
This is a repository copy of Making security type systems less ad hoc.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191519/

Version: Published Version

Article:

Nipkow, T. and Popescu, A. orcid.org/0000-0001-8747-0619 (2014) Making security type
systems less ad hoc. IT - Information Technology, 56 (6). pp. 267-272. ISSN 1611-2776

https://doi.org/10.1515/itit-2014-1060

© 2014 Walter de Gruyter Berlin/Boston. Reproduced in accordance with the publisher's
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

DE GRUYTER OLDENBOURG it – Information Technology 2014; 56(6): 267–272

Special Issue

Tobias Nipkow and Andrei Popescu*

Making security type systems less ad hoc

Abstract:We present a uniform, top-down design method

for security type systems applied to a parallel while-

language. The method takes the following route: from

a notion of end-to-end security via a collection of stronger

notions of anytime security targeting compositionality to

a matching collection of type-system-like syntactic crite-

ria. This method has emerged by distilling and unifying

security type system results from the literature while for-

malizing them in a proof assistant. Unlike in our previous

papers on this topic, here we focus entirely on high-level

ideas instead of technical proof details.

Keywords: ACM CCS→ Security and privacy→ Software

and application security, ACMCCS→ Computingmethod-

ologies → Concurrent computing methodologies, ACM

CCS→ Theory of computation→ Semantics and reason-

ing.

DOI 10.1515/itit-2014-1060

Received June 4, 2014; revised October 10, 2014; accepted Octo-

ber 17, 2014

1 Introduction

A type system is a syntactic representation of aspects of

a program semantics. If a function𝑓 has type int→ bool,

we know its semantics will map integers to booleans.

Amajor use of a type system is to ensure that, if well-typed,

a program “does not go wrong.” Traditionally, this means

that a program’s execution does not get stuck or produce

low-level errors. On the other hand, a security type system

guarantees a quite different property: a program’s execu-

tion does not leak private information. For example, if ℎ
stores high (confidential) data and 𝑙 is a low (publicly ob-

servable) variable, then the assignment 𝑙 := ℎ exhibits a di-
rect leak fromhigh to lowand is rejectedby typical security

type systems. The following indirect leak, exposing in 𝑙 the

*Corresponding author: Andrei Popescu, Fakultät für Informatik,

Technische Universität München, e-mail: uuomul@yahoo.com

Tobias Nipkow: Fakultät für Informatik, Technische Universität

München

information onwhether ℎ is0, is also rejected: ifℎ = 0 then
𝑙 := 1 else 𝑙 := 2.

Type-system-like syntactic criteria for leak prevention

have been discussed as early as the seventies (e. g., Den-

ning and Denning [5]). However, it was the work of Vol-

pano, Smith and others in the nineties [14–16] that started

the tradition of semantically justified security type sys-

tems. In this tradition, one provides a type system together

with a soundness theorem that relates it with a semantic

notion of security (formulated via the programs’ seman-

tics). To express semantic security, one typically assumes

the program memory is separated into a low, or public,

part, which an attacker is able to observe, and a high, or

private, part, hidden to the attacker. A program is called

information-flow secure (or noninterfering) if, upon run-

ning it, the high part of the initial memory does not affect

the low part of the resulting memory. Thus, there is no in-

formation leak from high to low. The soundness theorem

states that well-typed programs are secure.

A variety of pairs consisting of a security type system

and a semantic notion of security connected by a sound-

ness theorem were proposed in the meantime (e. g., [3, 4,

6, 7, 11–14]), covering different types of information leak

channels, including termination and probabilistic chan-

nels. As part of our work [2] within the RS
3
program [1], we

studied some of these security type systems in the light of

the three RS
3
guiding themes: property-centric view of se-

curity (by studying in depth the underlying security prop-

erties before committing to type-system-like policies), se-

mantically justified certification of security (by emphasiz-

ing formalized semantics as a foundation), and security in

the large (by focusing on compositionality). Type system

design is known to be tightly linked to a compositional rep-

resentation of the properties one wishes to enforce, and

Sabelfeld and Sands [13] explicitly remind us of this in the

security context. However, this is not how the Volpano-

Smith-style type systems appear to have been designed, as

witnessed by their complex non-compositional soundness

proofs (e. g., [3, 4, 14]).

