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Calibrating cardiac 
electrophysiology models using 
latent Gaussian processes on atrial 
manifolds
Sam Coveney1*, Caroline H. Roney2, Cesare Corrado3, Richard D. Wilkinson4, 
Jeremy E. Oakley5, Steven A. Niederer3 & Richard H. Clayton6

Models of electrical excitation and recovery in the heart have become increasingly detailed, but 
have yet to be used routinely in the clinical setting to guide personalized intervention in patients. 
One of the main challenges is calibrating models from the limited measurements that can be made 
in a patient during a standard clinical procedure. In this work, we propose a novel framework for the 
probabilistic calibration of electrophysiology parameters on the left atrium of the heart using local 
measurements of cardiac excitability. Parameter fields are represented as Gaussian processes on 
manifolds and are linked to measurements via surrogate functions that map from local parameter 
values to measurements. The posterior distribution of parameter fields is then obtained. We show 
that our method can recover parameter fields used to generate localised synthetic measurements of 
effective refractory period. Our methodology is applicable to other measurement types collected with 
clinical protocols, and more generally for calibration where model parameters vary over a manifold.

Mechanical contraction of the heart is initiated and synchronised by a travelling wave of electrical excitation 
and recovery that arises spontaneously in the natural pacemaker. The heart is made up of four chambers: the 
ventricles pump blood to the body and lungs, while the atria act as reservoirs and primers for the ventricles. 
A cardiac arrhythmia is a disturbance of regular heart rhythm resulting in a rapid, slow, or irregular rhythm. 
Atrial fibrillation (AF) is a common and increasingly prevalent cardiac  arrhythmia1. AF can be sustained by 
re-entry, where electrical activation continually propagates into recovering tissue, creating a self-sustaining 
rotating  wave2. Radio-frequency catheter ablation can be used to disrupt re-entrant circuits that act to sustain 
AF, but is not always  effective3.

Two properties of cardiac tissue are important for the development of sustained re-entry, and these properties 
vary across atrial tissue. Conduction velocity (CV) describes the speed at which an activation wave spreads. The 
effective refractory period (ERP) is the minimum time interval between two successive stimuli that allows two 
activation waves to propagate and is related to action potential duration (APD), which is the interval between 
local activation (depolarization) and recovery (repolarization). Both CV and ERP decrease at shorter pacing 
intervals, and this dynamic behaviour and its spatial heterogeneity is important for determining the stability 
of re-entry4,5 as well as the complex paths followed by electrical activation during  AF6. Natural variability in 
the speed of the excitation wave and the dynamics of excitation and recovery exist both between individuals 
and within the heart of a single  individual7,8. Cardiac tissue exhibits spatial heterogeneity with differences in 
ion channel conductances, gap junction distributions, and fibrotic remodelling across the  heart9. These spatial 
heterogeneities in structural and functional properties lead to heterogeneity in ERP. The resulting dispersion in 
repolarisation properties is a mechanism for focal arrhythmia  initiation10, and atrial fibrillation initiation through 
increasing vulnerability to re-entry8,11.

Electrophysiology (EP) models describe how electrical activation diffuses through cardiac tissue. Local acti-
vation and recovery are represented by a set of differential equations describing a reaction-diffusion system 
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that models tissue-scale propagation of activation and cellular activation and  recovery12,13. Models of cardiac 
electrical activation have become valuable research tools, but are also beginning to be used in the clinical set-
ting to guide interventions in  patients14,15. These applications require personalised models of both anatomy and 
electrophysiology to be constructed. Personalised anatomical models can be assembled from medical images, 
and statistical shape models enable the assessment of varying shape on electrical  behaviour16. Calibration of 
EP models is difficult because of the limited measurements that can be made routinely in the clinical setting.

