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Let (Ω, A, µ) be a probability space. The classical Borel–Cantelli Lemma states 
that for any sequence of µ-measurable sets Ei (i = 1, 2, 3, . . . ), if the sum of 
their measures converges then the corresponding lim sup set E∞ is of measure 
zero. In general the converse statement is false. However, it is well known that the 
divergence counterpart is true under various additional ‘independence’ hypotheses. 
In this paper we revisit these hypotheses and establish both sufficient and necessary 
conditions for E∞ to have either positive or full measure.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Borel–Cantelli Lemma is a result in probability theory with wide reaching applications to various 

areas of mathematics. To some extent, this note is motivated by its deep applications to number theory, 

in particular to metric number theory – see for example [5,6,9,28,29,46] and references within. Loosely 

speaking, metric number theory is concerned with the arithmetic properties of almost all numbers and 

many key results in the theory are underpinned by variants of the divergence part of the Borel–Cantelli 

Lemma (see Lemma DBC below). The divergence part is also known as the second Borel–Cantelli Lemma 

and it naturally shows up (in some form) in the proof of the notorious Duffin-Schaeffer Conjecture [24]

recently given by Koukoulopoulos & Maynard [35] and its higher dimensional generalisation proved two 

decades earlier by Pollington & Vaughan [41]. Indeed, the divergence Borel–Cantelli Lemma is very much at 

the heart of numerous other recent advances on topical problems in metric number theory, such as those in 

the theory of multiplicative and inhomogeneous Diophantine approximation and Diophantine approximation 

on manifolds and more generally on fractals, see for example [4,8,18–21,33,43,44,49]. In a nutshell, our goal 

it is to revisit the Borel–Cantelli Lemma and to establish both sufficient and necessary conditions that 

guarantee either positive or full measure.
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1.1. Background and motivation

To set the scene, let (Ω, A, µ) be a probability space and let Ei (i ∈ N) be a family of measurable subsets 

(events) of Ω. Also, let

E∞ := lim sup
i→∞

Ei :=
∞
⋂

t=1

∞
⋃

i=t

Ei ;

i.e. E∞ is the set of x ∈ Ω such that x ∈ Ei for infinitely many i ∈ N.

Determining the measure of E∞ turns out to be one of the fundamental problems considered within the 

framework of classical probability theory – see for example [14, Chp. 1 §4] and [42, Chp. 47] for general 

background and further details. With this in mind, the following convergence Borel–Cantelli Lemma provides 

a beautiful and truly simple criterion for zero measure.

Lemma CBC (Convergence Borel–Cantelli). Let (Ω, A, µ) be a probability space and let {Ei}i∈N be a se-

quence of subsets (events) in A. Suppose that 
∑∞

i=1 µ(Ei) < ∞. Then,

µ(E∞) = 0 .

This powerful lemma, which is also known as the first Borel–Cantelli Lemma, has applications in numerous 

disciplines. In particular, within the context of number theory it is very much at the heart of Borel’s proof 

that almost all numbers are normal [16].

In view of Lemma CBC, it is natural to ask whether or not there is a sufficient condition that enables us 

to deduce that the measure of E∞ is positive or possibly even full; that is to say that

µ(E∞) = µ(Ω) = 1 .

The divergence of the measure sum 
∑∞

i=1 µ(Ei) is clearly necessary but certainly not enough as the following 

simple example demonstrates.

Example. For i ∈ N, let Ei = (0, 1
i
) ⊂ Ω := [0, 1] and µ be one-dimensional Lebesgue measure restricted to 

[0, 1]. Then

∑∞

i=1 µ(Ei) =
∑∞

i=1 i−1 = ∞

but

E∞ =
∞
⋂

t=1

∞
⋃

i=t

Ei =
∞
⋂

t=1

(0, 1
t
) = ∅ and so µ(E∞) = 0 .

The problem in the above example is that the building blocks Ei of the lim sup set under consideration 

overlap ‘too much’ - in fact they are nested. The upshot is that in order to have µ(E∞) > 0, we not only 

need the sum of the measures to diverge but also that the sets Ei are in ‘some sense’ independent; that 

is, we need to control overlaps! Indeed, Borel & Cantelli showed that mutual independence in the classical 

probabilistic sense, which means that for every n ∈ N

µ

(

n
⋂

t=1

Eit

)

=

n
∏

t=1

µ(Eit
) for any indices i1 < . . . < in , (1)
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implies that µ(E∞) = 1. This full measure statement, often referred to as the second Borel–Cantelli Lemma, 

led to a flurry of activity with the aim of relaxing the mutual independence condition. Notable progress in 

this quest included replacing mutual independence by pairwise independence – this corresponds to (1) being 

fulfilled with n = 2 rather than every n ∈ N. In turn, pairwise independence was replaced by the upper 

bound condition

µ(Es ∩ Et) ≤ µ(Es)µ(Et) s �= t (2)

on the overlaps. Undoubtedly, verifying (2) is significantly easier than (1). However, in many applications, 

we rarely have (2) let alone mutual independence as in the original statement of the second Borel–Cantelli 

Lemma. What is much more useful is the following variant which these days is often referred to as the 

divergence Borel–Cantelli Lemma.

Lemma DBC (Divergence Borel–Cantelli). Let (Ω, A, µ) be a probability space and let {Ei}i∈N be a sequence 

of subsets (events) in A. Suppose that 
∑∞

i=1 µ(Ei) = ∞ and that there exists a constant C > 0 such that

Q
∑

s,t=1

µ(Es ∩ Et) ≤ C

(

Q
∑

s=1

µ(Es)

)2

(3)

holds for infinitely many Q ∈ N. Then

µ(E∞) ≥ C−1 .

In particular, if C = 1 then

µ(E∞) = 1 .

We refer the reader to [28,29,42,46] for the proof of the lemma which is essentially a consequence of the 

Cauchy-Schwarz inequality. As pointed out by Harman [29], the basic idea goes back to the works of Payley 

& Zygmund [38,39] from the nineteen thirties.

Remark 1. To the best of our knowledge, the in particular part of Lemma DBC first explicitly appears in 

the work of Erdös & Reyni [25, Lemma C] from the late fifties. Lamperti [36] in the early sixties established 

the weaker form of above lemma in which (3) is replaced by

µ(Es ∩ Et) ≤ Cµ(Es)µ(Et) s �= t . (4)

Clearly, this pairwise condition implies the average condition (3). Independently and around the same time, 

Kochen & Stone [34] established Lemma DBC as stated – see also [45, Lemma 2, p. 165]. It is worth 

mentioning, that Chung & Erdös [22] in the early fifties explored the implications of imposing condition 

(4) on the overlaps. Within the specific number theoretic setting, Duffin & Schaeffer [24] had carried out 

such an investigation in 1941 and it was a key ingredient in their proof of what today is refereed to as the 

Duffin-Schaeffer Theorem [24, Theorem I]. This theorem is a special case of the notorious Duffin-Schaeffer 

Conjecture mentioned right at the start of this paper.

