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Data post-processing for the one-way heterodyne protocol

under composable finite-size security

Alexander G. Mountogiannakis, Panagiotis Papanastasiou, and Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, United Kingdom

The performance of a practical continuous-variable (CV) quantum key distribution (QKD) pro-
tocol depends significantly, apart from the loss and noise of the quantum channel, on the post-
processing steps which lead to the extraction of the final secret key. A critical step is the recon-
ciliation process, especially when one assumes finite-size effects in a composable framework. Here,
we focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high
signal-to-noise ratio regime. We simulate the quantum communication process and we postprocess
the output data by applying parameter estimation, error correction (using high-rate, non-binary
low-density parity-check codes) and privacy amplification. This allows us to study the performance
for practical implementations of the protocol and optimize the parameters connected to the steps
above. We also present an associated Python library performing the steps above.

I. INTRODUCTION

Based on physical laws and not on computational as-
sumptions, quantum key distribution (QKD) ensures the
creation of long secret keys between two distant au-
thenticated parties, which can be later used for the ex-
change of symmetrically encrypted secret messages [1].
In particular, the parties can trace any eavesdropper’s
action on their communication over the intermediate (in-
secure) quantum channel that links them. According to
Heisenberg’s principle, any attempt of the eavesdropper
to interact with the travelling quantum signals leaves a
trace [2]. Through this trace, the parties can quantify
the leaked amount of information and compress their
exchanged data appropriately, in order to decouple the
eavesdropper from the final secret key.

Traditionally, the parties exchange quantum states de-
scribed by discrete degrees of freedom, such as the polar-
ization of a photon [4]. Such schemes are called discrete-
variable (DV) QKD protocols and their security has been
studied copiously [1, 5]. More recently, quantum sys-
tems described by continuous degrees of freedom have
also been studied and continuous-variable (CV) QKD
protocols [6, 7] have emerged as alternative to standard
schemes. These degrees of freedom are observables such
as the position and momentum of the electromagnetic
field [1, 8].

A great advantage of CV-QKD is that the current
telecommunications infrastructure is capable of han-
dling the preparation, exchange and detection of the
corresponding quantum signals. Thus, it provides a
cost-effective and practical solution, when compared
with DV-QKD. Such protocols also provide high key
rates over metropolitan-area distances [9], with values
approaching the theoretical limit of the secret key ca-
pacity, also known as the repeaterless PLOB bound [10].
Lately, they have surpassed their previous performance
in terms of achievable distances, which are now compa-
rable to these of DV-QKD protocols [11, 12].

In practical applications, where the finite-size ef-

fects [13] are important and the parties should take into
account composable security terms [14, 15], the proto-
col performance declines. Therefore, the optimization of
the protocol parameters becomes an important aspect
in CV-QKD [16]. In particular, it is also important to
optimize the procedure of data postprocessing, which is
made up of various parts: parameter estimation (PE),
raw key creation and error correction (EC), and privacy
amplification (PA). According to the composable frame-
work, all these steps have associated error parameters
that quantify the probability of failure for each process.
These parameters are then combined into a final epsilon
parameter that identifies the overall level of security pro-
vided by the protocol.

In this work, we focus on the heterodyne protocol with
Gaussian modulation of coherent states [7] in a high
signal-to-noise ratio regime. We simulate the quantum
communication process and then postprocess the gener-
ated data via PE, EC and PA by means of a dedicated
Python library [17]. In this way, we can evaluate the per-
formance of this protocol, when it is deployed in realistic
conditions and employed for high-speed quantum-secure
communications at relatively short ranges.

This is the summary of the manuscript. In Sec. II, we
present the protocol and the calculation of its asymptotic
key rate. In Sec. III, after the simulation of the quantum
communication, we connect all the relevant parameters
describing all the details of the post-processing steps with
the composable key rate. In Sec. IV, we present the simu-
lation specifications of the classical postprocessing while,
in Sec. V, we comment and illustrate the results of our
investigation. Finally, Sec. VI is for conclusions.

II. REVIEW OF CV-QKD WITH

HETERODYNE DETECTION

A. Protocol

Alice draws samples from the variable x, which follows
a normal distribution with zero mean and variance σ2

x =



2

µ− 1, i.e., described by the density function

p(x) = (2πσ2
x)

− 1

2 exp

[
− x2

2σ2
x

]
. (1)

We denote the samples with [x]i, where i = 1, . . . , 2N .
Then she groups them in instances [x]j = ([Qx]j , [Px]j) =
([x]2j−1, [x]2j) for j = 1 . . .N and encodes them in
nbks blocks of coherent (signal) states |αj〉, where αj =
([x]2j−1 + i[x]2i)/2. We say that the block size is N .
Note that we adopt the notation of Ref. [8, Sec.II] for

the quadrature operators (Q̂, P̂ ) so that [Q̂, P̂ ] = 2i and
the vacuum noise variance is equal to 1.

The coherent states travel to Bob through an optical
fiber with length L and loss rate AL. This is simulated by

a thermal-loss channel with transmissivity T = 10−
ALL

10

and n̄ environmental photons. This is equivalent to as-
suming a beam splitter with transmissivity T mixing the
traveling mode A from Alice with a mode E of the en-
vironment in a thermal state with variance ω = 2n̄+ 1.
Then one may assume the dilation of the environmental
state into a two-mode squeezed-vacuum (TMSV) state
ΦEe held by the eavesdropper, Eve. This is a zero-mean
Gaussian state with covariance matrix (CM)

VEe(ω) =

(
ωI

√
ω2 − 1Z√

ω2 − 1Z ωI

)
, (2)

where I := diag{1, 1} and Z := diag{1,−1}. Note that
this is the so-called “entangling cloner” attack; it is the
most realistic form of a collective Gaussian attack [18].

Bob then decodes the signal states by applying a het-
erodyne measurement on the arriving mode B. The het-
erodyne measurement is performed by mixing B with a
vacuum mode through a balanced beam splitter. Then,
homodyne measurement is applied to each output of the
beam splitter, with respect to a different (conjugate)
quadrature. In that way, Bob obtains to output instances
[y]j = ([Qy]j , [Py ]j) = ([y]2j−1, [y]2j) for the jth coherent
state that encodes Alice’s instances [x]j [25].

