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Abstract. The proof assistant Isabelle/HOL is based on an extension of Higher-

Order Logic (HOL) with ad hoc overloading of constants. It turns out that the

interaction between the standard HOL type definitions and the Isabelle-specific

ad hoc overloading is problematic for the logical consistency. In previous work,

we have argued that standard HOL semantics is no longer appropriate for captur-

ing this interaction, and have proved consistency using a nonstandard semantics.

The use of an exotic semantics makes that proof hard to digest by the commu-

nity. In this paper, we prove consistency by proof-theoretic means—following the

healthy intuition of definitions as abbreviations, realized in HOLC, a logic that

augments HOL with comprehension types. We hope that our new proof settles the

Isabelle/HOL consistency problem once and for all. In addition, HOLC offers a

framework for justifying the consistency of new deduction schemas that address

practical user needs.

1 Introduction

Isabelle/HOL [35, 36] is a popular proof assistant, with hundreds of users world-wide

in both academia and industry. It is being used in major verification projects, such as

the seL4 operating system kernel [24]. In addition, Isabelle/HOL is a framework for

certified programming: functional programming (including lazy (co)programming [9])

is supported natively and imperative programming is supported via a monadic exten-

sion [10]. Programs can be written and verified in Isabelle/HOL, and efficient code for

them (in Haskell, Standard ML, OCaml and Scala) can be produced using a code gener-

ator [19]. This certified programming methodology has yielded a wide range of verified

software systems, from a Java compiler [32] to an LTL model checker [14] to a con-

ference management system [23]. The formal guarantees of all such systems, as well

as those considered by some formal certification agencies [21], are based on one major

assumption: the correctness/consistency of Isabelle/HOL’s inference engine.

Keeping the underlying logic simple, hence manifestly consistent, along with reduc-

ing all the user developments to the logic kernel, has been a major tenet of the LCF/HOL

approach to formal verification, originating from Robin Milner and Mike Gordon [17].

Yet, Isabelle/HOL, one of the most successful incarnations of this approach, takes some

liberties beyond the well-understood higher-order logic kernel. Namely, its definitional

mechanism allows delayed ad hoc overloading of constant definitions—in turn, this

enables Haskell-style type classes [46] on top of HOL [37].



In standard HOL, a polymorphic constant should either be only declared (and for-

ever left uninterpreted), or fully defined at its most general type.4 By contrast, Is-

abelle/HOL allows first declaring a constant, and at later times overloading it by defin-

ing some of its instances, as in the following example:5

consts 0 : α

. . .

definition 0 : real ≡ real_zero

. . .

definition 0 : α list ≡ []

Recursive overloading is also supported, as in:

definition 0 : α list ≡ [0:α]

In between the declaration and the instance definitions, arbitrary commands may

occur, including type definitions (“typedef”) and (co)datatype definitions (which are

derived from typedef [7, 45]). For example, the following definition introduces a type

of polynomials over an arbitrary domain α, where ∀∞ is the “for all but finitely many”

quantifier:

typedef α poly ≡ {f : nat → α | ∀∞ n. f n = 0}

When 0 is defined for concrete types, such as real and α list, the library theorems

about arbitrary-domain polynomials are enabled for polynomials over these concrete

types.6

To avoid inconsistency, this overloading mechanism is regulated by syntactic checks

for orthogonality and termination. Examples like the above should be allowed, whereas

examples like the following encoding of Russell’s paradox [28, Sect. 1] should be for-

bidden:

consts c : α

typedef T ≡ {True, c}

definition c : bool ≡ ¬ (∀(x:T) y. x = y)

The above would lead to a proof of false taking advantage of the circularity T  

cbool T in the dependency relation introduced by the definitions: one first defines the

type T to contain precisely one element just in case cbool is True, and then defines cbool

to be True just in case T contains more than one element.

4 There are other specification schemes supported by some HOL provers, allowing for more

abstract (under)specification of constants—but these schemes are known to be captured or

over-approximated by the standard (equational) definition scheme [5].
5 To improve readability, in the examples we use a simplified Isabelle syntax. To run these exam-

ples in Isabelle, one must enclose in overloading blocks the overloaded definitions of constants

and add the overloaded attribute to type definitions that depend on overloaded constants; in

addition, one must provide nonemptiness proofs for type definitions [47, Sect. 11(3,7)]. Note

also that Isabelle uses⇒ instead of→ for function types and :: instead of : for typing.
6 Isabelle/HOL implements a type-class infrastructure allowing fine control over such instantia-

tions. In this case, α is assumed to be of type class zero; then real, α list etc. are registered as

members of zero as soon as 0 is defined for them. Polymorphic properties can also be associ-

ated to type classes, and need to be verified upon instantiation. Type classes do not require any

logical extension, but are representable as predicates inside the logic— [48, Sect. 5] explains

the mechanism in detail.
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Because Isabelle/HOL has a large user base and is heavily relied upon, it is impor-

tant that the consistency of its logic be established with a high degree of clarity and a

high degree of rigor. In 2014, we started an investigation into the foundations of this

logic, which has revealed a few consistency problems (including the above “paradox”).

These issues have generated quite a lot of discussion in the Isabelle community, during

which some philosophical disagreements and misunderstandings among the users and

the developers have surfaced [1]. The technical issues have been addressed [26,28] and

are no longer exhibited in Isabelle2016.7

In addition to taking care of these issues, one of course needs some guarantees that

similar issues are not still present in the logic. To address this, in previous work [28]

we have proved that the logic is now consistent, employing a semantic argument in

terms of a nonstandard semantics for HOL. Our original proof was somewhat sketchy

and lacking in rigor—full (pen-and-paper) proofs are now included in an extended re-

port [27]. Of course, a machine-checked proof, perhaps building on a recent formaliza-

tion of HOL [15, 25], would make further valuable progress on the rigor aspect.

In this paper, we hope to improve on the clarity aspect and provide deeper insight

into why Isabelle/HOL’s logic is consistent. As mentioned, Isabelle/HOL is richer than

HOL not in the rules of deduction, but in the definitional mechanism. A natural reluc-

tance that comes to mind concerning our semantic proof of consistency is best expressed

by Isabelle’s creator’s initial reaction to our proof idea [40]:

It’s a bit puzzling, not to say worrying, to want a set-theoretic semantics for

plain definitions. The point of definitions (and the origin of the idea that they

preserve consistency) is that they are abbreviations.

This paper’s first contribution is a new proof of consistency for Isabelle/HOL’s logic,

easy to digest by the large community of “syntacticists” who (quite legitimately) wish

to regard definitions as a form of abbreviations. The problem is that type definitions

cannot simply be unfolded (and inlined)—a type definition is an axiom that postulates a

new type and an embedding-projection pair between the new type and the original type

(from where the new type is carved out by a nonempty predicate). But the syntactic

intuition persists: what if we were allowed to unfold type definitions? As it turns out,

this can be achieved in a gentle extension of HOL featuring comprehension types. This

extended logic, called HOL with Comprehension (HOLC), is a syntacticist’s paradise,

allowing for a consistency proof along their intuition. This proof is systematically de-

veloped in Section 3. First, HOLC is introduced (Section 3.1) and shown consistent

by a standard argument (Section 3.2). Then, a translation is defined from well-formed

Isabelle/HOL definitions to HOLC, which is proved sound, i.e., deduction-preserving

(Section 3.3). The key to establishing soundness is the use of a modified deduction

system for HOL where type instantiation is restricted—this tames the inherent lack of

uniformity brought about by ad hoc overloading. Finally, soundness of the translation

together with consistency of HOLC ensures consistency of Isabelle/HOL.

7 The philosophical dispute about foundations is far from having come to an end [4], and unfor-

tunately tends to obscure what should be a well-defined mathematical problem: the consistency

of the Isabelle/HOL logical system (which is of course not the same as the overall reliability

of the Isabelle/HOL implementation).
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As a second contribution, we use HOLC to justify some recently proposed exten-

sions of Isabelle/HOL—namely, two new deduction schemas [29]. One enables local

type definitions inside proof contexts; the other allows replacing undefined instances of

overloaded constants with universally quantified variables. As we argue in [29], both ex-

tensions are useful for simplifying proof development by enabling the transition from

light type-based theorems to heavier but more flexible set-based theorems. However,

proving that these extensions do not introduce inconsistency is surprisingly difficult.