EP model parameters determine model behaviour and for a personalised model should be calibrated to 
reconstruct the heterogeneity in CV and ERP, as well as their dynamic behaviour, in the heart of a specific patient. 
Measurements of local activation time (LAT), which measures the time of arrival of the activation wavefront rela-
tive to the timing of a pacing stimulus, enable reconstruction of heterogeneous CV for pacing at a fixed  rate17,18. 
Calibration to the dynamics of activation and recovery is more challenging. Both the quantity and type of data 
that can be recorded from patients are constrained by the clinical procedure, so it is difficult to determine spatial 
heterogeneity of repolarisation. An S1S2 pacing protocol can be used to measure restitution curves. The heart 
is paced for several beats at an initial pacing cycle length S1, followed by a stimulus with a shorter length S2. 
This protocol is repeated for different values of the S2 interval, and the shortest S2 that can elicit an activation 
indicates an upper bound for ERP at the stimulus site. While models can be calibrated to reconstruct CV(S2) 
restitution and ERP from LAT measurements with an S1S2  protocol19,20, recent work raises doubts over whether 
model parameters can be identified uniquely from these types of measurement  alone21. Biophysically detailed 
models of electrical activation have large numbers of parameters and many of these may be unidentifiable from 
restitution curve  data22. There is a need for robust approaches that can interrogate cardiac tissue properties more 
thoroughly while at the same time minimising additional interventions.

In this paper, we present a novel method for probabilistic calibration of an electrophysiology simulator from 
spatially sparse measurements using a probabilistic model of electrophysiology parameters on a manifold rep-
resenting the left atrium of the heart. We focus on estimating parameter fields that reconstruct heterogeneity in 
ERP. We chose to use a phenomenological EP model that captures the main features of cardiac activation and 
recovery. We determine two types of ERP measurements for calibrating EP parameters that determine excitability. 
EP parameters are modelled as latent Gaussian processes (GPs) on a manifold, and linked to observations via 
surrogate functions and a likelihood function designed for ERP measurements. We use Markov Chain Monte 
Carlo (MCMC) to obtain the posterior distribution of EP parameter fields across the atrium. We validate our 
method quantitatively by generating ground truths and calibrating to sparse data. The principles behind our 
method generalise to other measurement types, such as CV and APD restitution data, making our approach a 
step forward in the creation of digital twins capable of reproducing the complex dynamics of electrophysiology.

Results
Workflow. The computational model, or ‘simulator’, that we seek to calibrate is composed of (i) a finite ele-
ment mesh representing an atrial manifold x ∈ � ; (ii) an electrophysiology model, that maps EP parameters 
θl(x), l = 1, 2, . . . defined on the computational mesh to observable quantities; and (iii) a numerical solver for 
running EP simulations. Details on obtaining and processing a mesh for suitability in electrophysiology simu-
lations are given in “Methods”, including details on the example mesh used here. The EP model is the modi-
fied Mitchell-Schaeffer (mMS)  model23,24, the parameters of which are effectively time-constants representing 
different phases of the action potential. We parameterize the mMS model with the following 5 parameters: 
CVmax(x), τin(x), τout(x), τopen(x),APDmax(x) . See “Methods” for details on the simulation model, parameteri-
sation, and allowable parameter ranges, and details on the numerical implementation. We use the software open-
CARP25 to solve the mono-domain model for our simulations.

The main task in this work is to calibrate the simulator by inferring parameter fields θl(x) from ERP meas-
urements. Figure 1 represents our modeling workflow, which we summarize here. Our code is available in a 
Zenodo  repository26.

Surrogate functions. The simulator can be used to map parameter fields to ERP fields 
ERP(x) = sim(θl(x), l = 1, 2, . . .) . Given ERP observations at multiple locations on the atrial mesh, as well as an 
appropriate likelihood model for these observations, the simulator could be used in an MCMC setting in order 
to calibrate the parameter fields by obtaining samples from the posterior distribution for the EP fields. However, 
this is an extremely inefficient approach, since ERP depends only on local (rather than remote) tissue properties. 
We utilize a surrogate function (also called an “emulator”) solution in which we learn the mapping from param-
eters to ERP. This surrogate function allows us to predict ERP at location x as ERP(x) = f (θl(x), l = 1, 2, . . .) , 
bypassing the need to run the simulator directly for inference.

Gaussian process priors. The mesh has ≈ 10
5 vertices for which parameters need to be defined, but ERP meas-

urements are restricted to a subset of these vertices, with number of observations on the order of 100–101 . The 
electrophysiology parameter fields must be assumed to have low-rank structure, induced by spatial correlation, 
in order to make inferences about EP parameter values at locations other than ERP observation locations. This 
is achieved here by modeling the EP parameters using latent Gaussian process (GP) priors θl(x) ∼ GP . We use 
Gaussian Process Manifold Interpolation (GPMI), a method we proposed for defining Gaussian process (GP) 
distributions on  manifolds27. The approach uses solutions {�k ,φk(x)} of the Laplacian (Laplace-Beltrami) eigen-
problem on the  mesh28.

