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  Abstract—Wide-area fault location (WAFL) refers to the 

estimation of fault distance on the faulted line using PMU data. A 

system of linear equations is formulated for WAFL, taking 

advantage of both voltage and current synchrophasors. This 

results in a generalized closed-form solution for the fault distance 

using the weighted least-squares method. The main contribution 

of the letter is the rigorous derivation of the equation weights 

based on the statistical distributions of the superimposed errors, 

i.e. the differences between the errors of the corresponding pre- 

and post-fault synchrophasors. The method’s effectiveness, 

robustness against different factors, and superiority over existing 

methods are demonstrated by extensive simulations and 

comparison studies conducted on the IEEE 39-bus test system. 
 

Index Terms— Wide-area fault location (WAFL), measurement 

error, superimposed circuit, synchrophasors. 
 

I. INTRODUCTION 

CCURATE fault location (FL) reduces the outage time 

and enhances power system reliability. In this context, the 

proliferation of PMUs has paved the way for wide-area fault 

location (WAFL). Most existing WAFL methods suffer from 

technical difficulties associated with nonlinear formulations 

and iterative solving processes, such as divergence and 

multiplicity of solutions. Some of these methods even place 

constraints on the PMU locations. In practice, however, budget 

limits and the availability of communication infrastructure are 

the key factors determining PMU locations [1].  

The WAFL methods proposed in [1] and [2] are linear but 

can only utilize voltage synchrophasors. Nevertheless, voltage 

transformers located far from the FL are likely to experience 

small voltage variations following a fault. Hence, the resulting 

superimposed synchrophasors could be of the order of noise and 

phasor estimation error. Thus, the relative errors of voltage-

related equations might be exceedingly high, making them 

counterproductive. In contrast, the amounts of currents flowing 

through transmission lines greatly increase in fault conditions 

[3]. It follows that the relative errors of superimposed current 

synchrophasors are, in general, smaller than those of voltage 

synchrophasors. On the other hand, one can derive only a single 

equation for the voltage synchrophasor at a substation, while 

several equations can typically be formed based on current 

synchrophasors (for the multiplicity of the lines connected to 

each substation). The inclusion of current measurements has 

great potential to significantly improve the FL accuracy by 

adding a greater number of equations in the equation set [4]. 

In this letter, both voltage and current synchrophasors are 

incorporated into the WAFL formulation while maintaining its 

linearity. The weighted least-squares (WLS) method is used to 

solve the system of linear equations to provide a closed-form 

solution for the fault distance. As the main contribution of the 

letter, the derivations of the mean and variance of superimposed 

errors enable a rigorous establishment of the weight matrix 

required for the WLS estimation. To achieve this, the statistical 

distributions of the magnitude and phase-angle errors of pre- 

and post-fault synchrophasors are taken into account.  

In principle, CTs located farther from the fault location 

experience smaller current variations upon a fault. Hence, the 

accuracy of current measurements taken farther away from the 

fault location would be hardly affected by saturation [5]. The 

linearity of the formulation, along with the derivations of 

superimposed errors, allows for the application of well-

established bad data detection and identification methods to 

deal with erroneous measurements, e.g. current measurements 

of saturated CTs during close-in faults. Extensive simulations 

confirm that the FL accuracy is considerably improved by 

incorporating current synchrophasors into the formulation and 

taking account of the distributions of superimposed errors. 

II. GENERALIZED EXPRESSIONS FOR FAULT LOCATION 

Fig. 1(a) shows the superimposed positive-sequence circuit 

of a network with a fault on line i-j at the distance 𝛼 from bus i. 

A nodal current injection is used to represent the fault current 

in this superimposed circuit. As shown in Fig. 2(b), the current 

source 𝐼𝑓 can be resolved into two nodal current injections 

placed at the faulted line terminals, i.e. 𝐼𝑓,𝑖 and 𝐼𝑓,𝑗, where [2] 
 

 𝐼𝑓,𝑖 = sinh(𝑙𝑖𝑗𝛾𝑖𝑗(1−𝛼))sinh(𝑙𝑖𝑗𝛾𝑖𝑗𝛼) 𝐼𝑓,𝑗 (1) 
 

in which 𝑙𝑖𝑗  and 𝛾𝑖𝑗 are the length and propagation constant of 

the faulted line, respectively. As per the circuit of Fig. 1(b), the 

superimposed voltage at an arbitrary bus u is obtained from  
 

 ∆𝑉𝑢 = 𝑍𝑢𝑖𝐼𝑓,𝑖 + 𝑍𝑢𝑗𝐼𝑓,𝑗 (2) 
 

where 𝑍𝑢𝑖 is the (u,i)th entry of the bus impedance matrix.  

