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A Formally Verified Abstract Account

of Gödel’s Incompleteness Theorems

Andrei Popescu1 and Dmitriy Traytel2

1 Department of Computer Science, Middlesex University London, UK
2 Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

Abstract. We present an abstract development of Gödel’s incompleteness theo-
rems, performed with the help of the Isabelle/HOL theorem prover. We analyze
sufficient conditions for the theorems’ applicability to a partially specified logic.
In addition to the usual benefits of generality, our abstract perspective enables
a comparison between alternative approaches from the literature. These include
Rosser’s variation of the first theorem, Jeroslow’s variation of the second theo-
rem, and the Świerczkowski–Paulson semantics-based approach. As part of our
framework’s validation, we upgrade Paulson’s Isabelle proof to produce a mech-
anization of the second theorem that does not assume soundness in the standard
model, and in fact does not rely on any notion of model or semantic interpretation.

1 Introduction

Gödel’s incompleteness theorems [10, 13] are landmark results in mathematical logic.
Both theorems refer to consistent logical theories that satisfy some assumptions, notably
that of “containing enough arithmetic.” The first incompleteness theorem (IT1) says
that there are sentences that the theory cannot decide (i.e., neither prove nor disprove);
the second theorem (IT2) says that the theory cannot prove (an internal formulation of)
its own consistency. It is generally accepted that IT1 and IT2 have a wide scope, cover-
ing many logics and logical theories. However, when it comes to rigorous presentation,
typically these results are only proved for particular, albeit paradigmatic cases, such as
theories of arithmetic or hereditarily finite (HF) sets, within classical first-order logic
(FOL); and even in these cases the constructions and proofs tend to be “incomplete and
(apparently) irremediably messy” [4, p.16]. Hence, the theorems’ scope remains largely
unexplored on a rigorous/formal basis.

The emergence of powerful theorem provers has changed the rules of the game
and, we argue, the expectation. Using interactive theorems provers, we can reliably
keep track of all the constructions and their properties. Proof automation (often pow-
ered by fully automatic provers [18, 28]), makes complete, fully rigorous proofs fea-
sible. And indeed, researchers have successfully met the challenge of mechanizing
IT1 [15,25,27,35] and recently IT2 [27]. Besides reassurance, these verification tours

de force have brought superior technical insight into the theorems. But they have taken
place within the same solitary confinement of scope as the informal proofs.

This paper takes steps towards a more comprehensive prover-backed exploration
of the incompleteness theorems, by a detailed analysis of their assumptions. We use
Isabelle/HOL [24] to establish general conditions under which the theorems apply to



a partially specified logic. Our formalization is publicly available [31]. An extended
technical report gives more details [30].

We start with a notion of logic (Section 2) whose terms, formulas and provability re-
lation are kept abstract (Section 2.1). In particular, substitution and free variables are not
defined, but axiomatized by some general properties. On top of this logic substratum, we
consider an arithmetic substratum, consisting of a set of closed terms called numerals

and an order-like relation (Section 2.2). Also factored in our abstract framework are en-
codings of formulas and proofs into numerals, the representability of various functions
and relations as terms or formulas (Section 2.3), variations of the Hilbert-Bernays-Löb
derivability conditions [16, 23] (Section 2.4), and standard models (Section 2.5).

Overall, our assumptions capture the notion of “containing enough arithmetics” in
a general and flexible way. It is general because only few assumptions are made about
the exact nature of formulas and numerals. It is flexible because different versions of
the incompleteness theorems consider their own “amount of arithmetics” that makes
it “enough,” as proper subsets of these assumptions. Indeed, our formalization of the
theorems (Section 3) proceeds in an austere-buffet style: Every result picks just enough
infrastructure needed for it to hold—ranging from diagonalization which requires very
little (Section 3.1) to Rosser’s version of IT1 which is quite demanding. This approach
caters for a sharp comparison between different formulations of the theorems, high-
lighting their trade-offs: Gödel’s original formulation of IT1 versus Rosser’s improve-
ment (Section 3.2), proof-theoretic versus semantic versions of IT1 (Section 3.2), and
Gödel’s original formulation of the IT2 versus Jeroslow’s improvement (Section 3.3).

Abstractness is our development’s main strength, but also a potential weakness: Are
our hypotheses reasonable? Are they consistent? These questions particularly concern
our axiomatization of free variables and substitution—a notoriously error-prone area.
As a remedy, we instantiate our framework to Paulson’s semantics-based IT1 and IT2

for HF set theory [27], also performing an upgrade of Paulson’s IT2 to a more general
and standard formulation: for consistent (not necessarily sound) theories (Section 4). In
the rest of this section, we discuss some formalization principles and related work.

Formal Design Principles Our long-term goal is a framework that makes it easy to
instantiate the incompleteness theorems and related results to different logics. This is a
daunting task, especially for IT2, where a lot of seemingly logic-specific technicalities
are required to even formulate the theorem. The challenge is to push as much as possible
of the technical constructions and lemmas to a largely logic-independent layer.

To this end, we strive to make minimal assumptions in terms of structure and prop-
erties when inferring the results—we will call this the Economy principle. For example,
we do not define, but axiomatize syntax in terms of a minimalistic infrastructure. We as-
sume a generic single-point substitution, then define simultaneous substitution and infer
its properties. This is laborious, but worthwhile: Any logic that provides a single-point
substitution satisfying our assumptions gets the simultaneous substitution for free.

As another instance of Economy, when faced with two different ways of formulat-
ing a theorem’s conclusion we prefer the one that is stronger under fewer assumptions.
(And dually, we prefer weakness for a theorem’s assumptions.) For example, we discuss
two variants of consistency: (1) “does not prove false” or (2) “there exists no formula
such that itself and its negation are provable” (Section 3.3). While the statements are

2



equivalent at the meta-level, their representations as object-logic formulas are not nec-
essarily equivalent; in fact, (1) implies (2) under mild assumptions but not vice versa. So
in our abstract theorems we prefer (1). Indeed, even if (2) implies (1) in all reasonable
instances, why postpone for the instantiation time any fact that we can show abstractly?

Applying the Economy principle not only stocks up generality for instantiations,
but also accurately outlines trade-offs: How much does it cost (in terms of other added
assumptions) to improve the conclusion, or to weaken an assumption of a theorem? For
example, an Economy-based proof of Rosser’s variant of IT1 reveals how much arith-
metic we must factor in for weakening the ω-consistency assumption into consistency.

Related Work Gödel initially gave a proof of IT1 and the rough proof idea of IT2 [13].
Hilbert and Bernays gave a first detailed proof of IT2 [16]. A vast literature was ded-
icated to the (re)formulation, proof, and analysis of these results [4, 33, 38, 39]. The
now canonical line of reasoning goes through the derivability conditions devised by
Bernays and Hilbert [16] and simplified by Löb [23]. These conditions have inspired a
new branch of modal logic called provability logic [4]. Jeroslow has argued that, unlike
previously believed, one condition is redundant when proving IT2 [17].