Remark 2. Condition (3) is often refereed to as quasi-independence on average and together with the diver-

gence of the measure sum guarantees that the associated lim sup set E∞ is of positive measure. It does not 

in general guarantee full measure. However, this is not an issue if we already know by some other means 
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(such as Kolmogorov’s theorem [14, Theorems 4.5 & 22.3] or ergodicity [14, §24]) that the lim sup set E∞

satisfies a zero-one law; namely that

µ(E∞) = 0 or 1.

Within the context of metric number theory, the existence of such a law for the lim sup set of well approx-

imable real numbers is due to Cassels [17] and Gallagher [27] and it plays a key role in the recent proof 

of the Duffin-Schaeffer Conjecture [35]. For further details and higher dimensional generalisation of their 

zero-one laws see [7,10] and references within. Alternatively, without the presence of a general zero-one law, 

if we are willing to impose a little more structure on the probability space, we can guarantee full measure 

if the measure sum diverges locally and quasi-independence on average holds locally in the presence of an 

appropriate topological structure on Ω. In short, by locally we mean that the conditions under considera-

tion hold for Ei ∩ A where A is an arbitrary open set with positive measure. For the precise statement see 

Lemma LBC below.

In short, the purpose of the present paper is to determine whether or not Lemma DBC is best possible. 

In other words, is it the case that the pairwise quasi-independence on average condition (3) cannot be 

replaced by a weaker condition? Recall, that in view of Lemma CBC, the divergence sum condition within 

Lemma DBC is not negotiable – it has to be present. We show that within a reasonably general framework, 

given any lim sup set E∞ := lim supi→∞ Ei with µ(E∞) > 0 the sets Ei can be appropriately manipulated 

or rather “trimmed” in such a manner that the resulting subsets E∗
i are quasi-independent on average and 

the sum of the measures µ(E∗
i ) diverges. Thus, up to “trimming” the divergence Borel–Cantelli Lemma is 

best possible. Moreover, we show that quasi-independence on average for the trimmed sets is in fact not only 

equivalent to full measure but to three other useful properties which are of independent interest especially 

within the context of applications. We conclude the paper with a couple of examples that demonstrate the 

versatility and power of our results.

1.2. Statement of results

Throughout, (Ω, A, µ, d) will be a metric measure space equipped with a Borel probability measure µ. 

In what follows, supp µ will denote the support of the measure µ and given x ∈ Ω and r > 0, B = B(x, r)

will denote the ball centred at x of radius r. Also, given a real number a > 0, we denote by aB the ball B

scaled by a factor a; i.e. aB := B(x, ar). Most of the time we will assume that µ is doubling. Recall, that µ

is said to be doubling if there are constants λ ≥ 1 and r0 > 0 such that for any x ∈ supp µ and 0 < r < r0

µ(B(x, 2r)) ≤ λ µ(B(x, r)) . (5)

The doubling condition allows us to blow up a given ball by a constant factor without drastically affecting 

its measure. The metric measure space (Ω, A, µ, d) is also said to be doubling if µ is doubling [30]. Note 

that the doubling property is imposed only on the measure of balls centred in suppµ. However, in many 

instances the doubling property can be effectively used on balls that are not necessarily centred in suppµ

provided that they contain ‘enough’ of the support. In particular, when working with a given sequence of 

balls {Bi} in Ω we will often impose the following weaker version of doubling:

∃ a, b > 1 such that µ(aBi) ≤ bµ(Bi) for all i sufficiently large. (6)

Condition (6) is not particularly restrictive and ensures that whenever µ(Bi) > 0 the support of µ within 

Bi is not concentrated too close to the boundary of Bi. Indeed, if for some ε > 0 the ball (1 − ε)Bi contains 
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points in supp µ, then the inequality in (6) holds with any a > 1 and b = λk where k :=
⌈

log2
a+1−ε

ε

⌉

. Note 

that if the centre of Bi is in supp µ then the inequality in (6) trivially holds with a = 2 and b = λ.

Restricting our attention to lim sup sets of balls, we have the following ‘if and only if’ statement for full 

measure.

Theorem 1. Let (Ω, A, µ, d) be a metric measure space equipped with a doubling Borel probability measure 

µ. Let {Bi}i∈N be a sequence of balls in Ω with r(Bi) → 0 as i → ∞ and such that (6) holds. Let E∞ :=

lim supi→∞ Bi. Then

µ(E∞) = 1

if and only if there exists a constant C > 0 such that for any ball B centred in supp µ there is a sub-sequence 

{Li,B}i∈N of {Bi}i∈N of balls contained in B (i.e. Li,B ⊂ B for all i), such that

∞
∑

i=1

µ(Li,B) = ∞ (7)

and for infinitely many Q ∈ N

Q
∑

s,t=1

µ
(

Ls,B ∩ Lt,B

)

≤
C

µ(B)

(

Q
∑

s=1

µ(Ls,B)

)2

. (8)

It is important to note that the constant C > 0 appearing in (8) is independent of the arbitrary ball B. 

The following is a strengthening of Theorem 1 to lim sup sets of open sets. As we shall see, the proof will 

follow the same line of argument as that of Theorem 1.

Theorem 2. Let (Ω, A, µ, d) be a metric measure space equipped with a doubling Borel probability measure 

µ. Let {Ei}i∈N be a sequence of open subsets (events) in Ω and let E∞ := lim supi→∞ Ei. Then

µ(E∞) = 1

if and only if there exists a constant C > 0 such that for any ball B centred in supp µ there is a sequence 

{Li,B}i∈N of finite unions of disjoint balls centred in supp µ with Li,B ⊂ Ei ∩ B satisfying (7) and (8) for 

infinitely many Q ∈ N.

The upshot is that for a lim sup set E∞ to have full measure we must be able to locally “trim” the 

associated sets Ei so that the resulting trimmed subsets are quasi-independent on average and the sum of 

their measures diverges.

It turns outs that the sufficiency part of the Theorem 2 can be made more general. In particular, the 

doubling condition can be altogether dropped. The following is a local variant of the (standard) divergence 

Borel–Cantelli Lemma which allows us to deduce full measure rather than just positive measure.