More precisely, Bob’s detectors are characterized by
efficiency η and electronic noise υel. As a result, the
decoding variable is connected to the encoding one via

y =
√
Tηx+ z, (3)

where z is a Gaussian noise variable characterizing Bob’s
output. It has zero mean and variance equal to

σ2
z = 2 + υel + Ξ, (4)

where Ξ = ηT ξ is the variance of the channel’s noise and

ξ :=
1− T
T

(ω − 1), (5)

is the channel’s excess noise.

B. Asymptotic rate

In the asymptotic regime, where N is large, one may
calculate the mutual information between the parties the-
oretically based on the input-output relation of Eq. (3).
The variance of Bob’s variable is given by

σ2
y = ηTσ2

x + σ2
z , (6)

while the corresponding conditional variance on the input
x is given by

σ2
y|x = σ2

y(σ
2
x = 0) = σ2

z . (7)

Because the variables x and y are Gaussian, the mutual
information is given by

I(x : y) = 2I(x : y) = log2

(
σ2
y

σ2
z

)
= log2 (1 + SNR) ,

(8)

with

SNR =
σ2
x

σ2
z/(ηT )

. (9)

Asymptotically, the maximum shared information be-
tween the parties is quantified by Eq. (8). This is true
when the efficiency of the reconciliation between the par-
ties is ideal: In a practical reverse reconciliation scenario,
Bob helps Alice’s guessing of his outcome by publicly re-
vealing more information than needed. This extra infor-
mation leads to βI(x : y), where β ∈ (0, 1] is known as
the reconciliation efficiency.

In line with the definition of collective Gaussian attack,
we assume that Eve stores her modes (after Gaussian in-
teraction with the signal modes) into a quantum memory
which she can optimally measure at the end of all quan-
tum communication between the parties. The parties
are able to quantify the maximum possible amount of
leaked information by virtue of the Holevo bound. This
is computed from the von Neumann entropies S(ρE′e)
and S(ρE′e|y), in turn calculated from the joint CM of
Bob and Eve. In particular, we have that

VBeE′ =



bI γZ θI
γZ ωI ψZ
θI ψZ φI


 (10)

with

b :=ηT (µ+ ξ) + 1− Tη + υel, (11)

γ :=
√
η(1 − T )(ω2 − 1), (12)

θ :=
√
ηT (1− T )(ω − µ), (13)

ψ :=
√
T (ω2 − 1), (14)

φ :=Tω + (1− T )µ. (15)

By tracing out mode B from Eq. (10), we obtain VeE′ .
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Then, by setting

C =
(
γZ θI

)
, (16)

and applying the formula for the heterodyne measure-
ment [8], we obtain Eve’s conditional CM

VeE′|y = VeE′ − (b+ 1)−1CTC (17)

=

(
ωI ψZ
ψZ φI

)
− (b + 1)−1

(
γ2I γθZ
γθZ θ2I

)
. (18)

Then we may write the Holevo information as

χ(E : y) =S(ρE′e)− S(ρE′e|y) (19)

= h(ν+) + h(ν−)− h(ν̃+)− h(ν̃−), (20)

where

h(ν) :=
ν + 1

2
log2

ν + 1

2
− ν − 1

2
log2

ν − 1

2
(21)

and {ν±}, {ν̃±} are the symplectic spectra of VeE′ and
VeE′|y respectively. Finally, the asymptotic secret key
rate will be given by

Rasy = βI(x : y)− χ(E : y) (22)

= R(β, µ, η, υel, T, ξ). (23)

III. COMPOSABLE KEY RATE

In this section, we describe the effects of PE, EC and
PA on the final secret key rate in the finite-size regime
where these steps cannot be considered ideal but may
have outputs that fail to have the desired properties with
a small probability, i.e., ǫ̃PE, ǫcor and ǫsec respectively.

A. Channel parameter estimation

For each block, the parties randomly choose m in-
stances [x]j and [y]j and broadcast them through the
public channel. The parties use the corresponding sam-
ples [x]i and [y]i from all the blocks assuming a stable
channel [26]. Based on these M = 2mnbks samples they
define the maximum likelihood estimators (MLEs)

T̂ =
1

η(σ2
x)

2

(
Ĉxy

)2
(24)

with

Ĉxy =
1

M

M∑

k=1

[x]k[y]k (25)

and

Ξ̂ = σ̂2
z − υel − 2 for σ̂2

z =
1

M

M∑

k=1

(
[y]k −

√
ηT̂ [x]k

)2

.

(26)

Based on a theoretical analysis as in Ref. [16], one can
find worst-case values for the above estimators so as to
bound Eve’s accessible information. These are given by

TM = T̂ − wσT̂ , ΞM = Ξ̂ + wσ
Ξ̂

(27)

with

σ2

T̂
=

2

M
T̂ 2

(
2 +

σ̂2
z

ηT̂σ2
x

)
, σ2

Ξ̂
=

(σ̂2
z)

2

M
(28)

and

w =
√
2erf−1(1− ǫPE) (29)

where ǫPE is the failure probability of TM and ΞM to be
the worst-case scenario values for bounding Eve’s infor-
mation. The overall failure probability (combining the
two events) is

2ǫPE(1− ǫPE) + ǫ2PE ≤ 2ǫ. (30)

Taking into consideration the previous parameters, we
can derive the asymptotic rate after parameter estima-
tion

RM = βI(x : y)|T̂ ,Ξ̂ − χ(E : y)|TM ,ΞM
. (31)

From the formula in Ref. [19, Eq. (8.56)], the mutual
information of the variables x and y

I(x : y) =
1

2
log2 [1 + SNR] =

1

2
log2

[
(1 − ρ2)−1

]
(32)

is connected with their correlation

ρ :=
E(xy)

σxσy
=

√
SNR

1 + SNR
. (33)

Therefore, one may derive the estimator for the cor-
relation between the variables by replacing the MLEs of
transmissivity and noise in Eq. (9), namely,

ρ̂ =

√
σ2
x

σ2
x + σ̂2

z/(ηT̂ )
. (34)

Note that this is going to be used later in the a priori
probabilities of Sec. III B.