Kreisel [20] and Jeroslow [17] were the first to study abstract conditions on log-
ics under which the incompleteness theorems apply. Buldt [5] surveys the state of the
art focusing on IT1. Our abstract approach, based on generic syntax and provability
and truth predicates, resembles the style of institution-independent model theory [9,14]
and our previous work on abstract completeness [3] and completeness of ordered res-
olution [34]. Dimensions of generality that our formalized work does not (yet) explore
include quantifier-free logics [17] and arithmetical hierarchy refinements [19]. Our syn-
tax axiomatization is inspired by algebraic theories of the λ-calculi syntax [11, 12, 29].

In the realm of mechanical proofs, the earliest substantial development was due to
Sieg [36], who used a prover based on TEM (Theory of Elementary Meta-Mathematics)
to formalize parts of the proofs of both IT1 and IT2. But the first full proof of IT1 was
achieved by Shankar [35] in the Boyer-Moore prover, followed by Harrison in HOL
Light [15] and O’Connor in Coq [25]. IT2 has only been fully proved recently—by
Paulson in Isabelle/HOL [26, 27] (who also proved IT1). All these mechanizations
target theories over a fixed language in classical FOL: that of arithmetic (Harrison and
O’Connor) and that of HF sets or a variation of it (Sieg, Shankar and Paulson). These
mechanizations are mostly focused on “getting all the work done” in a particular setting
(although Harrison targets a more abstract class of theories in the given language).
On their way to IT1, Shankar and O’Connor also prove representability of all partial,
respectively primitive recursive functions—important standalone results. Also, there
has been work on fully automating parts of the proofs of these theorems [1, 6, 32, 37].

By contrast, we explore conditions that enable different formulations for an abstract
logic, where aspects such as recursiveness are below our abstraction level. The two ap-
proaches are complementary, and they both contribute to formally taming the complex
ramifications of the incompleteness theorems. When instantiating our abstract assump-
tions to recover and upgrade Paulson’s results, we took advantage of Paulson’s substan-
tial work on proving the many low-level lemmas towards the derivability conditions.
More should be done at an abstract level to avoid duplicating some of these laborious
lemmas when instantiating the theorems to different logics. This will be future work.
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2 Abstract Assumptions

Roughly, the incompleteness theorems are considered to hold for logical theories that
(1) contain enough arithmetic and (2) are “effective” in that they themselves can be
arithmetized. Our goal is to give a general expression of these favorable conditions. To
this end, we identify some logic and arithmetic substrata consisting of structure and ax-
ioms that express the containment of (various degrees of) arithmetic more abstractly and
flexibly than relative interpretations [41]. We also identify abstract notions of encodings
and representability that have just what it takes for a working arithmetization.

2.1 The logical substratum

We start with some unspecified sets of variables (Var, ranged over by x, y, z), terms
(Term, ranged over by s, t) and formulas (Fmla, ranged over by ϕ, ψ, χ). We assume
that variables are particular terms, Var ⊆ Term, and that Var is infinite. Free-variables
and substitution operators, FVars and _ [_/_], are assumed for both terms and formulas.
We think of FVars(t) as the (finite) set of free variables of the term t, and similarly for
formulas. We call sentence any formula with no free variable, and let Sen denote the set
of sentences. We think of s [t/x] as the term obtained from s by the (capture-avoiding)
substitution of t for the free occurrences of variable x; we think of ϕ [t/x] as the formula
obtained from ϕ by the substitution of t for the free occurrences of variable x.

In FOL, terms introduce no bindings, so any occurring variable is free. FOL terms
fall under our framework, and so do terms with bindings as in λ-calculi and higher-order
logic (HOL). To achieve this degree of inclusiveness while also being able to prove
interesting results, we work under some well-behavedness assumptions about the free-
variables and substitution operators. For example, free-variables distribute over substi-
tution, FVars (ϕ [s/x]) = FVars(ϕ)−{x} ∪ FVars(s) if x ∈ FVars(ϕ), and substitution
is compositional, ϕ [s1/x1] [s2/x2] = ϕ [s2/x2] [(s1 [s2/x2]) / x1] if x1 6= x2 and x1 /∈
FVars(s2). Our extended report [30] contains the full list of our generic syntax axioms.

The incompleteness theorems rely heavily on simultaneous substitution, written
ϕ [t1/x1, . . . , tn/xn], whose properties are tricky to formalize—for example, Paulson’s
formalization paper dedicates them ample space [27, 6.2]. To address this problem
once and for all generically, we define simultaneous substitution from the single-point
substitution, ϕ [t/x], and infer its properties from the single-point substitution axioms.
For example, we prove that FVars (ϕ [s1/x1, . . . , sn/xn]) = FVars(ϕ) ∪

⋃
{FVars(si)−

{xi} | i ∈ {1, . . . , n} and xi ∈ FVars(ϕ)}. The technicalities are delicate: To avoid unde-
sired variable replacements, ϕ [s1/x1, . . . , sn/xn] must be defined as ϕ [y1/x1] . . . [yn/xn]
[s1/y1] . . . [sn/yn] for some fresh y1, . . . , yn, the choice of which we must show to be im-
material. This definition’s complexity is reflected in the properties’ proofs. But again,
this one-time effort benefits any “customer” logic: In exchange for a well-behaved
single-point substitution, it gets back a well-behaved simultaneous substitution.

We let v1, v2, . . . be fixed mutually distinct variables. We write Fmlak for the set of
formulas whose free variables are precisely {v1, . . . , vk}, and Fmla⊆k for the set of for-

mulas whose variables are among {v1, . . . , vk}. Note that Fmlak ⊆ Fmla⊆k and Fmla0 =

Fmla⊆0 = Sen. Given ϕ ∈ Fmla⊆k , we write ϕ (t1, . . . , tn) instead of ϕ [t1/v1, . . . , tn/vn].
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In addition to free variables and substitution, our theorems will require formulas to
be equipped with term equality (≡), Boolean connectives (⊥,⊤,→, ¬, ∧, ∨), universal
and existential quantifiers (∀, ∃). In our formalization, we assume a minimal list of the
above with respect to intuitionistic logic, and define the rest from this minimal list.
They are not assumed to be constructors (syntax builders), but operators on terms and
formulas, e.g., ≡ : Term→ Term→ Fmla, ⊥ ∈ Fmla, ∀ : Var×Fmla→ Fmla. This
caters for logics that do not have them as primitives. For example, HOL defines all
connectives and quantifiers from λ-abstraction and either equality or implication.

We fix a unary relation ⊢ ⊆ Fmla on formulas, called provability. We write ⊢ ϕ
instead of ϕ ∈ ⊢, and say the formula ϕ is provable. Whenever certain formula con-
nectives or quantifiers are assumed present, we will assume that ⊢ behaves intuition-
istically w.r.t. them—namely, we assume the usual (Hilbert-style) intuitionistic FOL
axioms with respect to the abstract connectives and quantifiers. Stronger systems, such
as those of classical logic, also satisfy these assumptions.