In particular, our previously defined (consistency-justifying) semantics [28] has a blind

spot on the second extension—it is only from the viewpoint of HOLC that the consis-

tency of both extensions is manifest (Section 4).

More details on our constructions and proofs can be found in a technical report

made available online [30].

2 The Isabelle/HOL Logic Recalled

The logic of Isabelle/HOL consists of:

– HOL, that is, classical higher-order logic with rank 1 polymorphism, Hilbert choice

and the Infinity axiom (recalled in Section 2.1)

– A definitional mechanism for introducing new types and constants in an overloaded

fashion (recalled in Section 2.2)

2.1 HOL Syntax and Deduction

The syntax and deduction system we present here are minor variations of the standard

ones for HOL (as in, e.g., [3, 18, 20]). What we call HOL axioms correspond to the

theory INIT from [3].

Syntax. Throughout this section, we fix the following:

– an infinite set TVar, of type variables, ranged by α, β

– an infinite set VarN, of (term) variable names, ranged by x, y, z

– a set K of symbols, ranged by k, called type constructors, containing three special

symbols: bool, ind and→ (aimed at representing the type of booleans, an infinite

type and the function type constructor, respectively)

We fix a function arOf : K→N giving arities to type constructors, such that arOf(bool)=
arOf(ind) = 0 and arOf(→) = 2. Types, ranged by σ, τ, are defined as follows:

σ= α | (σ1, . . . , σarOf(k)) k

Thus, a type is either a type variable or an n-ary type constructor k postfix-applied to a

number of types corresponding to its arity. If n = 1, instead of (σ) k we write σ k. We

write Type for the set of types.

Finally, we fix the following:

– a set Const, ranged over by c, of symbols called constants, containing five special

symbols: −→, =, ε, zero and suc (aimed at representing logical implication, equal-

ity, Hilbert choice of some element from a type, zero and successor, respectively)

– a function tpOf : Const→ Type associating a type to every constant, such that:
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tpOf(−→) = bool→ bool→ bool

tpOf(=) = α→ α→ bool

tpOf(ε) = (α→ bool)→ α

tpOf(zero) = ind

tpOf(suc) = ind→ ind

TV(σ) is the set of variables of a type σ. Given a function ρ : TVar→ Type, its

support is the set of type variables where ρ is not the identity: supp(ρ) = {α | ρ(α) 6= α}.
A type substitution is a function ρ : TVar→ Type with finite support. We let TSubst

denote the set of type substitutions. Each ρ ∈ TSubst extends to a function ρ : Type→
Type by defining ρ(α) = ρ(α) and ρ((σ1, . . . , σn) k) = (ρ(σ1), . . . , ρ(σn)) k. We write

σ[τ/α] for ρ(σ), where ρ is the type substitution that sends α to τ and each β 6= α to β.

Thus, σ[τ/α] is obtained from σ by substituting τ for all occurrences of α.

We say that σ is an instance of τ via a substitution of ρ ∈ TSubst, written σ ≤ρ τ,
if ρ(τ) = σ. We say that σ is an instance of τ, written σ≤ τ, if there exists ρ ∈ TSubst

such that σ ≤ρ τ. Two types σ1 and σ2 are called orthogonal, written σ1 # σ2, if they

have no common instance; i.e., for all τ it holds that τ 6≤ σ1 or τ 6≤ σ2.

A (typed) variable is a pair of a variable name x and a type σ, written xσ. Let Var

denote the set of all variables. A constant instance is a pair of a constant and a type,

written cσ, such that σ ≤ tpOf(c). We let CInst denote the set of constant instances.

We extend the notions of being an instance (≤) and being orthogonal (#) from types to

constant instances:

cτ ≤ dσ iff c = d and τ≤ σ cτ # dσ iff c 6= d or τ # σ

The tuple (K, arOf, Const, tpOf), which will be fixed in what follows, is called a

signature. This signature’s terms, ranged over by s, t, are defined by the grammar:

t = xσ | cσ | t1 t2 | λxσ. t

Thus, a term is either a typed variable, or a constant instance, or an application, or an

abstraction. As usual, we identify terms modulo alpha-equivalence. Typing is defined

as a binary relation between terms and types, written t : σ, inductively as follows:

x ∈ VarN

xσ : σ

c ∈ Const τ≤ tpOf(c)

cτ : τ

t1 : σ→ τ t2 : σ

t1 t2 : τ

t : τ

λxσ. t : σ→ τ

A term is a well-typed term if there exists a (necessarily unique) type τ such that t : τ.

We write tpOf(t) for this unique τ. We let Termw be the set of well-typed terms. We

can apply a type substitution ρ to a term t, written ρ(t), by applying ρ to the types of

all variables and constant instances occurring in t. FV(t) is the set of t’s free variables.

The term t is called closed if it has no free variables: FV(t) = /0. We write t[s/xσ] for

the term obtained from t by capture-free substituting s for all free occurrences of xσ.

A formula is a term of type bool. The formula connectives and quantifiers are de-

fined in a standard way, starting from the implication and equality primitives. When

writing terms, we sometimes omit the types of variables if they can be inferred.

Deduction. A theory is a set of closed formulas. The HOL axioms, forming a set de-

noted by Ax, are the standard ones, containing axioms for equality, infinity, choice, and

excluded middle. (The technical report [30] gives more details.) A context Γ is a finite

set of formulas. The notation α /∈ Γ (or xσ /∈ Γ) means that the variable α (or xσ) is not
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free in any of the formulas in Γ. We define deduction as a ternary relation ⊢ between

theories D, contexts Γ and formulas ϕ, written D; Γ ⊢ ϕ.

[ϕ ∈ Ax∪D] (FACT)
D; Γ ⊢ ϕ

[ϕ ∈ Γ] (ASSUM)
D; Γ ⊢ ϕ

D; Γ ⊢ ϕ
[α /∈ Γ] (T-INST)

D; Γ ⊢ ϕ[σ/α]

D; Γ ⊢ ϕ
[xσ /∈ Γ] (INST)

D; Γ ⊢ ϕ[t/xσ]

(BETA)
D; Γ ⊢ (λxσ. t) s = t[s/xσ]

D; Γ ⊢ ϕ−→ χ D; Γ ⊢ ϕ
(MP)

D; Γ ⊢ χ

D; Γ∪{ϕ} ⊢ χ
(IMPI)

D; Γ ⊢ ϕ−→ χ

D; Γ ⊢ f xσ = g xσ
[xσ /∈ Γ] (EXT)

D; Γ ⊢ f = g

A theory D is called consistent if D; /0 6⊢ False.

Built-Ins and Non-Built-Ins. A built-in type is any type of the form bool, ind, or σ→ τ
for σ, τ ∈ Type. We let Type• denote the set of types that are not built-in. Note that a

non-built-in type can have a built-in type as a subexpression, and vice versa; e.g., if

list is a type constructor, then bool list and (α→ β) list are non-built-in types, whereas

α→ β list is a built-in type.

Given a type σ, we define types•(σ), the set of non-built-in types of σ, as follows:

types•(α) = types•(bool) = types•(ind) = /0

types•((σ1, . . . , σn) k) = {(σ1, . . . , σn) k}, if k is different from →

types•(σ1→ σ2) = types•(σ1) ∪ types•(σ2)

Thus, types•(σ) is the smallest set of non-built-in types that can produce σ by repeated

application of the built-in type constructors. E.g., if the type constructors real (nullary)

and list (unary) are in the signature and if σ is (bool → α list) → real → (bool→
ind) list, then types•(σ) has three elements: α list, real and (bool→ ind) list.

A built-in constant is a constant of the form−→, =, ε, zero or suc. We let CInst• be

the set of constant instances that are not instances of built-in constants.

As a general notation rule, the superscript • indicates non-built-in items, where an

item can be either a type or a constant instance.