B. Error correction

Given that M signal states have been processed
through PE (m per block), only n = N−m per block are
available for secret key extraction. More specifically, be-
fore the step of PA, Alice and Bob need to reconcile over
their raw data strings (2nnbks samples), in order to end
up with identical strings up to some small error proba-
bility ǫcor. The preprocessing of EC contains the steps of
normalization, discretization and splitting. During EC,
blocks of data with errors that cannot be corrected get
discarded with probability 1−pEC. The remaining blocks
are combined into a large string, which is used as input
to the next step of PA.
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1. Normalization

Alice and Bob concatenate the n = N − m sample
from each block in order to calculate the estimated vari-
ancess [27]

σ̂2
x =

1

nent

nent∑

k=1

[x]2k, σ̂2
y =

1

nent

nent∑

i=1

[y]2k (35)

for nent = 2nnbks. Then they divide the values [x]i by

the standard deviation σ̂x =

√
σ̂2
x and the values [y]i

by the other standard deviation σ̂y =
√
σ̂2
y, therefore

creating the normalized samples [X ]i and [Y ]i, following
a bivariate normal distribution with CM

ΣXY =

(
1 ρ
ρ 1

)
. (36)

In terms of a practical calculation from the data, we use
ρ̂ from Eq. (34).

2. Discretization

Bob maps each of the samples [Y ]i into a number
l = 0, . . . , 2p − 1 for p an integer and obtains the cor-
responding samples [l]i according to a one-dimensional
lattice with cut-off parameter α and step δ = 2α2−p.
More specifically, he computes δ-size intervals, i.e., bins,
[al, bl) with boundary points given according to

al =





−∞ for l = 0,

−α+ lδ for l > 0,

(37)

and

bl =





−α+ (l+ 1)δ for l < 2p − 1,

∞ for l = 2p − 1.

(38)

Alice computes the conditional probability of the value
l given the value X . She then obtains

P (l|X) =
1

2
erf

(
bl − ρ̂X√
2(1− ρ̂2)

)
− 1

2
erf

(
al − ρ̂X√
2(1− ρ̂2)

)
.

(39)

3. Splitting

Bob then splits each sampled symbol [l]i into top [l]i
and bottom [l]i symbols. More specifically, he chooses
numbers q and d, such that q + d = p, and breaks each
p-ary symbol l into a q-ary symbol l and d-ary symbol l
respectively according to the rule:

l = l2d + l. (40)

Alice then calculates the probability for a specific top
symbol l = 0, . . . , 2q − 1, given its bottom counterpart
l = 0, . . . , 2d − 1 and the variable X . She then obtains

P (l|X l) =
P (l, l|X)∑
l
P (l, l|X)

, (41)

where P (l, l|X) is given by Eq. (39).

4. LDPC encoding and decoding

Let us assume the reverse reconciliation scenario,
where Alice guesses Bob’s sequence. Ideally, Bob’s se-
quence is described by the continuous variables y. Given
that Alice knows the variable x correlated with y by the
quantum channel and that Bob’s entropy is H(y), Bob
needs to send H(y|x) bits of information through a pub-
lic channel, if we wanted Alice’s accessible information to
be equal to the mutual information

I(x : y) = H(y)−H(y|x). (42)

Note that the previous entropic quantities refer to the
average number of bits exchanged per signal state (i.e.
including both quadratures). Let us assume the variable
l to be the discretized version of Y . After the previous
classical post processing, it holds that

H(y) =H(Qy, Py) = 2H(y) ≥ 2H(Y ) (43)

≥ 2H(l) = H(Ql) +H(Pl) = H(Ql, Pl) = H(l)
(44)

where the variablesQl and Pl correspond to samples with
odd and even index respectively and

l = Ql2
p + Pl (45)

is a bidirectional mapping. Note that Eq. (43) is true, be-
cause Qy and Py are independent (the same holds, later,
for Ql and Pl as different samples of an i.i.d. variable).
Furthermore, we compare the (differential) entropy of
two Gaussian variables, y with variance σ2

y and Y with
unit variance as the normalized version of y, that is de-
pendent only on the variances of the two variables [19,
Th. 17.2.3]. For passing from Eq. (43) toEq. (44) one
may use the joint entropy of Y and l [24] and observe
that l is a deterministic outcome of Y (while the opposite
is not true). The last equation in Eq. (44) holds because
the mapping in Eq. (45) is bidirectional [21]. In particu-
lar, the parties estimate H(l) through H(l). To increase
the accuracy of the estimation result, the parties estimate
the previous quantity including all the samples [l]i from
all the nbks blocks. Then the estimate is given by

Ĥ(l) = −
∑

l

νl log2 νl (46)

where νl is the frequency of the value l in the samples [l]i
from all the nbks blocks. For this estimator the following
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inequality is true [20]:

H(l) ≥ Ĥ(l)− δent (47)

where

δent = log2(nent)

√
2 log(2/ǫent)

nent

(48)

up to an error probability ǫent.
In a realistic situation, Alice is guessing a sequence of

discrete symbols and Bob sends information through the
public channel equal to n−1leakEC ≥ H(y|x). The top
samples are sent to Alice through the public channel, en-
coded by a regular LDPC with code rate Rcode, constant
for any length 2n. For the LDPC encoding, the [l]i are
considered to be elements of the Galois field GF(2q). Bob
builds a c × 2n sparse parity check matrix H such that
c/(2n) = 1−Rcode [16]. He then calculates the syndrome

l
c
syn = Hl

2n
for each block and sends it to Alice, while

the bottom sequence is publicly revealed. In other words,
Bob is sending at most

(k/(2n))q + d = (1−Rcode)q + d = −Rcodeq + p (49)

bits per sample [l]i. It is clear that d should be as small as
possible, yet not negligible, in order for this reconciliation
scheme to succeed. This bounds the leakage term per
signal state:

n−1leakEC ≤ 2(−Rcodeq + p). (50)

Remark 1 Note that in the case of an active con-
catenation of the quadratures, i.e. creating the variable
l of Eq. (45), the parties will have to perform error cor-
rection on n symbols, which are described by 2p bits for
each block. This will demand a higher value for q approx-
imately raised to q′ ≃ 2q. Subsequently, this will increase
crucially the requirements for computational resources,
in order to achieve the same speed for EC.

