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Abstract

We introduce term-generic logic (TGL), a first-order logic parameterized with
terms defined axiomatically (rather than constructively), by requiring terms to
only provide free variable and substitution operators satisfying some reasonable
axioms. TGL has a notion of model that generalizes both first-order models
and Henkin models of the λ-calculus. The abstract notions of term syntax and
model are shown to be sufficient for obtaining the completeness theorem of a
Gentzen system generalizing that of first-order logic. Various systems featuring
bindings and contextual reasoning, ranging from pure type systems to the π-
calculus, are captured as theories inside TGL. For two particular, but rather
typical instances—untyped λ-calculus and System F—the general-purpose TGL
models are shown to be equivalent with standard ad hoc models.

Keywords: term-generic logic, substitution, λ-calculus, π-calculus, semantics

1. Introduction

First-order logic (FOL) does not allow variables to be bound in terms (but
only in formulas, via quantifiers), thus providing a straightforward notion of
substitution in terms. On the other hand, most calculi and type systems used in
programming languages are crucially based on the notion of binding of variables
in terms : terms “export” only a subset of their variables, the free ones, that can
be substituted. Because of their complex formulation for terms, these calculi
cannot be naturally captured as FOL theories. Consequently, they need to
define their own models and deduction rules, and to state their own theorems
of completeness, not always easy to prove. In other words, they are presented
as entirely new logics, as opposed to theories in an existing logic, thus incurring
all the drawbacks (and boredom) of repeating definitions and proofs following
generic, well-understood patterns, but facing new details.
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Roşu)
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In this paper we define term-generic first-order logic, or simply term-generic
logic (TGL), as a many-sorted first-order logic parameterized by any terms that
come with abstract notions of free variable and substitution. More precisely, in
TGL terms are elements in a generic set Term (including a subset Var whose ele-
ments are called variables) that comes with functions FV : Term → P(Var) and
Subst : Term×TermVar→Term satisfying some axioms, including composition-
ality for substitution. Terms are classified according to sorts and substitution is
compatible with sorting. TGL models provide interpretations of terms, subject
to axioms requiring smooth interaction with the syntactic operators (Section 2).

A main contribution of this paper is demonstrating that the above axiom-
atization is sufficient to develop the fundamental theory of first order-logic up
to the completeness theorem. TGL admits a complete Gentzen deduction sys-
tem, syntactically similar to that of FOL; its proof of completeness modifies the
classic proof of completeness for FOL to use the generic notions of term, free
variables and substitution (Section 3).

TGL can be instantiated to different kinds of terms, such as standard FOL
terms or different categories of (typed or untyped) λ-terms. When instantiated
to standard FOL terms, TGL becomes, as expected, precisely FOL. However,
when instantiated to more complex terms, e.g., the terms of λ-calculus, TGL
becomes a logic where a particular calculus is a particular theory.

We give several examples of calculi and type systems that can be described
as TGL theories, including the λ-calculus and the π-calculus (Section 4). E.g.,
the β rule of λ-calculus is represented by the TGL axiom-schema in a language
having the terms of λ-calculus and a binary relation symbol  :

(λx.X) x X (∗)

assumed parameterized by the termX and having all its free variables quantified
at the top by an implicit ∀. The variable x is bound in the left X by the term
operator λ; the occurrences of x outside of λx.X, that is, the second listed x
and any occurrence of x in the right X, are bound by the top ∀ quantifier.

The λ-calculus mechanisms are managed in TGL by FOL-like reasoning
mechanisms. Consider the reduction

(λx. x x) (λx. x) (λx. x) (λx. x)

It is deduced in TGL from (*) taking X to be xx and instantiating the ∀-
bound x with λx. x. As customary in first-order logic, ∀-instantiation takes
place by substitution, only now one employs the λ-calculus syntax for terms.
After instantiation, λx.X stays the same (since (λx.x x)[(λx. x)/x] = λx.x x),
the second listed x becomes λx.x (since x[(λx. x)/x] = λx.x), and the right
X becomes (λx. x) (λx. x) (since (xx)[(λx. x)/x] = (λx. x) (λx. x)). In general,
instantiating in (*) the ∀-bound x with arbitrary terms Y , we obtain the more
familiar schema used in λ-calculus, (λx.X) Y  X[Y/x].

Type systems can also be represented in TGL. For example, the following
rule for typing abstractions in typed λ-calculi,

Γ, x : T ⊲ X : T ′

Γ ⊲ λx :T.X : T → T ′
[x fresh for Γ]
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is represented by the following TGL axiom-schema written in a language with
2 sorts, one for data and one for types, and a binary relation symbol tpOf of
arity data × type :

(∀x. tpOf (x, t)⇒ tpOf (X, t′))⇒ tpOf (λx : t.X, t→ t′)

In this schema, x and t, t′ are data and type variables, respectively, X is an
arbitrary data term (a parameter of the schema), and ⇒ is logical implication.
The term X may contain the free variable x, which is bound by TGL’s ∀ in the
left of the outermost implication, and by the term syntax’s λ in the right.

As illustrated by the above examples, the TGL descriptions are more com-
pact and more high-level than the original presentations of the rules: for β there
is no explicit substitution and for typing there is no side-condition or explicit
context—all these details are managed by the underlying mechanism of TGL.

A description of a calculus as a TGL theory automatically explains a notion
of model for that calculus: the TGL models satisfying the theory. Models
for λ-calculi have received much attention in the literature, as witnessed in the
monographs [7, 25, 29]. Apart from their intrinsic interest as the dual of syntax,
models are often used to get a better insight into a calculus or a type system,
which helps developing its metatheory. For example, Reynold’s abstraction
theorem (later called parametricity) [43], as well as Wadler’s free theorems [52],
make essential use of models. More generally, the method of logical relations
[46] can be developed systematically using models [29].

A natural question is how insightful are these general-purpose TGL models
for the described calculi. Due to the large palette of systems describable in
TGL and the bewildering variety of methods and models developed for existing
systems, a complete answer to this question cannot be attempted. However,
we can identify some characteristics of the TGL models: they offer a loose, set-
theoretic semantics to a calculus. We look at two well-known particular cases,
considering standard ad hoc models for the λ-calculus and System F falling in
this category (Section 5). We show that, in these cases, the free TGL models
are equivalent to the ad hoc models.

While it captures various systems with bindings as particular theories, TGL
does not address the mechanical representations of the syntax of these systems,
suitable for reasoning in a theorem prover. Indeed, TGL does not indicate means
to represent syntax with bindings, but is parameterized by such a syntax. Nor
does it address the mechanical representation of its axiom-schemas. On the
other hand, higher order abstract syntax (HOAS) is a methodology specialized
in precisely these two aspects: syntax with bindings and schematic judgments.
We discuss the relationship between TGL and HOAS and the potential benefit
of combining the two. Most proofs are delegated to the appendix.

This paper extends the WADT’08 conference paper [41] with the following:
an analysis of the use of the generic-syntax axioms in the proof of complete-
ness (Section 3); a TGL representation for the π-calculus (Subsection 4.3); a
comparison between TGL models and ad hoc models (Section 5); proofs of the
facts stated in the paper. One aspect not included in this paper, but discussed
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in the technical report [40], is a methodology for establishing adequacy of TGL
specifications, based on a fragment of the logic called Horn

2 (Horn squared).
Conventions and notations. If i, j ∈ IN , then i, j denotes the set of

natural numbers between i and j, inclusively. Overlined single symbols such
as T indicate tuples (T1, . . . , Tn). A

∗ is the set of finite words (sequences) over
A. Pf (A) is the set of finite subsets of A. Given two sets A and B, both BA

and A → B denote the set of functions from A to B. “Function”, “map” and
“mapping” will be used interchangeably. 1A is the identity function on A. If
f : A → B, a ∈ A and b ∈ B, then f [a ← b] is the function that maps all
a′ 6= a to f(a′) and a to b. Given f : A → B and A′ ⊆ A, f ↾A′ : A′ → B
is the restriction of f to A′. Given a property P and a function f , we write
{f(a) | P (a)} for the set of all items of the form f(a) where a is in the domain
of f and P (a) holds. We sometimes inline function definitions, e.g., writing
a 7→ a+ 5 for the function that maps each a to a+ 5.

2. Term-Generic First-Order Logic

We introduce a generic notion of first-order term, axiomatized by means of
free variables and substitution, which we call a term syntax. Then we proceed
with a development of many-sorted first-order logic parameterized by a term
syntax, proving basic sanity facts about substitution and model interpretation
of terms and formulas.

2.1. Generic Term Syntax

Roughly, a term syntax is a collection of objects called terms endowed with
free variables and a well-behaved mechanism for substitution.

Definition 2.1. Let S be an (at most) countable set of sorts and Var a count-
ably infinite set of variables. A term syntax over (S,Var) consists of:
(a) A set Term such that Var ⊆ Term, whose elements are called terms;
(b) A sort-assigning function sort : Term→ S;
(c) A mapping FV : Term → Pf (Var); the elements of FV(T ) are called free
variables, or simply variables, of T ;
(d) A mapping Subst : Term× TermVar,sort → Term, called substitution, where
TermVar,sort is the set of sort-preserving functions from Var to Term, {θ : Var→
Term. ∀x ∈ Var. sort (θ(x)) = sort (x)}.

These are subject to the following requirements, where s ranges over sorts,
x over variables, T, T ′ over terms, and θ, θ′ over TermVar,sort:
(0) {x ∈ Var. sort (x) = s} is infinite and sort (Subst (T, θ)) = sort (T );
(1) Subst (x, θ) = θ(x);
(2) Subst (T,Var →֒ Term) = T ;
(3) If θ↾FV (T ) = θ′↾FV (T ), then Subst (T, θ) = Subst (T, θ′);
(4) Subst (Subst (T, θ), θ′) = Subst (T, θ ; θ′), where the composition θ ; θ′ is de-
fined by (θ ; θ′)(y) = Subst (θ(y), θ′) for all y ∈ Var;
(5) FV (x) = {x};
(6) FV (Subst (T, θ)) =

⋃

{FV (θ(x)). x ∈ FV (T )}.
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Note that we assume the notion of term coming together with a notion of
substitution which is compositional (condition (4) above). In general, for a
syntax with bindings, compositionality of substitution naturally holds for α-
equivalence classes—for raw terms, this property can be imposed only with
some care in the choice of the fresh variables [47]. In the concrete instances of
our logic to calculi with bindings, TGL terms will be α-equivalence classes of
what are usually called (raw) “terms” in these calculi. Condition (0) is a well-
sortedness requirement: there is an infinite supply of variables for each sort and
substitution is sort-preserving. Conditions (1)-(6) are natural (and well-known)
properties of substitution holding for virtually all notions of terms with static
binding (modulo α-equivalence).

We fix a term syntax (Term, sort ,FV ,Subst). For distinct variables x1, . . . , xn
and terms T1, . . . , Tn such that sort (Ti) = sort (xi), we write [T1/x1, . . . , Tn/xn]
for the function Var → Term that maps xi to Ti and all the other variables
to themselves, and T [T1/x1, . . . , Tn/xn] for Subst (T, [T1/x1, . . . , Tn/xn]). We
write Vars and Terms for the sets of variables and terms of sort s, {x ∈
Var . sort (x) = s} and {T ∈ Term. sort (T ) = s}, respectively. The next
lemma lists some basic properties of terms belonging to a term syntax:

Lemma 2.2. The following hold for all x, y, z ∈ Var and T, T ′ ∈ Term:
(1) If x 6∈ FV(T ), then T [T ′/x] = T ;1

(2) y[T/x] = T if y = x and y[T/x] = y otherwise;
(3) If x∈FV(T ), then FV(T [T ′/x])=FV(T ) \ {x} ∪ FV(T ′);
(4) If y 6∈ FV(T ), then T [y/x][z/y] = T [z/x];
(5) If y 6∈ FV(T ), then T [y/x][x/y] = T .

Definition 2.3. A term-generic language is a tuple (S,Var, sort,Term,FV,Subst,
Π), where (Term, sort,FV,Subst) is a term syntax over (S,Var) and Π = (Πw)w∈S∗

is an S∗-ranked set of relation symbols, with each Πw being at most countable.

Therefore, a term-generic language is similar to a standard first-order lan-
guage, except that the ranked set of operation symbols is replaced by the more
abstract notion of term syntax.

2.2. Models

TGL models are structures that interpret terms relative to variable valua-
tions, like Henkin models, and interpret relation symbols standardly. The term
interpretation is required to behave well w.r.t. variables and substitution.

Definition 2.4. A model for a term-generic language (S,Var, sort,Term,FV,
Subst,Π) is a tuple A = (A,Asort, (AT )T∈Term, (A(w,π))w∈S∗,π∈Πw

), where:
(a) A is the carrier set and Asort : A→ S is its sorting function.

1Here and elsewhere: when indicating a substitution of a term for a variable, we implicitly
assume that the term’s sort and the variable’s sort coincide—here, this means sort (T ′) =
sort (x).
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(b) For each T ∈ Term, AT is a mapping AVar,Asort → A, where AVar,Asort

is the set of sort-preserving valuations from Var to A, {ρ : Var → A. ∀x ∈
Var. Asort (ρ (x)) = sort (x)}, such that the following hold for all x ∈ Var,
T ∈ Term, ρ, ρ′ ∈ AVar,Asort, and θ ∈ TermVar,sort:
— (b.i) Asort (AT (ρ)) = sort (T );
— (b.ii) Ax(ρ) = ρ(x);
— (b.iii) ASubst (T, θ)(ρ) = AT (Aθ(ρ)), where Aθ : A

Var,Asort → AVar,Asort

is defined by Aθ(ρ)(y) = Aθ(y)(ρ).
(c) For each w = s1 . . . sn and π ∈ Πw, A(w,π)⊆

∏

i∈1,n{a ∈ A.Asort(a) = si}.

Thus, unlike for classic FOL models where the interpretation of terms is built
from interpretations of operation symbols, for TGL models the interpretation
of terms is assumed, in the style of Henkin models [29].

The model axioms (b.i), (b.ii) and (b.iii) are analogous to the substitution
axioms (0), (1) and (4) in Definition 2.1. We can also prove a fact about models
analogous to the free-variable axiom (3):2

Lemma 2.5. If ρ, ρ′ ∈ AVar,Asort and ρ↾FV(T )=ρ
′↾FV(T ), then AT (ρ) = AT (ρ

′).