Given a term t, we let consts•(t) ⊆ CInst• be the set of all non-built-in constant

instances occurring in t and types•(t) ⊆ Type• be the set of all non-built-in types that

compose the types of non-built-in constants and (free or bound) variables occurring in

t. Note that the types• operator is overloaded for types and terms.

consts•(xσ) = /0 types•(xσ) = types•(σ)

consts•(cσ) =

{

{cσ} if cσ ∈ CInst•

/0 otherwise
types•(cσ) = types•(σ)

consts•(t1 t2) = consts•(t1)∪ consts•(t2) types•(t1 t2) = types•(t1)∪ types•(t2)
consts•(λxσ. t) = consts•(t) types•(λxσ. t) = types•(σ)∪ types•(t)
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2.2 The Isabelle/HOL Definitional Mechanisms

Constant(-Instance) Definitions. Given cσ ∈ CInst• and a closed term t : σ, we let

cσ ≡ t denote the formula cσ = t. We call cσ ≡ t a constant-instance definition provided

TV(t)⊆ TV(cσ) (i.e., TV(t)⊆ TV(σ)).

Type Definitions. Given the types τ∈Type• and σ∈Type and the closed term t whose

type is σ→ bool, we let τ≡ t denote the formula

(∃xσ. t x)−→ ∃repτ→σ. ∃absσ→τ.(τ≈ t)abs
rep (1)

where (τ≈ t)abs
rep is the formula (∀xτ. t (rep x)) ∧ (∀xτ. abs (rep x) = x) ∧ (∀yσ. t y−→

rep (abs y) = y). We call τ≡ t a type definition, provided τ has the form (α1, . . . , αn) k

such that αi are all distinct type variables and TV(t) ⊆ {α1, . . . , αn}. (Hence, we have

TV(t)⊆ TV(τ), which also implies TV(σ)⊆ TV(τ).)
Thus, τ≡ t means: provided t represents a nonempty subset of σ, the new type τ is

isomorphic to this subset via abs and rep. Note that this is a conditional type definition,

which distinguishes Isabelle/HOL from other HOL-based provers where an uncondi-

tional version is postulated (but only after the user proves nonemptiness). We shall see

that this conditional approach, known among the Isabelle developers as the Makarius

Wenzel trick, is useful in the overall scheme of proving consistency.

However, as far as user interaction is concerned, Isabelle/HOL proceeds like the

other HOL provers, in particular, it requires nonemptiness proofs. When the user issues

a command to define τ via t : σ→ bool, the system asks the user to prove ∃xσ. t x, after

which the new type τ and the morphisms abs and rep are produced and (τ ≈ t)abs
rep is

proved by applying Modus Ponens.

An Isabelle/HOL development proceeds by declaring types and constants, issuing

constant-instance and type definitions, and proving theorems about them via HOL de-

duction.8 Therefore, at any point in the development, there is a finite set D of registered

constant-instance and type definitions (over a HOL signature Σ)—we call such a set a

definitional theory. We are interested in proving the consistency of definitional theories,

under the syntactic well-formedness restrictions imposed by the system.

Well-Formed Definitional Theories. Given any binary relation R on Type• ∪CInst•,

we write R↓ for its (type-)substitutive closure, defined as follows: p R↓ q iff there exist

p′, q′ and a type substitution ρ such that p = ρ(p′), q = ρ(q′) and p′ R q′. We say that a

relation R is terminating if there exists no sequence (pi)i∈N such that pi R pi+1 for all i.

We shall write R+ and R∗ for the transitive and the reflexive-transitive closure of R.

Let us fix a definitional theory D. We say D is orthogonal if the following hold for

any two distinct definitions def1, def2 ∈ D:

– either one of them is a type definition and the other is a constant-instance definition

– or both are type definitions with orthogonal left-hand sides, i.e., def1 has the form

τ1 ≡ . . ., def2 has the form τ2 ≡ . . ., and τ1 # τ2

8 Isabelle/HOL is a complex software system, allowing interaction at multiple levels, including

by the insertion of ML code. What we care about here is of course an abstract notion of an

Isabelle/HOL development—employing the logical mechanisms alone.
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– or both are constant-instance definitions with orthogonal left-hand sides, i.e., def1
has the form cτ1 ≡ . . ., def2 has the form dτ2 ≡ . . ., and cτ1 # dτ2

We define the binary relation on Type• ∪CInst• by setting u v iff one of the

following holds:

1. there exists in D a definition of the form u≡ t such that v ∈ consts•(t) ∪ types•(t)
2. u ∈ CInst• such that u has the form ctpOf(c), and v ∈ types•(tpOf(c))

We call the dependency relation associated to D: it shows how the types and constant

instances depend on each other through definitions in D. The fact that built-in items do

not participate at this relation (as shown by the bullets which restrict to non-built-in

items) is justified by the built-in items having a pre-determined interpretation, which

prevents them from both “depending” and “being depended upon” [28].

We call the definitional theory D well-formed if it is orthogonal and the substitutive

closure of its dependency relation, ↓, is terminating. Orthogonality prevents inconsis-

tency arising from overlapping left-hand sides of definitions: defining cα×ind→bool to be

λxα×ind.False and cind×α→bool to be λxind×α.True yields λxind×ind.False= cind×ind→bool

= λxind×ind.True and hence False = True. Termination prevents inconsistency arising

from circularity, as in the encoding of Russel’s paradox in the introduction.

In previous work [28], we proved that these prevention measures are sufficient:

Theorem 1. If D is well-formed, then D is consistent.

Let us briefly recall the difficulties arising in proving the consistency theorem. A

main problem problem rests in the fact that (recursive) overloading does not interact

well with set-theoretic semantics. This makes it difficult to give a meaning to the over-

loaded definitions, in spite of the fact that their syntactic dependency terminates.

Example 2. consts c : α → bool consts d : α

typedef (α, β) k ≡ {(x,y) : α×β | c x ∧ c y ∨ (x,y) = (d,d)}

consts l : (α, β) k → α consts r : (α, β) k → β
definition c : bool → bool ≡ λ x. True

definition c : nat → bool ≡ λ x. False

definition c : (α, β) k → bool ≡ λ x. c (l x) ∧ ¬ c (r x)

Here, c and k are mutually dependent. Hence, since c is overloaded, both c and

k behave differently depending on the types they are instantiated with or applied to.

Here are some examples. Because cbool→bool is (vacuously) true, (bool, bool) k con-

tains four elements (corresponding to all elements of bool×bool). On the other hand,

because cnat→bool is (vacuously) false, (α, nat) k and (nat, α) k each contain one sin-

gle element (corresponding to (d, d)). Moreover, (bool, (bool, nat) k) k contains two

elements, for the following reason: both cbool→bool and c(bool,nat) k→bool are true, the

latter since cbool→bool is true and cnat→bool is false (as required in the definition of

c(α,β) k→bool); so (bool, (bool, nat) k) k has as many elements as its host type, bool×
(bool, nat) k; and (bool, nat) k has only one element (corresponding to (d, d)). Finally,

(bool, (nat, bool) k) k contains only one element, because c(nat,bool) k→bool is false (by

the definitions of c(α,β) k→bool and cnat→bool).
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In the standard HOL semantics [41], a type constructor such as k is interpreted

compositionally, as an operator [k] on sets (from a suitable universe) obtained from k’s

type definition—here, as a binary operator taking the sets A and B to the set {(a, b) ∈
A×B | [c]A(a) ∧ [c]B (b) ∨ (a, b) = ([d]A, [d]B)}, where ([c]A)A and ([d]A)A would be

the interpretations of c and d as families of sets, with each [c]A a predicate on A and each

[d]A an element of A. But defining [k] in one go for any sets A and B is impossible here,

since the needed instances of [c] are not yet known, and in fact are mutually dependent

with [k]. This means that, when defining [k] and [c], the inputs A and B would need

to be analyzed in an ad hoc fashion, for the (syntactic!) occurrences of [k] itself. The

orthogonality and termination of such semantic definitions would be problematic (and,

as far as we see, could only be worked out by a heavy machinery that would constrain

semantics to behave like syntax—adding syntactic annotations to the interpreting sets).