Lemma LBC (Local Borel–Cantelli). Let (Ω, A, µ, d) be a metric measure space equipped with a Borel prob-

ability measure µ and let {Ei}i∈N be a sequence of Borel subsets of Ω. Suppose there exists an increasing 

function f : (0, +∞) → (0, +∞) with f(x) → 0 as x → 0 such that for any open set A with µ(A) > 0 there 

is a sequence {Li,A}i∈N of measurable subsets of A such that

∞
∑

i=1

µ(Li,A) = ∞ (9)
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and for infinitely many Q ∈ N

Q
∑

s,t=1

µ
(

Ls,A ∩ Lt,A

)

≤
1

f(µ(A))

(

Q
∑

s=1

µ(Ls,A)

)2

. (10)

Then

µ(E∞) = 1 .

Moreover, if in addition µ is doubling and f(x) = cx for some constant 0 < c ≤ 1, it suffices to take A in 

the above to be an arbitrary ball of sufficiently small radius centred in supp µ.

Remark 3. In the case f(x) = cx for some constant 0 < c ≤ 1 and A = B is a ball, condition (10) becomes 

the same as (8) with C = c−1. Given a measurable set A with µ(A) > 0, let µA denote the conditional 

probability measure given by

µA(E) :=
µ(E ∩ A)

µ(A)
for E ∈ A .

In other words, µA is the re-normalised µ-measure restricted to A. Then it is easily seen that on replacing 

µ by µA, the divergence condition (9) and the overlap condition (10) with f(x) = cx coincide with those of 

Lemma DBC. For obvious reasons, the independence condition (10) with f(x) = cx is often refereed to as 

local quasi-independence on average.

Theorem 1 will follow from a more general statement that provides three more necessary and sufficient 

conditions for full measure. To be more precise, Theorem 1 is the equivalence between (A) and (E) within 

the following statement with C = κ−2.

Throughout, we use the standard notation 
◦
⋃

to denote that the union of sets under consideration is disjoint.

Proposition 1. Let (Ω, A, µ, d) be a metric measure space equipped with a doubling Borel probability measure 

µ. Let {Bi}i∈N be a sequence of balls in Ω with r(Bi) → 0 as i → ∞ and such that (6) holds. Let E∞ :=

lim supi→∞ Bi. Then, the following statements are equivalent:

(A) µ(E∞) = 1.

(B) For any ball B in Ω, we have that

µ(E∞ ∩ B) = µ(B) . (11)

(C) For any ball B in Ω centred in supp µ and any G ∈ N, there is a finite sub-collection KG,B ⊂ {Bi :

i ≥ G} of disjoint balls contained in B such that

µ
(

◦
⋃

L∈KG,B

L
)

≥ κ µ(B) where κ :=
1

2

1

λk+1b
(12)

where λ is as in (5), k := max{1, 
⌈

log2
6

a−1

⌉

} and a, b are as in (6).

(D) For any ball B in Ω centred in supp µ and any G ∈ N, there is a subset EG,B ⊆ B consisting of a finite 

union of disjoint balls from {Bi : i ≥ G}, such that
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∞
∑

i=1

µ(EGi,B) = ∞

for any subsequence (Gi)i∈N of natural numbers, and, with κ is as in (12), for any pair of natural 

numbers G and G′

µ
(

EG,B ∩ EG′,B

)

≤
1

µ(B) κ2
µ(EG,B) µ(EG′,B) . (13)

(E) For any ball B in Ω centred in supp µ there is a sub-sequence {Li,B}i∈N of {Bi}i∈N of balls contained 

in B such that

∞
∑

i=1

µ(Li,B) = ∞

and, with κ is as in (12), for infinitely many Q ∈ N

Q
∑

s,t=1

µ
(

Ls,B ∩ Lt,B

)

≤
1

µ(B) κ2

(

Q
∑

s=1

µ(Ls,B)

)2

. (14)

Remark 4. It will become apparent in the proof that we can take the subset EG,B in (D) to be the union of 

balls in the sub-collection KG,B associated with (C).

We now turn our attention to an ‘if and only if’ statement for positive measure for lim sup sets of balls.

Theorem 3. Let (Ω, A, µ, d) be a metric measure space equipped with a doubling Borel probability measure 

µ. Let {Bi}i∈N be a sequence of balls in Ω such that (6) holds. Let E∞ := lim supi→∞ Bi. Then

µ(E∞) > 0

if and only if there exists a sub-sequence {Li}i∈N of {Bi}i∈N and a constant C > 0 such that

∞
∑

i=1

µ(Li) = ∞ (15)

and for infinitely many Q ∈ N

Q
∑

s,t=1

µ
(

Ls ∩ Lt

)

≤ C

(

Q
∑

s=1

µ(Ls)

)2

. (16)

The following is the ‘positive measure’ analogue of Proposition 1 and it clearly implies Theorem 3.

Proposition 2. Let (Ω, A, µ, d) be a metric measure space equipped with a doubling Borel probability measure 

µ. Let {Bi}i∈N be a sequence of balls in Ω such that (6) holds. Let E∞ := lim supi→∞ Bi. Then, the following 

statements are equivalent:

(A) µ(E∞) > 0.
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(B) For any G ∈ N, there is a finite sub-collection KG ⊂ {Bi : i ≥ G} of disjoint balls such that

µ
(

◦
⋃

L∈KG

L
)

≥ κ where κ :=
1

2λk+1b
µ

(

E∞

)

, (17)

where λ is as in (5), k := max{1, 
⌈

log2
6

a−1

⌉

} and a, b are as in (6).

(C) For any G ∈ N, there is a subset EG of Ω, which is a finite union of disjoint balls from {Bi : i ≥ G}, 

such that

∞
∑

i=1

µ(EGi
) = ∞

for any subsequence (Gi)i∈N of natural numbers, and, with κ is as in (17), for any pair of natural 

numbers G and G′

µ
(

EG ∩ EG′

)

≤ κ−2 µ(EG) µ(EG′) . (18)

(D) There is a sub-sequence {Li}i∈N of {Bi}i∈N such that

∞
∑

i=1

µ(Li) = ∞

and, with κ is as in (17), for infinitely many Q ∈ N

Q
∑

s,t=1

µ
(

Ls ∩ Lt

)

≤ κ−2

(

Q
∑

s=1

µ(Ls)

)2

. (19)

2. Proof of results

2.1. Preliminaries

We will make multiple use of the following basic covering lemma, see for example [30,37].

Lemma 1 (The 5r covering lemma). Every family F of balls of uniformly bounded diameter in a metric 

space (Ω, d) contains a disjoint subfamily G such that

⋃

B∈F

B ⊂
⋃

B∈G

5B .

The following measure theoretic result, which is an extension of Proposition 1 in [6, §8], provides a 

mechanism for establishing full measure statements.

Lemma 2. Let (Ω, A, µ, d) be a metric measure space equipped with a Borel doubling probability measure µ. 