By replacingH(y) withH(l) from Eq. (44) andH(y|x)
with n−1leakEC in (42), we obtain that

I(x : y) ≥ H(l)− n−1leakEc := βI(x : y), (51)

where β is the reconciliation efficiency. Finally, we con-
sider the practical calculation of β. We first bound the
term

H(l)−n−1leakEc ≥ 2(Ĥ(l)−δent)−2(−Rcodeq+p) (52)

considering the estimation of Ĥ(l) and the bound for the
leakEC. Then we also assume the value of the mutual
information for the estimated channel parameters I(x :
y)T̂ ,Ξ̂. Therefore one obtains the practical reconciliation
efficiency

β̂ = 2
Ĥ(l) +Rcodeq − p− δent

I(x : y)|T̂ ,Ξ̂

. (53)

Remark 2 The previous equation can be written in
terms of the SNR as

β̂ =
Ĥ(l) +Rcodeq − p− δent

1
2
log2(1 + ŜNR)

. (54)

This equation is equal to the corresponding one for the ho-
modyne protocol (see [16, Eq. (56) and (76)]). In fact, it
returns the same results, given that the SNR is the same
for both protocols (different combination of transmissiv-
ity, excess noise and classical modulation variance.)

Then one may set β̂I(x : y)|T̂ ,Ξ̂ := 2[Ĥ(l) + Rcodeq −
p− δent] in Eq. (31) to obtain

REC
M = 2[Ĥ(l)+Rcodeq−p−δent]−χ(E : y)|TM ,ΞM

. (55)

We also obtain

Rcode =
(
β̂I(x : y)|T̂ ,Ξ̂/2 + p+ δent − Ĥ(l)

)
q−1 (56)

=
(
(β/2) log2(1 + ηT̂ σ2

x/σ̂
2
z) + p+ δent − Ĥ(l)

)
q−1.

(57)

Alice then uses the probabilities of Eq. (41) to initialize a
sum-product algorithm [16] with a maximum number of
iterations itermax. During every iteration, the algorithm

finds a sequence l̂
2n that is optimal for the given likeli-

hood, calculates its syndrome and compares it with l
c
sd.

If the syndromes are equal, the specific block qualifies
for the verification step. If they are not equal, the algo-
rithm continues to the next iteration. In case the maxi-
mum number of iterations itermax is exceeded, the given
sequence is discarded, along with its associated bottom
counterpart.

5. Verification

The strings l̂
2n and l

2n
with the same syndrome are

turned into binary strings l̂
2n
bin and l

2n

bin respectively over
which the parties calculate hashes of ⌈− log2 ǫcor⌉ bits
(For more details on the calculation of the hashes see
Ref. [16]). The parties check their hashes and if, they are
equal, they are certain that their sequences agree with
a probability 1 − ǫcor for a very small ǫcor. Then, they
concatenate the binary version of the bottom sequence

l
2n
bin to l̂

2n
bin and l

2n

bin, creating the sequences

Ŝ = l̂
2n
binl

2n
bin and S = l

2n
binl

2n
bin. (58)

If the hashes do not agree, the strings l̂
2n
bin, l

2n

bin and l
2n

are discarded. From the ratio of the sequences that pass
to the PA over the total number nbks of sequences, one
calculates the probability pEC of EC.
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C. Privacy amplification

Privacy amplification is the final step that creates the
secret key from the raw shared data. The parties start
with two different sequences of nbks blocks, each block
with 2N samples. After postprocessing, these are re-
duced to two indistinguishable (with probability 1− ǫEC)
binary sequences, that consist of pECnbks blocks, each
block carrying 2np bits (see Eq. (58)).

The parties then decide to further compress their data
in order to prevent Eve from having any knowledge of
their bit sequences. To do so, they concatenate their

previous sequences into large ones S ≃ Ŝ containing
ñ := 2pECnbksnp bits and compress them using a uni-
versal hashing: They apply a Toeplitz matrix Tr,ñ to
their sequences (see more details in Ref. [16]) in order to
extract the secret key

K = Tr,ñS ≃ Tr,ñŜ (59)

which has length r = pECnbksnR̃ where R̃ is the compos-
able key rate. The latter takes into account of any small
distance of the practical protocol from an ideal one. More
specifically, each of the processes of PE and EC have
small failure probabilities ǫ̃PE and ǫcor.

In ǫ̃PE = 2ǫPE + ǫent, we include that overall failure
probability of PE (see Eq. Eq. (30)) and the failure
probability of bounding the Bob’s variable entropy ǫent

(see Eq. (48)). The PA procedure is characterized by
the ǫ-secrecy parameter, which quantifies the potential
failure to completely exclude Eve from obtaining infor-
mation about the key with probability ǫsec. The latter
can be broken in two separate parameters: the smoothing
parameter ǫs and the hashing parameter ǫh, which yield
ǫsec = ǫs + ǫh. The composition of all these parameters
(see also Eq. (A27)) defines the security parameter of the
protocol

ǫ = pEC(2ǫPE + ǫent) + ǫcor + ǫsec, (60)

with typical choice ǫs = ǫh = ǫcor = ǫPE = ǫent = 2−32 ≃
2.3×10−10, so that for any value of pEC we have ǫ . 10−9.
Finally, the secret key rate of the protocol, in terms of
bits per channel use, takes the form [14]

R =
npEC

N
R̃, R̃ :=

(
REC

M − ∆AEP√
n

+
Θ

n

)
, (61)

where REC
M is the rate of Eq. (55) where β is replaced by

Eq. (53) and the extra terms are [14, 15]

∆AEP := 4 log2 (2
p + 2)

√
log2

(
18

p2ECε
4
s

)
, (62)

Θ := log2[pEC(1− ε2s/3)] + 2 log2
√
2εh. (63)

Note that the discretization bits p appear in ∆AEP pro-
viding a total dimension of 22p per symbol (see Ap-
pendix A). One may also compare the previous rate with

the corresponding theoretical rate

Rtheo =
npEC

N
R⋆, R⋆ :=

(
R̄M −

∆AEP√
n

+
Θ

n

)
(64)

where R̄M has been computed based on the initial values
of the channel parameters used to produce the simulation
data. In fact, one may replace in Eq. (31) the mean value
of the estimators and obtain

R̄M = βI(x : y)|T̄ ,Ξ̄ − χ(E : y)|T̄M ,Ξ̄M
, (65)

where the following substitutions have been made:

T̂ ← T̄ := E(T ) ≃ T +O(1/M), (66)

Ξ̂← Ξ̄ := E(Ξ̂) ≃ Ξ (67)

and

TM ← T̄M := T − wσT (68)

ΞM ← ΞM := Ξ + wσΞ (69)

with

σ2
T =

2

M
T 2

(
2 +

σ2
z

ηTσ2
x

)
, σ2

Ξ =
(σ2

z)
2

M
. (70)

On the other hand, in the previous rate the parameters
pEC and β have been calculated through the simulation;
in fact, they are known after EC (see Fig. 1).