Using John Reynolds’s famous wording [42], we conclude that ad hoc polymorphism

is not set-theoretic.9

In [28], we proposed a workaround based on acknowledging that ad hoc overloading

regards different instances of the same non-built-in polymorphic type as completely un-

related types. Instead of interpreting type constructors as operators on sets, we interpret

each non-built-in ground type and constant instance separately, in the order prescribed

by the terminating dependency relation. Here, for example, cbool→bool and cnat→bool are

interpreted before (bool, nat) k, which is interpreted before c(bool,nat) k→bool, which is

interpreted before ((bool, nat) k, bool) k, etc. (But note that termination does not nec-

essarily come from structural descent on types: definitions such as enat ≡ head(enat list)
are also acceptable.) Finally, polymorphic formulas are interpreted as the infinite con-

junction of the interpretation of all their ground instances: for example, cα→bool dα is

true iff cσ→bool dσ is true for all ground types σ. This way, we were able to construct

a ground model for the definitional theory. And after showing that the deduction rules

for (polymorphic) HOL are sound for ground models, we inferred consistency. Thus,

our solution was based on a mixture of syntax and semantics: interpret type variables

by universally quantifying over all ground instances, and interpret non-built-in ground

types disregarding their structure.

Such a hybrid approach, involving a nonstandard semantics, may seem excessive.

There is a more common-sense alternative for accommodating the observation that stan-

dard semantics cannot be married with ad hoc overloading: view overloaded definitions

as mere textual abbreviations. The “semantics” of an overloaded constant will then be

the result of unfolding the definitions—but, as we have seen, types must also be in-

volved in this process. This is the alternative taken by our new proof.

3 New Proof of Consistency

The HOL logical infrastructure allows unfolding constant definitions, but not type def-

initions. To amend this limitation, we take an approach common in mathematics. The

reals were introduced by closing the rationals under Cauchy convergence, the complex

numbers were introduced by closing the reals under roots of polynomials. Similarly,

9 Reynolds’s result of course refers to (higher-rank) parametric polymorphism.
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we introduce a logic, HOL with Comprehension (HOLC), by closing HOL under type

comprehension—that is, adding to HOL comprehension types to express subsets of the

form {x : σ | t x} (Section 3.1). While there is some tension between these subsets be-

ing possibly empty and the HOLC types having to be nonempty due to the Hilbert

choice operator, this is resolved thanks to the HOLC comprehension axioms being

conditioned by nonemptiness. With this proviso, HOLC admits standard set-theoretical

models, making it manifestly consistent (Section 3.2). In turn, Isabelle/HOL-style over-

loaded constants and types can be normalized in HOLC by unfolding their definitions

(Section 3.3). The normalization process provides an intuition and a justification for

the syntactic checks involving non-built-in types and constants. Finally, consistency of

Isabelle/HOL is inferable from consistency of HOLC.

3.1 HOL with Comprehension (HOLC)

Syntax. Just like for HOL, we fix the sets TVar (of type variables) and VarN (of term

variable names), as well as the following:

– a set K of type constructors including the built-in ones bool, ind,→
– a function arOf : K→ N assigning an arity to each type constructor.

– a set Const of constants, including the built-in ones −→, =, ε, zero and suc

The HOLC types and terms, which we call ctypes and cterms, are defined as follows:

σ= α | (σ1, . . . , σarOf(k)) k | {|t|} t = xσ | cσ | t1 t2 | λxσ. t

Above, we highlight the only difference from the HOL types and terms: the compre-

hension types, whose presence makes the ctypes and cterms mutually recursive. Indeed,

{|t|} contains the term t, whereas a typed variable xσ and a constant instance cσ contain

the type σ. We think of a comprehension type {|t|} with t : σ→ bool as representing a

set of elements which in standard mathematical notation would be written {x : σ | t x},
that is, the set of all elements of σ satisfying t. Var denotes the set of (typed) variables,

xσ. CType and CTerm denotes the sets of ctypes and cterms.

We also fix a function tpOf : Const→ CType, assigning ctypes to constants. Simi-

larly to the case of HOL, we call the tuple (K, arOf, Const, tpOf), which shall be fixed

in what follows, a HOLC signature. Since ctypes contain cterms, we define typing mu-

tually inductively together with the notion of a ctype being well-formed (i.e., only con-

taining well-typed terms):

α ∈ TVar
(W1)

wf(α)

wf(σ1) . . . wf(σarOf(k))
(W2)

wf((σ1, . . . , σarOf(k)) k)

t :: σ→ bool
(W3)

wf({|t|})

t :: τ wf(σ)
(ABS)

λxσ. t :: σ→ τ

x ∈ VarN wf(σ)
(VAR)

xσ :: σ

c ∈ Const wf(τ) τ≤ tpOf(c)
(CONST)

cτ :: τ

t1 :: σ→ τ t2 :: σ
(APP)

t1 t2 :: τ

We let CTypew and CTermw be the sets of well-formed ctypes and well-typed

cterms. Also, we let Varw be the set of variables xσ that are well-typed as cterms, i.e.,

have their ctype σ well-formed.

The notions of type substitution, a type or a constant instance being an instance of

(≤) or being orthogonal with (#) another type or constant instance, are defined similarly

10



to those for HOL. Note that a type {|t|} is unrelated to another type {|t′|} even when the

extent of the predicate t′ includes that of t. This is because HOLC, like HOL (and unlike,

e.g., PVS [39]), has no subtyping—instead, traveling between smaller and larger types

is achieved via embedding-projection pairs.

Since in HOLC types may contain terms, we naturally lift term concepts to types.

Thus, the free (cterm) variables of a ctype σ, written FV(σ), are all the free variables

occurring in the cterms contained in σ. A type is called closed if it has no free variables.

A note on declaration circularity. In HOLC we allow tpOf to produce declaration

cycles—for example, the type of a constant may contain instances of that constant,

as in tpOf(c) = {|cbool|}. However, the typing system will ensure that no such cyclic

entity will be well-typed. For example, to type an instance cσ, we need to apply the

rule (CONST), requiring that {|cbool|} be well-formed. For the latter, we need the rule

(W3), requiring that cbool be well-typed. Finally, to type cbool, we again need the rule

(CONST), requiring that {|cbool|} be well-formed. So cσ can never be typed. It may seem

strange to allow constant declarations whose instances cannot be typed (hence cannot

belong to well-typed terms and well-formed types)—however, this is harmless, since

HOLC deduction only deals with well-typed and well-formed items. Moreover, all the

constants translated from HOL will be shown to be well-typed.

Deduction. The notion of formulas and all the related notions are defined similarly to

HOL, so that HOL formulas are particular cases of HOLC formulas. In addition to the

axioms of HOL (the set Ax), HOLC shall include the following type comprehension

axiom type_comp:

∀tα→bool. (∃xα. t x)−→ ∃rep{|t|}→α. ∃absα→{|t|}.({|t|} ≈ t)abs
rep

This axiom is nothing but a generalization of the HOL type definition τ ≡ t, taking

advantage of the fact that in HOLC we have a way to write the expression defining τ

as the type {|t|}. Note that α is a type variable standing for an arbitrary type, previously

denoted by σ. Thus, HOLC allows us to express what in HOL used to be a schema (i.e.,

an infinite set of formulas, one for each type σ) by a single axiom.

HOLC’s deduction  is defined by the same rules as HOL’s deduction ⊢, but ap-

plied to ctypes and cterms instead of types and terms and using the additional axiom

type_comp. Another difference from HOL is that HOLC deduction does not factor in a

theory D—this is because we do not include any definitional principles in HOLC.

[ϕ ∈ Ax ∪ {type_comp} ] (FACT)
Γ  ϕ

[ϕ ∈ Γ] (ASSUM)
Γ  ϕ

Γ  ϕ
[α /∈ Γ] (T-INST)

Γ  ϕ[σ/α]

Γ  ϕ
[xσ /∈ Γ] (INST)

Γ  ϕ[t/xσ]

(BETA)
Γ  (λxσ. t) s = t[s/xσ]

Γ  ϕ−→ χ Γ  ϕ
(MP)

Γ  χ

Γ∪{ϕ}  χ
(IMPI)

Γ  ϕ−→ χ

Γ  f xσ = g xσ
[x /∈ Γ] (EXT)

Γ  f = g

11



3.2 Consistency of HOLC

In a nutshell, HOLC is consistent for a similar reason that HOL (without definitions)

is consistent: the types have a straightforward set-theoretic interpretation and the de-

duction rules are manifestly sound w.r.t. this interpretation. Similar logics, employing

mutual dependency between types and terms, have been shown to be consistent for the

foundations of Coq [6] and PVS [39].

