
This is a repository copy of A Serverless Computing Platform for Software Defined 
Networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191560/

Version: Accepted Version

Proceedings Paper:
Banaie Heravan, F and Djemame, K orcid.org/0000-0001-5811-5263 (2023) A Serverless 
Computing Platform for Software Defined Networks. In: Bañares, JÁ, Altmann, J, Agmon 
Ben-Yehuda, O, Djemame, K, Stankovski, V and Tuffin, B, (eds.) Economics of Grids, 
Clouds, Systems, and Services. 19th International Conference, GECON 2022, 13-15 Sep 
2022, Izola, Slovenia. Lecture Notes in Computer Science, 13430 . Springer , pp. 113-123.
ISBN 978-3-031-29314-6 

https://doi.org/10.1007/978-3-031-29315-3_10

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 
Nature Switzerland AG 2023. This is an author produced version of a conference paper 
published in Economics of Grids, Clouds, Systems, and Services. Uploaded in accordance
with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Serverless Computing Platform for Software

Defined Networks

Fatemeh Banaie[0000−0002−8382−0113] and Karim Djemame[0000−0001−5811−5263]

School of Computing, University of Leeds, Leeds LS2 9JT, UK
K.Djemame@leeds.ac.uk

Abstract. Recent advances in network management strategies, namely
the possibility of network programmability through the use of Software-
Deőned Networking (SDN) increase the velocity of network evolutions.
SDN promises a software-based networking approach, where software
modules are used to abstract network functionalities. To achieve this
aim, the virtualization paradigm can be used in these modules within
the context of Network Function Virtualisation (NFV). NFV plays the
most important role in transition toward open software and network
hardware. Given the promise of these technologies, micro-services can
greatly beneőt from the integration of SDN and NFV and execute in
a suitable cloud platform. This paper describes a modular, and micro-
service based SDN architecture that applies network programmability
within the context of NFV and explores how it could beneőt from the
serverless computing paradigm. Serverless computing accompanies mod-
ular SDN in building cost-effective, energy-aware, and scalable networks,
relieving the management burden of network maintenance.

Keywords: network management · open-source software · Software De-
őned Networks · serverless computing · Network Function Virtualization.

1 Introduction

Software-Defined Networking (SDN) and Network Functions Virtualization (NFV)
are new paradigms in the move towards open software and network hardware
[1]. SDN aims to accelerate the design and implementation of the next gener-
ation computer networks. It decouples vertical integration of the control plane
and data plane and provides flexibility that allows software to program the data
plane hardware directly according to a set of network policies. SDNs have the
ability to facilitate the containerised applications and network traffic consolida-
tion to optimise not only performance but energy consumption as well [2].

Serverless Computing [3] offers the illusion of infinite resources that are dy-
namically provisioned by cloud providers, allowing users to invest less effort and
capital in infrastructure management. Moreover, a serverless computing system
is an ideal solution to build and optimise any Internet of Things (IoT) opera-
tions with zero infrastructure and maintenance costs and little-to-no operating
expense [4].



2 F. Author et al.

The SDN controllers are a great fit for the serverless computing paradigm as
they are highly event-driven, modular, and parallel [5]. Moreover, serverless com-
puting provides a resource-efficient, low overhead alternative to Virtual Machines
(VMs) and containers, and can effectively support SDN and function virtualisa-
tion. Network function virtualisation (NFV) decouples networking software from
the hardware that delivers it so that software can evolve independently [5].

The integrated SDN/NFV architecture deployed on a serverless platform
can accelerate the innovation and deployment of network services. A serverless
function is essentially a proxy for energy usage as a unit of (serverless) compute
and therefore a cost, making network functions instantiation and orchestration
significantly energy and resource efficient [2]. Therefore, this research aims at
realizing the concept of modular SDN based on serverless functions with the goal
to implement a novel platform to reduce the energy consumption of applications
deployment and operation on the Internet [2]. The platform’s new building blocks
are made of 1) a methodology combining SDN, NFV and serverless architectures;
2) placement algorithms for serverless functions to minimise energy consumption;
3) the underlying software implementation.

