions are also accounted for by the terms hx, hy and hxy. In contrast to the

first method (eq. S6), the regression coefficients β0 . . . β23 pertain to the entire 401 by 401 pixels

by 180 months array and have no spatial variability. An analysis of variance (ANOVA) on the

same model but using ordinary least squares shows that all independent variables are significant

(p << 0.05) and that their combined amount of variance explained is 63 %.

S6.1. NDVI sensitivity analysis from global regression

The regional regression model is used to estimate the sensitivity of NDVI to changes similar to

the sensitivity analysis shown for the local regression model. There is no particular good reason

to prefer one model over the other, the regional model is expected to be more sensitive in areas

with high and low NDVI whereas the local model provides a closer match to observations. The

models are used to obtain an estimate of uncertainty in the extrapolation of the model to the

LGM and to the global warming scenario. Cloud-base height is reduced by 500 m, rainfall by

30 %, NDVI by 20 % as a result of reduced atmospheric CO2 concentrations, and the lapse rate is

adjusted using data from Loomis et al. (2017). Results are shown in Fig. S1, see Fig. 9 (Article)

for comparison. Changes in surface area with NDVI above 0.6, 0.7 and 0.8 are shown in Table 3

(Article).
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