Proof. Thanks to Definition 2.1.(0), we can enumerate each Vars. We do this
emphasizing the free variables of T , obtaining numbers ns and families (xsi )i∈1,ns

and (usi )i∈IN such that the following hold for each sort s:
- Vars = {x

s
i . i ∈ 1, ns} ∪ {u

s
i . i ∈ IN};

- usi 6= usj for all i 6= j;

- {xsi . i ∈ 1, ns} ∩ {u
s
i . i ∈ IN} = ∅;

- {y ∈ FV (T ). sort(y) = s} = {xsi . i ∈ 1, ns}.
For each s ∈ S and i ∈ IN , we let vsi = us2∗i and wsi = us2∗i+1. We define

Ω,Ω′ : Var → Var by Ω(xsi ) = Ω′(xsi ) = xsi , Ω(u
s
i ) = vsi and Ω′(usi ) = wsi , and

θ, θ′ : Var → Term by θ(y) = Ω(y) and θ′(y) = Ω′(y). We define ρ′′ : Var → A
by ρ′′(xsi ) = ρ(xsi ), ρ

′′(vsi ) = ρ(usi ) and ρ
′′(wsi ) = ρ(usi ). Directly from the defini-

tions and the assumptions, we obtain that these functions are well-sorted and the
following hold: (I) ρ = ρ′′ ◦Ω and ρ′ = ρ′′ ◦Ω′, (II) θ↾FV (T ) = θ′↾FV (T ). From
(II) and Definition 2.1.(3), we obtain: (III) Subst (T, θ) = Subst (T, θ′). Us-
ing Definition 2.4.(b.ii) and (I), we have Aθ(ρ

′′)(y) = Aθ(y)(ρ
′′) = AΩ(y)(ρ

′′) =
ρ′′(Ω(y)) = ρ(y), obtaining: (IV) Aθ(ρ

′′) = ρ, and, similarly, Aθ′(ρ
′′) = ρ′.

We now have the following chain of equalities: AT (ρ)=(by (IV))=AT (Aθ(ρ
′′))

=(by Definition 2.4.(b.iii)) = ASubst (T, θ)(ρ
′′) = (by (III)) = ASubst (T, θ′)(ρ

′′) =
. . . = AT ′(ρ). �

In light of the above correspondence between the syntactic and semantic
axioms, it should not come as a surprise that the terms can be organized as a
model:

Proposition 2.6. For any relation interpretations (Term(w,π))w∈S∗,π∈Πw
on

terms, (Term, sort, (ρ 7→ Subst (T, ρ))T∈Term, (Term(w,π))w∈S∗,π∈Πw
) is a model.

2We are indebted to one of the conference version referees for pointing out that this property
needs not be stated as an axiom.
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Proof. The conditions of Definition 2.4 follow immediately from the axioms of
substitution in Definition 2.1: (b.i) from (0), (b.ii) from (1), and (b.iii) from
(4). �

Any model as above will be called a term model.

2.3. Formulas and Satisfaction

We fix a term-generic language (S,Var , sort ,Term,FV ,Subst ,Π). Formulas,
ranged over by ϕ, ψ, χ, are defined as usual, starting from atomic formulas
π(T1, . . . , Tn) with π ∈ Πs1...sn and sort (Ti) = si and applying the connectives
∧,⇒ and the quantifier ∀. Formula denotes the set of formulas.

For each formula ϕ and model A, the set Aϕ ⊆ A
Var ,Asort , of valuations that

make ϕ true in A, is defined recursively as follows: if π ∈ Πw, ρ ∈ Aπ(T1,...,Tn)

iff (AT1
(ρ), . . . , ATn

(ρ)) ∈ A(w,π); ρ ∈ Aϕ∧ψ iff ρ ∈ Aϕ and ρ ∈ Aψ; ρ ∈ Aϕ⇒ψ
iff ρ ∈ Aϕ implies ρ ∈ Aψ; ρ ∈ A∀x.ϕ iff ρ[x ← a] ∈ Aϕ for all a ∈ A such that
Asort(a) = sort(x). If ρ ∈ Aϕ we say that A satisfies ϕ under valuation ρ and
write A |=ρ ϕ. If Aϕ = AVar ,Asort , we say that A satisfies ϕ and write A |= ϕ.
For a set of formulas E, A |= E means A |= ϕ for all ϕ ∈ Γ.

For formulas, the notions of free variables FV (ϕ), α-equivalence ϕ ≡α ψ, and
(capture-free) substitution Subst (ϕ, θ) are the natural ones, defined similarly to
FOL, but on top of our generic terms rather than FOL terms (see AppendixA).
For substitution in formulas we adopt notational conventions similar to those
for substitution in terms, e.g., ϕ[T/x], assuming sort (T ) = sort (x). A variable
x is said to be fresh for an item K (where K may be a term, a formula, a set, list
or tuple of such items, etc.) if it does not belong to the set of free variables of
K. An item K whose set of free variables is finite is said to have finite support.
A sentence is a formula with no free variables. A theory is a set of sentences.

Thus, TGL is a logic generic only w.r.t. terms—formulas are “concrete” first-
order formulas built over generic terms, with a concrete notion of α-equivalence
standardly defined using the ∀ binding. The next proposition shows that our
axiomatization of generic terms and models is sufficient for deriving TGL ana-
logues of well-known properties of FOL formulas and satisfaction.

Lemma 2.7. The following hold for all models A, variables x, y, z, terms T ,
formulas ϕ, χ, ϕ′, χ′, maps θ, θ′ ∈ TermVar,sort, and valuations ρ, ρ′ ∈ AVar,Asort:
(1) If ρ↾FV(ϕ)= ρ′↾FV(ϕ), then ρ ∈ Aϕ iff ρ′ ∈ Aϕ;
(2) ρ ∈ ASubst (ϕ, θ) iff Aθ(ρ) ∈ Aϕ;
(3) If ϕ ≡α ψ, then Aϕ = Aψ;
(4) If ϕ ≡α ψ, then FV(ϕ) = FV(ψ);
(5) ≡α is an equivalence;
(6) ϕ ≡α Subst (ϕ, 1Var);
(7) If y 6∈ FV(ϕ), then ϕ[y/x][z/y] ≡α ϕ[z/x];
(8) If x 6∈ FV(ϕ), then ϕ[T/x] ≡α ϕ;
(9) If ϕ ≡α ψ, then Subst (ϕ, θ) ≡α Subst (ψ, θ);
(10) If θ↾FV(ϕ)= θ′↾FV(ϕ), then Subst (ϕ, θ) ≡α Subst (ϕ, θ′);
(11) Subst (ϕ, θ ; θ′) ≡α Subst (Subst (ϕ, θ), θ′);
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(12) If ϕ ≡α ϕ′ and ψ ≡α ψ′, then ϕ ∧ ψ ≡α ϕ′ ∧ ψ′, ϕ ⇒ ψ ≡α ϕ′ ⇒ ψ′,
∀x.ϕ ≡α ∀x.ϕ

′.

Thus, ≡α is an equivalence, preserves satisfaction and the free variables,
and is compatible with substitution and the logical connectives (points (5), (3),
(4), (9), (12) above). The mappings FV , Subst, A and the logical connectives
are therefore well-defined on equivalence classes. Hereafter we identify formulas
modulo α-equivalence.

2.4. TGL with equality

A term-generic language with equality is a term-generic language with an
emphasized binary relation symbol “=”, interpreted in all models as the identity
relation. Thus, we have atomic formulas T1 = T2 with sort (T1) = sort (T2),
and the following model interpretation: ρ ∈ AT1=T2

iff AT1
(ρ) = AT2

(ρ). All
the other concepts remain the same.

3. Gentzen System and Completeness

The axiomatic properties of the generic notions of free variable and sub-
stitution in TGL provide enough infrastructure to obtain generic versions of
classic FOL results. We are interested in a completeness theorem here (but
other model-theoretic results could also be generalized from FOL). We will use
a generalization of the cut-free system G3c in [49, page 77] (the same as system
G from [16, page 187]).

We fix a term-generic language (S,Var , sort ,Term,FV ,Subst ,Π). A sequent
is a pair written Γ ⊲ ∆, with the antecedent Γ and the succedent ∆ (at most)
countable finite-support sets of formulas. The sequent Γ ⊲ ∆ is called tautolog-
ical, written |= Γ ⊲ ∆, if

⋂

ϕ∈ΓAϕ ⊆
⋃

ψ∈∆Aψ for all models A; it is called
E-tautological (where E is a set of sentences), written E |= Γ ⊲ ∆, if A |= E
implies

⋂

ϕ∈ΓAϕ ⊆
⋃

ψ∈∆Aψ for all models A. If Γ = ∅, we write E |= ∆
instead of E |= Γ ⊲ ∆.

We will write Γ,Γ′ for Γ ∪ Γ′ and Γ, ϕ for Γ ∪ {ϕ}. We consider the Gentzen
system G given by the rule schemas in Figure 1, aimed at deducing tautological
sequents in TGL. We write ⊢G Γ ⊲ ∆ to mean that Γ ⊲ ∆ is deducible in G. If
E is a set of sentences, we write E ⊢G Γ ⊲ ∆ for ⊢G (E,Γ) ⊲ ∆ and E ⊢G ∆ for
E ⊢G ∅ ⊲ ∆.

Theorem 3.1. G is sound and complete for TGL.

Proof. Soundness: We need to check that each rule is sound. We only consider
the quantifier rules, since the soundness of the others is immediate. Let A be a
model. For the soundness of (Left∀), it suffices to show that A∀x.ϕ ⊆ Aϕ[T/x],
which is true because of the following: ρ ∈ A∀x.ϕ is equivalent to ρ[x← a] ∈ Aϕ
for all a ∈ A, which implies ρ[x← AT (ρ)] ∈ Aϕ, which in turn is equivalent, by
Lemma 2.7.(2) and Definition 2.4.(b.ii), to ρ ∈ Aϕ[T/x].
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Γ ∩∆ 6= ∅
Γ ⊲ ∆ (Ax)

Γ ⊲ ∆, ϕ Γ, ψ ⊲ ∆
Γ, ϕ⇒ ψ ⊲ ∆

(Left⇒)
Γ, ϕ ⊲ ∆, ψ

Γ ⊲ ∆, ϕ⇒ ψ
(Right⇒)

Γ, ϕ, ψ ⊲ ∆
Γ, ϕ ∧ ψ ⊲ ∆ (Left∧) Γ ⊲ ∆, ϕ Γ ⊲ ∆, ψ

Γ ⊲ ∆, ϕ ∧ ψ (Right∧)

Γ, ∀x.ϕ, ϕ[T/x] ⊲ ∆
Γ, ∀x.ϕ ⊲ ∆ (Left∀)

Γ ⊲ ∆, ϕ[y/x]

Γ ⊲ ∆, ∀x.ϕ

(Right∀)
[y fresh]

Figure 1: The Gentzen System G

For the soundness of (Right∀), assume
⋂

χ∈ΓAχ ⊆ (
⋃

ψ∈∆Aψ) ∪ Aϕ[y/x],
where y is not free in Γ,∆, ∀x.ϕ. We need to show

⋂

χ∈ΓAχ ⊆ (
⋃

ψ∈∆Aψ) ∪
A∀x.ϕ. For this, let ρ ∈

⋂

χ∈ΓAχ such that ρ 6∈
⋃

ψ∈∆Aψ. We show that
ρ ∈ A∀x.ϕ, i.e., that ρ[x ← a] ∈ Aϕ for all a ∈ A. Let a ∈ A. Because
ρ[y ← a]↾FV (χ)= ρ↾FV (χ) for each χ ∈ Γ ∪ ∆ (since y 6∈ FV (χ)), by Lemma
2.7.(1), we have ρ[y ← a] ∈

⋂

χ∈ΓAχ and ρ[y ← a] 6∈
⋃

ψ∈∆Aψ. Thus ρ[y ←
a] ∈ Aϕ[y/x], hence, by Lemma 2.7.(2), ρ[y ← a][x ← Aρ[y←a](y)] ∈ Aϕ, hence,
by Definition 2.4.(b.ii), ρ[y ← a][x ← a] ∈ Aϕ. If y = x, we obtain ρ[x ← a] ∈
Aϕ, as desired. If y 6= x, then ρ[y ← a][x ← a] = ρ[x ← a][y ← a], hence
ρ[x ← a][y ← a] ∈ Aϕ; and since ρ[x← a][y ← a]↾FV (ϕ)= ρ[x← a]↾FV (ϕ), we
obtain ρ[x← a] ∈ Aϕ, as desired.

Completeness: The proof mainly follows a classical line (see [16, page 214]).
We give the proof in a fair amount of detail, indicating the places where the
term-generic axioms are being used.

A sequent Γ ⊲ ∆ is called solved, if Γ ∩∆ 6= ∅ (so that (Ax) proves it), and
hopeless, if it is not solved and no rule can be applied backwards to it. Note
that, in a hopeless sequent, both Γ and ∆ consist of atomic formulas.

Assume that Γ ⊲ ∆ is a tautological sequent. As in [16], we construct back-
wards from Γ ⊲ ∆ a possibly infinite partial proof tree P , roughly by continu-
ously expanding its goals that are neither solved nor hopeless with a fair appli-
cation of the rules. Special care is required for (Left∀), since when this rule’s
turn comes according to the considered fair scheduler,3 a counter n associated to
the corresponding formula in Γ needs to be increased, and the rule needs to be
applied for each of the first n terms. Moreover, dovetailing needs to be applied
to the elements of Γ and ∆, provided these sets are infinite: one fixes an order
on the set, and first considers the first element, then the first two elements, etc.

3It is essential for the proper behavior of this fair scheduler that the rule (Right∀) be
continuously (backwards) enabled for ∀-formulas in succedents—this is where our assumption
that the succedents ∆ have finite support is required; the antecedents Γ also need to have
finite support, since they feed the succedents by backwards applications of (Left⇒).
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The details are provided in [16]—what is important to notice is that the details
of this construction are all independent of the concrete syntax of terms.