This paper explores the technical issues and implementation of the proposed
SDN/NFV architecture as a first step. The following summarizes its main con-
tributions:

– We propose a micro-service based SDN/NFV architecture, where network
services can be deployed as serverless functions. The proposed architecture
leverages the virtualisation technology in deploying network functions on a
serverless platform. Consequently, this architecture disaggregates the net-
work functionalities so that the SDN controller only provides the minimum
required functionalities, and the other network services can be deployed on
zero infrastructure with a little-to-no operating expense.

– The proposed architecture is implemented using the well-known open net-
work operating system (ONOS) [6] and function as service (OpenFaaS)
serverless platform [7].

The rest of the paper is organized as follows. Section 2 provides a brief
overview of the related literature. In Section 3, we briefly describe the proposed
architecture used in this paper. Section 4 describes the details of implementa-
tion. Section 5 demonstrates and discusses the evaluation results, followed by a
conclusion in Section 6.

2 Related Work

Related work snaps in the area of how to overcome the challenges that rise
from deploying SDN and whether the underlying network services could be ef-
ficiently delivered, managed, and disseminated to the end users. This includes
SDN integration with serverless architecture. Reference [8] provides insights into
key factors such as the computational resources, the number of Virtual Net-
work Functions (VNFs) running on a VM, and their resource demands affecting



A Serverless Computing Platform for Software Deőned Networks 3

the performance of VNFs that are hosted in virtualized system architectures.
Reference [9] also provides an overview of NFV-based service development and
requirements that are addressed in existing Service Development Kits (SDKs).

Some open-source implementations of SDN adopt a monolithic software ap-
proach besides utilizing the concept of VNFs in service delivery such as ONOS
and OpenDaylight (ODL) [10]. For example, ODL can provide agile service de-
livery on OpenStack cloud infrastructures by implementing services using NFV.
However, recent studies have started to move towards a microservices-based ar-
chitecture. Reference [11] presents a distributed architecture for the design and
implementation of SDN control plane systems that split the current monolithic
controller software into a set of cooperating microservices, which can be imple-
mented in different (and appropriate) programming languages. The architecture
supports the distribution of events to external processes. In this regard, some
studies focus on SDN-based strategies to manage the network efficiently, es-
pecially in the case of smart IoT applications, e.g., to leverage a SDN-based
approach to satisfy the latency requirements of the services in multi-access edge
computing applications [12]. However, these approaches do not aim to design
a modular SDN architecture, but rather focus on utilizing SDN for managing
distributed applications in an edge environment.

The adaptation of the serverless and Function as a Service (FaaS) paradigm
in an edge environment was introduced in [13], where key issues and high-level
directions were proposed, and different types of deployment and a serverless
platform were discussed. This was supported by a prototype implemented with
the open-source serverless solution OpenWhisk [14] and open source products.

In [15], a framework is proposed for efficient dispatching of stateless tasks
with the goal of minimizing the response times and exhibiting short and long-
term fairness. Their evaluation of the OpenWisk platform shows that the in-
teraction with SDN controller can be useful in relieving network congestion. A
high-performance serverless platform for NFV is presented in [16], in which the
authors utilize three different mechanisms for minimizing the latency, including
state management, efficient NF execution model, and avoiding packet latency.
The work presented in [18] focuses on energy efficiency by decomposing the ap-
plication into fine-grained functions.

3 A FaaS architecture for modular SDN

Network management strategies are undergoing a transition from using the pro-
prietary technology of a vendor toward the open-source software modules with
service automation. The first glimmer of this transformation is SDN that in-
creases the velocity of network evolutions by delivering new network capabili-
ties. SDN aims to decouple the control plane and data plane for scalability and
easier network management. The control plane consists of SDN core functionali-
ties (e.g. topology service, flow service, inventory service, etc.) and management
applications (e.g. firewall, load balancing, routing, monitoring, etc.), which com-
municate requirements via Northbound Application Program Interfaces (API).



4 F. Author et al.

The data plane consists of forwarding elements (i.e., switches and routers) and
uses OpenFlow [19] as Southbound API.