Our goal was to investigate whether such proofs can

be simplified using compositionality. This paper describes

the positive outcome of this investigation, yielding a pro-

posal for a “canonical” route for designing security type

systems: End-to-end security⇒ Anytime security⇒ Type

268 | T.Nipkow and A. Popescu, Making security type systems less ad hoc DE GRUYTER OLDENBOURG

system. (More technical presentations of these ideas can

be found in [8, 9] for possibilistic and in [10] for probabilis-

tic security.)

We restrict our attention to a concurrent imperative

languagewithanondeterministic (possibilistic) semantics

(Section 2). In this context, we tell the story of the top-

downdesignof security type systems.Westartwith end-to-

end security, describing a desired security property of the

program in terms of the relationship between the initial

states and the final states obtained from fully executing

the program (Section 3). End-to-end security is not com-

positional – to address this, we introduce stronger prop-

erties, called anytime security, which refer to intermediate

states during execution; we obtain a hierarchy of notions

of anytime security (Section 4). Anytime security is com-

positional and hence ready for a type system: using the

hierarchy graph and the compositionality properties, we

extract sound type-system-like criteria automatically (Sec-

tion 5). Remarkably, among these automatically generated

systems, we find carefully designed and apparently intri-

cate security type systems from the literature.

2 The programming language

Ourparallelwhile-languagehas commands 𝑐, atomic com-

mands 𝑎, arithmetic expressions 𝑒 and boolean tests 𝑏 de-
fined below, where 𝑛 represents integers and 𝑥 program
variables:

𝑐 ::= skip | 𝑎 | 𝑐1 ; 𝑐2 |
if 𝑏 then 𝑐1 else 𝑐2 |
while 𝑏 do 𝑐1 | 𝑐1 ‖ 𝑐2

𝑎 ::= 𝑥 := 𝑒
𝑒 ::= 𝑛 | 𝑥 | 𝑒1 + 𝑒2
𝑏 ::= 𝑒1 = 𝑒2

A state is a function assigning integers to variables. In each

state 𝑠, arithmetic expressions 𝑒 evaluate to integers writ-
ten 𝑒(𝑠) and boolean tests 𝑏 to boolean values. Executing

atomic commands𝑥 := 𝑒 changes 𝑠 to 𝑠[𝑥 󳨃→ 𝑒(𝑠)], i. e., up-
dates 𝑠 to assign 𝑒(𝑠) to 𝑥. For example, if 𝑠 assigns 1 to 𝑥
and 2 to𝑦, then 𝑥+𝑦 evaluates to 3 and𝑥 := 𝑥+𝑦 changes
𝑠 to 𝑠[𝑥 󳨃→ 3].

In general, we write 𝑠 𝑐󳨀→𝑠󸀠 � 𝑐󸀠 to indicate that,

in state 𝑠, command 𝑐 takes one step changing the state

to 𝑠 and yielding the remainder 𝑐󸀠. The remainder in-

dicates what remains to be executed out of 𝑐 – if the

remainder is skip, the program has terminated and we

write 𝑠 𝑐󳨀→𝑠󸀠. For example, one step taken by the sequen-

tial composition 𝑥 := 1 ; 𝑦 := 2 in state 𝑠 changes 𝑠 to
𝑠[𝑥 󳨃→ 1] and yields the remainder 𝑦 := 2 – this is writ-

ten 𝑠 𝑥 := 1; 𝑦 := 2󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑠[𝑥 󳨃→ 1] � 𝑦 := 2. Given the par-

allel composition command 𝑥 := 1 ‖𝑦 := 2, we have two

possibilities: either the left component takes the step

𝑠 𝑥 := 1 ‖𝑦 := 2󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑦 := 2 � 𝑠[𝑥 󳨃→ 1], or the right compo-

nent takes the step 𝑠 𝑥 := 1 ‖ 𝑦 := 2󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀→𝑥 := 1 � 𝑠[𝑦 󳨃→ 2].
A terminating step example is 𝑠 𝑥 := 1󳨀󳨀󳨀󳨀󳨀󳨀→𝑠[𝑥 󳨃→ 1]. We also

allow the idle step 𝑠 skip󳨀󳨀󳨀󳨀→𝑠 – this will not trivialize the

notion of terminating computation, which we define as

“reaching skip.”