Bayesian calibration. We perform probabilistic calibration with MCMC to obtain the posterior distribution 
of latent variables in the GPs. We utilize a likelihood function that we developed specifically for ERP measure-
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ments, which accounts for how an S1S2 pacing protocol to determine ERP effectively measures the S2 interval in 
which ERP lies, rather than measuring ERP directly.

Sensitivity analysis and surrogate functions. Figure 2a shows sensitivity indices for two types of ERP: 
an ERP measurement for S1S2 with S1 600 ms, denoted here as ERPS2 , and another type of ERP measurement 
for S1S2S3 pacing for S1 600 ms S2 300 ms, denoted here as ERPS3 . The S1S2S3 protocol, consisting of N S1 
beats, 1 S2 beat, and 1 S3 beat, is introduced in this paper. We have determined that these measurements can be 

Figure 1.  Workflow for using ERP observations to calibrate model parameters. A simplified ‘surrogate 
simulation’ consisting of a strip of tissue paced from one end is used to determine ERP values for a design of 
parameters. Surrogate functions are fit to these data, allowing rapid prediction of ERP from model parameters. 
Electrophysiology parameter fields are modelled as Gaussian processes on the atrial manifold, using a reduced-
rank formulation relying on eigenfunctions and eigenvalues of the Laplace-Beltrami operator on the atrial 
mesh. ERP measurements using an S1S2 (or S1S2S3) protocol measure whether successful activation occurs 
for S2 (or S3) times t1 < t2 < t3 . . . etc. Using a likelihood function designed for ERP measurements and the 
surrogate functions, the likelihood can be evaluated given hyperparameters for the GP models. This allows for 
probabilistic calibration by obtaining the posterior distribution of hyperparameters using MCMC.
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used to calibrate EP parameters sufficiently to reproduce not only these ERP measurements, but also the time 
required for the action potential to reach various levels of repolarization recovery (e.g. APD20 and APD90 , the 
time required for 20% and 90% recovery). It is a key finding that the S1S2S3 protocol can be used (alongside the 
standard S1S2 protocol) to disentangle the contributions of separate parts of the action potential to the value of 
ERP, without needing to measure the action potential directly.

The sensitivity indices in Fig. 2a show that these ERP measurements are mainly determined by τout and 
APDmax , which approximately correspond to the duration of the repolarization and plateau phases of the action 
potential respectively. Calibration of other parameters, which determine some aspects of the shape of restitution 
curves but which do not strongly impact ERP, require both CV and APD restitution curve data from an S1S2 
 protocol21. For this reason, we have determined to use ERP to calibrate θ1 ≡ τout and θ2 ≡ APDmax . Figure 2b 
shows contour plots of the surrogate functions for ERP. A discontinuity occurs in the ERPS3 surface for param-
eters combinations resulting in ERPS2 > 285 ms, so data for ERPS2 > 280 ms were discarded before fitting this 
function. Note that the majority of clinical ERPS2 measurements fall in the range 170–270 ms, so even 280 ms 
could be considered as an upper  limit29.

Figure 2.  (a) Sensitivity analysis of ERP for the mMS electrophysiology model for all parameters. τout and 
APDmax have the largest sensitivity indices for both types of ERP. (b) Surrogate functions for predicting ERP 
from τout and APDmax . A discontinuity in ERPS3 occurs at ERPS2 ≈ 285 ms, so this region is shown in white.
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Synthetic experiments. To test our methodology, we ran synthetic experiments as detailed in “Methods”. 
We used a left atrial mesh generated from a scan of an individual performed at St Thomas’ Hospital (see “Meth-
ods” for details). We created ground truth parameter fields for τout and APDmax in order to verify our calibration 
approach. We used 10 measurement locations, placed at random using a maximin design that excluded sites 
close to the mesh boundaries. The resolution of the S1S2 and S1S2S3 protocol was set to 10 ms. We used 24 
eigenfunctions for representing each of the two parameter fields in Eq. (5), which we found to be sufficient to 
capture spatial variation while allowing good posterior sampling. For MCMC we used 5000 iterations, using 8 
chains, discarding the first 50% of the samples as ‘burn-in’, and randomly thinning the remaining samples by a 
factor of 100 to give 200 posterior samples.