SDN controller operates by serving the events from both the southbound and
northbound APIs. These events can be defined as any changes in the network
that lead to invoking one or more SDN’s management applications. Therefore,
the SDN controller can be designed as an event-driven and modular software that
operates by responding to these events. The management applications can be de-
ployed on a serverless platform and can be executed whenever required. However,
the monolithic design of current SDN controllers aggregates all functions into
a single and huge program. This approach restricts its ability to deploy a new
service, independent of other services. As a result, a modular and micro-service
based SDN architecture [11] deployed on a serverless platform is developed as il-
lustrated in Fig. 1, which applies network programmability within the context of
NFV. In this approach, SDN core services provide minimum required function-
ality, and the other services can be provided by external applications in the form
of a set of cooperating software modules. These modules can be implemented
as a set of independent functions (network functions) that leverage the benefits
of the serverless computing paradigm in providing on-demand scalability and
efficient resource management.

OpenFlow Switches

S
D

N
 core

Topology Service Flow Service Inventory ServiceStatistics Service

SB API (e.g. OpenFlow)

Firewall
Load 

balancing

Intrusion 

detection
. . .

Switch #n. . .

O
N

O
S

Switch #1

Load balancing Energy consumption analysis Functions placement

O
pe

nF
aa

s

Node #1 Node #2 Node #n. . .

E
vent 

P
rocessinggR

P
C HTTP/2

F
aaS

gRPC

server

proto

compiler

proto

compiler

Server Side 

Call API

Client Stub

Network Functions (NFs)

Switch #2

Kubernetes

Event 

Listener

O
pe

n-
so

ur
ce

 p
ro

je
ct

s 
us

ed
 in

 e
ac

h 
la

ye
r

Fig. 1. A FaaS architecture for modular SDN.

The FaaS paradigm provides a platform to develop applications as a set of
independent functions. It accelerates application deployment by eliminating the
need for managing infrastructure, thus can be well suited for our SDN/NFV



A Serverless Computing Platform for Software Deőned Networks 5

architecture. Moreover, FaaS eliminates the management burden of resource al-
location (i.e., choosing the right time as well as the right type of VMs, and
containers) and further reduces costs. Accordingly, users only provide network
functions (which are SDN microservices) to this platform. Upon receiving an
event from Application APIs, the platform start executing the services automat-
ically by deploying new instances. Network developers no longer need to consider
function deployment, management, and scaling issues. Besides reducing the man-
agement burden, network service providers are charged according to the number
of events in the NFV context and therefore only pay for what they use at a very
fine granularity [16]. The next section gives details of the implementation of the
architecture. The associated source code is available in the GitHub repository 1.

4 Implementation

This section presents the software components and technologies leveraged in im-
plementing the serverless SDN/NFV architecture. We utilized three well-known
open-source projects, i.e., Open Network Operating System(ONOS) [6], general-
purpose Remote Procedure Call (gRPC) [20], and Functions as a Service (Open-
FaaS) [7], for implementing our model’s layer, respectively. As can be seen in
Fig. 1, the architecture consists of three main components including:

– Event listening module in SDN layer which is responsible for catching an
OpenFlow-based events coming from mininet and forwarding them toward
OpenFaaS connector.

– Event processing module that uses a communication interface to notify
ONOS events to the VNF deployed on OpenFaaS. This module provides
the ability of interacting with the virtual functions via gRPC protocol.

– Microservice handling module in the serverless layer that manages the func-
tions and invocations by receiving event notifications from underlying net-
work.

ONOS is an open-source SDN controller developed by open networking foun-
dation (ONF). It has a layered structure in its architectural design including the
application, core and providers/protocols layers. Applications use a collection
of Northbound Interfaces (NBI) to stay informed about the events and network
states. ONOS services are implemented in the core part, where it manages the
network states and notifies the applications by occurring the relevant changes in
states. These services also provide an inventory of currently connected devices,
hosts, links, and an overview of the current network topology, along with the
rules installed in the devices. The lowest layer of ONOS stack consists of the
Southbound Interface (SBI), where a collection of plugins resides including a
provider interface with protocol-specific libraries and a service interface. It is
responsible for interacting with the network environment using various control
and configuration protocols. The mininet environment is used for emulating the
underlying network such as switches and hosts as well as generating network
packets coming from data plane [17].

1 https://github.com/EDGNSS



6 F. Author et al.

API 

Gateway

gRPC server
Firewall

IDS

VPN

Client-Stub

Function Invoking

SDN core

gRPC-connector Index Function

1 Firewall

2 IDS

... ...

Lookup Functions

Underlying 
Network

1

2

3

4

5

6
7

8

Fig. 2. ONOS and OpenFaaS Integration Sequense Diagram.