Consistency, denoted Con, is defined as the impossibility to prove false, namely
6⊢ ⊥. Another central concept is ω-consistency—we carefully choose a formulation that
works intuitionistically, with conclusion reminiscent of Gödel’s negative translation [8]:

OCon: For all ϕ ∈ Fmla⊆1 , if ⊢ ¬ ϕ(n) for all n ∈ Num then 6⊢ ¬ ¬ (∃x. ϕ(x)).

Assuming classic deduction in ⊢, this is equivalent to the standard formulation: For all
ϕ ∈ Fmla⊆1 , it is not the case that ⊢ ϕ(n) for all n ∈ Num and ⊢ ¬ (∀x. ϕ(x)).

Occasionally, we will consider not only provability but also explicit proofs. We fix a
set Proof of (entities we call) proofs, ranged over by p, q, and a binary relation between
proofs p and sentences ϕ, written p  ϕ and read “p is a proof of ϕ.” We assume ⊢ and
 to be related as expected, in that provability is the same as the existence of a proof:

Rel⊢ : For all ϕ ∈ Sen, ⊢ ϕ iff there exists p ∈ Proof such that p  ϕ.

2.2 The arithmetic substratum

We extend the generic syntax assumptions with a subset Num ⊆ Term, of numerals,
ranged over by m, n, which are assumed to be closed, i.e., have no free variables.

Convention 1. In all the shown results we implicitly assume: (1) the generic syntax
(free variable and substitution) axioms, (2) at least→ and ⊥ plus whatever connectives
and quantifiers appear in the statement, (3) closedness of ⊢ under intuitionistic deduc-
tion rules, and (4) the existence of numerals. Other assumptions (e.g., order-like relation
axioms, consistency, standard models, etc.) will be indicated explicitly.

On one occasion, we will assume an order-like binary relation modeled by a formula
≺∈ Fmla2. We write t1 ≺ t2 instead of≺ (t1, t2) and ∀x≺ n. ϕ instead of ∀x. x≺ n→ ϕ.
It turns out that at our level of abstraction it does not matter whether ≺ is a strict or a
non-strict order. Indeed, we only require the following two properties, where x ∈ M

denotes
∨

m∈M x≡ m and
∨

expresses the disjunction of a finite set of formulas:

Ord1: For all ϕ ∈ Fmla1 and n ∈Num, if ⊢ ϕ(m) for all m ∈Num, then ⊢ ∀x≺ n. ϕ(x).
Ord2: For all n∈Num, there exists a finite set M ⊆Num such that ⊢ ∀x. x∈M∨n≺ x.

Ord1 states that if a property ϕ is provable for all numerals, then its universal quan-
tification bounded by any given numeral n is also provable. Having in mind the arith-
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metic interpretation of numerals, it would also make sense to assume a stronger version
of Ord1, replacing “if ⊢ ϕ(m) for all m ∈ Num” by the weaker hypothesis “if ⊢ ϕ(m)
for all m ∈ Num such that ⊢ m≺ n”. But this stronger version will not be needed.

Ord2 states that, for any numeral n, any element x in the domain of discourse is
either greater than n or equal to one of a finite set M of numerals. If we instantiate our
syntax to that of first-order arithmetic, then the natural number model satisfies Ord1 and
Ord2 when interpreting ≺ as either < or ≤. Moreover, these properties are provable in
intuitionistic Robinson arithmetic, again for both < and ≤.

2.3 Encodings and representability

Central in the incompleteness theorems are functions that encode formulas and proofs
as numerals, 〈_〉 : Fmla→ Num and 〈_〉 : Proof → Num. For our abstract results, the
encodings are not required to be injective or surjective.

Let A1, . . . , Am be sets, and let, for each of them, 〈_〉 : Ai→ Num be an “encoding”
function to numerals. Then, an m-ary relation R⊆ A1× . . .×Am is said to be represented

by a formula R©∈ Fmlam if the following hold for all (a1, . . . , am) ∈ A1× . . .×Am:

– (a1, . . . , am) ∈ R implies ⊢ R©(〈a1〉, . . . , 〈am〉)
– (a1, . . . , am) /∈ R implies ⊢ ¬ R©(〈a1〉, . . . , 〈am〉)

Let A be another set with 〈_〉 : A→ Num. An m-ary function f : A1× . . . Am→ A is
said to be represented by a formula f©∈ Fmlam+1 if for all (a1, . . . , am)∈ A1× . . .×Am:

– ⊢ f©(〈a1〉, . . . , 〈am〉, 〈 f (a1, . . . , am)〉)
– ⊢ ∀x, y. f©(〈a1〉, . . . , 〈am〉, x)∧ f©(〈a1〉, . . . , 〈am〉, y)→ x≡ y

The notion of a function being represented is stronger than that of its graph being
represented (as a relation)—but with enough deductive power they are equivalent [38,
§16]. We will need an even stronger notion: A function f as above is term-represented

by an operator f© : Termm → Term if ⊢ f©(〈a1〉, . . . , 〈am〉) ≡ 〈 f (a1, . . . , am)〉 for all
(a1, . . . , am)∈ A1× . . .×Am. When the formula by which a relation/function P is repre-
sented or term-represented is irrelevant, we call P representable or term-representable.

We will also need an enhancement of relation representability: Given i <m, we call
the representation of an m-ary relation R by R© i-clean if ⊢¬ R©(n1, . . . , nm) for all num-
bers n1, . . . , nm such that ni (the i’th number among them) is outside the image of 〈_〉
(i.e., there is no a∈ Ai with ni = 〈a〉). Cleanness would be trivially satisfied if the encod-
ings were surjective. However, surjectivity is not a reasonable assumption. For example,
most of the numeric encodings used in the literature are injective but not surjective.

We let S : Fmla1→ Sen be the self-substitution function, which sends any ϕ∈ Fmla1

to ϕ(〈ϕ〉), i.e., to the sentence obtained from ϕ by substituting the encoding of ϕ for the
unique variable of ϕ. An alternative is the following “soft” version of S, which sends
any ϕ ∈ Fmla1 to ∃v1. v1 ≡ 〈ϕ〉∧ϕ, where v1 is the single free variable of ϕ. The soft
version yields provably equivalent formulas and has the advantage that it is easier to rep-
resent inside the logic, since it does not require formalizing the complexities of capture-
avoiding substitution. All our results involving S have been proved for both versions.

We will consider the properties Repr¬ , ReprS, and Repr , stating the representabil-
ity of the functions ¬ and S, and of the relation . In addition, Clean will state that the
considered representation of  is 1-clean, i.e., it is clean on the proof component. For
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the representing formulas for the above relations and functions we will use their circled
names, ¬©, ©, etc.; for example, Repr means that (1) p  ϕ implies ⊢ ©(〈p〉, 〈ϕ〉)
and (2) p 6 ϕ implies ⊢ ¬ ©(〈p〉, 〈ϕ〉) for all p ∈ Proof and ϕ ∈ Sen.