Compared to these logics, the only twist of HOLC is that all types have to be

nonempty. Indeed, HOLC inherits from HOL the polymorphic Hilbert choice opera-

tor, ε : (α→ bool)→ α, which immediately forces all types to be inhabited, e.g., by

ε (λxσ. True).
From a technical point of view, this nonemptiness requirement is easy to satisfy.

The only types that are threatened by emptiness are the comprehension types {|t|}. We

will interpret them according to their expected semantics, namely, as the subset of σ for

which t holds, only if this subset turns out to be nonempty; otherwise we will interpret

them as a fixed singleton set {∗}. This is consistent with the HOLC comprehension ax-

iom, type_comp, which only requires that {|t|} have the expected semantics if ∃xα. t x

holds. Notice how the Makarius Wenzel trick of introducing type definitions as con-

ditional statements in Isabelle/HOL (recalled on page 7), which has inspired a similar

condition for type_comp, turns out to be very useful in our journey. Of all the HOL-

based provers, this “trick” is only used by Isabelle/HOL, as if anticipating the need for

a more involved argument for consistency.

A full-frame model for HOLC. We fix a Grothendieck universe V and let U = V \{ /0}
(since all types will have nonempty interpretations). We fix the following items in U
and operators on U :

– a two-element set B= {false, true} ∈ U
– a singleton set {∗} ∈ U

– for each k ∈ K, a function k : UarOf(k)→U
– a global choice function, choice, that assigns to each nonempty set A ∈ U an ele-

ment choice(A) ∈ A

We wish to interpret well-formed ctypes and well-typed cterms, u, as items [u] in U .

Since ctypes and cterms are mutually dependent, not only the interpretations, but also

their domains need to be defined recursively. Namely, we define the following notions

together, by structural recursion on u ∈ CTypew ∪ CTermw:

– the set Compat(u), of compatible valuation functions ξ : TV(u) ∪ FV(u)→U
– the interpretation [u] : Compat(u)→U

For each u, assuming [v] has been defined for all structurally smaller v ∈ CTypew ∪
CTermw, we take Compat(u) to consist of all functions ξ : TV(u) ∪ FV(u)→U such

that ξ(xσ) ∈ [σ] (ξ↾TV(σ) ∪ FV(σ)) for all xσ ∈ FV(u). (Here, ξ↾TV(σ) ∪ FV(σ) denotes

the restriction of ξ to the indicated set, which is clearly included in ξ’s domain, since

TV(σ)⊆ TV(u) and FV(σ)⊆ FV(u).)
In turn, [u] is defined as shown below. First, the equations for type interpretations:

[α](ξ) = ξ(α) (2)
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[bool](ξ) = B (3)

[ind](ξ) = N (the set of natural numbers) (4)

[σ1→ σ2](ξ) = [σ1](ξ1)→ [σ2](ξ2)
(the set of functions from [σ1](ξ1) to [σ2](ξ2))
where ξi is the restriction of ξ to Compat(σi)

(5)

[(σ1, . . . , σn) k](ξ) = k ([σ1](ξ1), . . . , [σn](ξn)) for σ k ∈ Type•

where ξi is the restriction of ξ to Compat(σi)
(6)

[{|t|}](ξ) =

{

{x ∈ [σ](ξ) | [t](ξ) x = true} if set nonempty and t : σ→ bool

{∗} otherwise
(7)

The equation (7) shows how we interpret comprehension types with no inhabitants (e.g.,

{|λxind. False|})—we chose the singleton set {∗} (in fact, any nonempty set would do

the job). As previously discussed, this conforms to the type_comp axiom, which only

prescribes the meaning of inhabited comprehension types.

Next, the equations for term interpretations:

[−→bool→bool→bool](ξ) as the logical implication on B (8)

[=τ→τ→bool](ξ) as the equality predicate in [τ](ξ)→ [τ](ξ)→ B (9)

[ε(τ→bool)→τ](ξ)( f ) =

{

choice(A f ) if A f is nonempty

choice([τ](ξ)) otherwise,

where A f = {a ∈ [τ](ξ) | f (a) = true} for each f : [τ](ξ)→ B

(10)

[zeroind](ξ) = 0 and [sucind→ind](ξ) as the successor function for N (11)

[cσ](ξ) = choice ([σ](ξ)) (12)

[xσ](ξ) =

{

ξ(xσ) if ξ(xσ) ∈ [σ](ξ′)
choice ([σ](ξ′)) otherwise,

where ξ′ is the restriction of ξ to Compat(σ)
(13)

[t1 t2](ξ) = [t1](ξ1) [t2](ξ2) where ξi is the restriction of ξ to Compat(ti) (14)

[λxσ. t](ξ) = Λa∈[σ](ξ′)[t](ξ[xσ← a])
where ξ′ is the restriction of ξ to Compat(σ)

(15)

Since the logic has no definitions, we are free to choose any interpretation for non-

built-in constant instances—as seen in (12), we do this using the global choice operator

choice. In (15), we use Λ for meta-level lambda-abstraction.

We say that a formula ϕ is true under the valuation ξ ∈ Compat(ϕ) if [ϕ](ξ) = true.

We say that ϕ is (unconditionally) true if it is true under all ξ ∈ Compat(ϕ). Given a

context Γ and a formula ϕ, we write Γ |= ϕ to mean that
∧

Γ −→ ϕ is true, where
∧

Γ

is the conjunction of all formulas in Γ.

Theorem 3. HOLC is consistent, in that /0 6 False.

Proof. It is routine to verify that HOLC’s deduction is sound w.r.t. to its semantics: for

every HOLC deduction rule of the form

Γ1  ϕ1 . . . Γn  ϕn

Γ  ϕ

it holds that Γ |= ϕ if Γi |= ϕi for all i≤ n. Then /0 6 False follows from /0 6|= False.
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3.3 Translation of Isabelle/HOL to HOLC

We fix a HOL signature Σ = (K, arOf, Const, tpOf) and an Isabelle/HOL well-formed

definitional theory D over Σ. We will produce a translation of the types and well-typed

terms of Σ into well-formed ctypes and well-typed cterms of the HOLC signature ΣD =
(K, arOf, Const, tpOfD) (having the same type constructors and constants as Σ). The

typing function tpOfD : Const→ CType will be defined later. For ΣD, we use all the

notations from Section 3.1—we write CType and CTerm for the sets of cterms and

ctypes, etc.

The translation will consist of two homonymous “normal form” functions NF :

Type→ CTypew and NF : Termw→ CTermw. However, since we have not yet defined

tpOfD, the sets CTypew and CTermw (of well-formed ctypes and well-typed cterms) are

not yet defined either. To bootstrap the definitions, we first define NF : Type→ CType

and NF : Termw→ CTerm, then define tpOfD, and finally show that the images of the

NF functions are included in CTypew and CTermw.