IV. SIMULATION

Here, we summarize the steps of the heterodyne proto-
col simulation taking into account of the finite-size effects
in a composable framework. Our approach follows steps
similar to those of the homodyne protocol in Ref. [16].
Despite the fact that the simulation steps of the two pro-
tocols are quite similar, we want here to present a sum-
mary for the heterodyne protocol for the sake of com-
pleteness. We also have the opportunity to clarify some
differences between the two simulations because of the
use of different formulas.

Preparation: Alice encodes 2Nnbks samples [x]i of the
generic variable x ∼ N (0, µ − 1) on the two con-
jugate quadratures of Nnbks coherent states. In
particular, the samples with odd index will be en-
coded in the Q-quadrature of the Nnbks coherent
states, while those with even index will be encoded
in the P -quadrature of the coherent states.

Measurement: During the decoding step, Bob obtains
2Nnbks output samples [y]i of y =

√
ηTx + z ac-

cording to the propagation of the channel and the
projection based on the heterodyne measurement.

Public declaration: Bob chooses an average of m in-
stances from each block and reveals them and their
positions through the public channel. In each
block, an average of n instances are left for key
generation.
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Estimators: The parties use M = 2mnbks samples to

define MLEs T̂ and Ξ̂ for T and Ξ, respectively.
Then, by setting a PE error ǫEP, they can calcu-
late the values TM and ΞM for the channel param-
eters. These values constitute the worst-case sce-
nario assumption on the collected data with prob-
ability 1− ǫEP.

Normalization: Alice and Bob normalize the samples
[x]i and [y]i dividing them by their practical stan-
dard deviations σ̂x and σ̂y, creating the samples
[X ]i and [Y ]i, respectively. These variables now
follow a standard normal distribution.

Discretization: Bob maps every sample [Y ]i into a
number l = 0, . . . , 2p − 1. To do so, he creates a
one-dimensional lattice for the values of the stan-
dard normal distribution with cut-off parameter α
and step δ = α21−p. Alice calculates the condi-
tional probabilities P (l|X).

Splitting: Bob splits [l]i into two samples, [l]i and [l]i.
In fact, he derives a top q-ary symbol and a bottom
d-ary symbol from l according to

l = l2d + l. (71)

Finally, Alice computes the a priori probabilities
P (l|X, l).

LDPC encoding: From the estimated SNR and the

practical Shannon entropy Ĥ(l), the parties cal-
culate the rate of the LDPC code according to
Eq. (56). Bob then calculates the c × 2n parity-
check matrix H, for c = 2n(1−Rcode), with entries

in GF(p), and computes the syndrome l
c
sd = Hl

2n
.

Bob sends the syndromes and the bottom sequences
l
2n to Alice through the public channel for every
block.

LDPC decoding: Alice updates the likelihood function
(initially equal to the product of the a priori prob-
abilities, see Eq. (41)) using a sum-product algo-
rithm. This update takes place with respect to
the syndrome l

c
sd. After every iteration of the algo-

rithm, the output likelihood function becomes the
input for the next iteration. At the same time, Al-

ice finds l̂2n that maximizes the updated likelihood

function. She then compares the syndrome of l̂
2n

with l
c
sd and, if they are equal, the algorithm termi-

nates and gives as output the string l̂
2n, i.e. Alice’s

guess for l
2n

. Otherwise, the algorithm continues
to the next iteration until a maximum number of
iterations itermax is reached. If the algorithm is not
able to determine a guess after itermax, the given
block is discarded and does not participate in the
final key.

Verification: Alice’s guess l̂
2n and Bob’s sequence l

2n

are converted into binary sequences l̂2nbin and l
2n

bin re-
spectively. Then both parties compute hashes of

⌈− log2 ǫcor⌉ bits over their sequences. Bob dis-
closes his hash and Alice compares it with hers.
In case they are identical, they concatenate their
string with the binary version of the bottom string
lbin and obtain the strings

Ŝ := l̂
2n
binl

2n
bin ≃ S := l

2n

binl
2n
bin (72)

respectively, which are further promoted to the
privacy amplification step (PA). Otherwise, the

strings l̂2nbin, l
2n

bin and l
2n
bin are discarded and the given

block does not participate in the final key.

Privacy amplification: The parties concatenate the

strings Ŝ and S from every block into long binary

sequences Ŝ and S of ñ = pECnbksn2p bits. Given
a level of secrecy ǫsec, the parties calculate the com-

posable rate R̃ and compress the sequences Ŝ ≃ S

with the use of a Toeplitz matrix Tr,ñ into the final

secret key K of length r := pECnbksnR̃.

V. RESULTS

Since the protocol of this paper is better suited to
short-range distances, only distances up to 5km are ex-
amined. Consequently, the SNR of the performed sim-
ulations is relatively high and takes values from ∼ 6 to
10. Two features are considered essential in achieving a
positive composable secret key rate R. The first is having
a sufficient number of total key generation states nnbks.
The second is the choice of the reconciliation efficiency,
which must be large enough to obtain a high rate but
small enough to comfortably execute error correction. A
large number of total key generation states will also lead
to a better value for the reconciliation efficiency. This
connection is provided by the presence of δent term in
Eq. (53), which becomes smaller as the number of states
increases.

A demonstration of sample parameters, that achieve
a positive composable key rate and how this rate varies,
according to changes in the block size N and the number
of blocks nbks, is shown in Figs. 1 and 2 respectively.
Alice’s signal variance µ is tuned so as to produce a rather
high signal-to-noise ratio (SNR = 10). It is observed in
Fig. 1 that a block size of at least 2 × 105 is needed.
Additionally, Fig. 2 shows that it is possible to yield
higher key rates with fewer total states, if an adequately
large block size N is specified.

Fig. 3 portrays the composable rate R versus distance
L, expressed in km of standard optical fiber. Here, the
SNR varies from 5.732 to 6.887. For this simulation,
the discretization bits value was set to p = 6, in order
to reach farther distances. A higher value for p would
severely limit the protocol’s ability to achieve a positive
R at distances larger than 3 km.