Figure 3 shows the true parameter fields, and the posterior mean and standard deviation of the calibrated 
parameter fields. Figure 4 shows the true ERP fields, the posterior mean and standard deviation of the ERP 
fields (calculated from ERP samples, which are calculated from the parameter field posterior samples), and the 
Independent Standard Errors (ISE) of ERP (the absolute difference between true and posterior mean, divided 
by the posterior standard deviation). Measurement locations are shown as spheres in Figs. 3 and 4, colored by 
the corresponding values at each location. Figure 5 shows the APD simulation results from the atrial simulator 
using the ground truth parameter fields and the posterior mean of the calibrated parameter fields.

The prediction of EP parameter fields τout and APDmax and ERP fields ERPS2 and ERPS3 captures the ground 
truth extremely well. Predictions on the pulmonary veins, which are effectively regions of extrapolation, deviate 
from the ground truth more than other regions on the main body of the atrium. These deviations are on the 
order of the S2 and S3 resolution, and the posterior variance is higher in these regions. Uncertainty increases 
with distance from the measurement locations. The ISE scores show that the distribution of ERP predicted by 
the model covers the ground truth well as nearly all values are less than 3. The ISE for ERPS2 on the left atrial 
appendage is above 3, which may be caused by a combination of high ground-truth values for τout (which are not 
effectively probed by the measurements) and insufficient basis functions to capture high spatial variation in this 
region of the mesh. APD from the full atrial simulator using the posterior mean of the parameters (the maximum 
a posteriori estimate could have been used instead) matches the ground truth values very closely, demonstrating 
that the action potential has been calibrated well using only ERP measurements.

We also performed quantitative validation across a broad range of designs. Figure 6 shows these validation 
results, for different configurations of the S1S2(S3) pacing protocol (number of ERP observations, resolution 
of S2 and S3 intervals) and different heterogeneity for ERP, controlled by different correlation lengthscales for 

Figure 3.  Ground truth and predicted (posterior mean and standard deviation) electrophysiology parameter 
fields. The spheres show the location of ERP measurements. All units are milliseconds.
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generated APDmax and τout ground-truth fields. A unit of kernel lengthscale is approximately 3.2 mm for this 
mesh; see “Methods” for details. Prediction values of ERP are based on the maximum a posteriori estimate of 
the parameters, and here we use 32 eigenfunctions per EP parameter field in order to better model fields with 
more rapid spatial variation. Root Mean Squared Error (RMSE) is reduced with increasing lengthscale (less 
ERP heterogeneity), decreasing S2 and S3 resolution (more precise measurements), and increasing number of 
observations. We note that our likelihood function introduces a small amount of bias, discussed below, which for 
S2 and S3 resolution 10ms causes RMSE to increase slightly from 20 to 40 observations. Overall, the quantitative 
validation suggests that little is gained above 20 observation locations.

Discussion
In this paper, we have developed a workflow for calibrating an electrophysiology simulator from sparse measure-
ments of excitability. This was done by representing the spatially varying parameter fields as Gaussian processes 
on a manifold, and linking these parameters to excitability observations through non-linear surrogate functions 
(emulators). Using a likelihood function for ERP observations, we performed probabilistic calibration to obtain 
the posterior distribution of the EP parameter fields. Both visual and quantitative comparison demonstrates that 
this workflow can successfully calibrate a simulator to ERP to a high level of accuracy.

The nature of ERP observations, in which only the interval containing ERP is observed (and the possible 
brackets around this interval are fixed by the S1S2(S3) protocol), is that the ability to learn more by adding 

Figure 4.  Ground truth and predicted (posterior mean and standard deviation) ERP fields, and independent 
standard error (ISE) plots comparing predicted and ground truth ERP. The spheres show the location of ERP 
measurements. All units are milliseconds.
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observations is strongly limited above a certain point. Figure 6 demonstrates that this limit is reached faster 
for smaller S2 and S3 resolution. Our likelihood function does introduce a very small amount of bias, since 
the true likelihood should be constant in the pacing interval, but our approximation decreases on approaching 
the interval edges. A simple solution would be to pad the ERP observation brackets, which would remove the 
bias but reduce the precision. Without the assumption that measurements at locations give information about 
quantities at nearby locations, i.e. spatial correlation, inference about tissue properties beyond measurement sites 
would not be possible and atrial tissue would need to be sampled everywhere. Such regularization might make 
it difficult to capture discontinuous changes in tissue properties, although it would be difficult to measure such 
abrupt changes in tissue behaviour using sparse measurements. It may be possible to utilize other personal data 
(e.g. scans) or prior information (e.g. a database of clinical measurements) to assist with calibration.