To take advantage of the information provided by current 

measurements, they are also incorporated into the formulation. 

Let ∆𝐽𝑢𝑤 denote the sending-end superimposed current of line 

u-w, which satisfies the following equation: 
 

 ∆𝐽𝑢𝑤 = 𝐶𝑢𝑤,𝑖𝐼𝑓,𝑖 + 𝐶𝑢𝑤,𝑗𝐼𝑓,𝑗 (3) 
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Fig. 1. (a) Superimposed positive-sequence circuit of the faulted power system 

with one current source, and (b) its equivalent circuit with two current sources. 
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where 𝐶𝑢𝑤,𝑘 for a nodal current source at bus k is calculated as 
 

 𝐶𝑢𝑤,𝑘 = 𝑍𝑢,𝑘𝑍𝑢𝑤𝑐  tanh(𝑙𝑢𝑤𝛾𝑢𝑤) − 𝑍𝑤,𝑘𝑍𝑢𝑤𝑐  sinh(𝑙𝑢𝑤𝛾𝑢𝑤) (4) 
 

where 𝑍𝑢𝑤𝑐  denotes the characteristic impedance of line u-w. 

Writing (2) and (3) for the synchrophasors provided by 

PMUs, one can form the following system of equations: 
 

 𝒎 = [∆𝐽1  ⋯  ∆𝐽𝐿  ∆𝑉1 ⋯  ∆𝑉𝑁]𝑇 = 𝑯 [𝐼𝑓,𝑖  𝐼𝑓,𝑗]𝑇 + 𝜺 (5) 
 

where indices 1 to L and 1 to N refer to the PMU-measured 

superimposed currents and voltages, respectively. Moreover, 𝒎, 𝑯, and 𝜺 are the measurement vector, coefficient matrix, and 

vector of measurement errors, respectively. System of 

equations (5) has two unknowns and thus will be uniquely 

solvable if it involves two independent equations [1]. Hence, it 

is almost impossible to be underdetermined in practice because 

each PMU typically provides several independent equations. 

The unknowns can be estimated using the WLS method as  
 

 [𝐼𝑓,𝑖  , 𝐼𝑓,𝑗]𝑇 = (𝑯∗𝑾𝑯)−1𝑯∗𝑾𝒎 (6) 
 

where the asterisk refers to the conjugate transpose of the matrix 

and 𝑾 is the weight matrix. Let 𝛽 denote the ratio between 𝐼𝑓,𝑖 
and 𝐼𝑓,𝑗 obtained from (6). With proper mathematical 

manipulations, a generalized closed-form solution for the fault 

distance can be derived from (1) as below [2] 
 

 𝛼 = 12𝑙𝑖𝑗𝛾𝑖𝑗  ln [ 𝑒𝑙𝑖𝑗𝛾𝑖𝑗+𝛽𝑒−𝑙𝑖𝑗𝛾𝑖𝑗+𝛽] (7) 
 

Fault location is carried out offline, and the faulted line may 

or may not be known to the process [2]. If not, one can easily 

use the residual-based technique proposed in [1] and [3] to 

identify the faulted line. 

III. WEIGHT MATRIX AND SUPERIMPOSED ERRORS 

Due to measurement errors, there may be more confidence 

in some synchrophasors than others. WLS is a generalization of 

ordinary least-squares (OLS) in which measurement errors are 

incorporated into the estimation to achieve the best linear 

unbiased prediction of unknowns [4]. If the measurements are 

independent, the weight of each measurement will be set equal 

to the reciprocal of its variance [4]. In the context of the 

proposed formulation, the term superimposed error refers to the 

error of a superimposed synchrophasor, which is the difference 

between the random errors of the corresponding post- and pre-

fault synchrophasors. Thus, the superimposed error is a 

function of the error of the corresponding pre- and post-fault 

synchrophasors. A salient contribution of this letter is 

formulating the mean and variance of the superimposed error 

w.r.t the statistical distributions of the errors of pre- and post-

fault synchrophasors. 