We also write 𝑠 𝑐󳨐⇒𝑠󸀠 � 𝑐󸀠 to indicate that, in state 𝑠,
command 𝑐 takes zero or more steps changing the state to
𝑠 and yielding the remainder 𝑐󸀠; again, if the remainder is

skip, we write 𝑠 𝑐󳨐⇒𝑠󸀠, e. g., 𝑠 𝑥 := 1; 𝑦 := 2󳨐󳨐󳨐󳨐󳨐󳨐󳨐󳨐󳨐󳨐󳨐󳨐󳨐⇒𝑠[𝑥 󳨃→ 1, 𝑦 󳨃→
2].

In short, we consider a standard small-step semantics,

denoted using→, and its multi-step extension⇒.

3 End-to-end security

Henceforth, we assume the variables are partitioned into

lowvariables 𝑙, 𝑙󸀠 etc., andhigh variablesℎ, ℎ󸀠 etc. Lowvari-

ables store public, low-confidentiality data and high vari-

ables store private, high-confidentiality data. Two states 𝑠1
and 𝑠2 are low-equivalent, written 𝑠1 ∼low 𝑠2, if they assign
the same values to low variables. The attacker has a “low

view”, only seeing the values of low variables – i. e., the

attacker cannot distinguish between two low-equivalent

states.

A command 𝑐 is end-to-end secure if, given low-

equivalent states, the results after executing 𝑐 are again
low-equivalent. Intuitively, the attacker should not be able

to tell anything about the high part of the state by chang-

ing its low part, running the command 𝑐, and inspecting

the low part of the final state. In our nondeterministic se-

mantics, a sensible formalization of this property, denoted

by securee2e(𝑐), is depicted in Figure 1(A): for all 𝑠1 ∼low 𝑠2
and all 𝑠󸀠1 such as 𝑠1

𝑐󳨐⇒𝑠󸀠1, there exists 𝑠󸀠2 such as 𝑠2
𝑐󳨐⇒𝑠󸀠2 and

𝑠󸀠1 ∼low 𝑠󸀠2.
A problem with end-to-end security is its lack of com-

positionality w. r. t. parallel composition: even if 𝑐1 and 𝑐2
are both secure, 𝑐1 ‖ 𝑐2 may be unsecure. This fact is obvi-

ous from the nature of the interleaving semantics, which

is sensitive to the intermediate execution states. For exam-

ple, if 𝑐1 is 𝑙 := ℎ ; 𝑙 := 4 and 𝑐2 is 𝑙󸀠 := 𝑙, then during the

execution of 𝑐1 ‖ 𝑐2 the secret value of ℎmay be leaked via

𝑙 to 𝑙󸀠 immediately after 𝑙 has received it from ℎ, whereas
executing 𝑐1 alone would overwrite this secret value to 4
andhencewould be secure. To address this, we strengthen

end-to-end security by postulating security at any time

during execution.

DE GRUYTER OLDENBOURG T. Nipkow and A. Popescu, Making security type systems less ad hoc | 269

4 Anytime security

We obtain anytime security by subjecting end-to-end se-

curity to a series of modifications, as depicted in Figure 1.

The first modification (A to B) is the most essential one:

we look not only at complete (terminated) executions of

a command 𝑐, but also at incomplete ones, yielding the re-

mainders 𝑐󸀠1 and 𝑐󸀠2. The second modification (B to C) first

replaces on the left execution the multi-step⇒ by the sin-

gle step →, since analyzing how one step of the left is

matched by the right is sufficient for knowing how mul-

tiple steps are matched; moreover, for the right execution

we replace⇒ by �, a generic arrow that can encode re-

strictions on the number of matching steps – we will come

back to this later.