2.4 Derivability conditions

Most of our assumptions refer to representability. An important exception is the prov-
ability relation ⊢, for which only a weakening of representability is reasonable. Let
⊢©∈ Fmla1 be the formula for this task. We consider the following assumptions about
⊢©, known as the Hilbert-Bernays-Löb derivability conditions:

HBL1: ⊢ ϕ implies ⊢ ⊢©〈ϕ〉 for all ϕ ∈ Sen.
HBL2: ⊢ ⊢©〈ϕ〉∧ ⊢©〈ϕ→ ψ〉 → ⊢©〈ψ〉 for all ϕ, ψ ∈ Sen.
HBL3: ⊢ ⊢©〈ϕ〉 → ⊢©〈 ⊢©〈ϕ〉〉 for all ϕ ∈ Sen.

Above and elsewhere, to lighten notation we omit parentheses when instantiating one-
variable formulas with encodings of formulas—e.g., writing ⊢©〈ϕ〉 instead of ⊢©(〈ϕ〉).

HBL1 states that, if a sentence is provable, then its encoding is also provable inside
the representation. HBL3 is roughly a formulation of HBL1 “one level up,” inside the
proof system ⊢. Finally, note that the provability relation is closed under modus ponens,
in that ⊢ ϕ and ⊢ ϕ→ ψ implies ⊢ ψ for all ϕ, ψ ∈ Sen. Thus, HBL2 roughly states the
same property inside the proof system. In short, the derivability conditions state that the
representation of provability acts partly similarly to the provability relation. Note that
the representability of “proof of” implies HBL1, taking ⊢©(x) to be ∃y. ©(y, x).

Convention 2. We focus on the standard provability representation in this paper: When-
ever we assume explicit proofs and representability of “proof of,” the formula ⊢© will
be defined from © as shown above.

We will also be interested in the following variations of the derivability conditions:

HBL4: ⊢ ⊢©〈ϕ〉∧ ⊢©〈ψ〉 → ⊢©〈ϕ∧ψ〉 for all ϕ, ψ ∈ Sen.
HBL⇐1 : ⊢ ⊢©〈ϕ〉 implies ⊢ ϕ for all ϕ ∈ Sen.
SHBL3: ⊢ ⊢©(t)→ ⊢©〈 ⊢©(t)〉 for all closed terms t.
WHBL2: ⊢ ϕ→ ψ implies ⊢ ⊢©〈ϕ〉 → ⊢©〈ψ〉 for all ϕ, ψ ∈ Sen.

HBL4 has a similar flavor as HBL2, but refers to conjunction: It states that the conjunc-
tion introduction rule holds inside the proof system. HBL⇐1 is the converse of HBL1.
Finally, SHBL3 is a strengthening of HBL3 holding for all closed terms and not only
those that encode sentences, and (if we assume HBL1) WHBL2 is a weakening of HBL2.

2.5 Standard models

We fix a unary relation |=⊆ Sen, representing truth of a sentence in the standard model.
We write |= ϕ instead of ϕ∈ |=, and read it as “ϕ is true.” We consider the assumptions:

Syn|=: Syntactic entities (logical connectives and quantifiers) handle truth as expected:
(1) 6|=⊥; (2) for all ϕ, ψ ∈ Sen, |= ϕ and |= ϕ→ ψ imply |= ψ;
(3) for all ϕ ∈ Fmla1, if |= ϕ(n) for all n ∈ Num then |= ∀x. ϕ(x);
(4) for all ϕ ∈ Fmla1, if |= ∃x. ϕ(x) then |= ϕ(n) for some n ∈ Num;
(5) for all ϕ ∈ Sen, |= ϕ or |= ¬ ϕ.

Soundness (of provability with respect to truth): ⊢ ϕ implies |= ϕ for all ϕ ∈ Sen.
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Syn|=(1–4) only contains a partial description of the syntactic entities’ behavior—
corresponding to elimination rules for ⊥,→ and ∃ and introduction rule for ∀. For our
results this suffices. Syn|=(5) states that standard models decide every sentence.

On his way to formalizing IT2 for extensions of the HF set theory, after proving
HBL1 Paulson notes [27, p.21]: “The reverse implication [namely HBL⇐1 ], despite its
usefulness, is not always proved.” In his abstract account, Buldt also assumes HBL⇐1 in
his most general formulation of IT1 [5, Theorem 3.1]; that formulation has in mind not
necessarily the standard provability representation (our Convention 2), but any formula
that weakly represents ⊢, which is acceptable for IT1 but not for IT2 [2].

We avoid such an IT1 versus IT2 divergence by remaining focused on the stan-
dard provability representation. In this case, for arithmetics and related theories, HBL⇐1
cannot be inferred without assuming soundness in the standard model (which Paulson
does), or at least ω-consistency. We can depict the situation abstractly, without knowing
what standard models look like:

Lemma 3. (1) Assume Rel⊢ , Repr, Clean and OCon. Then HBL⇐1 holds.
(2) Assume Soundness and Syn|=(1,2,3). Then OCon holds.

(3) Assume Rel⊢ , Repr, Clean, Soundness and Syn|=(1,2,4). Then |= ⊢©〈ϕ〉 implies
⊢ ϕ for all ϕ ∈ Sen. In particular, HBL⇐1 holds.

Thus, staying in a proof-theoretic world, ω-consistency ensures HBL⇐1 if the “proof
of” relation is cleanly represented (1). In turn, ω-consistency is ensured by minimal
semantic requirements, including the soundness of provability (2). Finally, putting to-
gether representability and semantics, we can infer something stronger than HBL⇐1 :
That the mere truth (and not just the provability) of a sentence’s provability representa-
tion implies the provability of the sentence itself (3).

It follows from either points (1,2) or point (3) of the lemma that, in the presence of
standard models and soundness, clean representability of the “proof of” relation implies
HBL⇐1 ; and recall that it also implies HBL1. So it implies an “iff” version of HBL1: ⊢ ϕ
if an only if ⊢ ⊢©〈ϕ〉. Interestingly, a converse of this implication also holds. To state it,
we initially assume there is no “outer” notion of proof (i.e., no set Proof and no relation
), but only an “inner” one, given by a formula P ∈ Fmla2 such that:

RelP
⊢©: ⊢ ⊢©〈ϕ〉 ←→ ∃x. P(x, 〈ϕ〉).

ComplP: |= P(n, 〈ϕ〉) implies ⊢ P(n, 〈ϕ〉) for all n ∈ Num and ϕ ∈ Sen.
Compl¬P: |= ¬ P(n, 〈ϕ〉) implies ⊢ ¬ P(n, 〈ϕ〉) for all n ∈ Num and ϕ ∈ Sen.