The NF functions are defined mutually recursively by two kinds of equations. First,

there are equations for recursive descent in the structure of terms and types:

NF(t1 t2) = NF(t1) NF(t2) (16)

NF(λxσ. t) = λxNF(σ). NF(t) (17)

NF(xσ) = xNF(σ) (18)

NF(cσ) = cNF(σ) if cσ 6∈ CInst• (19)

NF(σ→ τ) = NF(σ)→ NF(τ) (20)

NF(bool) = bool (21)

NF(ind) = ind (22)

NF(α) = α (23)

Second, there are equations for unfolding the definitions in D. But before listing

these, we need some notation. Given u, v∈Type∪Termw, we write u≡↓ v to mean that

there exists a definition u′ ≡ v′ in D and a type substitution ρ such that u = ρ(u′) and

v = ρ(v′). This notation is intuitively consistent (although slightly abusively so) with

the notation for the substitutive closure of a relation, where we would pretend that ≡ is

a relation on Type∪Termw, with u′ ≡ v′ meaning (u′ ≡ v′) ∈ D. By Orthogonality, we

have that, for all u ∈ Type• ∪CInst•, there exists at most one v ∈ Type∪Termw such

that u≡↓ v. Here are the equations for unfolding:

NF(cσ) =

{

cNF(σ) if there is no matching definition for cσ in D

NF(t) if there exists t such that cσ ≡
↓ t

(24)

NF(σ) =

{

σ if there is no matching definition for σ in D

{|NF(t)|} if there exists t : τ→ bool such that σ≡↓ t
(25)

Thus, the functions NF first traverse the terms and types “vertically,” delving into the

built-in structure (function types, λ-abstractions, applications, etc.). When a non-built-

in item is being reached that is matched by a definition in D, NF proceed “horizontally”

by unfolding this definition. Since the right-hand side of the definition can be any term,

NF switch again to vertical mode. Hence, NF repeatedly unfold the definitions when a

definitional match in a subexpression is found, following a topmost-first strategy (with

the exception that proper subexpressions of non-built-in types are not investigated). For

example, if a constant cσ is matched by a definition, as in cσ ≡
↓ t, then cσ is eagerly

unfolded to t, as opposed to unfolding the items occurring in σ. This seems to be a
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reasonable strategy, given that after unfolding cσ the possibility to process σ is not lost:

since t : σ, we have that σ occurs in t.

Example 4. consts c : α → bool consts d : α

typedef α k ≡ {x : α | c d}

definition c : α k → bool ≡ λ x : α k. (c : α → bool) d

Let us show the results of applying NF on some of the constant instances and types

in the above example.

NF(α k) = {|λxα. cα→bool dα|}
NF(cbool k→bool) = λx{|λxbool. cbool→bool dbool|}. cbool→bool dbool

NF(bool k2) = {|λx{|λxbool. cbool→bool dbool|}.

(λx{|λxbool. cbool→bool dbool|}. cbool→bool dbool) d{|λxbool. cbool→bool dbool|}|}

The evaluation of NF on bool kn terminates in a number of steps depending on n, and

the result contains n levels of comprehension-type nesting.

The first fact that we need to show is that NF is well-defined, i.e., its recursive calls

terminate. For this, we take the relation ◮ to be ≡↓ ∪ ⊲, where ≡↓ was defined above

and ⊲ simply contains the structural recursive calls of NF:

t1t2 ⊲ t1 λxσ. t ⊲ σ xσ ⊲ σ σ1→ σ2 ⊲ σ1

t1t2 ⊲ t2 λxσ. t ⊲ t cσ ⊲ σ σ1→ σ2 ⊲ σ2

It is immediate to see that ◮ captures the recursive calls of NF: the structural calls

via ⊲ and the unfolding calls via ≡↓. So the well-definedness of NF is reduced to the

termination of ◮.

Lemma 5. The relation ◮ is terminating (hence the functions NF are well-defined).

Proof. We shall use the following crucial fact, which follows by induction using the

definitions of ⊲ and ↓: If u, v ∈ Type•∪CInst• and u≡↓ t ⊲∗ v, then u ↓ v. (*)

Let us assume, for a contradiction, that ◮ does not terminate. Then there exists an

infinite sequence (wi)i∈N such that wi ◮ wi+1 for all i. Since◮ is defined as≡↓∪⊲ and

⊲ clearly terminates, there must exist an infinite subsequence (wi j
) j∈N such that wi j

≡↓

wi j+1⊲
∗ wi j+1

for all j. Since from the definition of≡we have wi j
∈Type•∪CInst•, we

obtain from (*) that wi j
 ↓ wi j+1

for all j. This contradicts the termination of ↓.

With NF in place, we can define the missing piece of the target HOLC signature:

we take tpOfD to be the normalized version of tpOf, i.e. tpOfD(c) = NF(tpOf(c)).

Lemma 6. NF preserves typing, in the following sense:

– NF(σ) is well-formed in HOLC.

– If t : τ, then NF(t) :: NF(τ).

Our main theorem about the translation will be its soundness:

Theorem 7. If D; /0 ⊢ ϕ in HOL, then /0  NF(ϕ) in HOLC.
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Let us focus on proving this theorem. If we define NF(Γ) as {NF(ϕ) | ϕ ∈ Γ},
the proof that D; Γ ⊢ ϕ implies NF(Γ)  NF(ϕ) should proceed by induction on the

definition of D; Γ ⊢ ϕ. Due to the similarity of ⊢ and , most of the cases go smoothly.

For the HOL rule (BETA), we need to prove NF(Γ)NF((λxσ. t) s = t[s/xσ]), that

is, NF(Γ)  (λxNF(σ). NF(t)) NF(s) = NF(t[s/xσ]). Hence, in order to conclude the

proof for this case using the HOLC rule (BETA), we need that NF commutes with term

substitution—this is not hard to show, since substituting terms for variables does not

influence the matching of definitions, i.e., the behavior of NF:

Lemma 8. NF(t[s/xσ]) = NF(t) [NF(s)/xNF(σ)]

However, our proof (of Theorem 7) gets stuck when handling the (T-INST) case. It

is worth looking at this difficulty, since it is revealing about the nature of our encoding.

We assume that in HOL we inferred D; Γ ⊢ ϕ[σ/α] from D; Γ ⊢ ϕ, where α /∈ Γ. By

the induction hypothesis, we have NF(Γ)  NF(ϕ). Hence, by applying (T-INST) in

HOLC, we obtain NF(Γ)NF(ϕ)[NF(σ)/NF(α)]. Therefore, to prove the desired fact,

we would need that the NF functions commute with type substitutions in formulas, and

therefore also in arbitrary terms (which may be contained in formulas):

NF(t[σ/α]) = NF(t)[NF(σ)/α]

But this is not true, as seen, e.g., when tpOf(c) = α and cbool ≡ True is in D:

NF(cα[bool/α]) = NF(cbool) = True 6= cbool = cα[bool/α] = NF(cα) [NF(bool)/α]

The problem resides at the very essence of overloading: a constant c is declared at

a type σ (α in the above example) and defined at a less general type τ (bool in the

example). Our translation reflects this: it leaves cσ as it is, whereas it compiles away cτ
by unfolding its definition. So then how can such a translation be sound? Essentially,

it is sound because in HOL nothing interesting can be deduced about the undefined cσ
that may affect what is being deduced about cτ—hence it is OK to decouple the two

when moving to HOLC.

To capture this notion, of an undefined cσ not affecting a defined instance cτ in

HOL, we introduce a variant of HOL deduction that restricts type instantiation—in

particular, it will not allow arbitrary statements about cσ to be instantiated to statements

about cτ. Concretely, we define ⊢′ by modifying ⊢ as follows. We remove (T-INST) and

strengthen (FACT) to a rule that combines the use of axioms with type instantiation:

[ϕ ∈ Ax∪D and ∀α ∈ supp(ρ). α /∈ Γ] (FACT-T-INST)
D; Γ ⊢′ ρ(ϕ)

(where ρ is a type substitution). Note the difference between (FACT-T-INST) and the

combination of (FACT) and (T-INST): in the former, only axioms and elements of D

are allowed to be type-instantiated, whereas in the latter instantiation can occur at any

moment in the proof. It is immediate to see that ⊢ is at least as powerful as ⊢′, since

(FACT-T-INST) can be simulated by (FACT) and (T-INST). Conversely, it is routine

to show that ⊢′ is closed under type substitution, and a fortiori under (T-INST); and

(FACT-T-INST) is stronger than (FACT).

Using ⊢′ instead of ⊢, we can prove Theorem 7. All the cases that were easy with ⊢
are also easy with ⊢′. In addition, for the case (FACT-T-INST) where one infers D; Γ ⊢
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ρ(ϕ) with ϕ∈Ax, we need a less general lemma than commutation of NF in an arbitrary

term. Namely, noticing that the HOL axioms do not contain non-built-in constants or

types, we need the following lemma, which can be proved by routine induction over t:

Lemma 9. NF(ρ(t)) = NF◦ρ(t) whenever types•(t)∪ consts•(t) = /0.