As verified in [6], synchrophasors have independent 

distributions of errors in magnitude and phase-angle. Pre- and 

post-fault synchrophasors, in general, can have different 

distributions of errors. Let 𝑦 = 𝑟𝑒𝑗𝜃  and 𝑦′ = 𝑟′𝑒𝑗𝜃′
denote 

random variables (RVs) representing the pre- and post-fault 

fundamental-frequency synchrophasors of a variable. Similar to 

many other studies, errors are assumed to have normal 

distributions [2]. The errors in the magnitudes and phase-angles 

of 𝑦 and 𝑦′ can be defined by four real-valued independent 

Gaussian random variables as 𝜀𝑟′~𝒩(0, 𝜎𝑟′2 ), 𝜀𝜃′~𝒩(0, 𝜎𝜃′2 ), 𝜀𝑟~𝒩(0, 𝜎𝑟2), and 𝜀𝜃~𝒩(0, 𝜎𝜃2), where 𝜎 denotes the standard 

deviation of errors. Let 𝑦𝑚 = 𝑟𝑚𝑒𝑗𝜃𝑚 and 𝑦𝑚′ = 𝑟𝑚′ 𝑒𝑗𝜃𝑚′  denote 

the measured samples of these RVs. Let us denote the expected 

value of the error of the superimposed synchrophasor ∆𝑦𝑚 =𝑦𝑚′ − 𝑦𝑚, i.e. the mean of superimposed error, by 𝜇𝜖𝑚. As will 

be justified in Appendix, this can be obtained from  
 𝜇𝜖𝑚 = 𝑦𝑚′ (𝑒−𝜎𝜃′2 − 𝑒−𝜎𝜃′2 2⁄ ) − 𝑦𝑚(𝑒−𝜎𝜃2 − 𝑒−𝜎𝜃2 2⁄ ) (8) 

 

It follows from (8) that although the mean of 𝜀𝑟′, 𝜀𝜃′, 𝜀𝑟, and 𝜀𝜃 are zero, the mean of the superimposed error can be non-

zero. This means WLS estimation using superimposed 

synchrophasors will be biased [4], [7]. To counteract this, the 

means should be subtracted from the corresponding 

superimposed synchrophasors in (5). As will be demonstrated 

in Appendix, the variance of superimposed errors will be  
 

       𝜎∆𝑦𝑚2 = 𝜎𝜖𝑚2 = 𝑟𝑚′ 2(1 − 𝑒−𝜎𝜃′2 ) + 𝜎𝑟′2 (2 − 𝑒−𝜎𝜃′2 ) 

                               +𝑟𝑚2(1 − 𝑒−𝜎𝜃2) + 𝜎𝑟2(2 − 𝑒−𝜎𝜃2)           (9) 
 

The weight associated with each equation in (6) is equal to 

the reciprocal of the variance of its superimposed error. The 

knowledge of the variance of superimposed errors, given in (9), 

is also a prerequisite for effective bad data detection [4].  

IV. PERFORMANCE EVALUATION 

Extensive simulations are conducted on the IEEE 39-bus 

test system to evaluate the performance of the proposed 

method. The phasors of the time-domain waveforms generated 

in PowerFactory are estimated using a real PMU model [8]. 

PMUs are typically placed in power systems to provide network 

observability [9]. Thus, using the method of [9], 12 PMUs are 

placed at buses 3, 5, 8, 11, 14, 16, 19, 23, 25, 27, 29, and 39 to 

make the network fully observable. However, the method does 

not require full network observability. The performance with 

partial network observability and different numbers of PMUs 

will also be studied.  

The errors of magnitudes and phase-angles of 

synchrophasors are assumed to have a variation range of ±1% 

with normal distribution. The variation ranges of errors are 

reported based on the three-sigma criterion [7]. In other words, 

the variation range of a normally distributed error with standard 

deviation 𝜎 is [-3𝜎,+3𝜎]. In principle, one phasor reported 

before and one after the fault onset would be sufficient to obtain 

the superimposed phasors [2]. In the simulations conducted, 

these are calculated at 60 ms following the fault onset. 

 
Fig. 2. Distribution of the fault location error using different methods. 
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First, the method’s performance is studied for an arbitrary 
1-ph-g fault at 20% of line 3-18. To obtain solid results, the 

fault case is repeated 50,000 times. Fig. 2 shows the distribution 

of the FL error by different methods, i.e. that of [2] (which 

ignores current measurements), the proposed method with 

uniform weights (OLS), and the proposed method with rigorous 

weights (WLS). It can be seen that the standard deviation of FL 

errors by OLS is smaller than that by the method of [2]. This 

demonstrates that the inclusion of current synchrophasors, even 

without the knowledge of variances of superimposed errors, 

enhances the accuracy of FL. As expected, the FL accuracy is 

significantly improved when the WLS is minimized using the 

rigorous weights obtained in the previous section. 

To demonstrate the method’s capability in dealing with CT 

saturations and close-in faults, all 12 PMUs are connected to 

magnetic-core CTs/VTs with an accuracy class of 0.5. A solid 

1-ph-g fault at different locations of line 7-8 is considered. For 

faults near bus 8, the CT feeding the PMU at this bus becomes 

saturated, resulting in an erroneous current measurement. 