In ONOS, the events are used to notify the listening applications about the
changes in network. According to the service structure in ONOS, we leverage the
benefits of an event distribution system to externalize event processing in SDN
[11]. This allows us to divide the control plane services into a set of cooperating
microservices, where the minimum required services are provided by core and
the extra functionalities can be served by microservices which are implemented
on OpenFaaS (Fig. 2).

These microservices can be deployed as web services using VNFs in a dis-
tributed environment. The event listener and virtual functions are communicat-
ing (e.g. sending and receiving event notifications) through the communication
interface. The communication interface used in this project is based on open-
source communication interfaces. So, the next component of our event processing
layer is the gRPC protocol that is used for connecting these microservices. gRPC
is an open-source RPC system based on a protocol buffer that uses HTTP/2 as
its underlying transport protocol. It has a lot of interesting features such as se-
curity, authentication mechanism, bidirectional streaming, etc. It also allows us
to automatically generate the required code for both the server and client sides.
Moreover, gRPC provides faster information exchange due to the compressed
data packing of the Protocol Buffers and the use of HTTP/2. We have imple-
mented a gRPC server as the ONOS application, where it makes a call to ONOS
services and turned the returned value into protobuf form, serializes, and sends
it to the client.

The client stub is implemented as an external application, named gRPC-
connector to OpenFaas, that connects ONOS services to OpenFaaS Functions.
OpenFaaS is a popular open-source serverless platform that makes it easy for
developers to deploy event-driven functions with docker and Kubernetes. Open-
Faas functions and microservices can be easily invoked by any kind of event, for



A Serverless Computing Platform for Software Deőned Networks 7

example, HTTP is one of the use cases that can connect systems. They are ac-
cessible over HTTP endpoints via the Gateway service. Upon receiving an event
from ONOS, the connector queries the list of functions in Gateway and then
builds a map between the event’s topic and the existing functions, which leads
to triggering the respective function on a given topic.

5 Evaluation

5.1 Results and Discussion

To evaluate the performance of SDN/NFV architecture, we deploy the architec-
ture on two servers with 4 VCPUs, 16 GB memory running on Microsoft Azure.
The first server runs onos with grpc-server installed on it, along with mininet
which emulates a network with 8 openflow-enabled switches and hosts. The sec-
ond server runs OpenFaaS which is used as a resource pool and network functions
host. These two servers are connected via 1Gbps LAN network and run Ubuntu
20.04 LTS. At first, the feasibility of the modular and distributed architecture
is investigated by deploying a simple serverless forwarding application (used for
packet processing for every new packet arriving at the controller). In this sce-
nario, once a host sends a ping request for which there is not any established
forwarding rule, the switch directs the incoming packet to the SDN controller.
The event listening module of the controller serves the packet by sending it to
the external application deployed on a serverless platform via a gRPC channel.
The deployed function can process the packet to find the source and destination
addresses of the packet.

Furthermore, the performance of the proposed architecture is reported through
some preliminary results considering various scenarios. The objective of the eval-
uation is to compare the performance of the proposed distributed architecture
implementation with a monolithic one that hosts local applications. A host sends
a continuous flow of IP packets, which generates the event notification in the
controller, and accordingly leads a function to be invoked on OpenFaaS. In this
experiment, ONOS communication with VNFs is handled via gRPC protocol
and the OpenFaaS orchestrates the function requests by an automatic scaling
process. We have conducted the experimental evaluation of our model through a
diverse set of serverless workloads. To do so, the traffic load is increased during
experiments to observe the behavior of both models in higher traffic arrivals.
Fig. 3(a) illustrates the effect of the number of packets per second on the mean
response time recorded during the experiment. Each observation shows the la-
tency in both the control plane and the VNFs layer.

As can be seen, the mean response times of the local functions are lower
than serverless-based functions at the start of the experiment. The reason for
this is the latency imposed by grpc channel to invoke the remote functions on
OpenFaas. Furthermore, both applications (i.e., local and remote functions) ex-
perience a higher amount of response times with increasing the arrival rate of
packets on the data plane, because it imposes a higher processing load in the
network. However, it is observed that the serverless-based approach outperforms



8 F. Author et al.

(a) (b)

(c) (d)

Fig. 3. The Average delay in: (a) different arrival rates. (b) service rate =
1

b̄
= 25µs.