The latent Gaussian process model serves two purposes. Firstly, a run of the electrophysiology model requires 
specification of parameters at all points on the mesh, and the Gaussian process enables this specification via 
interpolation between measurement locations. Secondly, we assume that parameter values at neighbouring loca-
tions on the mesh are likely to be similar, which means that we need to do joint inference for the parameters at 

Figure 5.  Ground truth and predicted APD values from simulation. All units are milliseconds.

Figure 6.  Quantitative validation for ERP prediction, for different lengthscales (1 unit kernel lengthscale 
≈ 3.2 mm), number of observations, and S2 and S3 resolution. The model prediction is from the maximum 
a posteriori estimate. 32 basis functions are used for both EP parameter fields. For each combination of 
lengthscale, observations, and S2 and S3 resolution, 45 different samples of EP parameter fields are generated, 
and 5 different observation designs are used for each sample. The RMSE scores of ERP for each validation run is 
calculated over all mesh vertices. The error bars are 1 standard deviation.
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the measurement locations, rather than inferring parameters at each measurement location independently. In 
developing our method, we first attempted such an independent inference approach, in which parameters are 
calibrated at each measurement location independently and then interpolated over the manifold using GPMI, but 
we were not able to obtain satisfactory results. Our current workflow easily allows more complex spatial modeling 
using multiple latent GPs per EP parameter field, each with independent covariance kernels and hyperparam-
eters that can be freely given suitable priors. It also provides the benefit of being able to constrain the posterior 
distribution by directly manipulating the posterior samples based on a priori knowledge, such that parameter 
values (or the tissue properties depending on these parameters) should fall within a certain physiological range.

Our proposed workflow for calibration is suitable for other types of data. We have previously shown that 
Gaussian processes can be used as surrogate functions for CV, APD, and ERP restitution  curves21. Observations 
from these restitution curves at different locations over the atrium could be included in calibration simply by 
including additional contributions to the likelihood function and using “Restitution Curve Emulators” to map 
from EP parameters to the corresponding restitution curves. Our approach here solves the problem of repre-
senting the EP parameter fields on a manifold so as to make probabilistic calibration to sparse measurements 
into a tractable problem. This allows for propagating uncertainty from measurements through to an ensemble 
of calibrated models.

Methods
Electrophysiology model. The modified Mitchell-Schaeffer (mMS) cell  model23,24 for mono-domain tis-
sue simulations with isotropic diffusion is expressed in the following equations:

where Vm is a normalised membrane voltage, h is a gating parameter that controls recovery, and Jstim is an exter-
nally applied stimulus. The 4 cell model parameters τ = (τin, τclose , τout , τopen) are time-constants that approxi-
mately characterize stages of the action potential sequence, and D is conductivity. We fixed the excitation thresh-
old Vgate to 0.1. As  in21, we reparameterized the model as follows:

In this new parameter space, weighted combinations of valid parameters are also valid parameters, which 
means that spatial interpolation of valid parameters will produce valid parameters. We refer to these trans-
formed parameters simply as ‘parameters’. The valid ranges of these parameters are set as CVmax 0.1–1.5 m/s, τin 
0.01–0.30 ms, τout 1–30 ms, τopen 65–215 ms, APDmax 120–270 ms.

Atrial mesh. To generate the mesh for the simulator, the left atrial blood pool was segmented from a con-
trast enhanced magnetic resonance angiogram scan performed at St Thomas’  Hospital30. This segmentation was 
meshed using a marching cubes algorithm in  CEMRGApp31, and the resulting surface was remeshed to a regular 
edge length of 0.3mm using mmgtools  software32, corresponding to around 110,000 vertices, which is sufficient 
for simulation with the MMS model. This mesh can be found  here33, and is also included with our  code26.

Sensitivity analysis. To determine ERPS2 , the ERP value under an S1S2 protocol for S1 600 ms, and ERPS3 , 
the ERP value under an S1S2S3 protocol for S1 600 ms and S2 300 ms, we utilized a surrogate simulation: a strip 
of tissue with homogeneous parameters, paced from one end with the corresponding protocol, with activation 
measured in the strip  centre21. The strip simulation is set up to match the atrial simulation as closely as possible 
(space and time discretization, cell model time-step subdivision, numerical integration, etc). We obtain simula-
tion results with an optimized Latin hyper-cube design of 500 parameter combinations in the parameter range 
explained above.