Accordingly, the largest normalized residual test is used for bad 

data detection and elimination [4]. Table I compares the FL 

error by the proposed method and the well-known two-terminal 

method of [10]. As seen, the presence of extra data (redundant 

equations) in the proposed method enables it to reduce the 

impact of erroneous measurements to a great extent. 

Now, the impact of the number of PMUs on the FL error is 

investigated. To this end, 20 random PMU placements leading 

to a solvable system of equations are considered for each certain 

number of PMUs. The simulation is repeated 10,000 times for 

each PMU placement. Table II reports the mean and standard 

deviation of the FL errors for faults on two arbitrary lines using 

various methods. As can be seen, the proposed method 

outperforms the method of [2], especially with fewer PMUs.  

Here, a total of 2,000 fault cases of different types are 

simulated at different locations in the system. For each fault 

case, the fault resistance is varied between 0 Ω to 50 Ω in 10-Ω 
steps. Measurement errors are set to have normal distributions, 

and each fault case is repeated 10,000 times. The voltage and 

current phasors from the 12 PMUs [9] are contaminated with 

up to 8% errors before calculating the fault distance from (7). 

Fig. 3 shows the results obtained by the proposed method using 

uniform weights and the rigorous weights derived. As seen, the 

mean and standard deviation of the FL error are noticeably 

smaller using the rigorously established weight matrix. This 

confirms that accounting for the distributions of superimposed 

errors can considerably improve WAFL accuracy. 

Two independent equations are sufficient to solve (5) by (6). 

The method does not require any specific set of PMU data, such 

as PMUs at either or both terminals of the faulted line. To 

demonstrate the mentioned point, simulations are repeated for 

the lines with no PMUs at either terminal by adding PMUs at 

their terminals. In this study, the variation range of the errors is 

considered to be ±1%. The results are tabulated in Table III, 

showing that the proposed WAFL method can provide accurate 

results with and without PMUs at the faulted line terminals. 

V. CONCLUSION 

This letter proposes a generalized closed-form solution for 

wide-area fault location (WAFL) using sparse PMU measure-

ments. To enable the application of the weighted least-squares 

method, the mean and variance of superimposed errors are 

rigorously calculated based on the statistical distributions of the 

errors of pre- and post-fault synchrophasors. Incorporating the 

established weight matrix into the formulation, as the main 

contribution of the letter, and taking advantage of both voltage 

and current synchrophasors make the results considerably more 

accurate than that of similar WAFL methods. The linearity of 

the formulation and the rigorous derivations of superimposed 

errors facilitate the application of well-established bad data 

detection methods. Extensive simulations conducted confirm 

the effectiveness of the proposed method and its robustness 

against different factors such as fault type and resistance. 

APPENDIX: MATHEMATICAL PROOF FOR (8) AND (9) 

Let 𝜇𝑟, 𝜇𝜃, 𝜇𝑟′, and 𝜇𝜃′ denote the true values of the 

magnitudes and phase-angles of the pre- and post-fault 

synchrophasors. The RV for the corresponding superimposed 

synchrophasor can be expressed as  
 

 ∆𝑦 = (𝜇𝑟′ + 𝜀𝑟′)𝑒𝑗(𝜇𝜃′+𝜀𝜃′) − (𝜇𝑟 + 𝜀𝑟)𝑒𝑗(𝜇𝜃+𝜀𝜃) (A1) 
 

Equation (A1) can be rewritten as  
 

 ∆𝑦 = 𝜇𝑟′𝑒𝑗𝜇𝜃′ − 𝜇𝑟𝑒𝑗𝜇𝜃 + 𝜖   (A2) 
 

where 𝜇𝑟′𝑒𝑗𝜇𝜃′ − 𝜇𝑟𝑒𝑗𝜇𝜃 is the true value of ∆𝑦, and 
 𝜖 = 𝜇𝑟′𝑒𝑗𝜇𝜃′ (𝑒𝑗𝜀𝜃′ − 1) + 𝜀𝑟′𝑒𝑗(𝜇𝜃′+𝜀𝜃′) 

 
Fig. 3. Mean and standard deviation of the FL error by different methods. 