(c)service rate 1

b̄
= 34µs. (d)service rate 1

b̄
= 42µs.

the local method in higher packet arrivals, as it can automatically scale and
manage the resources according to the workload.

In the second scenario, we have considered the latency in different service
rates of the functions, which is due to the processing of the different packet
sizes. Fig. 3(b) compares the results in mean processing time of 1

b̄
= 25µs for

both local and serverless-based applications. As observed, the mean delay of
both applications shows an up trend. However, it is lower for serverless-based
application than the local one with the results for local functions showing a
steep slope. Furthermore, with increasing the processing time of the function in
Fig. 3(c) to 1

b̄
= 34µs, local functions win at low packet arrivals, but experience

higher amounts of delay with increasing the arrival rate. As discussed previously,
the reason is due to the scalability of the serverless platform, which can also be
seen from Fig. 3(d) in 1

b̄
= 42µs. Intuitively, the higher the workload in each

experiment is, the more important the ability of scaling becomes. These results
can clearly show the benefits of the serverless-based method in latency handling
and service scaling.



A Serverless Computing Platform for Software Deőned Networks 9

5.2 Extensions

In this paper, a modular and distributed SDN framework that paves the way to
manage a novel paradigm of microservices-based applications in designing the
next generation IoT networks is presented. As such, the use of microservices rep-
resents a big step ahead in the vision of serverless edge architectures. However,
the serverless paradigm still requires addressing special challenges to enhance
its applicability across all phases of the general application landscape, includ-
ing network security services. The following improvements can be considered to
support the proposed architecture:

– As energy consumption is a vital issue in distributed systems, employing
edge computing with low-powered computing resources contributes to more
energy-efficient system development. Moreover, an energy aware automatic
serverless functions instantiation and orchestration framework for edge com-
puting environments is currently being implemented. In this context, a re-
source mapping algorithm is necessary to address the energy efficiency in the
serverless platform by appropriately selecting the server nodes (i.e., the right
CPU cores to run the functions) and the placement of functions. Functions
taking up the most execution time can be identified, which equals cost.

– The modules in an SDN controller are implemented and deployed as sepa-
rate, stand-alone serverless functions. Accordingly, a suitable task scheduling
method can enable on-demand scaling up/down of the functions with regards
to their workload in an energy-aware environment [21].

– To avoid start-up latency, the underlying virtualisation technology must be
optimised to decrease the start-up latency of cold start launching in a selver-
less platform. This can be tackled by suitable managing of the function in-
stances in this platform, e.g., reusing launched instances by keeping them
warm for a period of time [21], or reduction of the container image size.

– Network functions are usually short-lived and in most scenarios, they are
chained together to form a Service Function Chain (SFC). The development
and performance tuning of SCFs are difficult and should be considered in
designing the more complex application scenarios.

– An effective load balancing algorithm can also manage the resource utilisa-
tion by distributing the function executions to the available resources, which
can further improve the performance of the system in terms of energy ex-
penditure and service delivery latency. However, load balancing approaches
may not necessarily enhance the performance of group functions in SFC due
to the loss of locality [5]. In other word, the locality requirements must be
considered to group functions as a single application to provide faster data
sharing among interacting functions.



10 F. Author et al.

6 Conclusion

This paper presents a microservices-based distributed architecture for imple-
menting SDN controller in order to improve agility, scalability, and performance
in the network. The SDN features such as the possibility of network programma-
bility and reconfiguration according to the application requirements make it a
key enabler for the upcoming next-generation IoT networks. However, the limi-
tations of the existing monolithic SDN architecture restrict it to fulfil the needs
of IoT applications in terms of scalability and performance. In particular, a
good system design needs modularity, so, a modular and microservice-based
SDN architecture is required to tackle these limitations in distributed system
environments such as IoT applications.

The experimental results show that the serverless paradigm can decrease
service latency for disaggregated architectures, and also provide on-demand and
scalable resource management. The reduction in the execution time and the
average resource usage of microservices allows for many optimizations from the
resource management point of view.

Acknowledgements The authors would like to thank the European Next Gen-
eration Internet Program for Open INTErnet Renovation (NGI-Pointer 2) for
supporting this work under contract 871528 (EDGENESS Project).