If P is finite and all its leaves are solved, then we have a (total) proof tree,
i.e., a proof of Γ ⊲ ∆, as desired. If P is finite and contains a hopeless leaf, say,
falsifiable by some valuation ρ in a model A, then, since the rules in G hold in
an “iff” form, it follows that Γ ⊲ ∆ is itself falsifiable by ρ in A.

It remains to consider the case of P being infinite. We prove that Γ ⊲ ∆ is
falsifiable. We choose an infinite path in P , (Γi ⊲ ∆i)i∈IN ; then Γ0 = Γ and
∆0 = ∆. Let Hleft =

⋃

i∈IN Γi and Hright =
⋃

i∈IN ∆i. By the fair construction
of P , we obtain the following:
- Hleft ∩Hright ∩ Atomic formulas = ∅;
- ϕ ∧ ψ ∈ Hleft implies ϕ ∈ Hleft and ψ ∈ Hleft ;
- ϕ ∧ ψ ∈ Hright implies ϕ ∈ Hright or ψ ∈ Hright ;
- ϕ⇒ ψ ∈ Hleft implies ϕ ∈ Hright or ψ ∈ Hleft ;
- ϕ⇒ ψ ∈ Hright implies ϕ ∈ Hleft and ψ ∈ Hright ;
- ∀x.ϕ ∈ Hleft implies for all T ∈ Term, ϕ[T/x] ∈ Hleft ;
- ∀x.ϕ ∈ Hright implies there exists y with ϕ[y/x] ∈ Hright .

In order to falsify Γ ⊲ ∆, it suffices to falsify Hleft ⊲ Hright . We take A to
be a Herbrand-like term model (as in Proposition 2.6), defining the relation
interpretations by (T1, . . . , Tn) ∈ Aw,π iff π(T1, . . . , Tn) ∈ Hleft .

We show that Hleft ⊲ Hright is falsified by the valuation ι, the inclusion of
variables into terms. We prove by induction on the depth of ϕ the following
statement: [ϕ ∈ Hleft implies ι ∈ Aϕ] and [ϕ ∈ Hright implies ι 6∈ Aϕ].

If ϕ has the form π(T1, . . . , Tn), then by the definition of A and Definition
2.1.(2), ι ∈ Aπ(T1,...,Tn) iff π(AT1

(ι), . . . , ATn
(ι)) ∈ Hleft iff π(T1, . . . , Tn) ∈ Hleft .

In particular, π(T1, . . . , Tn) ∈ Hleft implies ι ∈ Aπ(T1,...,Tn). Moreover, since
π(T1, . . . , Tn) is atomic and Hleft ∩ Hright ∩ Atomic formulas = ∅, it cannot
happen that π(T1, . . . , Tn) ∈ Hright and ι ∈ Aπ(T1,...,Tn), thus π(T1, . . . , Tn) ∈
Hright implies ι 6∈ Aπ(T1,...,Tn).

The case of the logical connectives ∧ and ⇒ is straightforward.
Assume now ϕ has the form ∀x.ψ. From ∀x.ψ ∈ Hleft we infer that ψ[T/x] ∈

Hleft for each term T (i.e., for each element T of A), and furthermore, by the
induction hypotheses, that ι ∈ Aψ[T/x], i.e., ι ∈ Aψ[T/x], i.e., by Lemma 2.7.(2),
ι[x ← Aι(T )] ∈ Aψ, i.e., by Definition 2.4.(b.(ii)), ι[x ← T ] ∈ Aϕ, for each
T ∈ A; hence ι ∈ A∀x.ψ. That ∀x.ψ ∈ Hright implies A 6|=ι ∀x.ψ can be proved
similarly, again by Lemma 2.7.(2) and Definition 2.4.(b.(ii)). �

An interesting question is whether the syntax axioms (in Definition 2.1) and
the model axioms (in Definition 2.4) are necessary for the development of a
substantial FOL-like theory of TGL, including the above soundness and com-
pleteness theorem. Next we give a partial answer to this question. Note that
there is a fine balance between these two types of axioms. As a first approxi-
mation, we have the following monotonicity criterion: the fewer syntax axioms
and/or more model axioms, the more likely that soundness holds; the more
syntax axioms and/or fewer model axioms, the more likely that completeness
holds. (Soundness constrains the models, completeness constrains the syntax.)
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Thus, the above completeness proof would not be possible without the term
models offered by Proposition 2.6, whose proof requires that the model axioms
be matched by corresponding syntax axioms. Also, soundness of the ∀-rules
requires the model axioms (b.ii) and (b.iii), with (Right∀) also requiring Lemma
2.5—(b.iii) and Lemma 2.5 are used indirectly, via their corresponding proper-
ties for formulas, Lemma 2.7.(2,1).

But there are subtle exceptions to this criterion. Completeness also requires
the syntactic axiom (2) to properly interpret atomic formulas in the term model.
Moreover, the ability to always pick a fresh y enabling the rule (Right∀), crucial
for completeness, is ensured by the syntactic axiom (0). Finally, Lemma 2.5,
used for soundness, requires the syntax axiom (3) concerning free variables—
of course, the property of Lemma 2.5 could instead be postulated as an axiom,
and then Proposition 2.6, hence the completeness proof, would require the axiom
(3). Therefore, not only that the monotonicity criterion is not entirely accurate,
but also the equilibrium between what is required for soundness and what for
completeness is affected by the choice of the axioms.

Outside the soundness-completeness dichotomy, the development presented
in Appendix B shows that the syntactic axioms are all invoked in proving
common-sense properties of formulas, such as satisfaction being invariant under
renaming of bound variables and substitution on formulas behaving well.

Therefore, it seems probable that any substantial development of a FOL-like
logic based on substitution and free variables should either assume or be able
to prove these fundamental properties. Substitution-compositional recursors for
terms with bindings, including those involved in higher-order abstract syntax
representations, also appear to require these properties [38].

To prove soundness and completeness for TGL with equality, we enrich G
with the equality rules from Figure 2, obtaining the Gentzen system G=. Since
the equality rules can be simulated in the Gentzen G by adding axioms to the
antecedents of the sequents, we obtain:

Theorem 3.2. G= is sound and complete for TGL with equality.

From now on, we write ⊢TGL Γ ⊲ ∆ for deduction in TGL, the context
always clarifying whether we mean G or G=. For E set of sentences, we write
E ⊢TGL Γ ⊲ ∆ for ⊢TGL (E,Γ) ⊲ ∆ and E ⊢TGL ∆ for E ⊢TGL ∅ ⊲ ∆.

4. Defining Systems in Term-Generic Logic

We start with a brief general discussion concerning the typical pattern of
rules in our specified calculi and how we go about representing them in TGL
(Subsection 4.1). Then we consider some concrete TGL specifications, where the
reader should easily be able to track the described pattern: System F (Subsec-
tion 4.2), the π-calculus (Subsection 4.3) and the equational versions of untyped
λ-calculus and System F (Subsection 4.4).
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Γ, T = T ⊲ ∆
Γ ⊲ ∆ (R)

Γ ⊲ ∆, T1 = T2 Γ, T2 = T1 ⊲ ∆
Γ ⊲ ∆ (S)

Γ ⊲ ∆, T1 = T2 Γ ⊲ ∆, T2 = T3 Γ, T1 = T3 ⊲ ∆
Γ ⊲ ∆ (T)

Γ ⊲ ∆, T1 = T ′1 . . . Γ ⊲ ∆, Tn = T ′n
Γ ⊲ ∆, π(T1, . . . , Tn) Γ, π(T ′1, . . . , T

′
n) ⊲ ∆

Γ ⊲ ∆ (Cmpπ)

Γ ⊲ ∆, T1 = T2 Γ, T [T1/x] = T [T2/x] ⊲ ∆
Γ ⊲ ∆ (Sbs)

Figure 2: The equality rules (and G= = G + the equality rules)

4.1. General Remarks

The calculi we discuss have typical deduction rules of the form

Γ, h(x, T ) ⊲ c(T , T ′)

Γ ⊲ d(f(x, T ′), T )

(Orig)
[x fresh for Γ]

where, in d, x are assumed bound in T ′ by some syntactic term operator f .4

Such rules are modeled in TGL roughly as follows: (1) the relationship
between the assumption and the conclusion of the rule becomes implication;
(2) the relationship between the antecedent and the succedent of the sequent
also becomes implication; (3) the variables assumed fresh become universally
quantified, having as scope the implication from (2); (4) the terms with no vari-
ables assumed bound to them become variables; (5) the part of the antecedent
common to the hypothesis and the conclusion is removed (since it is handled
implicitly by the TGL context). All in all, the rule (Orig) of the original calculus
becomes in TGL an axiom-schema parameterized by the terms T ′:

(∀x. h(x, y)⇒ c(y, T ′))
⇒ d(f(x, T ′), y)

(Rep)

We have developed a systematic syntactic technique to establish adequacy
of TGL representations (not included in this paper, but presented in detail in
the technical report [40]). In a nutshell, the technique “reverse-engineers” the
TGL schemas (Rep) into a format, say (Rep’), that resembles the “original”
rule (Orig) and hence essentially reduces adequacy to noticing isomorphism be-
tween two deduction trees: one in the original calculus, and one in a customized

4This is a typical pattern, not an exhaustive one; rules may have multiple assumptions,
the additional hypothesis h(x, T ) may lack from the lefthand side of assumptions, etc.
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Gentzen system for TGL. (Rep’) is obtained from (Rep) by applying the TGL
left rules for implication and universal quantification and has the same shape
as (Orig), but with Γ consisting of TGL atomic assumptions rather than as-
sumptions/hypotheses in the original calculus. In order for the aforementioned
reduction to be soundly and completely applicable, a proof-theoretic condition
(often reducible to a mere syntactic check) needs to be verified for the TGL
specification.

Conventions. The following convention regarding meta-variables for variables
and for terms in formula schemas, although standard in FOL, needs to be re-
called here to avoid the misreading of the forthcoming TGL specifications. Let
us assume that the set of variables Var is v0, v1, v2, . . ., and x, y, z, z

′ have been
set as symbols (i.e., meta-variables) ranging over variables. Let R be a binary
relation symbol. When we write, for instance, ∀x, y. R(x, y) ⇒ R(y, x), we
mean a single sentence obtained by a choice of the distinct variables x and y,
e.g., x = v0 and y = v1. This choice is, of course, semantically immaterial. (In
fact, since we identify formulas modulo α-equivalence, it is even syntactically
immaterial.)

Now, assume we work with a TGL language having as term syntax that of
the untyped λ-calculus (with the terms taken to be α-classes), and a binary
relation symbol R. A schema written as

R(x, y) ∧ (∀z. R(X,Y ))⇒ R((λz.X)x, (λz. Y ) y)

is interpreted as follows: we choose (and fix) three distinct variables x, y, z; then
the schema is read as a set of formulas as above, one formula for each pair of
terms (X,Y ). X and Y can very well make free use of the variables x, y, and
z—this is usually crucial for the intended meaning of the schema. Note that it
makes sense to speak of potential (free) occurrences of z in X, since this notion
is well-defined for α-classes. Likewise, it makes sense to say that the operator
λ binds z in X, since the operator λz is well-defined on α-classes.

4.2. System F

System F is an impredicative polymorphic typed λ-calculus [17, 42]. Its
syntax modulo α-equivalence forms a two-sorted TGL term syntax. The sorts
are type and data, and we let t range over Var type , x, y over Vardata , T over
Termtype , and X,Y over Termdata . Here is the grammar for terms, or, more
precisely, for the raw terms out of which, by quotienting to the standard notion
of α-equivalence, one obtains the terms:

T ::= t | T → T ′ | Π t. T
X ::= x | λx :T.X | X Y | λ t.X | X T

(Sometimes, one writes ∀ t. T instead of Π t. T and X[T ] instead of X T .) The
bindings are as expected: in λx :T.X, x is bound inX; in λ t.X, t is bound inX;
in Π t. T , t is bound in T . A typing context Γ is a finite set {x1 :T1, . . . , xn :Tn},
where the xi’s are data variables, the Ti’s are type terms, and xi 6= xj for i 6= j.
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Γ ⊲ x :T
(SF-InVar)
[(x :T ) ∈ Γ]

Γ, x :T ⊲ X : T ′

Γ ⊲ (λx :T.X) : T → T ′
(SF-Abs)
[x fresh for Γ]

(∀x. tpOf (x, t)⇒ tpOf (X, t′))
⇒ tpOf (λx : t.X, t→ t′)

(Abs)

Γ ⊲ X : T → T ′ Γ ⊲ Y : T
Γ ⊲ X Y : T ′

(SF-App)
tpOf (x, t→ t′) ∧ tpOf (y, t)

⇒ tpOf (x y, t′)
(App)

Γ ⊲ X : T

Γ ⊲ (λt.X) : Πt.T

(SF-T-Abs)
[t fresh for Γ]

(∀t. tpOf (X,T ))
⇒ tpOf (λt.X, Πt. T )

(T-Abs)

Γ ⊲ X : Πt.T
Γ ⊲ X T ′ : T [T ′/t]

(SF-T-App)
tpOf (x, Πt. T )
⇒ tpOf (x t, T )

(T-App)

Figure 3: System F typing: Original system TSF (left) and TGL specification T SF (right)

The conventional typing system for System F [17, 42], which we call TSF, is
shown on the left of Figure 3. It derives sequents of the form Γ ⊲ X : T .

We specify TSF as a TGL theory over a language having the aforementioned
term syntax and one relation symbol, tpOf , read “type of”, of arity data× type.
tpOf captures both the assumptions x : T from the typing contexts and the
actual typing relationships X : T . The TGL theory is shown in Figure 3, on
the right. Each typing rule in TSF, except for (SF-InVar), yields an axiom or
axiom-schema in T SF obtained as explained at the beginning of this section,
by identifying the implicit universal quantification and implication involved in
the intuitive reading of the rule. For example, we read (SF-Abs) as follows: If
one can type X to T ′ uniformly on x assuming x has type T , i.e., for all x of
type T , then λx : T.X receives the type T → T ′; this is naturally expressed
as the TGL sentence (Abs). T and T ′ from (SF-Abs) are not involved in any
bindings relevant here, hence they become the variables t and t′ in (Abs).