Now, assume (FACT-T-INST) is being used to derive D; Γ ⊢′ ρ(ϕ) for ϕ ∈ Ax. We

need to prove ΓNF(ρ(ϕ)), that is, ΓNF◦ρ(ϕ). But this follows from n applications

of the (T-INST) rule (in HOLC), where n is the size of NF◦ρ’s support (as any finite-

support simultaneous substitution can be reduced to a sequence of unary substitutions).

It remains to handle the case when (FACT-T-INST) is being used to derive D; Γ ⊢′

ρ(ϕ) for ϕ ∈ D. Here, Lemma 9 does not apply, since of course the definitions in D

contain non-built-in items. However, we can take advantage of the particular shape

of the definitions. The formula ϕ necessarily has the form u ≡ t. By Orthogonality, it

follows that ρ(t) is the unique term such that ρ(u)≡↓ ρ(t). We have two cases:

– If u is a constant instance cσ, then by the definition of NF we have NF(ρ(u)) =
NF(ρ(t)). But then Γ  NF(ρ(ϕ)), that is, Γ  NF(ρ(u)) = NF(ρ(t)), follows from

(FACT) applied with the reflexivity axiom.

– If u is a type σ and t : τ→ bool, then ρ(ϕ) is ρ(σ)≡↓ ρ(t). In other words, ρ(ϕ) has

the format of a HOL type definition, just like ϕ. Hence, NF(ρ(ϕ)) is seen to be an

instance of type_comp, namely, type_comp[NF(ρ(σ))/α] together with NF(ρ(t))
substituted for the first quantifier. Hence Γ  NF(ρ(ϕ)) follows from (FACT) ap-

plied with type_comp, followed by ∀-instantiation (the latter being the standardly

derived rule for ∀).

In summary, our HOLC translation of overloading emulates overloading itself in

that it treats the defined constant instances cτ as being disconnected from their “mother”

instances ctpOf(c). The translation is sound thanks to the fact that the considered theory

has no axioms about these constants besides the overloaded definitions. This sound

translation immediately allows us to reach our overall goal:

Proof of Theorem 1 (Consistency of Isabelle/HOL). By contradiction. Let D; /0 ⊢
False. Then by Theorem 7, we obtain /0  NF(False) and since NF(False) = False, we

derive contradiction with Theorem 3.

4 Application: Logical Extensions

We introduced HOLC as an auxiliary for proving the consistency of Isabelle/HOL’s

logic. However, a natural question that arises is whether HOLC would be itself a practi-

cally useful extension. We cannot answer this question yet, beyond noting that it would

be a significant implementation effort due to the need to reorganize types as mutually

dependent with terms. Over the years, some other proposals to go beyond HOL arose.

For example, an interesting early proposal by Melham to extend the terms with explicit

type quantifiers [34] was never implemented. Homeier’s HOLω [22], an implemented

and currently maintained extension of HOL with first-class type constructors, is another

example.

17



A strong argument for using HOL in theorem proving is that it constitutes a sweet

spot between expressiveness and simplicity. The expressiveness part of the claim is

debatable—and has been challenged, as shown by the above examples, as well as by Is-

abelle/HOL itself which extends HOL in a nontrivial way. In our recent work we joined

the debate club and advocated a new sweet spot for HOL (and for Isabelle/HOL, respec-

tively) [29] by introducing local type definitions and an unoverloading rule expressing

parametricity. HOLC plays a special role in this proposal because we use it to prove the

extensions’ consistency.

In the following, we first introduce and motivate the extensions (Section 4.1), and

then discuss how we applied HOLC to justify their consistency and why our previous

ground semantic [28] is not suitable for this job (Section 4.2).

4.1 Two Extensions for Traveling From Types to Sets

We start with a theorem stating that all compact sets are closed in T2 spaces (a topolog-

ical space), whose definition uses an overloaded constant open : α set→ bool:

∀αT2-space. ∀S α set. compact S −→ closed S (26)

Since we quantify over spaces defined on α here, the theorem is not applicable to spaces

defined on a proper subset A of α. Let us recall that types and sets are different syntactic

categories in HOL. Defining a new ad hoc type isomorphic to A is undesirable or not

even allowed since A can be an open term. Thus a more flexible theorem quantifying

over all nonempty carriers A and unary predicates open forming a T2 space is needed:

∀α. ∀Aα set. A 6= /0−→ ∀openα set→bool. T2-spaceon
with A open−→

∀S α set ⊆ A. compacton
with A open S −→ closedon

with A open S
(27)

As the proof automation works better with types, ideally one should only prove

type-based theorems such as (26) and automatically obtain set-based theorems such as

(27). Unfortunately, this is not possible in HOL, which is frustrating given that (26) and

(27) are semantically equivalent (in the standard interpretation of HOL types).

To address the discrepancy and achieve the automatic translation, we extended the

logic of Isabelle/HOL by two new rules: Local Typedef (LT) and Unoverloading (UO).

Γ ⊢ A 6= /0 Γ ⊢ (∃abs rep. (β≈ A)abs
rep )−→ ϕ

[β fresh] (LT)
Γ ⊢ ϕ

where (β≈ A)abs
rep means that β is isomorphic to A via morphisms abs and rep; basically

the core of the formula (1) from Section 2.2, where for notation convenience we identify

the set A with its characteristic predicate λx. x ∈ A. The rule allows us to assume the

existence of a type isomorphic to a nonempty set A (which syntactically is a possibly

open term) inside of a proof.

To formulate (UO), let us recall that ↓ is the substitutive closure of the constant–

type dependency relation from Section 2.2 on page 8 and let us define ∆c to be the

set of all types for which the constant c was overloaded. The notation σ 6≤ S means that

σ is not an instance of any type in S . We write ↓+ for the transitive closure of ↓.
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ϕ[cσ/xσ]
[σ 6≤ ∆c; and u ↓+ cσ does not hold for any type or constant u in ϕ] (UO)

∀xσ. ϕ

Thus, (UO) tells us that if a constant c was not overloaded for σ (or a more general

type), the meaning of the constant instance cσ is unrestricted, i.e., it behaves as a free

term variable of the same type. That is to say, the truth of a theorem ϕ containing cσ
cannot depend on the definition of cτ for some τ < σ. In summary, (UO) imposes a

certain notion of parametricity, which is willing to cohabitate with ad hoc overloading.

We use the two rules in the translation as follows: the (UO) rule allows us to compile

out the overloaded constants from (26) (by a dictionary construction) and thus obtain

∀α. ∀openα set→bool. T2-spacewith open−→ . . . . (28)

Then we fix a nonempty set A, locally “define” a type β isomorphic to A by (LT) and

obtain (27) from the β-instance of (28) along the isomorphism between β and A.

The extensions have already been picked up by Isabelle/HOL power users for trans-

lating between different representations of matrices [12, 13], for implementing a certi-

fied and efficient algorithm for factorization [11], and for tightly integrating invariants

in proof rules for a probabilistic programming language [33].

4.2 Consistency of the Extensions

We will fist show that HOL + (LT) is consistent by showing (LT) to be admissible in

HOLC (as a straightforward consequence of type_comp).

Theorem 10. The inference system consisting of the deduction rules of Isabelle/HOL

and the (LT) rule is consistent (in that it cannot prove False).