References

1. Bonőm, M. S., Dias, K. L., Fernandes, F. L.: Integrated nfv/sdn architectures: A
systematic literature review. ACM Computing Surveys, 51(6), (2019)

2. Djemame, K.: Energy efficiency in edge environments:a serverless computing ap-
proach. Proceedings of the 18th International Conference on the Economics of Grids,
Clouds, Systems and Services (GECON), LNCS Vol 13072. Springer, pp. 181ś184,
(2021)

3. Kiritikos, K. ,and Skrzypek, P.: A Review of Serverless Frameworks. in 2018
IEEE/ACM International Conference on Utility and Cloud Computing, pp. 161ś
168 (2018)

4. Gorbmann, M. , Ioannidis, C., Le, D.: Applicability of Serverless Computing in
Fog Computing Environments for IoT Scenarios. in Proc. of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing, Auckland, NZ:ACM, pp.
29ś34 (2019)

5. Aditya, P.,Akkus, I. E., Beck, A., Chen, R., Hilt, V., Rimac, I., Satzke, K., and Stein,
M.: Will Serverless Computing Revolutionized NFV?. Proceeding of the IEEE,
107(4), pp. 667ś678 (2019)

6. Berde, P. , and et.al: ONOS: Towards an Open, Distributed SDN OS, HotSDN ’14:
Proceedings of the third workshop on Hot topics in software deőned networking,
ACM, pp. 1-6 (2014)

7. OpenFaas. Serverless functions made simple. [Online]. Available:
https://github.com/openfaas/faas (2019)



A Serverless Computing Platform for Software Deőned Networks 11

8. Falkner, M., Leivadeas, A., Lambadaris, I., and Kesidis, G.: Performance Analy-
sis of Virtualise Network Functions on Virtualized Systems Architectures. in 2016
IEEE 21th International Workshop on Computer Aided Modelling and Design of
Communication Links and Networks (CAMAD), pp. 71-76 (2016)

9. R.F. Ustok and et.al., Service Development Kit for Media-Type Virtualized Network
Services in 5G Networks, IEEE Communications Magazine, 58(7), pp. 51ś57 (2020)

10. OpenDaylight: OpenDaylight and Open Networking ecosystem,
https://www.opendaylight.org.

11. Cormer, D., and Rastegarnia, A.: Toward Dissagregating the SDN Control Plane.
IEEE Communication Magazine, 57(10), pp. 70ś75 (2019)

12. P. Fondo-Ferreiro and et al., A software-deőned networking solution for transpar-
ent session and service continuity in dynamic multi-access edge computing. IEEE
Transactions on Network and Service Management, 18(2), pp. 1401ś1414 (2020)

13. Baresi, L., Mendonca, D. F., Garriga, M., Guinea, S., Quattrocchi, G.: A Uniőed
Model for the Mobile-edge-cloud Continuum. ACM Trans. Internet Technol., 19(2),
(2019)

14. Djemame, K., Parker, M., Datsev, D.: Open-source Serverless Architecture: an
evaluation of apache openwhisk. in 2020 IEEE/ACM 13th International Conference
on Utility and Cloud Computing (UCC), pp. 329ś335 (2020)

15. Cicconetti, C., Conti, M., Passarella, A.: A Decentralized Framework for Serverless
Edge Computing in the Internet of Things, IEEE Transactions on Network and
Service Management, 18(2), pp. 2166ś2180 (2021)

16. Shen, J., Yu, H., Zheng, Z., Sun, C., Xu, M., Wang, J.: Serpens: A high-performance
Serverless Platform for NFV. in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS), pp. 1ś10 (2020)

17. Download/Get Started with Mininet, http://mininet.org/download (2017)
18. Tzenetopoulos, A., Marantos, C., Gavrielides, G., Xydis, S., Soudris, D.: FADE:

FAAS-Inspired Application Decomposition and Energy Aware Function Placement
on the Edge. NY, USA, Association for Computing Machinery, pp. 7ś10 (2021)

19. Singhvi, A., Khalid, J., Akella, A., Banerjee, S.: SNF: Serverless Network Func-
tions, ACM Symposium on Cloud Computing, (2020)

20. grpc. (2016) A high performance, open source, general-purpose RPC framework.
[online]. Available: https://github.com/grpc

21. Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, M. Guo, The Serverless Computing Sur-
vey: A Technical Primer for Design Architecture, ACM Computing Surveys (2022)