(Abs), (T-Abs) and (T-App) are axiom-schemas, parameterized by arbitrary
terms X,T . Thus, the upper case meta-variables X,T denote parameters (sub-
ject to capturing instantiation), unlike the lower case meta-variables x, t, t′,
which denote fixed variables subject to binding and (capture-free) substitution.

In (Abs), a presumptive occurrence of x in the left X is in the scope of the
universal quantifier, and one in the right X is in the scope of the λ-abstraction;
similarly for t versus X and t versus T in (T-Abs). This migration of the
variables x and t between scopes may look surprising at first. Note however
that the same situation appears in the corresponding rules ((SF-Abs) and (SF-
T-Abs)) from the original system TSF. Thus, in (SF-Abs), any occurrence of x
in X from the succedent of the conclusion Γ ⊲ (λx : T.X) : T → T ′ is in the
scope of the λ-abstraction, while the same occurrence of x in X when part of
the antecedent of the hypothesis Γ, x : T ⊲ X : T ′ is not in any scope (or can be
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(λx :T. Y )X  Y [X/x] (SF-β) (λx : t. Y )x Y (β)

(λt. Y )T  Y [T/t] (SF-T-β) (λt. Y )t Y (T-β)

X  X ′

λx :T.X  λx :T.X ′
(SF-ξ)

(∀x.X  X ′)
⇒ λx : t.X  λx : t.X ′

(ξ)

X  X ′

λt.X  λt.X ′
(SF-T-ξ)

(∀t.X  X ′)
⇒ λt.X  λt.X ′

(T-ξ)

X  X ′

X Y  X ′ Y
(SF-AppL)

x x′

⇒ x y  x′ y
(AppL)

Y  Y ′

X Y  X Y ′
(SF-AppR)

y  y′

⇒ x y  x y′
(AppR)

X  X ′

X T  X ′ T
(SF-T-AppC)

x x′

⇒ x t x′ t
(T-AppC)

Figure 4: System F reduction: Original system RSF (left) and TGL specification RSF (right)

considered in the scope of the implicit outer binder of the sequent).
It is instructive to analyze what would happen if we neglected the proper

scoping of x in the assumption of (Abs), replacing (Abs) by the following:

(tpOf (x, t)⇒ tpOf (X, t′))
⇒ tpOf (λx : t.X, t→ t′)

(Abs’)

In (Abs’), the variable x from tpOf (x, t) is now, just like the variables t and t′

from tpOf (x, t) and tpOf (X, t′) respectively, in the scope of some (implicit) out-
ermost universal quantifiers; consequently, x, t and t′ can be instantiated with
anything, e.g., any data term Y and type terms T and T ′ such that tpOf (X,T )
does not hold—this would render the upper implication trivially true, and hence
would allow us to conclude tpOf (λx : t.X, T → T ′). In summary, (Abs’) would
allow us to type λx : t.X to T → T ′ provided we can display any item Y that
does not have type T , which is clearly not what we want. By contrast, (Abs)
conditions tpOf (λx : t.X, t → t′) by ∀x. tpOf (x, t)⇒ tpOf (X, t′), i.e., by the
possibility to prove tpOf (x, t)⇒ tpOf (X, t′) generically in x—this prevents the
above undesired behavior.

Next, we consider System F’s conventional reduction system [17, 42], which
we call RSF, and its TGL representation, RSF . They are indicated in Figure
4. The TGL theory is in a language having one binary relation symbol,  , of
arity data × data.

In (β), we employ the same variable x to indicate both the formal parameter
of the functional expression λx : t. Y and its actual parameter (the occurrence
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of x on the right of the application from the left of  ). Indeed, in the latter
case, as well as in any presumptive occurrences in the right Y , x is exposed to
an (implicit) outer universal quantifier of the TGL sentence, hence denotes an
(arbitrary) actual value in a model.

Next we state adequacy of our representation without proofs, but refer to
the technical report [40] for full proofs in the context of the aforementioned sys-
tematic adequacy technique.5 For each typing context Γ = {x1 :T1, . . . , xn :Tn},
we let Γ# be the set of TGL atomic formulas {tpOf (x1, T1), . . . , tpOf (xn, Tn)}.

Proposition 4.1. The following are equivalent:
(a) ⊢TSF Γ ⊲ X : T .
(b) T SF ⊢TGL Γ# ⊲ tpOf(X,T ).

Proposition 4.2. The following are equivalent:
(a) ⊢RSF X  Y .
(b) RSF ⊢TGL X  Y .

Thus, adequacy ensures two crucial properties:
- Soundness: Everything deducible in the system (TSF or RSF) is also deducible
in TGL from the associated theory (T SF or RSF)—(a) implies (b);
- Completeness: Everything deducible in TGL from the associated theory and
expressible in the system is also deducible in the system—(b) implies (a).

Note that our adequacy statements refer to what is being deduced, and not
to how statements are being deduced—a stronger form of adequacy would not
only relate the deduced facts in the two systems (here, the original calculus and
TGL), but would also establish an isomorphism between their deduction trees.
This stronger form does not hold here, at least not w.r.t. the presented Gentzen
system G for TGL, since multiple applications of the primitive rules of G would
be required to handle one rule of the original calculus. In [40], we present a
customized system for TGL that ensures strong adequacy.

4.3. The π-Calculus

The π-calculus [28] is often considered non-standard w.r.t. transition-time
binding mechanisms due to its scope extrusion feature (via sending bound
names). Interestingly, this non-standard aspect vanishes as soon as one regards
π-calculus transitions as terms with bindings themselves. Then transitions, to-
gether with channel names and processes, form a TGL term syntax. We omit the
original presentation of the calculus, but indicate it directly as a TGL theory.
We also omit the choice (+) and the replication (!) operators—these operators
(included in the extended technical report [40]) do not raise any interesting
binding issues.

5In Section 5 we obtain semantic proofs of adequacy for the untyped λ-calculus and equa-
tional System F as a consequence of our model analysis.
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Three sorts: proc, chan, and trans. x, y, z range over Varchan (which will
be equal to Termchan), X over Termchan , p, q, r over Varproc , P,Q,R over
Termproc , t over Var trans , and T over Termtrans . Grammar for terms:

X ::= x
P ::= p | 0 | P |Q | Inp(x, y, P ) | Out(x, y, P ) | νy. P
T ::= t | Tau(P,Q) | Inp(P, x, y,Q) | Fout(P, x, y,Q) | Bout(P, x, y,Q)

The bindings are as follows: in Inp(x, y, P ) and νy. P , y is bound in P ; in
Bout(P, x, y,Q) and Inp(P, x, y,Q), y is bound in Q. Note that we use Inp to
indicate both input prefixing in processes and input-action transitions. Fout and
Bout stand for “free output” and “bound output”. There are 4 types of possible
transitions of a process P , into a process Q: (1) silent transition Tau(P,Q);
(2) input transition Inp(P, x, y,Q), which receives a generic (bound) input y on
channel x; (3) free output transition Fout(P, x, y,Q), which emits a concrete
(free) name y on channel x; (4) bound output transition Bout(P, x, y,Q), which
emits a new (bound) name y on channel x.

We let Op range over {Inp,Fout,Bout}. The TGL theory is in a language
with one relation symbol, valid , of arity trans. It describes the valid transitions:

valid(Inp(Inp(x, y, P ), x, y, P )) (Inp)
valid(Fout(Out(x, y, P ), x, y, P )) (Out)

(∀z. valid(Op(P, x, y, P ′))⇒ valid(Op(νz. P, x, y, νz. P ′)) (Nu)
(∀z. valid(Tau(P, P ′))⇒ valid(Op(νz. P, νz. P ′)) (Nuτ )

(∀y. valid(Fout(P, x, y, P ′))⇒ valid(Bout(νy. P, x, y, P ′)) (Open)
valid(Op(p, x, y, P ′))⇒ valid(Op(p | q, x, y, P ′ | q)) (Par)

valid(Op(p, p′))⇒ valid(Op(p | q, p′ | q)) (Parτ )
valid(Fout(P, x, y, P ′)) ∧ valid(Inp(Q, x, y,Q′))

⇒ valid(Tau(P | Q,P ′ | Q′))
(Commfree)

valid(Bout(P, x, y, P ′)) ∧ valid(Inp(Q, x, y,Q′))
⇒ valid(Tau(P | Q, νy. (P ′ | Q′)))

(Commbound)

We omitted the symmetricals of (Par), (Parτ ), (Commfree) and (Commbound).
Remarks. (1) This theory illustrates the migration of variables not only

between the scopes of term bindings and universal quantifiers, but also between
the scopes of two term bindings. E.g., in the axiom (Inp), any presumptive
occurrence of y in the left P is bound by the process binding construct Inp,
while the same occurrence of y in the right P is in the (outer) scope of the
transition binding construct Inp. This models a process having a generic input
capability which is consumed in a generic input transition.

(2) In the axiom-schema (Nu), x, y, z are some fixed mutually distinct vari-
ables. The fact that z is distinct from x and y is essential for the intended
behavior (just as much as it is essential in a FOL axiom such as ∀x, y, z. x =
y∧y = z ⇒ x = z), ensuring, via the capture-avoidance nature of TGL substitu-
tion, that no “concrete instances” of x and y (i.e., channel variables substituting
x and y) are allowed to be z, keeping them unaffected by the hider νz, as desired.
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(3) A rule such as (Open) traditionally opens the scope of a bound name y in
a process P (which becomes P ′)—in our case, the scope is in effect transferred
to the transition binder Bout. Via the axiom (Commbound), at communication
time, this transition binder delivers the scope “safely” back to the hider νy,
after another process has joined in. This careful fostering of the scopes (which
are never allowed to “escape”), implicit in the underlying logic TGL, saves the
trouble of having to state awkward and error-prone side-conditions.

(4) In (Commfree), we have a situation similar to the TGL variant of (β): the
instantiation of the input formal parameter with an actual parameter outputted
by the communicating process is represented using the same name, y.

Due to our apparently non-standard approach to representing the π-calculus,
it is instructive to spell out its deductive closure in TGL, that is, the rules
obtained from the TGL axioms by instantiating the top ∀-quantified variables
by arbitrary terms and writing implications ϕ ⇒ ψ in rule form

ϕ
ψ
. In these

rules, the reader should recognize the traditional presentation of the calculus.
But first we introduce some notation and terminology. We will use syntactic

sugar for atomic TGL formulas corresponding to the 4 kinds of transitions:

P
τ
−→ P ′, for valid(Tau(P, P ′)); P

x(y)
−→ P ′, for valid(Inp(P, x, y, P ′));

P
xy
−→ P ′, for valid(Fout(P, x, y, P ′)); P

x(y)
−→ P ′, for valid(Bout(P, x, y, P ′)).

A loud action is an item having one of the following forms: x(y), xy, x(y).
We let γ range over loud actions. In the actions x(y) and x(y), x is considered
to appear free and y bound; in the action xy, both x and y are free. BV (γ),
FV (γ) and V (γ) denote the (at most two-element) sets of all the bound, free
and arbitrary variables of γ. Note that actions are not identified modulo alpha-
equivalence—the notion of a variable being free/bound in an action, although
standard, is somewhat misleading, since the scope of the binding is not the
action, but rather, as made explicit by our TGL representation, the target
process of the transition.

·

Inp(x, y, P )
x(y)
−→ P

(Inst-Inp)

·

Fout(x, y, P )
xy
−→ P

(Inst-Out)

P
γ

−→ P ′

ν z. P
γ

−→ ν z. P ′

(Inst-Nu)
[z 6∈ V (γ)]

P
τ

−→ P ′

ν z. P
τ

−→ ν z. P ′
(Inst-Nuτ )

P
xy
−→ P ′

ν y. P
x(y)
−→ P ′

(Inst-Open)
[x 6= y]

P
γ

−→ P ′

P |Q
γ

−→ P ′ |Q

(Inst-Par)
[BV (γ) ∩ FV (Q) = ∅]

P
τ

−→ P ′

P |Q
τ

−→ P ′ |Q
(Inst-Parτ )

P
xz
−→ P ′ Q

x(y)
−→ Q′

P |Q
τ

−→ P ′ | (Q′[z/y])
(Inst-Commfree)

P
x(y)
−→ P ′ Q

x(y)
−→ Q′

P |Q
τ

−→ νy. (P ′ |Q′)
(Inst-Commbound)

The side conditions from the above rules are all explained in terms of TGL
substitution/instantiation. For (Inst-Nu), if x′ and y′ are the components of the
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loud action γ, then they appeared as terms6 to substitute the variables x and
y from the TGL axiom (Nu)—consequently, z has to be fresh for x′, y′, which
means z 6∈ V (γ). The case of the side-condition from (Inst-Open) is similar. As
for the side-condition from (Inst-Par), the only nontrivial situation is when γ is
x(y) or x(y), case in which, in the corresponding TGL axiom (Par), Op is Inp or
Bout, meaning that in (Par) the right occurrence of the process variable q is in
the scope of the binder Op (which binds y), further meaning that any process
term Q substituting q (such as the one from (Inst-Par)) is not allowed to have y
as a free variable.

4.4. Equational Calculi

Sometimes a calculus does not come with a reduction relation, but with
an equational theory. For example, the original λ-calculus is equational [7].
For these situations, TGL with equality is a more appropriate. The TGL-with-
equality theories of equational untyped λ-calculus and System F are given below.

Untyped equational λ-Calculus (Uλ=). An unsorted theory in TGL
with equality. x, y, z range over Var and X,Y, Z over terms. Grammar for
terms: X ::= x | X Y | λx.X. The bindings are as expected: in λx.X, x is
bound in X. There are no relation symbols (except for equality). Axioms:

(∀x.X = Y )⇒ λx.X = λx.Y (ξ)
(λx.X)x = X (β)
x = λy.x y (η)

We have already discussed the managing of scoping in rules such as (ξ), so the
universal quantification over x nested in the assumption should not come as a
surprise to the reader. We should only mention that removing this quantifica-
tion, i.e., replacing (ξ) by X = Y ⇒ λx.X = λx.Y would have a “devastating”
effect on the specification: taking X to be x and Y to be a variable y differ-
ent from x, we would obtain ∀x, y. x = y ⇒ λx.x = λx.y; hence (instantiating
both x and y to y) ∀y. y = y ⇒ λx.x = λx.y; hence ∀y. λx.x = λx.y; hence
∀x, y. (λx.x)x = (λx.y)x; hence, by (β), ∀x, y. x = y. (All throughout we im-
plicitly applied TGL’s equality, connective and quantifier rules.) In summary,
the above flawed version of (ξ), together with (β), collapse all models into the
singleton model.