Note that (C) states something like this: 𝑐 is secure if
for all 𝑠1, 𝑠󸀠1, 𝑠2 and 𝑐󸀠1 such that 𝑠1 ∼low 𝑠2 and 𝑠1

𝑐󳨀→𝑠󸀠1� 𝑐󸀠1,
there exist 𝑠󸀠2 and 𝑐󸀠2 such that 𝑠2

𝑐
� 𝑠󸀠2 � 𝑐󸀠2 and 𝑠󸀠1 ∼low 𝑠󸀠2.

But how about the remainders 𝑐󸀠1 and 𝑐󸀠2? They should cer-
tainly not be allowed to produce insecure behavior – in

fact, it is natural to require for them a property similar to

the onewe required for 𝑐, i. e., that they resume in a secure

way the so far secure execution; and the same for their own

remainders, and so on, indefinitely. Thismotivates the last

modification (C to D), which replaces the single command

𝑐 desired to be secure by two commands 𝑐1 and 𝑐2 desired
to be “mutually secure” according to a binary relation ≈ ,
with the remainders 𝑐󸀠1 and 𝑐󸀠2 required to also be mutually

secure.

Consequently, we define anytime security, ≈ , as fol-
lows: 𝑐1 ≈ 𝑐2 holds if and only if, for all 𝑠1, 𝑠2 such that

𝑠1 ∼low 𝑠2:
– for all 𝑐󸀠1 and 𝑠󸀠1 such that 𝑠1

𝑐1󳨀󳨀→𝑠󸀠1 � 𝑐󸀠1, there exist 𝑐󸀠2
and 𝑠󸀠2 such that 𝑠2

𝑐2
� 𝑠󸀠2 � 𝑐󸀠2, 𝑠󸀠1 ∼low 𝑠󸀠2 and 𝑐󸀠1 ≈ 𝑐󸀠2

– ditto, with (𝑐1, 𝑠1) and (𝑐2, 𝑠2) swapped

(In particular, we have skip ≈ skip.) There is an appar-

ent circularity in this definition, which explains 𝑐1 ≈ 𝑐2 in

Figure 1: From end-to-end security to anytime security.

terms of 𝑐󸀠1 ≈ 𝑐󸀠2. This is resolved by taking the greatest fixed
point view of this equation, meaning that≈ should hold

for 𝑐1 and 𝑐2, and for their continuations 𝑐󸀠1 and 𝑐󸀠2, and
for the continuations of these, etc. A command 𝑐 is called
≈-secure if 𝑐 ≈ 𝑐 holds.

The bisimilarity-like relation ≈ is parameterized by

the choice of�. Choosing particular� relations leads to

particular ≈ relations:
– if � is→, we obtain strong bisimilarity, denoted ≈S:

one step needs to be matched by precisely one step

– if � is⇒, we obtain weak bisimilarity, denoted ≈W:
one step needs to be matched by zero or more steps

– if � is “→ or identity”, we obtain ≈01, an intermedi-

ate between ≈S and ≈W which we call 01-bisimilarity:
one step matched by zero or one steps

A natural question arising here concerns termination:

should the relation≈ be further required to be termination-
sensitive, i. e., in Figure 1(D), should the remainders 𝑐󸀠1 and
𝑐󸀠2 be required to be skip at the same time (meaning that

the indicated steps or sequences of steps from 𝑐1 and 𝑐2 are
either both terminating or both not terminating)? We do

not commit to a yes-or-no answer, but factor in both pos-

sibilities. Whereas ≈S is termination-sensitive by defini-

tion, adding the termination-sensitiveness to ≈W and ≈01
yields twonew relations ≈WT and≈01T. Finally, we consider
some degenerate strong notions of security. A command 𝑐
is called:

– self-isomorphic, written siso (𝑐), if it is strongly bisim-

ilar with itself while keeping the remainders identical

(as in Figure 1(D), except that 𝑐1 = 𝑐2 and 𝑐󸀠1 = 𝑐󸀠2); in-
tuitively, this means that not only the low-observable

behavior, but also the program counter does not de-

pend on the high part of the state

– high, written high (𝑐), if its execution never updates

a low variable – so no interesting observable behavior

Convention 1. If 𝜒 is one of the above binary relations,

then 𝜒(𝑐) denotes its unary version (which gives the corre-

270 | T.Nipkow and A. Popescu, Making security type systems less ad hoc DE GRUYTER OLDENBOURG

