
This is a repository copy of Bounded-deducibility security.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/191501/

Version: Published Version

Proceedings Paper:
Popescu, A., Bauereiss, T. and Lammich, P. (2021) Bounded-deducibility security. In:
Cohen, L. and Kaliszyk, C., (eds.) 12th International Conference on Interactive Theorem
Proving (ITP 2021). 12th International Conference on Interactive Theorem Proving (ITP
2021), 29 Jun - 01 Jul 2021, Online. Leibniz International Proceedings in Informatics
(LIPIcs), 193 . Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik , 3:1-3:20. ISBN
9783959771887

https://doi.org/10.4230/LIPIcs.ITP.2021.3

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Bounded-Deducibility Security

Andrei Popescu ! ↸

Department of Computer Science, University of Sheffield, UK

Thomas Bauereiss !↸

Department of Computer Science and Technology, University of Cambridge, UK

Peter Lammich ! ↸

Department of Computer Science, University of Twente, The Netherlands

Abstract

We describe Bounded-Deducibility (BD) security, an expressive framework for the speciĄcation and

veriĄcation of information-Ćow security. The framework grew by confronting concrete challenges of

specifying and verifying Ąne-grained conĄdentiality properties in some realistic web-based systems.

The concepts and theorems that constitute this framework have an eventful history of such Şcon-

frontationsŤ, often involving trial and error, which are reported in previous papers. This paper is

the Ąrst to focus on the framework itself rather than the case studies, gathering in one place all the

abstract results about BD security.

2012 ACM Subject Classification Security and privacy → Formal security models; Security and

privacy → Logic and veriĄcation; Security and privacy → Security requirements

Keywords and phrases Information-Ćow security, Unwinding proof method, Compositionality,

VeriĄcation

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.3

Category Invited Paper

Funding The work presented here has been supported by: EPSRC through the grant ŞVeriĄcation of

Web-based Systems (VOWS)Ť (EP/N019547/1); DFG through the grants ŞSecurity Type Systems

and DeductionŤ (Ni 491/13-2) and ŞMORES Ű Modelling and ReĄnement of Security Requirements

on Data and Processes (Hu 737/5-2)Ť, part of ŞRS3 Ű Reliably Secure Software SystemsŤ (SPP

1496); VeTSS through the grant ŞFormal VeriĄcation of Information Flow Security for Relational

DatabasesŤ; Innovate UK through the Knowledge Transfer Partnership 010041 between Caritas

Anchor House and Middlesex University: ŞThe Global Noticeboard (GNB): a veriĄed social media

platform with a charitable, humanitarian purposeŤ.

Acknowledgements We are fortunate to have collaborated with some excellent researchers and

developers on various parts of the implementation and veriĄcation work based on BD security:

Sergey Grebenshchikov, Ping Hou, Sudeep Kanav and Ondřej Kunčar have contributed to CoCon,

while Armando Pesenti Gritti and Franco Raimondi have contributed to CoSMed and CoSMeDis.

We thank this paperŠs reviewers for their helpful comments and suggestions.

1 Introduction

Bounded-Deducibility (BD) security is a framework we have developed recently for the

specification and verification of information-flow security. It is applicable widely, to systems

described as nondeterminisic I/O automata, and caters for the fine-grained specification of

restrictions on their flows of information. We formalized the framework in the proof assistant

Isabelle/HOL [31,32] and used it in the verification of confidentiality properties of some web

applications.