Equational System F (SF=) —theory over TGL with equality. Two
sorts: type and data. One relation symbol (besides equality), tpOf , of arity

6Recall that all channel terms are in fact variables.
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data × type. The terms are the ones of SF . Axioms:

(∀x.tpOf (x, t)⇒ tpOf (X, t′))⇒ tpOf (λx : t.X, t→ t′) [Abs]
tpOf (x, t→ t′) ∧ tpOf (y, t)⇒ tpOf (x y, t′) [App]

(∀t.tpOf (X,T ))⇒ tpOf (λt.X,Πt. T ) [T-Abs]
tpOf (x,Πt. T )⇒ tpOf (x t, T ) [T-App]

(∀x.tpOf (x, t)⇒ X = Y )⇒ λx : t.X = λx : t.Y (ξ)
tpOf ((λx : t.X)x, t′)⇒ (λx : t.X)x = X (β)

tpOf (λy : t.x y, t′)⇒ x = λy : t.x y (η)
(∀t.X = Y )⇒ λt.X = λt.Y (T-ξ)

tpOf (λt.X, t′)⇒ (λt.X)t = X (T-β)
tpOf (λt.x t, t′)⇒ x = λt.x t (T-η)

Thus, the typing axioms are the ones from Subsection 4.2 and the axioms for the
equational theory reflect the ones in Subsection 4.2 for reduction, but also ensure
that the two terms in the equalities are well-typed—such caution is necessary
in any interaction between equational theories and types, as shown, e.g., in [29],
where equalities for System F appear in typing contexts and are conditional on
the well-typedness of the participants. Axioms of compatibility with application,
as well as reflexivity, symmetry and transitivity need not be stated, since they
are wired in TGL with equality.

5. Ad Hoc versus TGL Models

TGL provides models in a uniform manner to all its theories. Hence, a
calculus specified in classic TGL receives a complete semantics. On the other
hand, specific models have been proposed in the literature for various λ-calculi.

Here we compare some standard loose, set-theoretic models of the λ-calculus
[7] and System F [8] with the default TGL models of their specifications. For
the λ-calculus, the TGL semantics coincides (up to a carrier-preserving bijection
between classes of models) with its ad hoc semantics. For System F, TGL
provides a novel semantics, that we prove equivalent to the ad hoc one.

The fact that, in these two cases, the uniform TGL semantics achieves es-
sentially the same effect as some carefully chosen ad hoc semantics, suggests
TGL as a potential semantic framework for λ-calculi.7

5.1. Untyped λ-Calculus

We recall standard model-theoretic notions for the untyped λ-calculus de-
scribed in [7] following an approach originally developed in [23]. Our discussion
will cover both the extensional and the non-extensional variants.

7Note that TGL does not have native support for partiality—whereas all of our specified
examples are variants of small-step semantics and hence are essentially total, other systems
such as big-step λ-calculus could be better specified in a suitable “partial” variation of TGL;
developing such a variation requires some careful design choices and is left for future work.
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Let us call pre-structure a triple A = (A, 〈 〉, (AX)X∈Term(A)), where A is
a set, 〈 〉 is a binary operation on A (i.e., (A, 〈 〉) is an applicative structure),
and AX : AVar → A for each X ∈ Term(A), where Term(A) is the set of λ-
terms with constants in A. Given an equation X1 = X2 with X1, X2 λ-terms,
A |=λ X1 = X2 is defined as AX1

(ρ) = AX2
(ρ) for all ρ : Var → A. For pre-

structures, we consider the following properties (where a, b range over elements
of A, x over variables, X,X1, X2 over terms, ρ, ρ′ over valuations in AVar ):

(P1) Ax(ρ) = ρ(x);

(P2) AX1X2
(ρ) = AX1

(ρ)〈AX2
(ρ)〉;

(P3) If ρ↾FV (X)= ρ′↾FV (X), then AX(ρ) = AX(ρ′);

(P4) If AX(ρ[x← a])=AX′(ρ[x← a]) for all a ∈ A, then Aλx.X(ρ)=Aλx.X′(ρ);

(P5) Aλx.X(ρ)〈a〉 = AX(ρ[x← a]);

(P6) If a〈c〉 = b〈c〉 for all c ∈ A, then a = b;

(P7) Aa(ρ) = a.

We next simplify the pre-structures slightly, by removing their redundant data
given by parameterized terms. A simple pre-structure is a triple of the form
(A, 〈 〉, (AX)X∈Term); thus, unlike pre-structures which interpret extended terms
from Term(A), simple pre-structures interpret terms from Term, the set of pure
λ-terms. The notion of satisfaction for simple pre-structures is defined in the
same way as for pre-structures. We are only interested in pre-structures veri-
fying at least (P1)-(P4). In this case, simple pre-structures and pre-structures
are essentially identical:

Lemma 5.1. The forgetful function sending (A, 〈 〉, (AX)X∈Term(A)) to (A, 〈 〉,
(AX)X∈Term) is a bijection, preserving satisfaction and the properties (P5)
and (P6), between pre-structures verifying (P1)-(P4) and (P7) and simple pre-
structures verifying (P1)-(P4).

This lemma allows us to switch to simple pre-structures, which we henceforth
call “pre-structures”, forgetting about the original notion, as well as about (P7).

A syntactical λ-model [7, Sect. 5.3] (λ-model for short) is a pre-structure
verifying (P1)-(P5). A λ-model is extensional if it verifies (P6).8

8The concept of pre-structure does not exit in [7], where syntactical λ-models and their
extensional variants are introduced directly as tuples (A, 〈 〉, (AX)X∈Term(A)) satisfying the
properties [(P1)-(P5), (P7)] and (P1)-(P7), respectively—more precisely, using the notations
from [7, Def. 5.3.1], (P1) is (1), (P2) is (3), (P5) is (4), (P3) is (5) and (P7) is (2); moreover,
(P4) is the semantic (ξ) condition from [7, Def. 5.3.2]. Thanks to Lemma 5.1, we can instead
equivalently speak of tuples (A, 〈 〉, (AX)X∈Term ) (which we currently call “pre-structures”)
satisfying the properties (P1)-(P5) and (P1)-(P6), respectively.
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The TGL representation Uλ= from Subsection 4.4 employs an unsorted lan-
guage over the syntax of λ-calculus, with no relation symbols. In this language,
models have therefore the form (A, (AX)X∈Term).

We consider the following TGL formulas and formula-schemas:

(λx.X)X ′ = X[X ′/x] (β)
(λx.X)x = X (β′)

λx.X x = X, if x 6∈ FV (X) (η)
λx.y x = y (η′)

(∀x.X1 = X2)⇒ λx.X1 = λx.X2 (ξ)
(∀x.X1 x = X2 x)⇒ X1 = X2, if x 6∈ FV (X1, X2) (ext)

(∀x.y1x = y2x)⇒ y1 = y2 (ext′)

Lemma 5.2. Each of (β), (η), (ext) is equivalent in TGL to its primed variant.

This lemma illustrates once more the TGL mechanism of eliminating low-level
details: (β) can be compactly expressed as the substitution-free (β′), and (η)
and (ext) as the side-condition-free (η′) and (ext′), respectively.

A main difference between pre-structures and TGL models is that the for-
mer additionally provide an application operator—this can bee recovered from
the TGL interpretation of syntactic application. We define a correspondence
between pre-structures verifying (P1)-(P4) and TGL models satisfying (ξ):
- Each pre-structure A = (A, 〈 〉, (AX)X∈Term) verifying (P1)-(P4) is mapped
to a TGL model A# = (A, (AX)X∈Term);
- Each TGL model A = (A, (AX)X∈Term) satisfying (ξ) is mapped to a pre-
structure A$ = (A, 〈 〉, (AX)X∈Term), where 〈 〉 is defined by a〈b〉 = Axy(ρ),
with ρ taking x to a and y to b.

Proposition 5.3. The above two mappings are mutually inverse. Moreover,
they preserve satisfaction and can be restricted and corestricted to:
(1) λ-models versus TGL models of (ξ), (β) (models of Uλ= without (η));
(2) extensional λ-models versus TGL models of (ξ), (β), (η) (models of Uλ=).

In other words, λ-models and extensional λ-models coincide with the models of
the corresponding TGL theories.

Adequacy is an immediate consequence of Proposition 5.3 together with the
soundness and completeness of λ-calculus deduction w.r.t. the syntactic models
(see [7, Theorem 5.3.4] and [7, Theorem 5.2.18] via [7, Theorem 5.3.6]). We
write ⊢β for deduction in βλ-calculus and ⊢βη for deduction in βηλ-calculus.

Corollary 5.4. The following hold for all terms X,X ′:
(1) ⊢β X = X ′ iff (ξ), (β) ⊢TGL X = X ′.
(2) ⊢βη X = X ′ iff Uλ= ⊢TGL X = X ′.
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5.2. System F

Recall from Subsection 4.1 that the term syntax for System F has two sorts,
data and type, that Var type (ranged over by t) and Termtype (ranged over by
T ) denote the sets of variables and terms of sort type, and similarly for data
variables and terms, ranged over by x and X, respectively.

Since typing is not affected by equational reasoning, a version of Proposition
4.1 from Subsection 4.2 holds for SF= instead of T SF :

Proposition 5.5. The following are equivalent:
(a) ⊢TSF Γ ⊲ X : T .
(b) SF= ⊢TGL Γ# ⊲ tpOf(X,T ).

Next we recall Henkin models, a standard notion of models for System F
introduced by Bruce, Meyer and Mitchell [8]— they were proved complete w.r.t.
the equational theory of System F. Such a model will be defined below to consist
of various components, among which a set T for interpreting type terms and a
family of sets (Domτ )τ∈T for interpreting data terms. A type valuation γ will
be an element of T Vartype , i.e., a function from Var type to T . The model will
also provide a family of functions for interpreting type terms relative to type
valuations, (HT )T∈Termtype

, with HT : T Vartype → T . A data valuation δ will
be a function from Vardata to Dom. The pair (γ, δ) is said to be compatible
with a typing context Γ if δ(x) ∈ HT (γ) for all x :T ∈ Γ. We write Compat(Γ)
for the set of such pairs. In addition, for each typing judgment tj = (Γ ⊲ X :
T ) and Γ-compatible valuations (γ, δ), a model will provide an interpretation
Htj(γ, δ) ∈ DomHT (γ). We let Tj be the set of typing judgments.

Definition 5.6. [8, 29] A Henkin model H for System F is a tuple (T ,F ,→,
Π, (Domτ )τ∈T , (Appτ,σ)τ,σ∈T , (Appf )f∈F , ), together with a pair ((HT )T∈Termtype

,
(Htj)tj∈Tj,⊢SF tj), where:
(a) → : T × T → T ,
(b) Π : F → T ,
(c) F ⊆ T T ,
(d) Appτ,σ : Domτ→σ → Domσ

Domτ for each τ, σ ∈ T ,
(e) Appf : DomΠf →

∏

τ∈T Domf(τ) for each f ∈ F ,

(f) HT : T Vartype → T for each T ∈ Termtype,
(g) HΓ ⊲X:T :

∏

(γ,α)∈Compat(Γ)DomHT (γ),
such that the following hold:
(1) Appτ,σ and Appf are injective;
(2) (τ 7→ HT (γ[t← τ ])) ∈ F for each T, t, γ;
(3) Ht(γ) = γ(t) for each t ∈ Vartype;
(4) HT→T ′(γ) = HT (γ)→ HT ′(γ);
(5) HΠt.T (γ) = Π(τ 7→ HT (γ[t← τ ]));
(6) HΓ ⊲x:T (γ, δ) = δ(x);
(7) HΓ ⊲XY :T (γ, δ) = AppHT ′ (γ),HT (γ)(HΓ ⊲X:T ′→T (γ, δ))(HΓ ⊲Y :T ′(γ, δ));
(8) HΓ ⊲XT :T ′[T/t](γ, δ) = Appτ 7→HT ′ (γ[t←τ ])(HΓ ⊲X:Πt.T ′(γ, δ))(HT (γ));
(9) HΓ ⊲λx:T.X:T→T ′(γ, δ) ∈ DomHT (γ)→HT ′ (γ) and, for each d ∈ DomHT (γ),
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AppHT (γ),HT ′ (γ)(HΓ ⊲λx:T.X :T→T ′(γ, δ))(d) = HΓ,x:T ⊲X:T ′(γ, δ[x← d]);
(10) HΓ ⊲λt.X : Πt.T (γ, δ) ∈ DomΠ(τ 7→HT (γ[t←τ ])) and, for each τ ∈ T ,
Appτ 7→HT (γ[t←τ ]) (HΓ ⊲λt.X : Πt.T (γ, δ)) (τ) = HΓ ⊲X:T (γ[t← τ ], δ).

Above, we used slightly different notations than [29]; also, we included the
interpretation functions HT and Htj as part of the structure, while [29] equiva-
lently asks that such interpretations exist and then proves them to be unique.

Satisfaction by Henkin models H of well-typed equations Γ ⊲ X = Y : T
(with ⊢TSF Γ ⊲ X : T and ⊢TSF Γ ⊲ X : T ) is defined by H |=SF Γ ⊲ X = Y : T
iff HΓ ⊲X:T = HΓ ⊲Y :T .

We now establish the relationship between Henkin models and TGL models
satisfying SF=. For a TGL modelM, we let Mtype and Mdata be the elements
of sort type and data, respectively. (Thus, the carrier setM is the disjoint union
of Mtype and Mdata .) A (well-sorted) valuation in such a model can therefore
be identified with a pair (γ : Var type →Mtype , δ : Vardata →Mdata). Moreover,
since type terms T do not contain data variables, by Lemma 2.5 we have that
MT (γ, δ) does not depend of δ, hence we simply write MT (γ) for it.