Let E be a Borel subset of Ω. Assume that there are constants r0, c > 0 such that for any ball B centred in 

supp µ with r(B) < r0, we have that

µ(E ∩ B) ≥ c µ(B). (20)

Then, µ(E) = 1.
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The lemma is a standard corollary of the Lebesgue density theorem or more generally the Lebesgue 

differentiation theorem for doubling metric measure spaces (see for example [30, Theorem 1.8]. A slightly 

weaker version of this lemma can also be found in [6]. In short, the version of this lemma established as 

Proposition 1 in [6, §8] requires that (20) holds for arbitrary balls centred in Ω rather than just in supp µ

and the proof uses covering arguments rather than the Lebesgue density theorem.

Remark 5. Note that the doubling assumption in Lemma 2 can be weakened by requiring instead that 

(Ω, A, µ, d) is a Vitali space as defined in [30, p. 6]. Furthermore it is also possible to remove the doubling 

assumption altogether from Lemma 2 at the price of requiring a lower bound on µ(E ∩ B) for an arbitrary 

open set B as opposed to an arbitrary ball of sufficiently small radius. We will state this version formally 

as it will be required in the proof of Lemma LBC.

Lemma 3 (Lemma 6 in [6]). Let (Ω, A, µ, d) be a metric measure space equipped with a Borel probability 

measure µ. Let E be a Borel subset of Ω and f : (0, +∞) → (0, +∞) be an increasing function such that 

f(x) → 0 as x → 0. Assume that

µ(E ∩ A) ≥ f(µ(A))

for any open subset A ⊂ Ω with µ(A) > 0. Then, µ(E) = 1.

The following “obvious” but useful statement relates the standard doubling property (5) for balls centred 

in supp µ with the weaker property corresponding to (6) in which the centre can be anywhere.

Lemma 4. Let (Ω, A, µ, d) be a metric measure space equipped with a Borel doubling probability measure µ. 

Let a, b > 0 be constants and let B be a ball in Ω such that µ(aB) ≤ bµ(B) and B ∩ supp µ �= ∅. Then for 

any s ≥ a we have that

µ(sB) ≤ λkbµ(B) ,

where k ∈ N satisfies 2k ≥ (1 + s)/(a − 1) and λ is as in (5).

Proof. Let x ∈ B ∩ supp µ and B′ be the ball centred at x of radius (a − 1)r(B). Then clearly B′ ⊂ aB. 

Since B′ is centred in the support of µ, the doubling property (5) is applicable to it and we have that for 

every k ∈ N

µ(2kB′) ≤ λkµ(B′) .

Since B′ ⊂ aB and µ(aB) ≤ bµ(B), we therefore have that

µ(2kB′) ≤ λkµ(aB) ≤ λkbµ(B) . (21)

It remains to observe that sB ⊂ 2kB′ provided that (a − 1)2k ≥ 1 + s and so (21) implies the required 

inequality. �

2.2. Proof of Lemma LBC

Let A be any open subset of Ω and {Li,A}i∈N be the sequence of sets as in Lemma LBC. In particular, 

by definition, Li,A ⊂ Ei ∩ A for every i ∈ N and therefore

lim sup
i→∞

Li,A ⊆ A ∩ lim sup
i→∞

Ei .
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On applying Lemma DBC (the standard divergent Borel–Cantelli Lemma) it follows that

µ
(

A ∩ lim sup
i→∞

Ei

)

≥ µ
(

lim sup
i→∞

Li,A

)

≥ f(µ(A)) .

Also recall that Ei is a Borel set for every i ∈ N and therefore E∞ := lim supi→∞ Ei is a Borel subset of Ω. 

Then, applying Lemma 3 with E = E∞ implies that µ(E∞) = 1 as desired.

If µ is a doubling measure and f(x) = cx for some constant 0 < c ≤ 1, then the ‘moreover’ part of 

Lemma LBC follows on applying Lemma 2 instead of Lemma 3.

2.3. Proof of Proposition 1

• Step 1: (A) =⇒ (B). This is obvious since µ is a probability measure.

• Step 2: (B) =⇒ (C). Let B be any ball in Ω centred in supp µ. In particular, we have that µ(B) > 0. Let 

F := {Bi : Bi ∩ 1
2B ∩ supp µ �= ∅, i ≥ G}. Since, r(Bi) → 0 as i → ∞, we can ensure that every ball in F

is contained in B by increasing G if necessary. In view of the 5r covering lemma (Lemma 1), there exists a 

disjoint sub-family G such that

⋃

Bi∈F

Bi ⊂
⋃

Bi∈G

5Bi .

It follows that

1
2B ∩ lim sup

i→∞

Bi ∩ supp µ ⊂
⋃

Bi∈F

Bi ∩ supp µ ⊂
⋃

Bi∈G

5Bi ∩ supp µ .

Hence,

µ

(

⋃

Bi∈G

5Bi

)

≥ µ
(

1
2B ∩ lim sup

i→∞

Bi

) (11)
= µ(1

2B
)

(5)

≥
1

λ
µ(B) .

However, since G is a disjoint collection of balls, which have non-empty intersection with supp µ, we have 

that

µ

(

⋃

Bi∈G

5Bi

)

≤
∑

Bi∈G

µ (5Bi)
(6) & Lemma 4

≤ λkb
∑

Bi∈G

µ (Bi) = λkb µ

(

◦
⋃

Bi∈G

Bi

)

,

where k := max{1, 
⌈

log2
6

a−1

⌉

}. Thus,

1

λk+1b
µ(B) ≤ µ

(

◦
⋃

Bi∈G

Bi

)

=
∑

Bi∈G

µ (Bi) ≤ µ(B) . (22)

If G is infinite, the sum in (22) is convergent and therefore there exists some j0 > G for which

∑

Bi∈G : i≥j0

µ (Bi) = µ

⎛

⎝

◦
⋃

Bi∈G : i≥j0

Bi

⎞

⎠ <
1

2

1

λk+1b
µ(B) . (23)
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Obviously, this is also true if G is finite. Now let KG,B := {Bi : Bi ∈ G, i < j0}. Clearly, this is a finite 

sub-collection of {Bi : i ≥ G}. Moreover, in view of (22) and (23) the collection KG,B satisfies the desired 

properties.

• Step 3: (C) =⇒ (D). For any ball B centred in supp µ and any G ∈ N, let KG,B be the finite sub-collection 

of disjoint balls associated with (C) and define

EG,B :=
◦

⋃

L∈KG,B

L ⊆ B . (24)

It follows from (12) that

µ(EG,B) ≥ κ µ(B) ,

which in turn implies that 
∑∞

i=1 µ(EGi,B) ≥
∑∞

i=1 κ µ(B) = ∞ for any subsequence (Gi)i∈N of natural 

numbers, and

µ
(

EG,B ∩ EG′,B

)

≤ µ(B) ≤
1

µ(B) κ2
µ(EG,B) µ(EG′,B)

for any pair of natural numbers G and G′. Thus, the sets EG,B satisfy the desired properties.