Fig. 4 presents an estimate of the maximum tolerable
excess noise ξ. The variables used here produce an SNR
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Parameter Value (Fig. 1) Value (Fig. 2) Value (Fig. 3) Value (Fig. 4) Value (Fig. 5)

L 3 3 variable 4 5

A 0.2 0.2 0.2 0.2 0.2

ξ 0.01 0.01 0.01 variable 0.01

η 0.85 0.85 0.8 0.85 0.85

υel 0.1 0.1 0.1 0.05 0.1

nbks 50 variable 50 50 50

N variable 3× 105 3.6× 105 4.5× 105 4× 105

M 0.1nbksN 0.1nbksN 0.1nbksN 0.1nbksN 0.1nbksN

p 7 7 6 6 variable

q 4 4 4 4 4

α 7 7 7 7 7

itermax 100 100 150 100 150

εPE, s, h, corr 2−32 2−32 2−32 2−32 2−32

µ ≈ 29.46 ≈ 29.46 20 25 variable

TABLE I: The input parameters for the simulations.

2.0 2.2 2.4 2.6 2.8 3.0
Block size N (105) 

0.05

0.10

0.15

0.20

0.25

C
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e 
R
at
e 
R 
(b

its
/u
se

)

R
Rtheo

91.73 91.82 91.9 91.97 92.03 92.09
Reconciliation Efficiency β (%)

FIG. 1: Composable secret key rate R (bits/use) versus the
block size N for SNR = 10. We compare the rate of Eq. (61)
from five simulations (green points) and their average (blue
line) with the theoretical rate Rtheo in Sec. IIIC (orange

line), where the theoretical guesses for β̃ and p̃EC are cho-
sen compatibly with the simulations. For every simulation,
p̃EC = pEC has been set. All simulations have achieved
pEC ≥ 0.9. The step of N is 20000. The values of the recon-
ciliation efficiency β are shown on the top axis and are chosen
so as to produce Rcode ≈ 0.846. See Table I for the list of
input parameters used in the simulations.

of somewhat above 8. While the decrease of the SNR is
fairly small as the excess noise increases, the composable
rate declines rapidly. In addition, the reconciliation effi-
ciencies used here are in the range of 88.23 - 88.71. Such
values provide efficient error correction but are not ideal
for attaining a positive rate in the composable frame-
work. Therefore, to achieve a positive rate at ξ = 0.05, a
large block size (N = 450000) has to be used.

10 20 30 40 50
Number of Blocks nbks 

0.05

0.10

0.15

0.20

0.25

C
om
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sa
bl
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R
at
e 
R 
(b
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se
)

90.18 91.17 91.62 91.9 92.09
Reconciliation Efficiency β (%)

FIG. 2: Composable secret key rate R (bits/use) versus the
number of blocks nbks for SNR = 10. The step of nbks is
10. The individual block size is fixed and equal to N = 3 ×
105. Every point represents the average value of R, which is
obtained after 5 simulations. All simulations have achieved
pEC ≥ 0.9. The values of the reconciliation efficiency β are
shown on the top axis and are chosen so as to produce Rcode ≈
0.846. See Table I for the list of input parameters used in the
simulations.

Fig. 5 describes the behaviour of the key rate against
different SNR values, when the noise terms are fixed and
the modulation variance is variable. If the same code
rate is used, lower values of p (at a fixed q = 4), re-
turn higher rates for the corresponding SNR. It is pos-
sible for a higher p value to yield a better composable
rate than a smaller p, given that a larger code rate, and
therefore larger reconciliation efficiency, is employed. An
example is given by cases ‘a’ and ‘b’ of SNR = 9, whose
code rates and reconciliation efficiencies are shown in Ta-
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1 2 3 4 5
Length L (km)
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88.87 90.63 84.69 86.4 88.18

Reconciliation Efficiency β (%)

FIG. 3: Composable secret key rate R (bits/use) versus the
channel length L (km). Here we use N = 3.6 × 105. Every
point represents the average value of R, which is obtained
after 5 simulations. All simulations have achieved pEC ≥ 0.9.
The values of the reconciliation efficiency β are shown on the
top axis. Other parameters are taken as in Table I.

SNR βp=6 βp=7 βp=8 Rcode dc

6 0.8651 0.75 8

7 0.8836 0.777 9

8 0.8924 0.8910 0.8 10

9a 0.8953 0.8940 0.818 11

9b 0.9301 0.833 12

10 0.9244 0.9231 0.9229 0.846 13

TABLE II: The chosen reconciliation efficiency β for each SNR
of Fig. 5, together with its respective code rate Rcode and the
row weight dc of the LDPC code. A missing value for the
reconciliation efficiency implies that the returned composable
key rate will most likely be negative under the specified values.
The column weight dv remains constant and equal to 2 for all
simulations.

ble II. A combination of p = 8 and β = 0.9301 beats the
combination of p = 7 and β = 0.894 in terms of the
composable rate by a fairly large margin. However, the
trade-off here is that the EC stage of the former com-
bination requires plenty more iteration rounds, making
the procedure more computationally expensive. Further-
more, for certain code rates, a minimum value for p is
required. Such an occasion is the ‘b’ case of SNR = 9,
where error correction can only be achieved for p = 8.
Smaller values for p would not be able to achieve error
correction and, consequently, a positive rate.

VI. CONCLUSION

In this work, we completely characterized the post-
processing of data generated from a numerical simulation

0.01 0.02 0.03 0.04 0.05
Excess Noise ξ

10−2

10−1
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R
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R 
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88.23 88.35 88.47 88.59 88.71
Reconciliation Efficiency β (%)

FIG. 4: Composable secret key rate R (bits/use) versus the
excess noise ξ. Every point represents the average value of
R, which is obtained after 5 simulations. Here we use N =
4.5 × 105 and nbks = 50. The values of the reconciliation
efficiency β for the heterodyne protocol simulations are chosen
so as to produce Rcode ≈ 0.8. Other parameters are taken as
in Table I.