Unlike TGL models, Henkin models provide explicit semantic counterparts
for some term-syntax operators: →, Π, Appτ,σ and Appf . However, as shown
in Subsection 5.1 for the untyped λ-calculus, this is not a fundamental differ-
ence, since these operations arise naturally from a TGL interpretation. E.g.,
in a TGL model M, a first-order operator such as Appτ,σ can be defined by
Appτ,σ(d)(d

′) =Mx y(γ, δ) for any choice of γ and δ where γ maps x to d and y to
d′. To define second-order operators such as Π, we first define a type-polynomial
to be a function f : Mtype →Mtype of the form τ 7→MT (γ[t← τ ]) for some T ,
t, γ. For type-polynomials f , Π(f) is taken to be MΠ t. T (γ), where T , t, γ are
as above—their choice is immaterial due to the axiom (T-ξ) of SF=. (Only the
definition of Π on type-polynomials is relevant w.r.t. Henkin semantics.)

A second difference is that TGL models interpret data terms, while Henkin
models interpret judgments. This can be dealt with noticing that, in Henkin
models, Γ and T from Γ ⊲ X : T are only aimed at directing the interpretation
of X w.r.t. typing by offering types to its free variables and a result type.
Therefore, given a Henkin model H and a data term X, HX(δ, γ) can be defined
as HΓ ⊲ X:T (γ, δ) if X is typable, and Γ and T are such that ⊢SF Γ ⊲ X : T and
(γ, δ) is compatible with Γ. For non-well-typed terms, HX(δ, γ) is irrelevant,
and we can map it to some “error element” err .

Finally, a third (minor) difference is that Henkin models classify data into
types through a family (Domτ )τ∈T , while TGL models employ a binary relation
MtpOf between data and types—these views are of course equivalent.

These lead us to define the following transformations:
Henkin to TGL: For each Henkin model H, we define a TGL modelM = H#:
(a) Mtype = T ;
(b) Mdata =

⋃

τ∈T Domτ ∪ {err}, where err 6∈
⋃

τ∈T Domτ ;
(c) MT (γ) = HT (γ);
(d) MX(γ, δ) = HΓ ⊲X:T (γ, δ) if there exist Γ and T such that ⊢SF Γ ⊲ X : T
and (γ, δ) is compatible with Γ in H; otherwise MX(γ, δ) = err ;
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(e) (d, τ) ∈MtpOf iff d ∈ Domτ .

TGL to Henkin: For each TGL model M satisfying SF=, we define a Henkin
model H =M$:
(a) T =Mtype ;
(b) F = {f : T → T . f type-polynomial inM};
(c) τ → σ =Mt→t′(γ), where γ(t) = τ and γ(t′) = σ;
(d) Π(f) =MΠt.T (γ, δ), if f is τ 7→MT (γ[t← τ ], δ);
(e) Domτ = {d ∈Mdata . (d, τ) ∈MtpOf};
(f) Appτ,σ(d)(d

′) =Mx y(γ, δ), where δ(x) = d, δ(y) = d′;
(g) Appf (d)(τ) =Mx t(γ, δ), where γ(t) = τ and δ(x) = d;
(h) HT (γ) =MT (γ);
(i) HΓ ⊲X:T (γ, δ) =MX(γ, δ).

According to the above discussion, these transformations between TGL and
Henkin models can be seen as inessential variations, obtained by slightly reorga-
nizing the components. In particular, the transformations preserve and reflect
the satisfaction of System F equational judgments:

Proposition 5.7. Assume ⊢SF Γ ⊲ X :T and ⊢SF Γ ⊲ Y :T . Then:
(1) H |=SF Γ ⊲ X = Y : T iff H# |=TGL Γ# ⊲ X = Y ;
(2)M |=TGL Γ# ⊲ X = Y iff M$ |=SF Γ ⊲ X = Y : T .

Using the completeness theorem from [8], we obtain the following:

Corollary 5.8. The TGL theory SF= is adequate for both the typing system
and the equational theory of System F.

6. Term-Generic Logic and HOAS

As we have seen, the specification of calculi and type systems as TGL
theories provides a higher-level notation, in particular, it removes the need
for freshness side-conditions and explicit substitution. Moreover, typing con-
texts are captured implicitly by the TGL contexts. These would qualify the
TGL specification style as a variant of higher-order abstract syntax (HOAS)
[33, 21, 27, 32, 15, 12].

A main difference from HOAS is that TGL uses the original syntax of a given
system (provided it constitutes a term syntax, i.e., has well-behaved substitu-
tion and free-variables operators), while HOAS encodes the system’s syntax in
the syntax of a different logic, typically, higher-order logic or dependent type
theory. Moreover, TGL is a classic logic, with set-theoretic models giving direct
semantics to the term syntax, while HOAS typically employs intuitionistic rea-
soning mechanisms and is not concerned with models. The generic relationship
between term syntax and semantics (studied in Section 3 and instantiated in
Section 5) is an aspect covered by TGL, but not by HOAS.
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6.1. Additional flexibility of TGL compared to HOAS

HOAS is very well-suited, and greatly simplifies much of the representation
and proof bureaucracy, in case the object system has similar binding mechanisms
with the logical framework. If this is not the case though, a HOAS representation
can be impossible or at best challenging. Examples include non-standard λ-
calculi and general binders. However, the abstract TGL term-syntax axioms still
apply in these cases, for the natural notions of substitution and free variables.

Illative and linear λ-calculi [7, 18, 26] are versions of λ-calculi with λ-bound
terms restricted to respectively contain the bound variable (in the case of the
illative λ-calculi) and contain precisely one occurrence of the bound variable (in
the case of the linear λ-calculi). The grammar for terms is X ::= x | X Y | λx.Y,
just like for standard λ-calculus, except that for the production X ::= λx.Y one
additionally requires:
- that x ∈ FV (Y ), for the illative case;
- that x appears free in Y precisely once, for the linear case.

Since the illative and linear terms are closed under substitution and α-
equivalence we obtain that the TGL term-syntax axioms hold for (α-equivalence
classes of) these terms.

General binders in the style of Ott [45] and the latest Nominal Isabelle [51]
allow for binding in terms not only single variables, but also arbitrarily complex
(perhaps recursive) structures containing variables: one can bind simultaneously
a whole list, or a finite set of variables, or even a tree structure. As a simple
example, let (x1, x2) = (X1, X2) in Y binds simultaneously x1 and x2 in Y .
In general one has, besides the syntactic categories of terms and variables, a
category Binder of binders, perhaps defined mutually recursively with terms; in
particular, binders can occur in terms, having clearly indicated scopes. There is
also a notion of the set or list of variables that a binder binds, binds : Binder→
K(Var), where K is either Pf or List. Free variables and substitution of terms
are defined as one would expect, the latter avoiding capture by binds(b) in the
scope of b when a binder b is encountered during the recursive traversal of a term.
α-equivalence is defined on raw terms using binds, with or without neglecting
vacuous binders (depending on the selected “mode”). It is fairly easy to check
that, even in this general case, terms modulo α form a TGL term syntax.

6.2. Limitations of TGL and the prospect of combining it with HOAS

Unlike in HOAS, most interesting TGL theories for calculi with bindings em-
ploy axiom-schemas, and consequently are not directly suitable for mechanical
reasoning (in a theorem prover). The culprit for this is TGL’s underspecifica-
tion/parametrization: it does not provide a means to represent syntax of terms,
but is parameterized by such a syntax.

This restriction can be addressed by implementing (instances of) TGL in a
framework that does provide syntax specification mechanisms, including higher-
order support for axiom-schemas. For example, both the Edinburgh LF [21] and
the Isabelle [32] frameworks are based on HOAS and are therefore specialized
in representing syntax with bindings. For such a framework, the schemas of the
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TGL theories are no more problematic than the schemas residing at the core of
TGL, and of FOL for that matter. Therefore, if a term syntax is representable
in such a framework, then a TGL specification over this syntax will also be
representable.

To make the above claim more concrete, let S be a finite set of sorts and
Σ = (Σw,v)w∈S∗,v∈(S×S)∗ a finite binding signature, where f ∈ Σw,v, with w =
s1 . . . sm and v = ((t1, t

′
1), . . . , (tn, t

′
n)), indicates that f takes m free arguments

of sorts si and n bound arguments, binding variables of sort tj in terms of sort
t′j . Then the S-sorted set TermΣ, of terms up to α-equivalence, forms a term
syntax—this covers our examples from Section 4. Moreover, if we consider a
finite S∗-ranked set of relation symbols Π, then the language (TermΣ,Π) is
representable in LF or Isabelle as follows:
- The term syntax is represented in the usual fashion: each sort s is declared
as a type s and each function symbol f ∈ Σw,v, with w = s1 . . . sm and v =
((t1, t

′
1), . . . , (tn, t

′
n)), is declared as a constant f : s1 → . . . → sm → . . . (t1 →

t′1)→ . . .→ (tn → t′n).
- The TGL formulas on top of this syntax are represented in the same way as
those of FOL: each π ∈ Πw with w = s1 . . . sn becomes π : s1 → . . .→ sn → o in
LF (where o is a newly declared type of formulas); for each sort s, the s-universal
quantifier is represented by a constant Alls : (s→ o)→ o; etc.

Finally, the TGL reasoning infrastructure can be represented in the same
way as that of FOL, since it does not depend on the concrete format of terms;
representations of sequent-style and natural-deduction style for FOL are well-
known in both LF and Isabelle [21, 4, 31]. In LF, one defines a new dependent
type family true : o → Type representing the “truth” judgment for formulas;
true ϕ will be inhabited by all the proofs of ϕ.

Let us illustrate the similarity between the TGL term schematism and the
FOL formula schematism by an example. First consider standard FOL over one
single sort, with function symbols for zero and successor. These are represented
in LF by declaring a type ι and constants 0 : ι and Suc : ι → ι. If we want to
represent an axiom schema such as the following induction principle, schematic
in the formula ϕ and its free variable x:

ϕ(0/x) ∧ (∀x. ϕ⇒ ϕ[Suc(x)/x]) ⇒ ∀x. ϕ (Ind)

we would write something like this (representing an LF constant declaration):

Ind : {ϕ : ι→ o} true (ϕ 0 ∧ (All x. ϕ x⇒ ϕ (Suc x))⇒ All x. ϕx)

The same approach can be used to represent the TGL axiom-schema for our
calculi specifications, just that this time the schematism applies not to formulas,
but to terms. For example, the TGL schema for (ξ), namely (∀x. X = Y ) ⇒
λx.X = λx.Y , can be represented as

ξ : {X,Y : ι→ ι} true ((All x. X x = Y x)⇒ (Lam x.X x) = (Lam x. Y x))

Above, the braces { } indicate LF products, i.e., meta-level universal quanti-
fiers. To ease readability, we used the following notations:
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- the LF constants representing object-level conjunction, implication, and equal-
ity, ∧,⇒ : o→ o→ o and = : ι→ ι→ o, are applied in an infix manner;
- for the LF constant representing object-level ∀-quantification, All : (ι→ o)→
o, and for any LF term ϕ : ι → o, we write All x. ϕ x instead of All(λx. ϕ);
and similarly for the LF constant Lam : (ι → ι) → ι representing object-level
λ-abstraction.

Given a TGL theory with HOAS-representable term syntax, and considering
a representation of its schemas as exemplified above, we can prove the standard
adequacy theorems [21]: one for terms and one for the TGL deduction. A
potential future application of marrying HOAS with TGL is a framework for
obtaining HOAS adequacy for free: Since establishing the adequacy of a HOAS
representation of TGL (including TGL axiom-schemas of a given format) is
a one-time effort, this indirection through TGL could be used to automate
adequacy proofs. A similar goal is being pursued by λ-free frameworks [2] and
canonical adaptations of LF [22].

7. Concluding Remarks

In this paper, we made the following contributions:

• We introduced term-generic first-order logic (TGL), a logic where terms
are “black-boxes” exporting substitution and free variables. Defining
TGL models and proving completeness of a FOL-like Genzten system, we
showed that the development of first-order logic up to the completeness
theorem does not depend on the syntax for terms.

• We showed how various calculi and type systems can be defined as theories
in TGL. For two of these calculi, we showed that the general-purpose TGL
semantics is equivalent with their standard ad-hoc semantics. Compared
to ad-hoc semantics, TGL semantics has the advantage of uniformity. For
a new calculus specified as a TGL theory, one does not need to redesign
a notion of model and prove a completeness theorem, but can use the
default TGL models “customized” by the axioms of the theory.

• We discussed the relationship between TGL and HOAS, including a pos-
sible representation of TGL term syntax and deduction in HOAS

While the idea of developing first-order logic on top of an abstract term
syntax that only exports substitution and free variables seems new, the literature
abounds in approaches to represent syntax with bindings and λ-calculi.

First, Hindley and Longo [23, Remark 3.3] sketch a presentation of λ-calculus
models as extensions of FOL models to account for λ-terms (and in particular
propose the same axioms for (η) and (ξ) as we did in Subsection 4.4). Con-
tinuations and generalizations of their approach can be tracked in the notions
of binding algebra [1, 48] and binding logic [11]. In these works, terms have
a concrete structure, with constructors indicated by binding signatures—they
can be shown to form TGL term syntaxes. On the semantic side, the models
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from these settings and our TGL models display an evolution towards loose-
ness. Specifically, binding algebras are extensional structures, where bindings
are mapped to second-order functions. In order to also distinguish intensional
structure if needed, binding logic introduces more relaxed models, where bound
terms are interpreted as abstract items endowed with abstract application oper-
ators, which may or may not be extensional. Finally, TGL models are not even
required to interpret bound terms as “applicable” items, be they extensional
or intensional; instead, the interpretation is only required to compose well with
substitution. As shown in Section 5, the functional interpretation, or a more in-
tensional behavior of application, can be recovered by TGL axioms—this could
be used to prove that the aforementioned logics are embeddable in TGL, both
syntactically and semantically.

In Section 6, we have already discussed higher-order abstract syntax (HOAS),
a methodology that delegates variables and bindings of the represented system
to the meta-language variables and bindings. By contrast, first-order approaches
such as de Bruijn levels [9], de Bruijn indexes [9], nominal logic [35, 50], locally
nameless [19, 20, 12, 6] or locally named [44, 36], represent variables as ob-
jects that can be referred explicitly in the logic. The considered terms usually
have static bindings and capture-avoiding substitution, therefore constituting
TGL term syntaxes. While most of these approaches develop purely syntactic
methods, work on nominal logic also covers semantics. Faithful to the explicit-
variable view, nominal models/algebras [14, 10] are inhabited by abstract syn-
tactic objects representing names (variables). By contrast, in TGL variables
have no semantic meaning in the absence of a valuation. This makes it diffi-
cult to represent cases where the object-calculus unbound variables have their
own “individuality” distinct from that given by the terms that will substitute
them [5]—this limitation, as well as some of its workarounds [4, 34], seems to
be shared by TGL with HOAS.