RelP
⊢© is the inner version of Rel⊢ : It expresses that, inside the representation, proofs

and provability are connected as expected. ComplP and Compl¬P state that provability
is complete on P statements about formula encodings, as well as their negations; in
traditional settings, this is true thanks to P being a bounded arithmetical formula (∆0).
Now the converse result states that, thanks to (standard models and) the “iff” version of
HBL1, we can define an outer notion of proof that is represented by the inner notion P:

Lemma 4. Assume RelP
⊢©, ComplP, Compl¬P, Soundness, Syn|=(4,5), HBL1 and

HBL⇐1 . Take Proof = Num and define  by n  ϕ iff ⊢ P (n, 〈ϕ〉). Then Rel⊢, Repr
and Clean hold, with  being represented by P.
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3 Abstract Incompleteness Theorems

After last section’s preparations, we are now ready to discuss different versions of the
incompleteness theorems and their major lemmas, based on alternative assumptions.

3.1 Diagonalization

The formula diagonalization technique (due to Gödel and Carnap [7]) yields “self-
referential” sentences. All we need for it to work is the representability of substitution.

Prop 5. Assuming ReprS, for all ψ ∈ Fmla1 there exists ϕ ∈ Fmla1 with ⊢ ϕ ←→ ψ〈ϕ〉.

A sentence ϕ ∈ Sen is called a Gödel sentence if ⊢ ϕ ←→ ¬ ⊢©〈ϕ〉; it is called a
Rosser sentence if ⊢ ϕ ←→ ¬ (∃x. ©(x, 〈ϕ〉)∧RosserTwist(x, 〈ϕ〉)), where we define
RosserTwist(x, y) = ∀x′. x′ ≺ x→∀y′. ¬©(y, y′)→¬ ©(x′, y′). The existence of Gödel
and Rosser sentences follows immediately from diagonalization.

Prop 6. Assuming ReprS, there exist Gödel and Rosser sentences.

Thus, any Gödel sentence is provably equivalent to the negation of its own provability;
in Gödel’s words [13], it “says about itself that it is not provable.” A Rosser sentence ϕ
asserts its own unprovabilty in a weaker fashion: Rather than saying “Myself, ϕ, am not
provable” (i.e., “it is not the case that there exists a proof p of ϕ”), it says “it is not the
case that there exists a proof p of ϕ such that, for all smaller proofs q, q is not a proof of
¬ ϕ.” Here, “smaller” refers to the order the encoding of proofs as numerals imposes.

3.2 The incompleteness theorems

IT1 identifies sentences that are neither provable nor disprovable—which often holds
for Gödel and Rosser sentences with the help of a provability relation satisfying HBL1.

Prop 7. Assume Con and HBL1. Then 6⊢ G for all Gödel sentences G.

For showing that the Gödel sentences are not disprovable, a standard route is to
assume explicit proofs, strengthen the consistency assumption to ω-consistency, and
strengthen HBL1 to representability of the “proof of” relation.

Prop 8. Assume OCon, Rel⊢, Repr, Clean. Then 6⊢ ¬ G for all Gödel sentences G.

Proof. Let G be a Gödel sentence. We prove 6⊢ ¬ G by contradiction. Assume (1) ⊢¬ G.
- By consistency (which is implied by OCon), we obtain 6⊢ G.
- From this and Rel⊢ , we obtain p 6 G for all p ∈ Proof.
- From this, Repr and Clean, we obtain ⊢ ¬ ©(n, 〈G〉) for all n ∈ Num.
- From this and OCon, we obtain 6⊢ ¬ ¬ ∃x. ©(x, 〈G〉), i.e., 6⊢ ¬ ¬ ⊢©〈G〉.
- Hence, since G is a Gödel sentence, we obtain 6⊢ ¬ G, which contradicts (1).

While the line of reasoning in the above proof is mostly well-known, it contains
two subtle points about which the literature is not explicit (due to the usual focus on
classical first-order arithmetic and particular choices of encodings).

First, we must assume the representation of the “proof of” relation to be 1-clean, i.e.,
clean with respect to the proof component. Indeed, the argument crucially relies on con-
verting the statement “p 6 G for all p ∈ Proof” into “⊢ ¬ ©(n, 〈G〉) for all n ∈ Num,”
which is only possible for 1-clean encodings. This assumption will be repeatedly needed
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in later results. By contrast, cleanness is never required with respect to the sentence
component of “proof of” or for the provability relation (which only involves sentence
encodings). In short, cleanness is only needed for proofs, not for sentences.

Second, to reach the desired contradiction for our intuitionistic proof system ⊢, from
“⊢ ¬ ©(n, 〈G〉) for all n ∈ Num” it is not sufficient to employ standard ω-consistency,
which would only give us 6⊢ ∃x. ©(x, 〈G〉), i.e., 6⊢ ⊢©〈G〉; the last together with ⊢G ←→
¬ ⊢©〈G〉 would be insufficient for obtaining 6⊢ ¬ G. However, our stronger version of ω-
consistency, OCon, does the trick. IT1 now follows by putting together Props. 6–8:

Theorem 9. (IT1) Assume OCon , Rel⊢ , Repr , Clean , and ReprS. Then:

(1) There exists a Gödel sentence. (2) 6⊢G and 6⊢ ¬ G for all Gödel sentences G.

Rosser’s contribution to IT1 was an ingenious trick for weakening the ω-consisten-
cy assumption into plain consistency—as such, it is usually seen as a strict improvement

over Gödel’s version. While this is true for the concrete case of FOL theories extending
arithmetic, from an abstract perspective the situation is more nuanced: The improve-
ment is achieved at the cost of asking more from the logic. Our framework makes this
trade-off clearly visible. The idea is to use Rosser sentences instead of Gödel sentences
to “repair” the ω-consistency assumption of Theorem 9 (inherited from Prop. 8):

Theorem 10. (IT1 à la Rosser) Assume Con , Ord1 , Ord2 , Repr¬ , Rel⊢ , Repr ,
Clean , and ReprS. Then:

(1) There exists a Rosser sentence. (2) 6⊢R and 6⊢ ¬ R for all Rosser sentences R.

Highlighted is the assumption trade-off between the two versions: Rosser’s weaken-
ing of ω-consistency into consistency is paid by additionally assuming representability
of negation and an order-like relation satisfying Ord1 and Ord2. Certainly, negation rep-
resentability is not a big price, since for concrete logics this tends to be a lemma that
is anyway needed when proving HBL1. On the other hand, the ordering assumptions
seem to be a significant generality gap in favor of Gödel’s version. A clear manifesta-
tion of this gap is in our inference of a semantic version of IT1—which we obtain from
Theorem 9 with the help of Lemmas 3(2) and 4:

Theorem 11. (Semantic IT1) Assume RelP
⊢© , ComplP , Compl¬P , Soundness ,

Syn|= , HBL1 , HBL⇐1 , and ReprS. Then:

(1) There exists a Gödel sentence. (2) |= G , 6⊢ G, and 6⊢ ¬ G for all Gödel sentences
G.

We have highlighted the assumptions specific to the semantic treatment. They re-
place OCon, Rel⊢, Repr and Clean from the proof-theoretic Theorem 9. Also high-
lighted is the additional fact concluded: that the Gödel sentences are true.