Proof sketch. It is enough if we show that for every step

Γ ⊢ A 6= /0 Γ ⊢ (∃abs rep. (β≈ A)abs
rep )−→ ϕ

[β is fresh]
Γ ⊢ ϕ

in a HOL proof, we can construct a step in a HOLC proof of NF(Γ)  NF(ϕ) given

NF(Γ)  NF(A) 6= NF( /0) (29)

NF(Γ)  (∃abs rep. (β≈ NF(A))abs
rep )−→ NF(ϕ). (30)

The side-condition of the (LT) (freshness of β) transfers into HOLC: if β is fresh

for some u ∈ Type∪Term, it must also be fresh for NF(u). This follows from the fact

that unfolding a (type or constant) definition u≡ t cannot introduce new type variables

since we require TV(t)⊆ TV(u). Thus we obtain

NF(Γ)  (∃abs rep. ({|NF(A)|} ≈ NF(A))abs
rep )−→ NF(ϕ), (31)

an instance of (30) where we substituted the witness {|NF(A)|} for β. As a last step, we

discharge the antecedent of (31) by using type_comp (with the help of (29)) and obtain

the desired NF(Γ)  NF(ϕ).
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We were also able to prove Theorem 10 by using our previous ground semantics,

as discussed in Kunčar’s thesis [31, Sect. 7.2]. The proof is more technically elaborate

and the main idea is to prove that the following principle holds in the semantic world of

HOL:

∀α. ∀Aα set. A 6= /0−→ ∃β. ∃absα→β repβ→α. (β≈ A)abs
rep (⋆)

Working in HOLC gives us the advantage to get closer to (⋆) in the following sense:

for every nonempty set A : σ set, not only we can postulate that there always exists

a type isomorphic to A, but we can even directly express such a type in HOLC as

the comprehension {|A|}. That is basically what the axiom type_comp tells us. Thus,

informally speaking, the property (⋆) is more first-class in HOLC than in HOL.

In contrast to (LT), we could not use the ground semantics for the consistency of

(UO) and this is where HOLC shows its power.

Theorem 11. The inference system consisting of the deduction rules of Isabelle/HOL,

the (LT) rule and the (UO) rule is consistent.

Proof sketch. We will first argue that HOLC + (UO) (without its side-conditions, since

they do not make sense in HOLC) is still a consistent logic. This means, from ϕ[cσ/xσ]
we can derive ∀xσ. ϕ in HOLC + (UO). W.l.o.g. let us assume that the interpretation of

type constructors in the semantics of HOLC from Section 3.2 is nonoverlapping. Since

HOLC does not contain any definitions, we interpret cσ arbitrarily (as long as the value

belongs to the interpretation of σ) in the model construction for HOLC. That is to say,

the proof of consistency does not rely on the actual value of cσ’s interpretation, hence

we can replace cσ by a term variable xσ. Therefore the formula ϕ must be fulfilled for

every evaluation of xσ.

The second step is to show that NF is a sound embedding of Isabelle/HOL + (LT) +

(UO) into HOLC + (UO). Since we have shown that the translation of (LT) is admissible

in HOLC, we only need to focus on (UO). The first side condition of (UO) guarantees

that unfolding by NF does not introduce any new cσ and the second one guarantees that

NF does not unfold any cσ. Therefore the substitution [cσ/xσ] commutes with NF, i.e.,

NF(ϕ[cσ/xσ]) = (NF(ϕ))[cNF(σ)/xNF(σ)].

The reason we could not use the ground semantics to prove Theorem 11 is because

the semantics is too coarse to align with the meaning of (UO): that the truth of a theorem

ϕ stating a property of cσ cannot depend on the fact that a proper instance of cσ, say,

cτ for τ < σ, was already overloaded, say, by a definition cτ ≡ t. In semantic terms, this

means that the interpretation of cσ cannot depend on the interpretation of cτ. Recall that

in the ground semantics we considered a polymorphic HOL formula ϕ to be true just

in case all its ground type instances are true. (See also the discussion on page 9.) This

definition of truth cannot validate (UO). To see this, let us assume that ϕ is polymorphic

only in α and τ is ground. We want to assume the truth of ϕ[σ/α][cσ/xσ] and infer the

truth of ∀xσ. ϕ[σ/α]. In particular, since ∀xτ. ϕ[τ/α] is a ground instance of the latter,

we would need to infer that ∀xτ. ϕ[τ/α] is true, and in particular that ϕ[τ/α][cτ/xτ] is

true. But this is impossible, since the interpretation of cτ in ϕ[τ/α][cτ/xτ] is fixed and

dictated by the definitional theorem cτ ≡ t.
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5 Conclusions and Related Work

It took the Isabelle/HOL community almost twenty years to reach a definitional mech-

anism that is consistent by construction, w.r.t. both types and constants.10 This paper,

which presents a clean syntactic argument for consistency, is a culmination of previous

efforts by Wenzel [48], Obua [38], ourselves [26,28], and many other Isabelle designers

and developers.

The key ingredients of our proof are a type-instantiation restricted version of HOL

deduction and HOLC, an extension of HOL with comprehension types. HOLC is similar

to a restriction of Coq’s Calculus of Inductive Constructions (CiC) [8], where: (a) proof

irrelevance and excluded middle axioms are enabled; (b) polymorphism is restricted

to rank 1; (c) the formation of (truly) dependent product types is suppressed. How-

ever, unlike CiC, HOLC stays faithful to the HOL tradition of avoiding empty types.

HOLC also bears some similarities to HOL with predicate subtyping [43] as featured

by PVS [44]. Yet, HOLC does not have real subtyping: from t : σ→ bool and s :: {|t|}
we cannot infer s :: σ. Instead, HOLC retains HOL’s separation between a type defined

by comprehension and the original type: the former is not included, but merely embed-

ded in the latter. Comprehension types are also known in the programming language

literature as refinement types [16].

Wiedijk defines stateless HOL [49], a version of HOL where types and terms carry

definitions in their syntax. Kumar et al. [25] define a translation from standard (stateful)

HOL with definitions to stateless HOL, on the way of proving the consistency of both.

Their translation is similar to our HOL to HOLC translation, in that it internalizes HOL

definitions as part of “stateless” formulas in a richer logic.

Although a crucial property, consistency is nevertheless rather weak. One should

legitimately expect definitions to enjoy a much stronger property: that they can be com-

piled away without affecting provability not in a richer logic (like HOLC), but in HOL

itself. Wenzel calls this property “meta-safety” and proves it for Isabelle/HOL constant

definitions [48]. In particular, meta-safety yields proof-theoretic conservativity, itself

stronger than consistency: if a formula that contains no defined item is deducible from

a definitional theory, then it is deducible in the core (definition-free) logic. Meta-safety

and conservativity for arbitrary definitional theories (factoring in not only constant, but

also type definitions) are important meta-theoretic problems, which seem to be open not

only for Isabelle/HOL, but also for standard HOL [2]. We leave them as future work.
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work. Kunčar is supported by the German Research Foundation (DFG) grant “Security

Type Systems and Deduction” (Ni 491/13-3) in the priority program “RS3 – Reliably

Secure Software Systems” (SPP 1496). Popescu is supported by the UK Engineering

and Physical Sciences Research Council (EPSRC) starting grant “VOWS – Verification

of Web-based Systems” (EP/N019547/1).

10 Isabelle is by no means the only prover with longstanding foundational issues [28, Sect. 1].

21



References

1. Isabelle Foundation & Certification (2015), archived at https://lists.cam.ac.uk/

pipermail/cl-isabelle-users/2015-September/thread.html

2. Conservativity of HOL constant and type definitions (2016), archived at https://

sourceforge.net/p/hol/mailman/message/35448054/

3. The HOL system logic (2016), https://sourceforge.net/projects/hol/files/

hol/kananaskis-10/kananaskis-10-logic.pdf

4. Type definitions in Isabelle; article "A Consistent Foundation for Isabelle/HOL"

by Kunçar/Popescu (2016), archived at https://lists.cam.ac.uk/pipermail/

cl-isabelle-users/2016-August/thread.html

5. Arthan, R.: On definitions of constants and types in HOL. J. Autom. Reasoning 56(3), 205–

219 (2016)

6. Barras, B.: Sets in Coq, Coq in Sets. Journal of Formalized Reasoning 3(1) (2010)

7. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—Lessons learned in formal-logic

engineering. In: TPHOLs. pp. 19–36 (1999)

8. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq’Art:

The Calculus of Inductive Constructions. Springer (2004)

9. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational Extensible Corecursion. ICFP ’15,

ACM (2015)

10. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative functional pro-

gramming with isabelle/hol. In: TPHOLs. pp. 134–149 (2008)

11. Divasón, J., Joosten, S., Thiemann, R., Yamada, A.: A formalization of the berlekamp-

zassenhaus factorization algorithm. In: CPP. pp. 17–29 (2017)
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