Our own previous work [37, 39, 38] combines HOAS with a first-order ap-
proach in a definitional framework implemented in Isabelle/HOL [30]: after
an instrumentation of substitution in a first-order setting, HOAS machinery
is added as a definitional layer. By contrast, TGL (as well as its prototyped
Isabelle implementation) argues for axiomatic specifications of systems. The
basic term syntax components—free/fresh variables and substitution—are in-
volved in a characterization of terms with bindings as initial model in a category
of algebras, yielding substitution-compositional recursion principles [38].

Inspired by the method of de Bruijn levels, functor-category approaches
[13, 24, 3] organize the terms with bindings as a presheaf indexed by the sets
of free variables. While TGL models are based on different principles than
presheaf models, TGL term syntaxes export enough structure and properties
to form presheaf models, since the latter only require free variables and well-
behaved renaming (a particular case of substitution).
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APPENDIX

A. Definitions of Operators on Formulas

Below we list these (very standardly-looking) definitions. The set FV (ϕ),
of the free variables of ϕ, is defined recursively as follows: FV (π(T1, . . . , Tn)) =
FV (T1)∪ . . .∪FV (Tn); FV (ϕ⇒ ψ) = FV (ϕ)∪FV (ψ); FV (ϕ∧ψ) = FV (ϕ)∪
FV (ψ); FV (∀x.ϕ) = FV (ϕ) \ {x}. (Note that, since FV (T ) is finite for each
term T , FV (ϕ) is also finite for each formula ϕ.) The operator FV is extended
from terms and formulas to sets, lists, and tuples of terms and/or formulas in
the expected way, by taking the union.

The (capture-free) substitution map (of terms for variables in formulas) Subst :
Formula×TermVar ,sort → Formula is defined as follows: Subst (π(T1, . . . , Tn), θ)
=π(Subst (T1, θ), . . . ,Subst (Tn, θ)); Subst (ϕ⇒ψ, θ)=Subst (ϕ, θ)⇒Subst (ψ, θ);
Subst (ϕ∧ψ, θ)=Subst (ϕ, θ)∧Subst (ψ, θ); Subst (∀x.ϕ, θ)=∀z.Subst (ϕ, θ[x← z]),
where z is the least variable (for some fixed wellorder on variables) having sort
sort (x) and not in FV (ϕ) ∪

⋃

{FV (θ(y)) : y ∈ FV (ϕ)}.
α-equivalence of formulas, written ≡α, is defined to be the smallest relation

R ⊆ Formula×Formula satisfying the following: π(T1, . . . , Tn) R π(T1, . . . , Tn);
ϕ ∧ ϕ′ R ψ ∧ ψ′ if ϕ R ψ and ϕ′ R ψ′; ϕ⇒ ϕ′ R ψ ⇒ ψ′ if ϕ R ψ and ϕ′ R ψ′;
∀x.ϕR ∀y.ψ if sort (x) = sort (y), ϕ[z/x]Rψ[z/y] for some z 6∈FV (ϕ) ∪ FV (ψ)
with sort (z) = sort (x).

B. Proofs of basic lemmas in TGL

Recall that [T/x] denotes the function in Var → Term sending x to T and
all other variables to themselves. Moreover, recall our convention: Whenever we
write K[T/x] (where K is a term or a formula), we implicitly assume that the
substitution is well-defined, i.e., that sort (T ) = sort (x). We shall also write ι
for Var →֒ Term, the inclusion of variables into terms.

Proof of Lemma 2.2. (1) Assume x 6∈ FV (T ). Since [T ′/x]↾FV (T )= ι↾FV (T ),
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with Definition 2.1.(3,2) we obtain T [T ′/x] = Subst (T, ι) = T .
(2) If y = x then, using Definition 2.1.(1), y[T/x] = Subst (x, [T/x]) = [T/x](x) =
T . If y 6= x then [T/x]↾FV (y)= ι↾FV (y), thus, with Definition 2.1.(3,2), y[T/x] =
Subst (y, ι) = y.
(3) FV (T [T ′/x]) = FV (Subst (T, [T ′/x])) = (using Definition 2.1.(6))
⋃

{FV ([T ′/x](y)). y ∈ FV (T )} = (since x ∈ FV (T ))
FV ([T ′/x](y)) ∪

⋃

{FV ([T ′/x](y)) : y ∈ FV (T ), y 6= x} = (by point (2))
FV (T ′) ∪ (FV (T ) \ {x}).
Above, we also applied point (2) of the current proposition.
(4) By Definition 2.1.(1), we have:

T [y/x][z/y] = Subst (Subst (T, [y/x]), [z/y]) = Subst (T, [y/x]; [z/y]).

Now, for each u ∈ Var , we have that:

([y/x]; [z/y])(u) = Subst ([y/x](u), [z/y]) =

{

Subst (y, [z/y]) , if u = x
Subst (u, [z/y]) , if u 6= x

=

= (by point (2)) =







z, if u = x
z, if u 6= x and u = y
u, if u 6= x and u 6= y

=

{

z, if u = x or u = y
u, if u 6= x and u 6= y

Hence, since y 6∈ FV (T ), it follows that [y/x][z/y]↾FV (T )= [z/x]↾FV (T ), imply-
ing, by Definition 2.1.(3), Subst (T, [y/x]; [z/y]) = Subst (T, [z/x]).
(5) Follows from point (4), since, by (2), Subst (T, [x/x]) = Subst (T, ι) = T . �

Proof of Lemma 2.7. All points, except for (12), can be proved by induction
either on the structure of formulas, or on the definition of ≡α. We shall only
prove the more interesting points, namely (1), (2), (6), (10) and (12) and refer
the reader to [40] for full proofs of all points. (IH) will denote the induction
hypothesis. Each time, we shall skip the starightforward inductive case of the
logical connectives ∧,⇒.

Points (1) and (2) are proved by induction on the structure of ϕ.
(1): Base case. ρ↾FV (π(T1,...,Tn))= ρ′↾FV (π(T1,...,Tn)) implies
ρ↾Ti

= ρ′↾Ti
for each i ∈ {1, . . . , n}, which implies (by Lemma 2.5)

ATi
(ρ) = ATi

(ρ′) for each i ∈ {1, . . . , n}, which implies
ρ ∈ Aϕ iff ρ′ ∈ Aϕ.

Induction step. Assume ρ↾FV (∀x.ϕ)= ρ′↾FV (∀x.ϕ). Then
ρ↾FV (ϕ)\{x}= ρ′↾FV (ϕ)\{x}, hence for all a ∈ A, ρ[x← a]↾FV (ϕ)= ρ′[x← a]↾FV (ϕ).
By (IH), we obtain that for all a ∈ A, ρ[x ← a] ∈ Aϕ iff ρ′[x ← a] ∈ Aϕ, in
particular that ρ ∈ A∀x.ϕ iff ρ′ ∈ A∀x.ϕ.
(2): Base case. We have the following equivalences:
ρ ∈ ASubst (π(T1, . . . , Tn), θ) iff
ρ ∈ Aπ(Subst (T1, θ),...,Subst (Tn, θ)) iff
(ASubst (T1, θ)(ρ), . . . , ASubst (Tn, θ)(ρ)) ∈ Aπ iff (by Definition 2.4.(b.iii))
(AT1

(Aθ(ρ)), . . . , ATn
(Aθ(ρ))) ∈ Aπ iff

Aθ(ρ) ∈ Aπ(T1,...,Tn).

34



Induction step. We have the following equivalences: ρ ∈ Subst (∀x.ϕ, θ) iff
ρ ∈ A∀z.Subst (ϕ, θ[x← z]) (where z is the least variable of sort sort (x) not in
FV (ϕ) ∪

⋃

{θ(y) : y ∈ FV (ϕ)}) iff
ρ[z ← a] ∈ ASubst (ϕ, θ[x← z]) for all a ∈ A, iff (by (IH))
Aθ[x←z](ρ[z ← a]) ∈ Aϕ for all a ∈ A, iff (as will be proved shortly **)
Aθ(ρ)[x← a] ∈ Aϕ for all a ∈ A, iff
Aθ(ρ) ∈ A∀x.ϕ.
It remains to prove the equivalence **. It suffices to show that
Aθ[x←z](ρ[z ← a])↾FV (ϕ)= Aθ(ρ)[x← a]↾FV (ϕ).
Let y ∈ FV (ϕ). Then

Aθ[x←z](ρ[x← a])(y) = Aθ[x←z](y)(ρ[x← a]) =

=

{

Aθ(y)(ρ[z ← a]), if x 6= y
Az(ρ[z ← a]), if x = y

=

{

Aθ(y)(ρ[z ← a]), if x 6= y
a, if x = y.

On the other hand,

Aθ(ρ)[x← a](y) =

{

Aθ(y)(ρ), if x 6= y
a, if x = y.

Finally, we need to show that ρ[z ← a]↾FV (θ(y))= ρ↾FV (θ(y))—this is true
because, by the choice of z, z 6∈ FV (θ(y)).

Points (3)-(11) can be proved by induction on the definition of ≡α, and for
(5)–(11) it is most convenient to use mutual induction. We only show how to
handle points (6), (10) and (11).

Base case.
(6): We have that Subst (π(T1, . . . , Tn), ι) = π(Subst (T1, ι), . . . ,Subst (Tn, ι)) =
π(T1, . . . , Tn), hence Subst (π(T1, . . . , Tn, ι) ≡α π(T1, . . . , Tn).
(10) and (11): Follow similarly to (6), using Definition 2.1.(3,6).

Inductive step.
(6): We need to prove that Subst (∀x.ϕ, ι) ≡α ∀x.ϕ, i.e., that ∀z.ϕ[z/x] ≡α ∀x.ϕ
with z as in the definition of substitution. Let z′ such that sort (z′) = sort (x)
and z′ 6∈ FV (ϕ) ∪ FV (ϕ[z/x]), or equivalently, z′ 6∈ FV (ϕ) ∪ {z}. Then, by
(IH) for point (7), ϕ[z/x][z′/z] ≡α ϕ[z

′/x] and we are done.
(10): Assume θ↾FV (∀x.ϕ)= θ′↾FV (∀x.ϕ). In order to prove that Subst (∀x.ϕ, θ) ≡α
Subst (∀x.ϕ, θ′), note first that the variable z in the definition of substitution is
the same in the two cases, and we need to show

∀z.Subst (ϕ, θ[x← z]) ≡α ∀z.Subst (ϕ, θ
′[x← z]),

i.e., by (IH) for point (11), that

Subst (ϕ, θ[x← z]; [z′/z]) ≡α Subst (ϕ, θ′[x← z]; [z′/z]),

i.e., that Subst (ϕ, θ[x← z′]) ≡α Subst (ϕ, θ′[x← z′]).
The last is true by (IH) for point (10), since θ[x← z′]↾FV (ϕ)= θ′[x← z′]↾FV (ϕ).

(11): In order to prove that Subst (∀x.ϕ, θ; θ′) ≡α Subst (Subst (∀x.ϕ, θ), θ′), let
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z, z′, z′′ as in the definition of substitution (for each of the three involved sub-
stitutions). We need to show that

∀z.Subst (ϕ, (θ; θ′)[x← z]) ≡α ∀z
′′.Subst (Subst (ϕ[x← z′], θ), θ′[z′ ← z′′]),

i.e., that

Subst (ϕ, (θ; θ′)[x← z])[z′′′/z]] ≡α Subst (Subst (ϕ[x← z′], θ), θ′[z′ ← z′′])[z′′′/z′′],

where z′′′ 6∈ FV (ϕ) ∪ {z, z′, z′′}. Indeed, using (IH) for point (11) and the
freshness of z, z′, z′′, z′′′), we have the following chain of α-equivalences and
equalities:

Subst (ϕ, (θ; θ′)[x← z])[z′′′/z] ≡α Subst (ϕ, (θ; θ′)[x← z]; [z′′′/z]) ≡α
Subst (ϕ, (θ; θ′)[x← z′′′]) = Subst (ϕ, θ[x← z′]; θ′[z′ ← z′′′]) =

Subst (ϕ, θ[x← z′]; θ′[z′ ← z′′]; [z′′′/z′′]) ≡α
Subst (ϕ, θ[x← z′]; θ′[z′ ← z′′])[z′′′/z′′],

which by (IH) for point (5) yield the desired result.
Finally, we prove (12): Again, the cases of the logical connectives ∧ and

⇒ are straightforward. For the ∀-case, assume ϕ ≡α ϕ′. Then, by point (9),
ϕ[z/x] ≡α ϕ

′[z/x] for any x and z, in particular ∀x.ϕ ≡α ∀x.ψ. �

C. Proof of completeness for TGL with equality (Th. 3.1=)

In order to reduce TGL with equality to plain TGL, we consider the following
set Eql of sentences called the equality axioms:

x = x (Refl)
x = y ⇒ y = x (Symm)

x = y ∧ y = z ⇒ x = z (Trans)
(x1 = y1 ∧ . . . ∧ xn = yn ∧ π(x1, . . . , xn))⇒ π(y1, . . . , yn) (Compπ)

x = y ⇒ T [x/z] = T [y/z] (Subst)

Soundness: The soundness of all the rules except for (Sbs) is straightforward.
Let A be a model and ρ a sort-preseving interpretation such that AT1

(ρ) =
AT2

(ρ). Then, by Definition 2.4.(b.iii), we obtain
AT [T1/x](ρ) = AT (ρ[x← AT1

(ρ)]) = AT (ρ[x← AT2
(ρ)]) = AT [T2/x](ρ).

This immediately implies the soundness of (Sbs).
Completeness: Adding the equality rules amounts to adding the equality

axioms Eql (listed in Section 2.4) in the antecedent of sequents. Thus Γ ⊲ ∆ is
provable in G= iff Eql ∪ Γ ⊲ ∆ is provable in G.