We have inferred the semantic version from Gödel’s proof-theoretic version (Theo-
rem 9), and not from Rosser’s variation (Theorem 10). This is because in the semantic
version ω-consistency comes for free (from Lemma 3(2)). By contrast, for deploying
Rosser’s version we would need to explicitly consider the order-like relation with its
own hypotheses. This would have led to a strictly less general abstract result (if we
ignore the difference in the way Gödel and Rosser sentences are actually defined).

The semantic IT1 relies on HBL⇐1 . If we commit to classical logic (i.e., assume
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⊢ ¬ ¬ ϕ→ ϕ), we can more directly show, taking advantage of HBL⇐1 , that the Gödel
sentences are not disprovable, which immediately proves IT1:

Theorem 12. (Classical IT1) Assume classical logic, Con, HBL1, HBL⇐1 , ReprS. Then:

(1) There exists a Gödel sentence. (2) 6⊢G and 6⊢ ¬ G for all Gödel sentences G.

Classical logic also offers two alternatives to our semantic Theorem 11 (where the
second is strictly more general than the first):

Theorem 13. (Classical Semantic IT1) The conclusions of Theorem 11 still hold if
we assume classical logic and perform either of the following changes in its assump-
tions: (1) remove Compl¬P, or (2) replace RelP

⊢©, ComplP and Compl¬P with “|= ⊢©〈ϕ〉

implies ⊢ ϕ for all ϕ ∈ Sen.”

Even though IT1 needs a predicate ⊢© that satisfies HBL1 (and sometimes also
HBL⇐1 , meaning that it weakly represents provability), its conclusion, the existence
of undecided sentences, is meaningful regardless of whether ⊢© adequately expresses

provability. By contrast, the meaning of IT2’s conclusion, the theory cannot prove its
own consistency, relies on this (non-mathematical) “intensional” assumption [2]. In
this case, consistency is adequately expressed by the sentence ¬ ⊢©〈⊥〉. The standard
formulation (and proof) of IT2 uses all three derivability conditions:

Theorem 14. (IT2) Assume Con, HBL1, HBL2, HBL3 and ReprS. Then 6⊢ ¬ ⊢©〈⊥〉.

3.3 Jeroslow’s approach

Next we study an alternative line of reasoning due to Jeroslow [17], often cited as a sim-
plification of the canonical route to prove IT2 [33,38,39]. To study its features and pit-
falls, we need some standard notation used by Jeroslow. A pseudo-term is a formula ϕ∈
Fmlam+1 expressing a provably functional relation via “exists unique”: ⊢ ∀x1, . . . , xm.

∃!y. ϕ(x1, . . . , xm, y). We only discuss the case m = 2; the general case is similar.

Notation 15. Given a pseudo-term ϕ ∈ Fmla2, we treat it as if it is a one-variable term:
- for any terms s and t, we write t ≡ ϕ(s) instead of ϕ(s, t);
- for any term s and formula ψ ∈ Fmla1, we write ψ(ϕ(s)) instead of ∃y. ϕ(s, y)∧ψ(y).

This notation smoothly integrates pseudo-terms with terms: If ⊢ t ≡ ϕ(s) and ⊢
ψ(ϕ(s)) then ⊢ ψ(t), where ψ(t) denotes actual substitution of terms in formulas.

Jeroslow relies on an abstract class of m-ary functions, Fm ⊆Numm→Num, for all
arities m ∈ N, on which he considers the following assumptions:

ReprF : Every f ∈ Fm is represented by some pseudo-term f© ∈ Fmlam+1 under the
identity encoding Num→ Num.

CapN: Some N ∈ F1 correctly captures negation: N〈ϕ〉= 〈¬ ϕ〉 for all ϕ ∈ Sen.
CapSS: Some ssap : Fmla1→F1 correctly captures substituted self-application:

ssap ψ 〈 f©〉= 〈ψ( f©〈 f©〉) 〉 for all ψ ∈ Fmla1 and f ∈ F1.

In CapSS, following Jeroslow we employed Notation 15 taking advantage of the fact
that f© are pseudo-terms: The highlighted text denotes ∃y. f©(〈 f©〉, y)∧ψ(y). Moreover,
using the same notation, the statement of ReprF for some f ∈ F1 and n ∈ Num would
be written as ⊢ f (n) ≡ f©(n). Similarly, combining CapN with the instance of ReprF ,
we obtain a fact that can be written as ⊢ 〈¬ ϕ〉 ≡ N©〈ϕ〉.
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When our logical theory is a recursive extension of Robinson arithmetic and Num=
N, Fm could be the set of m-ary computable functions. Then every f ∈ Fm would in-
deed be represented by a formula f©. Moreover, assuming a computable and injective
encoding of formulas, 〈_〉 : Fmla1 → N, we can take N : N→ N to be the following
computable function: Given input n, it checks if n has the form 〈ϕ〉; if so, it returns
〈¬ ϕ〉; if not, it returns any value (e.g., 0). And ssap ψ can be defined similarly, obtain-
ing the desired property for every ϕ ∈ Fmla2, not necessarily of the form f©. In short,
Jeroslow’s assumptions cover arithmetic (but also potentially many other systems).

At the heart of Jeroslow’s approach lies an alternative diagonalization technique,
producing term fixpoints, not just formula fixpoints:

Lemma 16. Assume CapSS and ReprF and let ψ ∈ Fmla1. Then there exists a closed
pseudo-term t such that ⊢ t≡ 〈ψ(t)〉. Moreover, taking ϕ= ψ(t), we have ⊢ ϕ ←→ ψ〈ϕ〉.

Proof. Let f = ssap ψ and t = f©〈 f©〉. From CapSS, we obtain f 〈 f©〉 = 〈ψ( f©〈 f©〉)〉.
From this and ReprF , we obtain ⊢ f©〈 f©〉 ≡ 〈ψ( f©〈 f©〉)〉, i.e., ⊢ t ≡ 〈ψ(t)〉. With the
equality rules, we obtain ⊢ ψ(t)←→ ψ(〈ψ(t)〉), i.e., ⊢ ϕ←→ ψ〈ϕ〉.

This lemma offers us Gödel and Rosser sentences, which can be used like in Sec-
tions 3.1 and 3.2, leading to corresponding variants of IT1. But Jeroslow’s main in-
novation affects IT2: While traditionally IT2 requires all three derivability conditions,
Jeroslow’s version does not make use of the second, HBL2:

Theorem 17. (IT2 à la Jeroslow) Assume Con, HBL1, SHBL3 , ReprF , CapN, CapSS.

Then 6⊢ jcon , where jcon denotes ∀x. ¬ ( ⊢©(x)∧ ⊢©( N©(x))).