• Step 4: (D) =⇒ (E). Let B be any ball centred in supp µ and for any G ∈ N let EG,B ⊂ B be as in (D), 

and let KG,B be a finite collection of disjoint balls from {Bi : i ≥ G} that constitute EG,B, that is (24)

holds. Observe that for any pair of natural numbers G and G′

µ
(

EG,B ∩ EG′,B

)

= µ

⎛

⎝

(

◦
⋃

L∈KG,B

L
)

∩
(

◦
⋃

L′∈KG′,B

L′
)

⎞

⎠

=
∑

L∈KG,B

∑

L′∈KG′,B

µ
(

L ∩ L′
)

(13)

≤
1

µ(B) κ2
µ(EG,B) µ(EG′,B)

=
1

µ(B) κ2

∑

L∈KG,B

µ(L)
∑

L′∈KG′,B

µ(L′) . (25)

Let G1 = 1 and fix the collection KG1,B . Define G2 = t +1 where t is the largest index such that Bt ∈ KG1,B . 

Since KG1,B is finite this is clearly possible. With G2 defined, we can fix the collection KG2,B and proceed by 

induction as follows. Suppose the integers G1, . . . , Gn and the corresponding collections KG1,B ,. . . , KGn,B

have been determined. Define Gn+1 = t + 1 where t is the largest index such that Bt ∈ KGn,B . With Gn+1

defined, we can fix the collection KGn+1,B and we are done. Now, let {Ls,B}s∈N be the sequence of balls 

contained in B obtained by placing the balls from {KGi,B : i ∈ N} in the same order as in {Bi}i∈N . In 

view of the choice of the integers Gi, the sequence {Ls,B}s∈N is a well defined sub-sequence of {Bi}i∈N . 

For M ∈ N, let

QM :=
M

∑

i=1

#KGi,B .

It then follows that for any M ≥ 2
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QM
∑

s,t=1

µ
(

Ls,B ∩ Lt,B

)

=

M
∑

i,j=1

µ
(

EGi,B ∩ EGj ,B

)

=
M

∑

i,j=1

∑

L∈KGi,B

∑

L′∈KGj ,B

µ
(

L ∩ L′
)

(25)

≤
1

µ(B) κ2

M
∑

i,j=1

∑

L∈KGi,B

µ(L)
∑

L′∈KGj ,B

µ(L′)

=
1

µ(B) κ2

(

M
∑

i=1

∑

L∈KGi,B

µ(L)
)2

=
1

µ(B) κ2

(

QM
∑

s=1

µ(Ls,B)
)2

.

This together with the fact that

∞
∑

s=1

µ(Ls,B) =
∞

∑

i=1

µ(EGi,B) = ∞ ,

shows that the sequence {Ls,B}s∈N satisfies the desired properties.

• Step 5: (E) =⇒ (A). This follows immediately on applying the “moreover” part of Lemma LBC with 

c = κ2.

2.4. Proof of Proposition 2

The proof is very similar to that of Proposition 1 and so we will simply provide a sketch.

• Step 1: (A) =⇒ (B). For G ∈ N, let F := {Bi ∩ supp µ �= ∅ : i ≥ G}. In view of the 5r covering lemma 

(Lemma 1), there exists a disjoint sub-family G of F such that

⋃

Bi∈F

Bi ⊂
⋃

Bi∈G

5Bi .

It follows that

µ

(

⋃

Bi∈G

5Bi

)

≥ µ
(

E∞

)

and the same argument leading to (22) shows that

µ

(

◦
⋃

Bi∈G

Bi

)

≥
1

λk+1b
µ

(

E∞

)

, (26)

where k is the same integer as in (22). Furthermore, the same argument leading to (23) shows that there 

exists some j0 > G for which

µ

⎛

⎝

◦
⋃

Bi∈G : i≥j0

Bi

⎞

⎠ <
1

2

1

λk+1b
µ

(

E∞

)

:= κ. (27)
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Then, in view of (26) and (27) the finite sub-collection KG := {Bi : Bi ∈ G, i < j0} of {Bi : i ≥ G} satisfies 

the desired properties.

• Step 2: (B) =⇒ (C). For any G ∈ N, let KG be the finite sub-collection of disjoint balls associated with 

(B) and define

EG :=

◦
⋃

L∈KG

L . (28)

It follows from (17) that µ(EG) ≥ κ which in turn implies that 
∑∞

i=1 µ(EGi
) = ∞ for any subsequence 

(Gi)i∈N of natural numbers, and that

µ
(

EG ∩ EG′

)

≤ 1 ≤ κ−2 µ(EG) µ(EG′)

for any pair of natural numbers G and G′. Thus, the sets EG satisfy the desired properties.

• Step 3: (C) =⇒ (D). For any G ∈ N let EG ⊂ Ω be as in (C), and let KG be a finite collection of disjoint 

balls from {Bi : i ≥ G} that constitute EG, that is (28) holds. Observe that the same argument leading to 

(25) shows that for any pair of natural numbers G and G′

µ
(

EG ∩ EG′

)

=
∑

L∈KG

∑

L′∈KG′

µ
(

L ∩ L′
)

(18)

≤ κ−2
∑

L∈KG

µ(L)
∑

L′∈KG′

µ(L′) . (29)

Now, let {Ls}s∈N be the sub-sequence of {Bi}i∈N balls corresponding to the sub-collections {KGi
: i ∈ N}, 

where the sequence of natural numbers G1, G2, . . . is defined in the same way as within Step 4 of the proof 

of Proposition 1. For M ∈ N, let QM :=
∑M

i=1 #KGi
. Then, the same argument used within Step 4 of the 

proof of Proposition 1, shows that the sequence {Ls}s∈N satisfies the desired properties.

• Step 4: (D) =⇒ (A). By definition, lim supi→∞ Li ⊆ E∞. Thus, on applying Lemma DBC (the standard 

divergent Borel–Cantelli Lemma) it follows that

µ
(

E∞

)

≥ µ
(

lim sup
i→∞

Li

)

≥ κ2 > 0 .

2.5. Proof of Theorem 2

The sufficiency side of Theorem 2 is an immediate consequence of the “moreover” part of Lemma LBC. 