Let L be the given TGL language with equality. We define L′ to be the
language without equality that has the term syntax and the ordinary relation
symbols of L, and additionally includes an ordinary binary relation symbol
=s ∈ Π′ss for each sort s. For each L-formula ϕ, let ϕ# be the L′-formula
obtained by replacing each occurrence of = with =s for the appropriate sort s.
Let Eql ′ = {ϕ#. ϕ ∈ Eql}.
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For every L′-modelA′ satisfying Eql ′, we construct an L-model by a straight-
forward quotienting process: We define the relation ≡ by a ≡ b iff Asort ′ (a) =
Asort ′ (b) and A′ |=ρ x =Asort (a) y for some ρ with ρ(x) = a and ρ(y) = b.
Due to satisfaction of Eql ′ by A′, ≡ is an equivalence compatible with sort-
ing, with the relations A′π and with substitution, the last in the sense that
A′T1

(ρ) = A′T2
(ρ) implies A′T [T1/x]

(ρ) = A′T [T2/x]
(ρ). Thus, we can define a quo-

tient model A as follows:
- A = A′/≡;
- Asort (a) = Asort ′ (a′) for some a′ in (the ≡-class) a;
- AT (ρ) = A′T (ρ

′), where, for each x, ρ′ (x) is defined as some element in ρ (x);
- Aπ(a1, . . . , an) = A′π(a

′
1, . . . , a

′
n) where each a′i is some element in ai.

For each sort-preserving ρ′ : Var → A′, we define ρ′# : Var → A by ρ′#(x) =
ρ′(x)/≡. Then ρ

′ is also sort-preserving and an easy induction on ϕ shows that
A′ |=ρ′ ϕ

# iff A |=ρ′# ϕ. It follows that Γ ⊲ ∆ is tautological in L in the logic
with equality iff (Eql ′,Γ) ⊲ ∆ is tautological in L′ in the logic without equality.
Completeness of G= now follows from completeness of G. �

D. Proofs on the comparison between ad hoc and TGL models

D.1. For the untyped λ-calculus.

Proof of Lemma 5.1. The inverse of the forgetful function maps simple pre-
structures (A, 〈 〉, (AX)X∈Term) verifying (P1)-(P4) to (A, 〈 〉, (AX)X∈Term(A)),
where for each term X in Term, sequence of elements a1, . . . , an in A and se-
quence of distinct variables x1, . . . , xn, AX[a1/x1,...,an/xn](ρ) is, by definition,
AX(ρ[x1 ← a1, . . . , xn ← an]). This definition is correct, because any term
in Term(A) has the form X[a1/x1, . . . , an/xn] for some X, and AX(ρ[x1 ←
a1, . . . , xn ← an]) does not depend on the choice of X. A simple induction
on the structure of Term(A) terms shows that AX[a1/x1,...,an/xn](ρ) is indeed
equal to AX(ρ[x1 ← a1, . . . , xn ← an]) in any pre-structure, and thus the two
mappings are mutually inverse.

These mappings obviously preserve satisfaction. As for properties (P5) and
(P6), one needs another induction to prove that in a pre-structure, verifying
these properties w.r.t. Term-terms is sufficient for them to hold w.r.t. Term(A)-
terms; here one uses again the equality AX[a1/x1,...,an/xn](ρ) = AX(ρ[x1 ←
a1, . . . , xn ← an]). �

Proof of Lemma 5.2. Since (β′), (η′) and (ext) are instances of the schemas
(β), (η) and (ext), all we need to show is that the latter follow from the former;
and this simply holds because in our logic it is sound to infer ϕ(X) from ∀y.ϕ(y),
and by the way substitution in formulas was defined. �

Proof of Proposition 5.3. We show that A# is a TGL model. The TGL
model axiom (b).(i) holds trivially, since the syntax is single-sorted. Moreover,
(b).(ii) is precisely (P1).

The remaining axiom, (b).(iii), requires checking that ASubst (X, θ)(ρ) =
AX(Aθ(ρ)) for each ρ and θ. We first reduce the problem to finite substitutions,
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i.e., substitutions θ′ such that the support of θ′, namely {x ∈ Var | θ′(x) 6= x},
is finite. Let θ′ be the finite substitution defined by θ′(x) = θ(x) if x ∈ FV (X)
and = x otherwise. Form the definition of θ′ and Definition 2.1.(3), we have
Subst (X, θ) = Subst (X, θ′), and hence ASubst (X, θ)(ρ) = ASubst (X, θ′)(ρ); more-
over, from the definition of θ′ we have Aθ(ρ)↾FV (X)= Aθ′(ρ)↾FV (X), and hence,
by (P3), AX(Aθ(ρ)) = AX(Aθ′(ρ)).

Now, for any finite substitution θ′, if x1, . . . , xn are all the distinct variables
of its support and Xi = θ(xi), we have Subst (X, θ′) = X[X1/x1, . . . , Xn/xn]
and Aθ′(ρ) = ρ[x1 ← AX1

(x1), . . . , xn ← AXn
(xn)]. It therefore suffices to

prove AX[X1/x1,...,Xn/xn](ρ) = AX(ρ[x1 ← AX1
(x1), . . . , xn ← AXn

(xn)]). We
do this by lexicographic induction on two criteria: the depth of X, and then the
number n. The cases with X variable and X of the form X ′X ′′ are easy, and
they use (P1) and (P2). Assume now that X has the form λx.X ′. Since we work
modulo α-equivalence, we can assume that x is not free in any of X1, . . . , Xn.

• If x 6∈ {x1, . . . , xn}, then X[X/x] = λx.(X ′[X/x]). Thus we need to check
Aλx.(X′[X/x])(ρ) = Aλx.X′(ρ[x ← AX(ρ)]). By (P4), it is sufficient to

consider a ∈ A and prove AX′[X/x](ρ[x← a]) = Aλx.X′(ρ[x← AX(ρ), x←

a]), i.e., AX′[X/x](ρ[x ← a]) = Aλx.X′(ρ[x ← a][x ← AX(ρ)]), which is

true by the induction hypothesis applied to X ′ and ρ[x← a].

• If x ∈ {x1, . . . , xn}, say x = x1, thenX[X/x] = X[X2/x2, . . . , Xn/xn] and
by the induction hypothesis (second criterion), X[X2/x2, . . . , Xn/xn] =
AX(ρ[x2 ← AX2

(x1), . . . , xn ← AXn
(xn)]. Finally, because x 6∈ FV (X),

the valuations ρ1 = ρ[x ← AX(ρ)] and ρ2 = ρ[x2 ← AX2
(x1), . . . , xn ←

AXn
(xn)] coincide on FV (X), hence, by (P3), AX(ρ1) = AX(ρ2) and we

are done.

(Above, we used the obvious tuple notations x for (x1, . . . , xn),X for (X1, . . . , Xn)
etc.) A# satisfies (ξ) because (P4) is just a semantic statement of (ξ).

We show that A$ is a λ-model. Properties (P1) and (P3) are required for
generic models as well (one as an axiom and the other as a proved fact), hence
they hold. (P2) holds as an instance of the axiom (b).(iii) of TGL models:
AX1X2

(ρ) = Ax1x2[X1/x1,X2/x2](ρ) = Ax1x2
([ρ[x1 ← AX1

(ρ), x2 ← AX2
(ρ)]) =

AX1
(ρ)〈AX2

(ρ)〉. (We also used the definition of 〈 〉.) Again, (P4) holds in A$

because M satisfies (ξ).
That # and $ are mutually inverse follows from the fact that a〈b〉 = Axy(ρ),

with ρ mapping x to a and y to b, holds in any pre-structure verifying (P1)-(P4).
In order to see that the pre-structure is a λ-model (i.e., it also verifies (P5)

iff the corresponding TGL model satisfies (β), note that (P5) is just a semantic
statement of (β′), which is equivalent to (β) by Lemma 5.2. Similarly, exten-
sional λ-models correspond to (β) ∪ (η)-TGL models because of the following:
- under the (β), (ξ) assumptions, (η) is equivalent to (ext);
- (ext) is equivalent to (ext′) by Lemma 5.2;
- (ext′) is simply a semantic statement of (P6).

Finally, both # and $ preserve satisfaction since it has the same definition
for equations in pre-structures and generic models. �
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D.2. For System F.

Lemma 1. We consider the context of the “Henkin to TGL” definitions. The
following hold:
(1) The definition of MX does not depend on the choice of Γ and T .
(2)M is a TGL model.
(3)M |=TGL SF=.

Proof. (1): Assume ⊢TSF Γ ⊲ X : T , ⊢TSF Γ′ ⊲ X : T ′ and (γ, δ) is compatible
with Γ and Γ′. Then HT (γ) = HT ′(γ) and HΓ ⊲ X:T (γ, δ) = HΓ′ ⊲ X:T ′(γ, δ)
follow by induction on the derivation of ⊢TSF Γ ⊲ X : T , employing inversion
rules for ⊢TSF Γ′ ⊲ X : T ′ and conditions (4)-(10) from Definition 5.6.
(2): We verify condition b.(i)–b.(iii) from the definition of TGL models. b.(i)
is immediate. b.(ii) amounts to checking Mt(γ) = γ(t), which follows from
Definition 5.6.(3), and Mx(γ, δ) = δ(x). To check the latter, we let Γ = x : γ(t)
for some t. Then ⊢TSF Γ ⊲ x : t and (γ, δ) is compatible with Γ—hence, by
point (1) and Definition 5.6.(6), we have Mx(γ, δ) = HΓ ⊲ x : t(γ, δ) = δ(x), as
desired. It remains to verify condition b.(iii), which amounts to checking that
MSubst (T, ω)(γ) = MT (Mω(γ)) and MSubst (X, (ω, θ))(γ, δ) = MX(M(ω,θ)(γ, δ)).
These follow from the following properties of the Henkin interpretations:
- HSubst (T, ω)(γ) =MT (Hω(γ)). This is provable by induction on T .
- If ⊢TSF Γ ⊲ X : T , ⊢TSF Γx ⊲ δ(x) : Tx for all x ∈ FVdata(X), and (γ, δ) is
compatible with Γ and the Γx’s, then there exists Γ′ such that
⊢TSF Γ′ ⊲ Subst (X, (ω, θ)) : Subst (T, ω) and (γ, δ) is compatible with Γ′. This
is provable by induction on the derivation of ⊢TSF Γ ⊲ X : T .
(3): The typing axioms—[Abs], [App], [T-Abs] and [T-App]—follow from the
types of the Henkin operators, Definition 5.6.(d-g). The equational axioms
follow similarly to the ones for the untyped λ-calculus in Subsection 5.1. �

Lemma 2. We consider the context of the “TGL to Henkin” definitions. The
following hold:
(1) The definition of Π(f) does not depend on the choice of t, T , and γ.
(2) The definition of Appτ,σ(d)(d

′) does not depend on the choice of γ and δ.
(3) The definition of Appf (τ) does not depend on the choice of γ.
(4) H is a Henkin model.

Proof. (1)-(3): Follow fromM |=TGL (ξ) together with the definition of model.
For example, (1) follows like this: Let t, T, γ and t′, T ′, γ′ such that f = (τ 7→
MT (γ[t ← τ ])) = (τ 7→ MT ′(γ′[t′ ← τ ])) (*). Using Definition 2.4.(b.iii) and
Lemma 2.5, we may assume, perhaps after choosing some fresh variables and
substituting them for the variables of T ′, that t = t′ and FV (T ) ∩ FV (T ′) ⊆ t.
We define γ′′ to behave like γ on FV (T )\{t} and like γ′ on FV (T ′)\{t}. By (*)
and Lemma 2.5, we obtain (τ 7→ MT (γ

′′[t← τ ])) = (τ 7→ MT ′(γ′′[t← τ ])). By
M |=TGL (ξ), we have MΠt.T (γ

′′) = MΠt.T ′(γ′′), hence, by Lemma 2.5 again,
we have MΠt.T (γ) =MΠt.T ′(γ′), as desired.
(4): Follows from points (1)-(3), the axioms of SF=, and Proposition 5.5,
the last taking care of the axioms’ typing assumptions. The proofs are again
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similar to the ones for the untyped λ-calculus. For example, let us prove
condition (9) from Definition 5.6. We assume ⊢TSF tj , where tj is Γ ⊲ λx :
T.X : T → T ′, and (γ, δ) is compatible with Γ. Let ϕ, ψ, and χ be the
TGL formulas

∧

Γ#, tpOf (λx : T.X, T → T ′), and ϕ → ψ, respectively. By
Proposition 5.5, we have SF ⊢TGL χ, hence M |=TGL χ, hence (γ, δ) ∈
Mχ. Moreover, by the Γ-compatibility of (γ, δ), we have (γ, δ) ∈ Mϕ. Hence
(γ, δ) ∈ Mψ, that is, (Mλx:T.X(γ, δ),M→(MT (γ, δ),MT ′(γ, δ))) ∈ MtpOf, that
is, Htj ∈ DomHT (γ)→H′

T
(γ), which proves the first part of (9).

To prove the second part, let d ∈ DomHT (γ) and δ
′ = δ[x← d]. Then

AppHT (γ),HT ′ (γ)(HΓ ⊲λx:T.X :T→T ′(γ, δ))(d) =
M (Mλx:T.X(γ, δ), Mx(γ, δ

′)) = (by Lemma 2.5)
M (Mλx:T.X(γ, δ′), Mx(γ, δ

′)) =
M(λx:T.X) x(γ, δ

′) = (sinceM |=TGL (β) andM |=TGL χ)
MX = (since (γ, δ′) is compatible with Γ, x :T )
HΓ,x:T ⊲X:T ′(γ, δ′), as desired. �

Proof of Proposition 5.7. Let tj be Γ ⊲ X :T and tj ′ be Γ ⊲ Y :T . Let ϕ be
the TGL formula

∧

Γ#. At point (1), we let M = H#. At point (2), we let
H =M$. In both cases, immediately from the definitions, we have:
(γ, δ) compatible with Γ in H iff (γ, δ) ∈Mϕ (*)

We prove that, in both cases, assuming one of the equivalent conditions from
(*) holds, we have: MX(γ, δ) = Htj (γ, δ) (**)

Indeed, at point (1) this follows from Lemma 1, and at point (1) it follows
directly from the definition ofM$.

(*) and (**) immediately imply the desired facts. �
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