Figure 2: Hierarchy and compositionality for anytime security.

sponding notion of 𝑐 being secure) – e. g., ≈S (𝑐) denotes
𝑐 ≈S 𝑐.
Recall that our intermediate goal was to strengthen end-

to-end security in order to solve the ‖ compositionality is-
sue. Our notions of anytime security routinely achieve this

goal, provided for the termination-insensitive notions we

additionally assume termination of the program:

Proposition 1. Assume one of the following holds:

– 𝜒 is any of siso,≈S, ≈WT, ≈01T
– 𝜒 is any of high, ≈W, ≈01 and all executions of 𝑐 (start-

ing from any state) are terminating

Then 𝜒(𝑐) implies securee2e(𝑐).
We are ready to engage in the second part of our program:

establish, for the anytime security notions, their hierarchy

and their (partial, conditional) compositionality proper-

ties w. r. t. all language constructs, not only ‖ .
All these are depicted in Figure 2. In the graph, the

arrows represent inclusions and term (𝑐) states an inter-

active form of termination for 𝑐 (in a possibly changing

environment), formally: for all 𝑠, 𝑠󸀠, 𝑠󸀠󸀠 and 𝑐󸀠 such that

𝑠 𝑐󳨐⇒𝑠󸀠� 𝑐󸀠, there exists a terminating execution of 𝑐󸀠 start-
ing from 𝑠󸀠󸀠. Since high (𝑐) implies ≈WT (𝑐) only for interac-
tively terminating 𝑐, we include the predicate term in the

graph. Note that all commands not containing while loops

satisfy term.

The table contains compositionality properties of

these notions w. r. t. the language constructs. The first col-

umn lists the possible forms of a command 𝑐: it may be an

atomic command 𝑎, a sequential composition 𝑐1 ; 𝑐2, etc.
The next columns list conditions under which the predi-

cates stated on the first row hold for 𝑐. For example, row 3

column 3 says: if high (𝑐1) and high (𝑐2) then high (𝑐1 ; 𝑐2).
The conditions on the atomic commands are as follows:

𝑥 := 𝑒 is high if 𝑥 is high and non-leaking if there exists no
variable in 𝑒 which is strictly higher than 𝑥 – i. e., if 𝑥 is
low, then no variable in 𝑒 is high. A boolean test 𝑒1 = 𝑒2 is
low if 𝑒1 and 𝑒2 contain only low variables. The horizontal

line in row 3 column 5 represents a disjunction. Each table

property was produced independently from the others, by

confronting a given program construct with a given secu-

rity notion.

Proposition 2. The implications and the compositionality

facts from Figure 2 hold.

5 Syntactic criteria

Wewould like to stress that it is not crucial that the reader

followed our definitions of the anytime security notions

that inhabit Figure 2’s graph, and in fact we shall never

againneed to refer to thesedefinitions–what shouldbe re-

tained is that they were naturally produced as strengthen-

ings of end-to-end security with the purpose of obtaining

compositionality w. r. t. ‖ (the last row in Figure 2’s table).

Nowweare ready to generate the type-system-like syn-

tactic criteria. They simply follow by trying to prove secu-

rity of a command using only Figure 2’s graph and table. To

show that 𝑐 is secure according to some anytime security

notion 𝜒, we first try to reduce the goal to proving 𝜒 for
the components of 𝑐; if this is impossible due to the failure

of the side-condition in the table’s entry for 𝜒 and the top

DE GRUYTER OLDENBOURG T. Nipkow and A. Popescu, Making security type systems less ad hoc | 271

construct of 𝑐, wemovedownwardon thegraphand try the

proof for 𝑐 and one of𝜒’s predecessors (which is hopefully
more compositional w. r. t. 𝑐’s top construct). And the pro-
cedure continues recursively, exploring the predecessors

depth-first.