Like with Rosser’s trick, we analyze this innovation’s trade-offs from an abstract
perspective. A first trade-off is in the employment of a stronger version of the third
condition, SHBL3 (extended to affect all closed pseudo-terms via Notation 15). An-
other is in the way consistency is expressed in the logic. Jeroslow does not conclude
6⊢ ¬ ⊢©〈⊥〉, but something more elaborate, namely 6⊢ jcon. While the formula ¬ ⊢©〈⊥〉
internalizes the statement 6⊢ ⊥, jcon internalizes the equivalent statement “for all ϕ, it
is not the case that ⊢ ϕ and ⊢ ¬ ϕ.” But are the internalizations themselves equivalent,
i.e., is it the case that ⊢ ¬ ⊢©〈⊥〉 iff ⊢ jcon? This surely holds for many concrete logics,
but it is one direction that we can infer logic-independently: Assuming HBL1, ReprF
and CapN, ⊢ jcon implies ⊢ ¬ ⊢©〈⊥〉. And it seems we cannot infer the other direction
without knowing what ⊢© looks like more concretely. Therefore, 6⊢ ¬ ⊢©〈⊥〉, the con-
clusion of the original IT2, is abstractly stronger than, hence preferable to 6⊢ jcon. In
short, Jeroslow somewhat weakens the theorem’s conclusion.

Let us now look at (a slight rephrasing of) Jeroslow’s proof:

Proof of Theorem 17. We assume (1) ⊢ jcon and aim to reach a contradiction.
- Applying Lemma 16 to ⊢©( N©(x)), obtain a closed term t where (2) ⊢ t≡ 〈 ⊢©( N©(t))〉.
- By SHBL3 applied to N©(t), we obtain ⊢ ⊢©( N©(t))→ ⊢©〈 ⊢©( N©(t))〉.
- From (2) and the equality rules, we obtain ⊢ ⊢©( N©(t))→ ⊢©( N©〈 ⊢©( N©(t))〉).
- The last two facts give us ⊢ ϕ→ ⊢©〈ϕ〉∧ ⊢©( N©〈ϕ〉), where ϕ denotes ⊢©( N©(t)).
- On the other hand, (1) instantiated with 〈ϕ〉 gives us ⊢ ¬ ( ⊢©〈ϕ〉∧ ⊢©( N©〈ϕ〉)).
- From the last two facts, we obtain (3) ⊢ ¬ ϕ.
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- With HBL1, we obtain ⊢ ⊢©〈¬ ϕ〉 and with CapN and ReprF , we obtain ⊢ ⊢©( N©〈ϕ〉).
- From (2) and the equality rules, we obtain ⊢ ⊢©( N©〈 ⊢©( N©(t))〉)→ ⊢©( N©(t)), i.e.,
⊢ ⊢©( N©〈ϕ〉)→ ϕ

- From the last two facts, we obtain ⊢ ϕ. With (3) this contradicts (1).

A first major observation is that, under the stated assumptions, the above proof is
incorrect. It uses an implicit assumption, hidden under Notation 15: When we disam-
biguate the notation, we see that Lemma 16 gives us a pseudo-term t that does not ex-
actly satisfy (1) ⊢ t ≡ 〈ψ(t)〉 (which is what the theorem’s proof needs), but something
weaker, namely (2) ⊢ t ≡ 〈χ〉, where χ is ⊢ ∃x. f©(〈 f©〉, x)∧ψ(x). And although ⊢ χ
←→ ψ(t), we still cannot infer (1) from (2), unless the encodings of provably equivalent

formulas are assumed provably equal. But this assumption is unreasonable: Usually
formula equivalence is undecidable, so no computable encoding can achieve that. (In-
cidentally, this problem is also the reason why we need SHBL3 instead of HBL3: In the
proof’s application of SHBL3 to obtain ⊢ ⊢©( N©(t))→ ⊢©〈 ⊢©( N©(t))〉, we cannot work
with 〈¬ ϕ〉 instead of N©(t), even though ⊢ 〈¬ ϕ〉 ≡ N©(t).)

To repair that, we can replace representation by pseudo-terms with actual term-
representation. More precisely (also factoring in the observation that Jeroslow’s proof
does not need Fn for all n, but F1 suffices), we change ReprF into:

ReprF : Every f ∈ F1 is term-represented, under the identity encoding Num→ Num,
by some f© taken from a set Ops ⊆ (Term→ Term) for which an encoding as
numerals 〈_〉 : Ops → Num is given, and such that FVars(g(t)) = FVars(t) and
(g(t))[s/x] = g(t[s/x]) for all g ∈ Ops, s, t ∈ Term and x ∈ Var.

(In concrete logics, the elements of Ops can be constructors or derived operators on
terms.) Then CapSS, Lemma 16, and all proofs work with terms rather than pseudo-
terms and everything becomes formally correct. In summary, Jeroslow’s approach to
IT2 seems to fail for pseudo-terms representing computable functions, but to require
actual terms. This usually means that the logic has built-in Skolem symbols and axioms.

Finally, let us see what it takes to alleviate the second trade-off: from 6⊢ jcon to the
more desirable 6⊢ ¬ ⊢©〈⊥〉. We see that Theorem 17’s proof uses ⊢ jcon not at jcon’s
full generality but only instantiated with formula encodings, which thanks to ReprF
and CapN would follow from (*) ⊢ ¬ ( ⊢©〈ϕ〉∧ ⊢©〈¬ ϕ〉). And it only takes WHBL2 (a
weaker version of HBL2) and HBL4 to prove ⊢ ( ⊢©〈ϕ〉∧ ⊢©〈¬ ϕ〉)→ ⊢©〈⊥〉, allowing us
to infer (*) from ⊢ ¬ ⊢©〈⊥〉; meaning that the latter could have been used. We obtain:

Theorem 18. If in the (corrected) Theorem 17 we additionally assume WHBL2 and
HBL4, its conclusion can be upgraded to 6⊢ ¬ ⊢©〈⊥〉.

Whether WHBL2 and HBL4 are a good trade-off for HBL2 will of course depend on
the logic’s specificity, in particular, on its primitive rules of inference.

Jeroslow presented his approach for an abstract logical theory over a FOL language,
which is not necessarily a FOL theory—so it found a natural fit in our generic frame-
work. To our knowledge, very few subsequent authors present Jeroslow’s approach rig-
orously, and none at its original level of generality. Smith’s monograph gives a rigorous
account for arithmetic [38, §33], silently performing the correction we have shown here,
but failing to detect the need for SHBL3 instead of HBL3 (which Jeroslow had noticed).
A mechanical prover is of invaluable help with detecting such nuances and pitfalls.
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Summary Using our generic infrastructure (Section 2), we have formally proved sev-
eral abstract incompleteness results. They include four versions of IT1:

– Gödel’s original IT1 (Theorem 9) and an IT1 based on classical logic (Theo-
rem 12) required the formalization of some well-known arguments without change.

– Rosser’s IT1 (Theorem 10) involved the generalization of a well-known argument:
distilling two abstract conditions, Ord1 and Ord2.