 
TABLE III  

SENSITIVITY TO THE PRESENCE OF PMU AT THE FAULTED LINE TERMINALS  
 

 Faulted Line Terminals with PMUs  Neither  One Both 

Mean of FL Errors (%) 0.10 0.09 0.06 

Std. Dev. of FL Erros (%) 0.56 0.53 0.45 

  

TABLE I 

FAULT LOCATION ERROR (%) BY DIFFERENT METHODS  
 

Fault Location Method 
Fault Distance 

 97.5%  95%  90% 80% 

 Conventional [10]  9.88 9.53 8.75 7.92 

Proposed 0.43 0.41 0.39 0.38 

 
 TABLE II 

WAFL RESULTS WITH DIFFERENT NUMBERS OF PMUS 
 

  Number of PMUs 12 9 6 12 9 6 

Fault Case FL Error (%) Proposed Method Method of [2] 

2-ph-g at 25% 

Line 26-28 

Mean  0.04 0.06 0.09 0.07 0.08 0.12 

Std. Dev. 0.22 0.21 0.25 1.38 1.77 2.35 

3-ph-g at 95% 

Line 10-13 

Mean  0.38 0.44 0.64 1.04 1.56 2.45 

Std. Dev. 0.36 0.75 0.97 2.56 3.96 5.45 
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                           −𝜇𝑟𝑒𝑗𝜇𝜃(𝑒𝑗𝜀𝜃 − 1) − 𝜀𝑟𝑒𝑗(𝜇𝜃+𝜀𝜃)   (A3) 
 

It is well known that for two independent RVs, any function 

of one RV is independent of any function of the other RV. Since 𝜀𝑟 and 𝜀𝜃 are independent,  
 

 𝔼(𝑓(𝜀𝑟) ⋅ 𝑔(𝜀𝜃)) = 𝔼(𝑓(𝜀𝑟)) 𝔼(𝑔(𝜀𝜃))   (A4) 
 

As 𝔼(𝜀𝑟) = 0, the expected value of the multiplication of 𝜀𝑟 by 

any function of 𝜀𝜃 is zero. Accordingly, the expected values of 

the second and the fourth terms in (A3) are zero. Moreover, for 

a Gaussian random variable, e.g. 𝜀𝜃, we have [7]  
 

 𝔼(𝑒𝑗𝜀𝜃) = 𝔼(𝑒−𝑗𝜀𝜃) = 𝑒−𝜎𝜃2 2⁄    (A5) 
 

Using (A4) and (A5), the expected value of 𝜖 is obtained as  
 𝜇𝜖 = 𝜇𝑟′𝑒𝑗𝜇𝜃′ (𝑒−𝜎𝜃′2 2⁄ − 1) − 𝜇𝑟𝑒𝑗𝜇𝜃(𝑒−𝜎𝜃2 2⁄ − 1) (A6) 

 

The variance of 𝜖 can be obtained by (A3) and (A6) as [7] 
 

  𝜎𝜖2 = 𝔼(|𝜖 − 𝜇𝝐|2) = 𝔼([𝜖 − 𝜇𝝐][𝜖 − 𝜇𝝐]∗)            (A7) 
 

Using (A4) and (A5) and some mathematical manipulations, 

one can obtain the variance of 𝜖 as below  
 

 𝜎𝜖2 = 𝜇𝑟′2 (1 − 𝑒−𝜎𝜃′2 ) + 𝜎𝑟′2 + 𝜇𝑟2(1 − 𝑒−𝜎𝜃2) + 𝜎𝑟2   (A8) 
 

Since the values of 𝜇𝑟′, 𝜇𝜃′, 𝜇𝑟, and 𝜇𝜃 are not available in 

practice, (A6) and (A8) cannot be directly utilized to calculate 

the mean and variance of the error of a superimposed phasor 

measurement. Therefore, the expected values of 𝜇𝜖 and 𝜎𝜖2 

should be obtained conditioned on the measured values, i.e. 𝑦𝑚 = 𝑟𝑚𝑒𝑗𝜃𝑚 and 𝑦𝑚′ = 𝑟𝑚′ 𝑒𝑗𝜃𝑚′ . We have 𝜇𝑟′ = 𝑟𝑚′ − 𝜀𝑟′, 𝜇𝜃′ = 𝜃𝑚′ − 𝜀𝜃′, 𝜇𝑟 = 𝑟𝑚 − 𝜀𝐴, and 𝜇𝜃 = 𝜃𝑚 − 𝜀𝜃. These 

equations are replaced in (A6) and (A8) to calculate the 

expected values of the resulting expressions. Using (A4) and 

(A5) and after some mathematical manipulations, the mean and 

the variance of the superimposed error associated with the 

superimposed synchrophasor ∆𝑦𝑚 = 𝑦𝑚′ − 𝑦𝑚, conditioned on 

the measured values, are obtained as (8) and (9), respectively. 
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