Thus we only have to prove the necessity side. This would clearly follow on mimicking the proof of Propo-

sition 1 if we could establish the analogue of Part (C) from (11) which trivially follows from our working 

assumption that µ(E∞) = 1. Thus, with this in mind, let B be any ball in Ω centred in supp µ. In particular, 

we have that µ(B) > 0. Let F := {B(x) ⊂ Ei ∩ B : x ∈ B ∩ Ei ∩ supp µ , i ≥ G}. In view of the 5r covering 

lemma (Lemma 1), there exists a disjoint sub-family G such that

⋃

L∈F

L ⊂
⋃

L∈G

5L .

It follows that
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B ∩ lim sup
i→∞

Ei ∩ supp µ ⊂
⋃

L∈F

L ∩ supp µ ⊂
⋃

L∈G

5L ∩ supp µ .

Hence,

µ

(

⋃

L∈G

5L

)

≥ µ
(

B ∩ lim sup
i→∞

Ei

) (11)
= µ(B) .

However, since G is a disjoint collection of balls centred in supp µ, we have that

µ

(

⋃

L∈G

5L

)

≤
∑

L∈G

µ (5L)
(5)

≤ λ3
∑

L∈G

µ (L) = λ3 µ

(

◦
⋃

L∈G

L

)

.

Thus,

1

λ3
µ(B) ≤ µ

(

◦
⋃

L∈G

L

)

=
∑

L∈G

µ (L) ≤ µ(B) . (30)

The sum in (22) is convergent and therefore there exists a finite sub-collection KG,B ⊂ G for which

∑

L∈KG,B

µ (L) = µ

⎛

⎝

◦
⋃

L∈KG,B

L

⎞

⎠ ≥
1

2

1

λ3
µ(B) . (31)

In view of (30) and (31) the collection KG,B satisfies (12) with κ = 1
2λ3 . As already mentioned above, to 

complete the proof we simply replicate Steps 3 & 4 in the proof of Proposition 1. In remains to note that 

within the sequence of balls arising at Step 4 there may (and most likely will) be finite disjoint collections 

of balls arising from the same set Ei. These can be grouped together in an obvious manner to form the 

sequence (Ls,B)s∈N as required in the statement of Theorem 2.

3. Examples of applications

In this section we will provide two basic examples showing the conclusions of our results in action. We 

wish to emphasise that the applications we discuss in this section are not new – they have been chosen 

to demonstrate the key principles in a relatively simple format. New interesting recent applications can be 

found, for example, in [23]. We start with an explicit application utilising the power of trimming within a 

proof of Khintchine’s theorem. The proof we provide is not entirely new but, to the best of our knowledge, 

is simpler, due to some technical simplifications, than the existing published proofs. At the same time it 

leads to a slightly stronger statement than the standard one.

3.1. The power of trimming: Khintchine’s theorem

Let ψ : N → (0, +∞) be a real, positive function. For q ∈ N, let

Eq = Eq(ψ) := {x ∈ [0, 1] : ‖qx‖ < ψ(q)},

where ‖ · ‖ denotes the distance to the nearest integer, and in turn consider the lim sup set

W (ψ) := lim sup
q→∞

Eq .
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For obvious reasons, W (ψ) is usually referred to as the set of ψ-well approximable numbers. Khintchine’s fun-

damental theorem [31] in the theory of metric Diophantine approximation dates back to 1924 and it provides 

an elegant criterion for the ‘size’ of W (ψ) expressed in terms of one-dimensional Lebesgue measure λ.

Theorem K. Let ψ : N → (0, +∞) be such that ψ(q)/q is monotonically decreasing. Then

λ(W (ψ)) =

⎧

⎨

⎩

0 if
∑∞

q=1 ψ(q) < ∞ ,

1 if
∑∞

q=1 ψ(q) = ∞ .

Remark 6. The above statement of Khintchine’s Theorem is in fact a slighter stronger form of the standard 

modern version [6] in which the ψ(q) is assumed to be monotonically decreasing.

The convergence part of Khintchine’s theorem is an immediate consequence of Lemma CBC on noting 

that λ(Eq) ≤ 2ψ(q). It does not require the monotonicity assumption or indeed any other additional 

assumptions. In turn, the modern-days proofs of the divergence part of Khintchine’s theorem exploit the

principles set out in the main theorems of this paper. For q ∈ N and p ∈ Z with 0 ≤ p ≤ q define the balls 

(intervals) in R

Eq,p =

{

x ∈ [0, 1] :

∣

∣

∣

∣

x −
p

q

∣

∣

∣

∣

<
ψ(q)

q

}

.

Clearly, Eq =
⋃q

p=0 Eq,p and so W (ψ) is the limsup set of the intervals Eq,p. In view of Cassels’ zero-one 

law [17], λ(W (ψ)) = 1 if and only if λ(W (ψ)) > 0. In turn, by Theorem 3, λ(W (ψ)) > 0 if and only if 

there exists a subsequence (Li)i of (Eq,p)q∈N,0≤p≤q satisfying (15) and (16). The upshot of this is that 

establishing Khintchine’s theorem boils down to finding the “trimmed” subsequence (Li)i∈N . This can be 

done in several ways but probably the easiest is to impose the explicit condition that the rational fractions 

p/q under consideration are reduced; that is

(Li)i∈N := (Eq,p)q∈N, 1≤p≤q, gcd(p,q)=1 .

For completeness we present an argument showing the validity of (15) and (16) for this “trimmed” subse-

quence, a version of which can be found in [46, §I.3].

To verify (15), we start by observing that there are exactly ϕ(q) (the Euler function) positive integers 

p ≤ q such that gcd(p, q) = 1, and therefore we have that

q
∑

p=0

gcd(p,q)=1

λ(Eq,p) =
2ϕ(q)ψ(q)

q
. (32)

We shall use the following well-known partial summation formula:

T
∑

q=1

aqbq =
T

∑

q=1

(aq − aq+1)(b1 + · · · + bq) + aT +1(b1 + · · · + bT ) ,

where (aq)q∈N and (bq)q∈N are any two sequences or real numbers, and the following well known asymptotics 

for the average order of the Euler’s function:

T
∑

q=1

ϕ(q) ∼
3

π2
T 2 as T → ∞ .
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Let 0 < C1 < 3/π2. Then, using the fact that ψ(q)/q is decreasing, (32) and the trivial estimate 1 + · · ·+q ≤

q2, by the partial summation formula with aq = 2ψ(q)/q, bq = ϕ(q), we have that for sufficiently large T

T
∑

q=1

q
∑

p=0
gcd(p,q)=1

λ(Eq,p) ≥
T

∑

q=1

(aq − aq+1)C1q2 + aT +1C1T 2

≥ C1

(

T
∑

q=1

(aq − aq+1)(1 + · · · + q) + aT +1(1 + · · · + T )

)

.