Variance-based sensitivity analysis was performed by fitting a General Additive Model (GAM) to model 
outputs, e.g. ERPS2 , as a function of a single model input, e.g. APDmax . The expectation of the GAM is then a 
line through a point-cloud of input-output pairs. The variance of this line (evaluated at the inputs) divided by the 
variance of the point-cloud gives an approximate sensitivity index of the input on that  output34,35. This method 
can be repeated for all inputs and all outputs. We implement GAMs using the LinearGAM function with 10 
splines from the Python module  PYGAM36. The sensitivity index of output y for input x can then be calculated as

(1)
∂Vm

∂t
=D∇

2Vm + h
Vm(Vm − Vgate)(1 − Vm)

τin
− (1 − h)

Vm

τout
+ Jstim

(2)
∂h

∂t
=

{

(1 − h)/τopen if Vm ≤ Vgate

−h/τclose otherwise

(3)CVmax =0.5(1 − 2Vgate)
√

2D/τin

(4)APDmax =τclose log
(

1 + τout(1 − Vgate)
2/(4τin)

)
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Surrogate functions. The map from EP parameters (inputs) to high dimensional tissue responses (out-
puts), such as restitution curves, has been modelled previously using Gaussian  processes21. Here, cubic polyno-
mials in both θ1 = τout and θ2 = APDmax were fit to corresponding values of ERPS2 and ERPS3 , generated from 
an optimized Latin hyper-cube design of 100 values of CVmax , τout and APDmax , keeping τin = 0.05 ms and 
τopen = 120 ms in order to produce ERP and APD values in a range observed in human atrial  tissue29. CVmax 
was varied for robustness, but has negligible effects on ERP, as confirmed by negligible fitting residuals. There 
is a discontinuity in ERPS3 for parameter values producing ERPS2 ≈ 285 ms, so data for ERPS2 > 280 ms were 
discarded before fitting these functions. We refer to these polynomial fits as ‘surrogate functions’ for ERPS2 and 
ERPS3 , denoted as f1(θ1, θ2) and f2(θ1, θ2) respectively, as they allow for determining ERP without running 
simulations.

Gaussian process priors. We model the EP parameters fields, θl(x) , as spatially correlated random fields 
defined on the atrial manifold, i.e. x ∈ � . We use Gaussian Process Manifold Interpolation (GPMI), a method 
we proposed for defining Gaussian process distributions on  manifolds27. The approach uses solutions {�k ,φk(x)} 
of the Laplacian (Laplace-Beltrami) eigenproblem on the  mesh28. Using GPMI allows us to represent fields on 
the atrium using a coordinate system that uses these eigenfunctions as a basis, enabling us to calibrate parameter 
fields on any given atrial manifold. The prior for each parameter field θl(x) can then be represented using the 
following probabilistic model, which uses the K smallest eigenvalue solutions to the Laplacian eigenproblem:

with hyperparameters mean ml , amplitude αl , and lengthscale ρl , for l = 1, 2 and k = 1, . . . ,K . The lengthscales 
determine the distance over which values are correlated, with larger lengthscale corresponding to smoother 
parameter fields. The units of the lengthscale hyperparameters are determined by the spatial units of the mesh 
on which the eigenproblem is solved. See below for details. The hyperparameter vector ηl ∈ R

K must be given a 
Gaussian prior in order for this model to approximate a Gaussian process. The function S

(√

�k , ρl
)

 is the spectral 
density corresponding to the choice of covariance kernel, with the square root of the eigenvalue 

√

�k  being the 
‘frequency’ argument to this function. In this work, we use the spectral density for the radial basis function 
(exponentiated quadratic) kernel, but other stationary kernels could be used.