For example, here is a table-and-graph proof for

≈01(𝑐)where 𝑐 is 𝑙 := 4 ; if ℎ = 0 then ℎ := 1 else ℎ := 2:
– We start positioning ourselves at ≈01 in the graph.

Since 𝑐 has construct “;” at the top, we look in the ta-

ble at ≈01versus “;” – the decomposition condition is

a disjunction, and we choose the upper disjunct.

– The property we need to check for the left component

of 𝑐, namely 𝑙 := 4, is≈01T. Looking in the table at≈01T
versus atomic statements, we need to check that 𝑙 := 4
is nonleaking, which is true.

– It remains to check ≈01 for the right component of 𝑐,
namely if ℎ = 0 then ℎ := 1 else ℎ := 2. Since, the re-
quired side-condition in the table’s entry for≈01versus
if, namely low (ℎ = 0), fails, we turn to the predeces-

sors of≈01 from the graph, namely high and≈01T, from
which we choose high.

– We restart the table-and-graphprocedure, this time for

high and if ℎ = 0 then ℎ := 1 else ℎ := 2. The proof

now succeeds completely by the table.

Note that we appeal to the graph whenever the table re-

sult is not sufficiently flexible. Now, a syntactic criterion 𝜒
emerges for each semantic notion 𝜒 by simply turning the

above procedure into recursive function definitions. For

example, the following recursive equations correspond to

the semantic facts used in our sample table-and-graph

proof:

≈01 (𝑐1 ; 𝑐2) =
(≈01T(𝑐1) ∧ ≈01(𝑐2)) ∨
(≈01(𝑐1) ∧ high (𝑐2))

≈01 (if 𝑏 then 𝑐1 else 𝑐2) =

{{{{{{{{{
{{{{{{{{{
{

≈01(𝑐1) ∧ ≈01(𝑐2),
if low (𝑏)

high (if 𝑏 then 𝑐1 else 𝑐2) ∨
≈01T (if 𝑏 then 𝑐1 else 𝑐2),

otherwise

≈01T (𝑎) = nonleak (𝑎)
high (if 𝑏 then 𝑐1 else 𝑐2) = (high (𝑐1) ∧ high (𝑐2))
high (𝑎) = highAtom (𝑎)

In the first equation, the disjunction reflects the corre-

sponding disjunction from the table’s entry for ≈01versus
“;”. In the second equation, we see that in case the ta-

ble side-condition (here low (𝑏)) fails, we turn to the graph

– the disjunction emerges here from the existence of two

graph predecessors of≈01, namely high and≈01T.
The soundness of the 𝜒’s follow immediately by mu-

tual induction, using 𝜒’s hierarchy and compositionality:
Theorem 1. The syntactic criteria𝜒 are sound for the secu-
rity notions 𝜒 in Figure 2, in that 𝜒 (𝑐) implies 𝜒 (𝑐). A for-

tiori, 𝜒 are sound for end-to-end security of terminating

programs.

Type systems from the literature. siso corresponds to

a type system from Smith and Volpano [14] for scheduler

independent security – this criterion is extremely harsh,

forbidding high tests at if and while. ≈WT corresponds to
another type system [14], where high tests are allowed at

if provided the branches are high, but are disallowed at

while. This harsh condition on while is the starting point

of work by Boudol and Castellani [4], where a type system

equivalent to ≈01 is introduced. ≈01 allows high tests for

while provided the body of the while is high. This is pos-

sible because, unlike ≈WT, ≈01 can fall back on high. How-

ever, the price for this is a harsher clause for “;” (which is
a limitation of the termination-insensitive notions). An im-

provement of ≈01 is proposed by Boudol [3], where, in the
𝑐1 part of 𝑐1 ; 𝑐2, one no longer restricts to low tests every-

where, but rather only in places that may affect termina-

tion (i. e., inside while loops). Interestingly, this condition

on 𝑐1 is the one imposed by≈WT, and therefore Boudol’s ap-
proach can be seen as a carefully designed combination of

≈WT and ≈01 – it is in fact equivalent to≈W.