6 7 8 9 10
SNR
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p=6
p=7
p=8

19.721 22.842 25.962 29.082 32.202
Modulation Variance μ

fndrnd=26.74

fndrnd=21.52

fndrnd=76.28

FIG. 5: Composable secret key rate R versus SNR for dis-
cretization bits p = 6, p = 7 and p = 8. The chosen rec-
onciliation efficiency β for each value of the SNR is shown
in Table II. Every point represents the average value of R,
which is obtained after 5 simulations. For SNR = 9, the aver-
age number of iterations fndrnd needed to decode and verify
a block is displayed for every point next to their respective
points. The signal variance µ that was used to achieve the re-
spective SNR is displayed on the top axis with an accuracy of
3 decimal digits. Other parameters are chosen as in Table I.

of the CV-QKD protocol based on Gaussian modulation
of coherent states and heterodyne detection. In particu-
lar, we designed the data post-processing accounting for
the various composable finite-size terms arising from a
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realistic representation of the protocol. Correspondingly,
we provided a Python library for simulation, optimiza-
tion and data post-processing specifically tailored for the
considered heterodyne protocol.
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Appendix A: Virtual concatenation of the conjugate

quadrature variables

What we present here is a review and direct adaptation
of the theory developed in Appendix G of Ref. [14]. Let
us assume Bob’s measurement variables are y = (Qy, Py).
Bob maps these variables to l = (Ql, Pl) via analog-to-
digital conversion (ADC). Then, the output classical-
quantum state (CQ) of Alice, Bob and Eve, after the
collective attack will be given by a state in a tensor prod-
uct form ρ⊗n, where the single copy state will be given
by

ρ =
∑

k,l

p(k, l)|k〉RA
〈k| ⊗ |l〉RB

〈l| ⊗ ρE(k, l)

where RA and RB are Alice’s and Bob’s classical raw-key
registers, k = (Qk, Pk) is the corresponding discretized
version of Alice’s encoding variable and p(k, l) is the joint
probability of the discretized variables.

The tensor product state can be then written as

ρ⊗n =
∑

kn,ln

p(kn, ln)|kn〉Rn

A
〈kn| ⊗ |ln〉Rn

B
〈ln| ⊗ ρ⊗n

E (kn, ln)

=
∑

k2n,l2n

p(k2n, l2n)|k2n〉Rn

A
〈k2n|

⊗ |l2n〉Rn

B
〈l2n| ⊗ ρ⊗n

E (k2n, l2n). (A1)

Here, we replace the sequence ln with the sequence l
2n so

that each element [l]2j−1 corresponds to the element [Ql]j
and each element [l]2j to the element [Pl]j for j = 1 . . . n.

In RR, Alice guesses Bob’s sequence l
2n with l̃

2n us-
ing her corresponding sequence k

2n and leakEC bits of
information from Bob. The parties publicly compare the
two hashes of length ⌈1 − log2 ǫcor⌉ computed from k̃

2n

and l
2n respectively. If they are equal, the parties con-

tinue with the protocol with probability pEC; otherwise
they abort. This procedure is associated with a residual
failure probability ǫcor, which bounds the probability of
the two sequences being different, even if their hashes
coincide

pECProb(̃l2n 6= l
2n) ≤ pEC2

−⌈1−log
2
ǫcor⌉ ≤ ǫcor. (A2)

In turn, EC can be simulated by a projection ΠS of
Alice’s and Bob’s classical registers Rn

A and Rn
B onto a

“good” set S of sequences. With success probability

pEC = Tr(ΠSρ
⊗n). (A3)

This quantum operation generates a classical-quantum
state

ρ̃n := p−1
ECΠSρ

⊗nΠS (A4)

which is restricted to those sequences {k2n, l2n} that can

be corrected, i.e., mapped to a successful pair {̃l2n, l2n}.
The parties continue with the PA step with probability

pEC and apply a two-way hash function over ρ̃n which

outputs the PA state ρ̄n, i.e., ρ⊗n → ρ̃n → ρ̄n, with the
later approximating the ideal state (defined below)

pECD(ρ̄n, ρid) ≤ ǫsec. (A5)

In fact, Alice and Bob perform EC and PA over the state
ρ⊗n, in order to approximate the sn-bit ideal classical-
quantum state

ρid := 2−sn

2sn−1∑

z=0

|z〉Rn

A

〈z| ⊗ |z〉Rn

B

〈z| ⊗ ρEn , (A6)

with Alice’s and Bob’s classical registers completely de-
coupled from Eve and containing the same completely-
random sequence z with length sn. Using the triangle
inequality, one obtains [23, Th. 4.1]

pECD(ρ̃n, ρid) ≤ ǫ := ǫcor + ǫsec. (A7)

The state ρ̄n will contain sn bits of shared uniform ran-
domness satisfying the direct leftover hash bound

sn ≥ Hǫs
min(l

2n|En)ρ̃n + 2 log2
√
2ǫh − leakEC. (A8)

Here Hǫs
min(l

2n|En)ρ̃n is the smooth min-entropy of
Bob’s sequence l

2n conditioned on Eve’s system En af-
ter EC, and the smoothing ǫs and hashing ǫh parameters
satisfy

ǫs + ǫh = ǫsec. (A9)

In Eq. (A8) we explicitly account for the bits leaked
to Eve during EC. In fact, one may write sn ≥
Hεs

min(l
2n|EnR)ρ̃n + 2 log2

√
2εh where R is a register

of dimension dR = 2leakec , while En are the systems
used by Eve during the quantum communication. Then,
the chain rule for the smooth-min entropy leads to
Hεs

min(l
2n|EnR)ρ̃n ≥ Hεs

min(l
2n|En)ρ̃n − log2 dR. As we

have seen earlier (see Eq. (50)), in the proposed EC pro-
cedure, Bob sends to Alice p−Rcodeq bits for each of the
quadratures in a signal state. This allows us to bound
the leakage term by

leakEC ≤ 2n(−Rcodeq + p). (A10)

We now use that the previous result is connected with
the smooth min entropy of ρ⊗n, which will later allow the
AEP approximation. In fact, one can show that (see [14,
Appendix G2])

Hǫs
min(l

2n|En)ρ̃n ≥ HpECǫ2
s
/3

min (l2n|En)ρ⊗n + log2(1− ǫs/3).
(A11)

Let us assume that the parties concatenate their dis-
cretized values corresponding to the two quadrature vari-
ables of a single channel use according to the bidirectional
mapping:

l = Ql2
p + Pl. (A12)

In that sense, instead of labeling the classical states as
in Eq. (A1) by using the combination of two labels, each
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described by p bits, we use one label described by 2p
bits. Therefore, we have a classical mapping from a state
ρ⊗n := ρ⊗n

l2n
described by the sequence l

2n to the state

ρ⊗n
ln ← ρ⊗n

l2n
(A13)

described by the sequence ln. In Eq. (A11), this implies
the following relation for the smooth min-entropy of the
two states:

H
pECǫ2

s
/3

min (l2n|En)ρ⊗n

l2n

≥ HpECǫ2
s
/3

min (ln|En)ρ⊗n

ln
, (A14)

where we use Appendix B.
Then, from the AEP theorem, one obtains

H
pECǫ2

s
/3

min (ln|En)ρ⊗n

ln
≥ nH(l|E)ρ −

√
n∆AEP(pECǫ

2
s/3, |L|),
(A15)

where H(l|E)ρ is the conditional von Neumann entropy
computed over the single-copy state ρ (after applying the
mapping of Eq. (A12)) and

∆AEP(ǫs, |L|) = 4 log2(
√
|L|+ 2)

√
log2(2/ǫ

2
s) (A16)

with |L| being the cardinality of the discretized variable
l, i.e., in our case 22p. By combining Eqs. (A8), (A11)
and (A15), we write the following lower bound

sn ≥ nH(l|E)ρ −
√
n∆AEP(pECǫ

2
s/3, 2

2p)

+ log2(1 − ǫs/3) + 2 log2
√
2ǫh − leakEC. (A17)

Note that for the conditional entropy, we have

H(l|E)ρ = H(l)− χ(l : E)ρ (A18)

where H(l) is the Shannon entropy of l and χ(E : l)ρ is
Eve’s Holevo bound with respect to l. In more detail,
using the data processing inequality, we have

χ(E : l)ρ ≤ χ(E : Qy, Py) = χ(E : y) (A19)

where the latter term is calculated using Eq. (19). There-
fore we have

H(l|E)ρ ≥ H(l)− χ(E : y) (A20)

Furthermore, we may make the following replacement
(see also Eq. (51))

H(l)− n−1leakEC = βI(x : y) (A21)

where I(x : y) is calculated from Eq. (8) and

β =
H(l)− n−1leakEC

I(x : y)
(A22)

is the reconciliation efficiency.
Replacing Eq. (A21) and (A20) in (A17), we derive

sn ≥ nRasy −
√
n∆AEP(pECǫ

2
s/3, 2p)

+ log2(1− ǫ2s/3) + 2 log2
√
2ǫh (A23)

where we can use the asymptotic secret key rate of
Eq. (22). After a successful PE, the parties compute Rasy

over a state ρ̃nwc (instead ρ̃n), calculated with respect to
the worst-case parameters given in Eq. (27) along with
the worst case scenario entropy in Eq. (47). As a result,
Eq. (A7) is replaced by the following

pECD(ρ̃nwc, ρid) ≤ ǫcor + ǫh + ǫs. (A24)

However, there is still the probability that the actual
state is a bad state ρ̃nbad with probability ǫ̃PE = 2ǫPE +
ǫent. On average, this is given by

ρPE = (1− ǫ̃PE)ρ̃
n
wc + ǫ̃PEρ̃

n
bad (A25)

whose distance from the assumed worst-case state is

pECD(ρPE, ρ̃
n
wc) ≤ pECǫ̃PE. (A26)

By using Eqs. (A24) and (A26), together with the tri-
angle inequality, we have that

pECD(ρPE, ρid) ≤ ǫcor+ǫh+ǫs+pEC(2ǫPE+ǫent). (A27)

Then the secret key length can be bounded by

sn ≥ nRM −
√
n∆AEP(pECǫ

2
s/3, 2p)

+ log2(1 − ǫ2s/3) + 2 log2
√
2ǫh, (A28)

where RM has been taken from Eq. (31). Finally, our
previous specific analysis of the EC process allows us to
connect RM with the practical rate REC

M through the pa-

rameter β̂ in Eq. (53). By replacing the latter in the pre-
vious secret key bound and multiplying by the successful
probability of a block pEC over the number of signals per
block N , we obtain the composable secret key rate of
Eq. (61).

Note that, although the concatenation of the quadra-
tures may not be applied in practice, theoretically, it has
to be considered for the calculation of the discretization
parameter |L| included in the correction term ∆AEP. In
fact, considering the proposed EC procedure, |L| takes
the value 2p instead of p, compared with the case of the
homodyne protocol [16]. In turn, this affects the com-
pression needed to extract a secret key with length sn.

Appendix B: Classical data mapping and

smooth-min entropy

Let us assume a bidirectional mapping X ↔ Z = f(X)
where X is a discrete random variable taking values x
in the alphabet X with probability pX . Then, Z takes
values z = f(x) ∈ Z with probability pZ . In fact, the
probability function can absorb the action of f such that

pZ(z) = pZ(f(x)) = pX(x). (B1)

Therefore, the probabilities for the letters in Y are the
same for the corresponding letter in X .
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We want to investigate what is the effect on Hǫs
min of

such a mapping, when it is appplied to the classical sys-
tem of the CQ state

ρXE =
∑

x

pX(x)|x〉X 〈x| ⊗ ρE(x). (B2)

To do so we adapt the proof of [22, Prop. 6.20] for the
state ρE instead of ρAB. Thus we apply the isometry
U : UX ⊗ IE , with UX : |x〉 7→ |x〉X′ |f(x)〉Z being the
Stinespring dilation of f and IE the identity. As a result,
we obtain the state

τX′ZE = UρXEU
†. (B3)

According to the invariance of the smooth min-entropy
under isometries (see [22, Corollary 6.11]), we have the
following relation

Hǫ
min(X |E)ρ = Hǫ

min(X
′Z|E)τ . (B4)

Furthermore, by using [22, Lemma 6.17], we may write

Hǫ
min(X

′Z|E)τ ≥ Hǫ
min(Z|E)τ (B5)

for

τZE =
∑

x

pX(x)|f(x)〉Z 〈f(x)| ⊗ ρE(x). (B6)

From Eq. (B4) and (B6) we finally obtain

Hǫ
min(X |E)ρ ≥ Hǫ

min(Z|E)τ . (B7)

Note that, in the same way, Eq. (B7) can be extended
to the case of two classical systems X and Y considering
a Stinespring dilation UXY = UXUY with UX : |x〉 7→
|x〉X′ |f(x)〉Z and UY : |y〉 7→ |y〉Y ′ |f(y)〉Z′ . Combining
then Eq. (B4) and (B6) for the state

ρXYE =
∑

xy

pXY (xy)|x〉X〈x|

⊗ |y〉Y 〈y| ⊗ ρE(x, y), (B8)

one may write

Hǫ
min(XY |E)ρ ≥ Hǫ

min(ZZ
′|E)τ , (B9)

where

τZZ′E =
∑

xy

pXY (x, y)|f(x)〉Z 〈f(x)|

⊗ |f(y)〉Z′〈f(y)| ⊗ ρE(x, y). (B10)