And again by the partial summation formula, this time with aq = 2ψ(q)/q and bq = q, we get that the 

above equals C1

∑T
q=1 qaq = 2C1

∑T
q=1 ψ(q). Hence,

T
∑

q=1

q
∑

p=0
gcd(p,q)=1

λ(Eq,p) ≥ 2C1

T
∑

q=1

ψ(q) (33)

for sufficiently large T . In particular, this implies (15).

To verify (16), first observe that if q < m, 1 ≤ p ≤ q and 1 ≤ k ≤ m then λ(Eq,p ∩ Em,k) ≤ λ(Em,k) ≤

2ψ(m)/m. Then, for fixed q < m we get that

q
∑

p=0
gcd(p,q)=1

m
∑

k=0
gcd(k,m)=1

λ(Eq,p ∩ Em,k) ≤
2ψ(m)

m
× #

{

(k, p) : Eq,p ∩ Em,k �= ∅

}

. (34)

Further, if x ∈ Eq,p ∩ Em,k then trivially |qx − p| < ψ(q) and |mx − k| < ψ(m), whence

|pm − qk| ≤ mψ(q) + qψ(m) ≤ 2mψ(q) .

Also, since the fractions p/q and k/m are reduced and different (for we assumed that m > q) we must have 

that |pm − qk| ≥ 1. Thus the number of (p, k) in the right hand side of (34) is less than or equal to the 

number of integer points (p, k) satisfying

1 ≤ p ≤ q, 1 ≤ k ≤ m, 1 ≤ |pm − qk| ≤ 2mψ(q) . (35)

If all such points (p, k) lie on a line, then from the last inequality of (35) we immediately get that their 

number is ≤ 4mψ(q). Otherwise, assuming such points exit, the set of these points has rank 2 and, by (35), 

lies in the convex body given by |p| ≤ q, |k| ≤ m, |pm − qk| ≤ 2mψ(q) which has volume ≤ 16mψ(q). In 

this case, the number of such points is bounded by 32mψ(q) + 2 ≤ 36mψ(q) as a consequence of Blichfeldt’s 

theorem [15]. Either way, the right hand side of (34) is bounded by 72ψ(m)ψ(q). Clearly, the same holds 

when q > m. Therefore, in view of the divergence sum condition

T
∑

q=1

T
∑

m=1

q
∑

p=0
gcd(p,q)=1

m
∑

k=0
gcd(k,m)=1

λ(Eq,p ∩ Em,k) ≤ 72

(

T
∑

q=1

ψ(q)

)2

+ 2

T
∑

q=1

ψ(q)

≤ 73

(

T
∑

q=1

ψ(q)

)2

for sufficiently large T . Together with (33) this verifies (16) with C = 73/(4C2
1 ).
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Remark 7. The question regarding the relevance of monotonicity in Khintchine’s theorem remained a promi-

nent open problem in probabilistic number theory for nearly 80 years. Indeed, in 1941 Duffin & Schaeffer 

showed that the monotonicity could not be removed (by providing a counterexample) and they formulated 

an alternative statement. This attracted much work (by Erdös, Vaaler, Pollington, Vaughan and Harman 

amongst others) and was eventually proved by Koukoulopoulos & Maynard [35]. All these works used trim-

ming as the basis for their approaches very much in line with the outline above. Of course, the process and 

implementation of trimming are significantly more sophisticated.

Remark 8. The above example makes use of the power of trimming within the context of Theorem 3, a 

statement dealing with positive measure. In turn, the “ubiquity” technique [6] represents an example of the 

power of trimming within the context of Theorem 1, a statement dealing with full measure. In short, the 

theory of ubiquitous systems provides a general framework for deducing full measure statements for a large 

class of lim sup sets and in view of Theorem 1, it is not at all surprising that “trimming” plays a central 

role when developing the theory.

Returning to Theorem K, note that the convergence part implies that

λ
(

W (τ)
)

= 0 for any τ > 1 ,

where for any τ > 0 we write W (τ) for W (ψ : q → q−τ ). The set W (τ) is usually referred to as the set of 

τ -well approximable numbers. The upshot of the above is that for any τ > 1, the set of τ -well approximable 

numbers is of measure zero and we cannot obtain any further information regarding the ‘size’ of W (τ) in 

terms of Lebesgue measure — it is always zero. Intuitively, the ‘size’ of W (τ) should decrease as τ increases. 

In short, we require a more delicate notion of ‘size’ than simply Lebesgue measure. The appropriate notion 

of ‘size’ best suited for describing the finer measure theoretic structures of W (τ) and indeed W (ψ) is that 

of Hausdorff measures.

Let (Ω, d) be a metric space and let X be a subset of Ω. For ρ > 0, a countable collection {Bi} of balls in 

Ω of radius ri ≤ ρ for each i such that X ⊂
⋃

i Bi is called a ρ-cover for X. Let s be a non-negative number 

and define

Hs
ρ(X) := inf

{

∑

i

rs
i : {Bi} is a ρ-cover of X

}

,

where the infimum is taken over all possible ρ-covers of X. The s-dimensional Hausdorff measure Hs(X) of 

X is defined by

Hs(X) := lim
ρ→0

Hs
ρ(X) = sup

ρ>0
Hs

ρ(X)

and the Hausdorff dimension dim X of X by

dimH X := inf {s ≥ 0 : Hs(X) = 0} .

It is worth emphasising that when s is a positive integer, then Hs is a constant multiple of Lebesgue measure 

in Rs. Indeed, when s = 1 Hs is 1
2λ. In particular, H1([0, 1]) = 1

2λ([0, 1]) and it follows from the definition 

of Hausdorff dimension that

Hs
(

[0, 1]
)

=

{

0 if s > 1 ,

∞ if s < 1 .

For further details concerning Hausdorff measure and dimension see [26,30,37].
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The following statement is a Hausdorff measure analogue of Khintchine’s Theorem. It provides an elegant 

criterion for the ‘size’ of the set W (ψ) expressed in terms of the measure Hs. The convergent part is an 

immediate consequence of the natural generalisation of Lemma CBC to Hausdorff measures (see for example 

[13, Lemma 3.10]). As with Khintchine’s theorem, the main substance is very much the divergence part.

Theorem K-J. Let ψ : N → (0, +∞) be such that ψ(q)/q is monotonically decreasing and let s ∈ (0, 1]. Then

Hs
(

W (ψ)
)

=

⎧

⎪

⎨

⎪

⎩

0 if
∑∞

q=1 q1−sψs(q) < ∞ ,

Hs([0, 1]) if
∑∞

q=1 q1−sψs(q) = ∞ .