It is possible and tractable to perform inference directly on the simulation mesh by solving the Laplacian 
eigenproblem on this mesh. But for convenience, a lower resolution mesh of 5000 vertices was used, with vertices 
that are a subset of the higher resolution mesh vertices. The lower resolution mesh is produced using a simulated 
annealing algorithm to optimally choose a subset of 5000 nodes before meshing these new nodes to form a new 
surface. The routines for this are found in the quLATi  package37, and method details are given in our previous 
 work27. This lower resolution mesh allows for calculation of eigenfunctions with fewer computational resources, 
less data storage for eigenfunctions, and is convenient for plotting. Values can be easily transferred to the simula-
tion mesh via interpolation (we use the ‘interpolate’ function in the Python software  Pyvista38). However, this 
‘two-mesh’ approach is entirely optional. The units of lengthscale parameter ρ in Eq. (5) can be empirically related 
to geodesic distance by drawing many GP samples for a given kernel function on the mesh (using a lengthscale 
that allows for correlations to approach zero for some pairs of vertices since the mesh is finite), calculating the 
correlation between these samples at many pairs of vertices, and fitting (via least squares) the kernel function to 
correlation as a function of geodesic distance between the pairs of vertices. For the mesh in this work, 1 unit of 
kernel lengthscale corresponds to approximately 3.2 mm.

Bayesian calibration. Given ERP measurements at different locations xi over the atrium, it is possi-
ble to calibrate the parameter fields θ1(x) ≡ τout(x) and θ2(x) ≡ APDmax(x) by obtaining the posterior dis-
tribution of the hyperparameters in Eq. (5). For convenience, we collect the hyperparameters into the vector 
ψ := (m1,m2,α1,α2, ρ1, ρ2, η1, η2) . Defining the ERP measurements as y , then we can write the Bayesian infer-
ence problem as:

where y1(xi) and y2(xi) represent observations of ERPS2 and ERPS3 respectively. We assume that both types of 
ERP are measured at each location, but this is not a requirement as terms can just be replaced with 1 if the cor-
responding measurement is not performed. Clinically, S1S2 protocols are performed by decreasing S2 by � S2 
until successful activation does not occur on the S2 beat. Therefore, observations of ERP are only observations 
of an interval in which ERP lies. The observation that each ERP value at a measurement location xi lies between 
two S2 values ts and ts+1 can be expressed in the following way (see Fig. 1 for a graphical representation):

(5)θl(x) = ml + αl

K
∑

k=1

(ηl)k

√

S

(

√

�k , ρl

)

φk(x)

(6)(ηl)k ∼ N (0, 1)

(7)p(ψ |y) ∝ p(y|ψ)p(ψ)

(8)
p
(

y|ψ
)

:=
∏

i

p
(

y1(xi) | ψ
)

∏

i

p
(

y2(xi) | ψ
)

(9)y1(xi) : = ERPS2 ∈ [t3, t4] at xi
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Observations can be linked to the hyperparameters ψ via the GP fields defined by Eq. (5), which determine 
the EP parameters at positions on the atrial mesh, and by the surrogate functions, which map these EP parameter 
values to ERP values:

where ψ1 and ψ2 represent partitions of ψ for each EP parameter field.
An S1S2 pacing protocol to determine ERP effectively measures the S2 interval in which ERP lies. Defining 

the lower bound of this interval by I and the interval width by �S2 , the true likelihood is given by a truncated 
uniform, or ‘top-hat’, distribution. In other words, p(ERP ∈ [I , I + �S2] | ψ) is equal 1 if ψ produces ERP in the 
specified interval, and 0 otherwise. The surrogate functions fm(θ1, θ2) can be used to predict ERP from the EP 
parameters, which are determined by the GP fields θl(x) depending on the hyperparameters ψ.

However, it is more convenient to work with an approximation to this top-hat distribution, which we 
previously derived for use with ERP  measurements21. This top-hat likelihood can be approximated by divid-
ing the interval into N sub-intervals, with a normal distribution N (ci , s) centered on each sub-interval 
ci = I + (i − 1/2)�S2/N  with standard deviation equal to the sub-interval width s = �S2/N  . We choose 
N = �S2 , such that s = 1 . For an observation y1(x

∗) := ERPS2 ∈ [I , I + �S2] (and similarly for ERPS3 ) the 
likelihood can be approximated as:

The shape of this likelihood function is a top-hat with smoothed sides and no discontinuities, such that the 
likelihood is approximately constant in the interval but rapidly falls to zero near the interval edges. This approxi-
mate top-hat distribution has infinite support, allowing gradient-based MCMC to be performed. For the log-
likelihood, the readily available logsumexp function is used to prevent numerical underflow (this function is 
available in  STAN39,40, which is used for MCMC for this work). Note that this approximate top-hat distribution 
integrates to 1, rather than having approximately constant value 1 (in the interval), but constant factors do not 
matter for MCMC so we retain this form for simplicity. Also note that with a small adjustment this likelihood 
can be used with a Gaussian process surrogate function that predicts mean and  variance21.