– Novel semantic variants of IT1 (Theorems 11 and 13) were born from abstractly
connecting standard models, HBL1’s “iff” version, and proof representability.

They also include two versions of IT2:
– The standard IT2 based on the three derivability conditions (Theorem 14) again

only required formalizing a well-known argument.
– The alternative, Jeroslow-style IT2 (Theorems 17 and 18) involved a detailed anal-

ysis and correction of an existing abstract result.

4 Instances of the Abstract Results

We first validate the assumptions about our abstract logic and arithmetic:

Prop 19. (1) Any FOL theory that extends Robinson arithmetic or the HF set theory
satisfies all the axioms in our logical and arithmetical substrata (in Sections 2.1, 2.2).
(2) If, in addition, the theory is sound, then, together with its corresponding standard
model, it also satisfies all our model-theoretic axioms (in Section 2.5).

In particular, point (2) shows that our discussion of standard models applies equally
well to N and the datatype of HF sets. (In the latter case, Num becomes the entire set of
closed terms, so that numerals can denote arbitrary HF sets. This shows the versatility
of our abstract concept of numeral.) Then we instantiate three of our main theorems:

Theorem 20. (1) Any FOL theory that extends the HF set theory with a finite set
of axioms and is sound in the standard HF set model satisfies the hypotheses of Theo-
rems 13 and 14. Hence IT1 (semantic version) and IT2 hold for it.
(2) Any FOL theory that extends the HF set theory with a finite set of axioms and
is consistent satisfies the hypotheses of Theorem 14. Hence IT2 holds for it.

These instances are heavily based on the lemmas proved by Paulson in his formal-
ization of IT1 and IT2 [26, 27], who follows and corrects Świerczkowski’s detailed
informal account [40]. Point (1) is a restatement of Paulson’s formalized results: theo-
rems Goedel_I and Goedel_II in [27]. (His theorems also assume consistency, but that
is redundant: Consistency follows from his underlying soundness assumption.)

By contrast, point (2) is an upgrade of Paulson’s Goedel_II, applicable to any con-
sistent, though possibly unsound theory. This stronger version is in fact IT2’s standard
form, free from any model-theoretic considerations. Paulson had proved both HBL1

and HBL⇐1 taking advantage of soundness, so we needed to discard HBL⇐1 and re-prove
HBL1 by replacing any semantic arguments with proofs within the HF calculus. We
also removed all invocations of a convenient “truth implies provability for Σ-sentences”
lemma, which depended on soundness due to Paulson’s choice of Σ-sentence definition.

This instantiation process has offered important feedback into the abstract results.
A formal development such as ours is (largely) immune to reasoning errors, but not
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to missing out on useful pieces of generality. We experienced this firsthand with our
assumptions about substitution. An a priori natural choice was to assume representabil-
ity of the numeral substitution Sb : Fmla1×Num→ Sen (defined as Sb(ϕ, n) = ϕ(n)),
part of which means (1) ⊢ Sb©(〈ϕ〉, n, Sb(ϕ, n)). But Paulson had instead proved (2)
⊢ Sb©(〈ϕ〉, 〈n〉, Sb(ϕ, n)). The key difference from (1) is that (2) applies the term encod-
ing function 〈_〉 : Term→ Num to numerals as well (as particular terms); and since his
〈_〉 function is injective, it is far from the case that 〈n〉 = n for all numerals n. Paul-
son’s version makes more sense than ours when building the results bottom-up: Rep-
resentability should not discriminate numerals, but filter them through the encodings
like other terms. However, top-down our version also made sense: It yielded the incom-
pleteness theorems under reasonable assumptions, which do hold, by the way, for the
HF set theory—even though in a bottom-up development one is unlikely to prove them.
We resolved this discrepancy through a common denominator: the representability of
self-substitution S : Fmla1→ Sen (Section 2.3), which made our results more general.

Paulson’s formalization has also inspired our abstract treatment of standard models
(Section 2.5). Since Paulson proves HBL⇐1 and uses classical logic, an obvious “port of
entry” of his IT2 into our framework is Theorem 12. But this theorem tells us nothing
about the Gödel sentences’ truth. Delving deeper into Paulson’s proof, we noted that he
(unconventionally) completely avoids Repr , and does not even define . This raised
the question of whether HBL⇐1 and Repr are somehow interchangeable in the presence
of standard models—and we found that they indeed are, under mild assumptions about
truth. Incidentally, these assumptions were also sufficient for establishing the Gödel
sentences’ truth, leading to our semantic IT1 (Theorem 11). However, Theorem 11 was
not easy to instantiate to Paulson’s IT1. All its assumptions were easy to prove, ex-
cept for Compl¬P. Whereas Paulson proved that his proof-of predicate is a Σ-formula
(which implies ComplP by Σ-completeness), he did not prove the same for its nega-
tion (which would imply Compl¬P). We are confident that this is true (any reasonable
proof-of predicate is a ∆-formula), but we leave the laborious formal proof of this fact
as future work. Instead, we recovered Paulson’s result as an instance of our Theorem 13.

As future work, we will consider even more general variants of our semantic The-
orems 11 and 13, as in Smorynski’s account [39]: by distinguishing between a sound
“base” provability relation ⊢0 and an extension ⊢ only required to be consistent or ω-
consistent. For example, ⊢0 could be deduction in HF set theory or a weaker theory and
⊢ deduction in a consistent (not necessarily sound) extension of the HF set theory. This
two-layered approach would have also benefited Paulson’s original formalization.

Many other logics and logical theories satisfy our theorems’ assumptions. We do not

require the logic to be reducible to a single syntactic category of formulas, Fmla, a sin-
gle syntactic judgment, ⊢, etc.; but only that such (well-behaved) formulas, provability
relation, etc. are identifiable as part of that logic, e.g., localized to a given type and/or
relativised by a given predicate. This allows our framework to capture most variants
of higher-order logic and type theory (including the variant underlying Isabelle/HOL
itself [21, 22]), and also, we believe, many of the logics surveyed by Buldt [5], includ-
ing non-classical and fuzzy. But enabling “mass instantiation” that is both formal and
painless requires more progress on the agenda we started here: recognizing reusable
construction and proof patterns and formalizing them as abstract results.
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40. Świerczkowski, S.: Finite sets and Gödel’s incompleteness theorems. Dissertationes Mathe-
maticae 422, 1–58 (2003)

41. Tarski, A., Mostowski, A., Robinson, R.: Undecidable Theories. Studies in Logic and the
Foundations of Mathematics. North-Holland (1953), 3rd edition, 1971

17


	A Formally Verified Abstract Account of Gödel's Incompleteness Theorems 
	1 Introduction
	2 Abstract Assumptions
	2.1 The logical substratum
	2.2 The arithmetic substratum
	2.3 Encodings and representability
	2.4 Derivability conditions
	2.5 Standard models

	3 Abstract Incompleteness Theorems
	3.1 Diagonalization
	3.2 The incompleteness theorems
	3.3 Jeroslow's approach 

	4 Instances of the Abstract Results