Recall, that H1 = 1
2λ and so when s = 1 the above reduces to Theorem K. When s < 1, the above 

Hausdorff measure statement is essentially due to Jarník and dates back to 1931. Note that in this case 

Hs([0, 1]) = ∞ and Jarník Theorem (i.e. Theorem K-J with s < 1) implies that

dim W (τ) =
2

1 + τ
(τ ≥ 1) .

Hence the ‘size’ of W (τ) decreases as τ increases which is inline with our intuition. For further details and 

a gentle introduction to the theory of metric Diophantine approximation see [9].

The second application of our results constitutes the key element of the so-called Mass Transference 

Principle which enable us to deduce Theorem K-J from Theorem K. At first glance this seems rather odd 

since Hausdorff measures are regarded as a natural refinement of Lebesgue measure.

3.2. The power of full measure: mass transference principle

The second key example exhibits the power of full measure. To set the scene, let (Ω, A, µ, d) be a locally 

compact metric measure space equipped with a Borel regular probability measure µ. Without loss of gen-

erality we will assume that Ω is the support of µ. With this in mind, suppose there exist constants δ > 0, 

0 < a ≤ 1 ≤ b < ∞ and r0 > 0 such that

a rδ ≤ µ(B) ≤ b rδ (36)

for any ball B = B(x, r) with x ∈ Ω and radius r ≤ r0. Such a measure is said to be Ahlfors δ-regular. It 

is well known that if Ω supports an Ahlfors δ-regular measure µ, then dimH Ω = δ and moreover that µ is 

strongly equivalent to δ-dimensional Hausdorff measure Hδ – see [26,30,37] for details. The latter simply 

means that there exists a constant C ≥ 1 such that for every µ-measurable subset E of Ω

C−1Hδ(E) ≤ µ(E) ≤ CHδ(E)

and so (36) is equally valid with µ replaced by Hδ. Also note that it is easily verified that a δ-Ahlfors regular 

measure is a doubling measure. Finally, throughout this section, given s > 0 and a ball B we define the 

scaled ball

Bs := B
(

x, r
s
δ

)

.

Note, by definition Bδ = B and if r < 1 and s < δ then Bs is a scaled up ball.
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Let {Bi}i∈N be a sequence of balls in Ω with radius r(Bi) → 0 as i → ∞ and suppose that

∞
∑

i=1

µ(Bi) < ∞ .

In view of Lemma CBC, it follows that

µ
(

lim sup
i→∞

Bi

)

= 0 = Hδ
(

lim sup
i→∞

Bi

)

.

However, now suppose there exists some s > 0 such that the lim sup set associated with the scaled up balls 

Bs
i has full measure; that is

µ
(

lim sup
i→∞

Bs
i

)

= 1 = Hδ
(

lim sup
i→∞

Bs
i

)

.

It turns out that knowing such a full measure statement for the “scaled up” balls enables us to deduce an 

analogous statement for the original balls. Indeed, the following Mass Transference Principle [11, Theorem 3]

allows us to transfer Hδ-measure theoretic statements for lim sup subsets of Ω to general Hs-measure 

theoretic statements.

Theorem MTP. Let (Ω, A, µ, d) be a locally compact metric measure space equipped with a Borel regular 

δ-Ahlfors regular probability measure µ supported on Ω. Let {Bi}i∈N a sequence of balls in Ω with radius 

r(Bi) → 0 as i → ∞. Let s ≥ 0 and suppose that

Hδ
(

lim sup
i→∞

Bs
i

)

= Hδ(Ω) or equivalently µ
(

lim sup
i→∞

Bs
i

)

= µ(Ω).

Then,

Hs
(

lim sup
i→∞

Bi

)

= Hs(Ω).

Remark 9. Note that by the definition of Hausdorff dimension, Theorem MTP implies that

dimH(lim supn→∞ Bn) ≥ s, and moreover that Hs(lim supn→∞ Bn) = ∞ if s < δ.

With reference to Proposition 1, the key towards establishing the Mass Transference Principle is to make 

use of the fact that the full measure statement (A) implies the existence of the finite sub-collection KG,B

of balls satisfying (C). In [11], this implication is explicitly the subject of Section 4. In short it provides 

deep information regarding the local distribution of the centres of the balls under consideration. This is 

very much at the heart of the “optimal” Cantor construction carried out in [11, Section 5] that enables one 

to show that Hs(lim supn→∞ Bn) = ∞ (= Hs(Ω)) if s < δ. The Cantor construction itself is more technical 

rather than innovative – the existence of the collection KG,B is the crux!

Remark 10. There have been a steady series of works [1,2,12,32,40,47,48,50] that extend the Mass Trans-

ference Principle in numerous directions, such as to systems of linear forms, iterated function schemes and 

large intersection sets. For an overview of the first ten years after Theorem MTP, we refer the reader to 

the review article [3]. The more recent work of Wang & Wu [47] is particularly notable in that it deals with 

lim sup sets defined via rectangles rather than simply balls. It is well worth stressing that all the above cited 

variants of Theorem MTP have at their heart a common feature. In one form or another, they all exploit 

the fact that any full measure statement such as (A) in Proposition 1 implies the existence of the finite 

sub-collection KG,B of balls satisfying (C).
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We bring this section to a close by using Theorem MTP to show that within the world of classical metric 

Diophantine approximation as described in §3.1, the Lebesgue theory of lim sup sets underpins the general 

Hausdorff theory. This is rather surprising since the latter theory is regarded to be a subtle refinement of 

the former.

The claim is that in view of the Mass Transference Principle we have that

Khintchine’s Theorem =⇒ Jarník’s Theorem;

i.e., Theorem K (which is of course Theorem K-J with s = 1) implies Theorem K-J for all s ∈ (0, 1). 

First of all let us dispose of the case that ψ(q)/q � 0 as q → ∞. Then trivially, W (ψ) = [0, 1] and the 

result is obvious. Without loss of generality, assume that ψ(q)/q → 0 as q → ∞. With respect to the Mass 

Transference Principle, let Ω = [0, 1], d be the supremum norm, δ = 1 and s ∈ (0, 1). We are given that 

ψ(q)/q is monotonically decreasing and that 
∑

q1−sψ(q)s = ∞. Let θ(q) := q1−sψ(q)s. Then it follows that 

θ(q)/q is monotonically decreasing and 
∑

θ(q) = ∞. Thus, Khintchine’s Theorem implies that H1(W (θ)) =

H1([0, 1]). It now follows via the Mass Transference Principle that Hs(W (ψ)) = Hs([0, 1]) = ∞ and this 

completes the proof of the divergence part of Jarník’s Theorem – the main substance of Theorem K-J. As 

mentioned in §3.1, the convergence part of Theorem K-J is a straight forward consequence of Lemma CBC 

for Hausdorff measures [13, Lemma 3.10].
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