We use STAN (via PyStan)39,40 to perform Hamiltonian MCMC, which yields samples from the poste-
rior distribution of the parameters ψ . See Results for details. We can use these samples to calculate samples 
of the EP fields over the entire atrium using Eq. (5), from which ERP samples can be calculated using the 
surrogate functions. We modify Eq. (5) by replacing αl with αl/|�1| (where �1(x) is constant), which assists 
with defining priors for αl . We used the following priors on the hyperparameters: ρl ∼ InvGamma(1.01, 20) , 
ml ∼ Uniform(−∞,+∞) , and αl ∼ InvGamma(1, 5) . We found that these priors consistently allow for recover-
ability of both EP parameter fields. Eq. (6) gives the prior for the remaining hyperparameters.

Parameter samples. To generate ‘ground truth’ parameter fields, we draw samples from a Gaussian process 
defined by Eq. (5) with Matern 5/2 spectral density function using 256 eigenfunctions. We set parameters m = 0 
and α = 1 , and ρ is set to values explained in Results and below. The generated samples for τout and APDmax are 
then scaled and offset into the full allowable parameters ranges. The same operation is performed for CVmax , 
which is needed for atrial simulations.

Certain combinations of τout and APDmax correspond to regions of parameter space that produce unrealistic 
ERP. This is handled for both ‘ground truth’ samples and posterior samples by identifying mesh nodes where 
the parameters produce values ERPS2 > 280 ms . The parameter values at these nodes are then replaced by a 
weighted average of parameter values at other nodes with acceptable ERP values, weighted by 1/d4

BH
 where dBH 

is biharmonic distance. Biharmonic distance, calculated from the Laplacian eigenvalues and eigenfunctions, is 
significantly cheaper to calculate than geodesic distance, and avoids topological issues from using Euclidean 
 distance41 to interpolate values on a manifold. This procedure allows to constrain parameter samples efficiently 
and effectively, and is far simpler than attempting to encode such constraints into MCMC.

Synthetic experiment. We created ground truth parameter fields for τout and APDmax in order to verify 
our calibration approach (see above for details). ERP values were calculated using the surrogate functions. For 
ERP measurements, we generate a design of measurement locations using an optimized ‘maximin’ hypercube 
design, excluding mesh sites within 0.6 cm of mesh boundaries as potential sites for these measurements since 
clinical measurements are unlikely to sample these regions. The resolution of the S1S2 and S1S2S3 protocols are 
set to values specified in Results. A lengthscale of 20 was used for the example shown in Figs. 3, 4 and 5.

APD values were obtained using the atrial simulator (simulations of the mono-domain equation with the 
mMS model using the software openCARP). Tissue was paced for 8 beats from near the coronary sinus, and 
depolarization and repolarization were measured on the final beat. A spatially varying CVmax field was generated 
for use in this simulation, and τin and τopen were fixed as described above. Simulations were run either for ground 
truth parameter fields or for predicted parameter fields resulting from calibration. Note that the parameters 
described in this manuscript were transformed back into the original parameters for the mMS model for running 

(10)y2(xi) : = ERPS3 ∈ [t1, t2] at xi

(11)p
(

ym(xi) | ψ
)

= p
(

ym(xi) | fm(xi)
)

(12)fm(xi) := fm(θ1(xi ,ψ1), θ2(xi ,ψ2))

(13)p(y1 ∈ [I , I + �S2] | ψ) =
1

N

N
∑

i=1

1
√
2πs2

exp

(

−
(f1(θ(x∗)) − ci)

2

2s2

)
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simulations in openCARP. The diffusion time-step was 0.1 ms and the ionic current time-step was 0.02 ms. The 
mMS action potential is normalized to have minimum 0 and maximum 1. Activation (depolarization) was 
measured when Vm reached 0.7 on upstroke, and recovery (repolarization) was measured when Vm fell to 0.8 
( APD20 ), 0.7, ( APD30 ), 0.5 ( APD50 ), and 0.1 ( APD90 ). APD values are the time between activation and recovery. 
Simulations results for APD20 and APD90 are given in Results.

Data availability
Our code and example mesh are available in a Zenodo  repository26.
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