Acknowledgement: This work was supported by the

project Ni 491/13–2, part of the DFG priority program Re-

liably Secure Software Systems (RS
3
). Dmitriy Traytel, Jas-

min Blanchette and the reviewers made very useful sug-

gestions to improve the presentation and corrected some

errors.

References

1. Reliably secure software systems (RS3). http://www.reliably-

secure-software-systems.de, 2013.

2. Security type systems and deduction – RS3 project. http://

www21.in.tum.de/local_projects/rs3.html, 2013.

3. G. Boudol. On typing information flow. In ICTAC, pages 366–

380, 2005.

4. G. Boudol and I. Castellani. Noninterference for concurrent

programs. In ICALP, pages 382–395, 2001.

5. D. E. Denning and P. J. Denning. Certification of programs for

secure information flow. Commun. ACM, 20(7):504–513, 1977.

6. M. Keil and P. Thiemann. Type-based dependency analysis for

javascript. In PLAS, pages 47–58, 2013.

272 | T. Nipkow and A. Popescu, Making security type systems less ad hoc DE GRUYTER OLDENBOURG

7. A.C. Myers. Jflow: Practical mostly-static information flow con-

trol. In POPL, pages 228–241, 1999.

8. A. Popescu, J. Hölzl, and T. Nipkow. Proving concurrent nonin-

terference. In CPP, pages 109–125, 2012.

9. A. Popescu, J. Hölzl, and T. Nipkow. Formal verification of

language-based concurrent noninterference. Journal of For-

malized Reasoning, 6(1), 2013.

10. A. Popescu, J. Hölzl, and T. Nipkow. Formalizing probabilistic

noninterference. In CPP, pages 259–275, 2013.

11. A. Sabelfeld and H. Mantel. Securing communication in a con-

current language. In SAS, pages 376–394, 2002.

12. A. Sabelfeld and A. C. Myers. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications,

21(1):5–19, 2003.

13. A. Sabelfeld and D. Sands. Probabilistic noninterference for

multi-threaded programs. In IEEE Computer Security Founda-

tions Workshop, pages 200–214, 1999.

14. G. Smith and D. Volpano. Secure information flow in a multi-

threaded imperative language. In POPL, pages 355–364, 1998.

15. D.M. Volpano, C. E. Irvine, and G. Smith. A sound type sys-

tem for secure flow analysis. Journal of Computer Security,

4(2/3):167–188, 1996.

16. D.M. Volpano and G. Smith. A type-based approach to program

security. In TAPSOFT, pages 607–621, 1997.

Bionotes

Prof. Tobias Nipkow, Ph.D.

Fakultät für Informatik, Technische

Universität München, Boltzmannstr. 3,

85748 Garching, Germany,

Tel.: +49-89-289-17302,

Fax: +49-89-289-17301

nipkow@in.tum.de

Tobias Nipkow received his Diplom in Informatik (MSc in Computer

Science) from the Technische Hochschule Darmstadt in 1982 and

a PhD in Computer Science from The University of Manchester in

1987. He held post-doc positions at MIT and Cambridge Univer-

sity before becoming a professor at the Technische Universität

München in 1992. He has worked on term rewriting, programming

language semantics and theorem proving. For more than 20 years,

Tobias Nipkow and his research group in Munich (jointly with

Lawrence Paulson in Cambridge and Makarius Wenzel in Paris) have

been developing the popular proof assistant Isabelle.

Dr. Andrei Popescu

Fakultät für Informatik, Technische

Universität München, Boltzmannstr. 3,

85748 Garching, Germany,

Tel.: +49-173-2609466,

Fax: +49-89-289-17301

uuomul@yahoo.com

Andrei Popescu received his BA in Computer Science from the Uni-

versity of Bucharest in 2001, a PhD in Mathematics from the same

university in 2005, and a PhD in Computer Science from the Uni-

versity of Illinois at Urbana-Champaign in 2010. From 2010, he is

working as a post-doc at the Technische Universität München. His

main research interests are mechanical verification, type systems,

category theory, information-flow security, and intersections of

these areas.

	Making security type systems less ad hoc
	1 Introduction
	2 The programming language
	3 End-to-end security
	4 Anytime security
	5 Syntactic criteria