© Andrei Popescu, Thomas Bauereiss, and Peter Lammich;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 3; pp. 3:1–3:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.popescu@sheffield.ac.uk
https://www.andreipopescu.uk
https://orcid.org/0000-0001-8747-0619
mailto:Thomas.Bauereiss@cl.cam.ac.uk
https://www.cl.cam.ac.uk/~tb592/
mailto:p.lammich@utwente.nl
https://people.utwente.nl/p.lammich
https://doi.org/10.4230/LIPIcs.ITP.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Bounded-Deducibility Security

Information-flow security has a rich history, with many formal definitions having been

proposed, differing in how systems, attackers, and flow policies are modeled [18, 26, 29, 30, 33,

34,42–44,46,47]. Nevertheless, a new notion seemed necessary because the existing notions

(Section 4) were not expressive enough for our case studies: multi-user web-based systems

with flows of information requiring fine-grained control. For example, about a multi-user

multi-conference management system, we wanted to prove a property such as the following,

which refers to the series of uploads of a document’s versions in a system: “A group of users

learn nothing about a paper beyond the absence of any upload unless one of them becomes an

author of that paper or a PC member at the paper’s conference.” (Importantly, the property

is about not only what can be directly accessed, but also what can be learned by interacting

with the system – this distinguishes information-flow control from mere access control.)

Every abstract definition and theorem in the BD security framework was inspired from, and

refined based on, the needs of concrete interactive systems. This ended up contributing to

the area of information-flow security an increased level of precision in specification and proof,

of the kind that we believe can make a difference in practical system verification.

In previous papers [7–9, 23, 37], BD security has only been discussed in the context of

verifying these concrete systems. This helps with intuition and motivation, but makes it

easy to miss the forest from the trees, i.e., miss the abstract level of the development. The

current paper is the first to collect in one place all our abstract results, and to present

them independently of any case studies (Section 2). They include the BD unwinding proof

method (Section 2.5), as well as theorems on proof (Section 2.6) and system compositionality

(Section 2.7). We hope that this paper will better demonstrate the scope of the framework

and help identify potential new applications. The framework is open-ended and open-

source [10,35], and new contributions are welcome.

Three major verification case studies will also be briefly described while recalling their

contribution to the framework’s design (Section 3). These are the CoCon conference manage-

ment system (Section 3.1, [23,37]), the CoSMed social media platform (Section 3.2, [7, 9]),

and the CoSMeDis distributed extension of CoSMed (Section 3.3, [8]).

Notations

We write function application by juxtaposition, without placing the argument in parentheses,

as in f a, unless required for disambiguation, e.g., f (g a). Multiple-argument functions will

usually be considered in curried form – e.g., we think of f : A → B → C as a two-argument

function, and f a b denotes its application to a and b. We write “◦” for function composition.

Bool denotes the two-element set of Booleans, ¶true, false♢. Predicates and relations will be

modeled as functions to Bool. For example, P : A → Bool is a (unary) predicate on A and

Q : A → A → Bool is a binary relation on A. Given a ∈ A, we write “P a holds”, or simply

“P a”, to mean that P a = true; and similarly for binary relations.

Given a set A, we write Set(A) for the powerset (i.e., set of all subsets) of A, and List(A) for

the set of lists with elements in A. We write [a1, . . . , an] for the list consisting of the indicated

elements; in particular, [] is the empty list and [a] is a singleton list. As a general convention,

if a, b denote elements in A, then al, bl will denote elements in List(A). An exception will

be the system traces – even though they are lists of transitions t, for them we will use the

customized notation tr . We write “·” for list concatenation. Applied to a non-empty list

[a1, . . . , an], the function head returns its first element a1. Given a function f : A → B and

[a1, . . . , an] ∈ List(A), map f [a1, . . . , an] returns [f a1, . . . , f an]. Given a partial function

f : A⇀ B and [a1, . . . , an] ∈ List(A), let [ai1 , ai2 , . . . , aik] be the sublist of [a1, . . . , an] that keeps

only elements on which f is defined (where 1 ≤ i1 < i2 < · · · < ik ≤ n); then map f [a1, . . . , an]

A. Popescu, T. Bauereiss, and P. Lammich 3:3

returns [f ai1 , . . . , f aik]. In other words, partial functions are mapped while omitting the

elements on which they are not defined. Given a predicate P, filter P [a1, . . . , an] returns the

sublist of [a1, . . . , an] that keeps only the elements satisfying P.

2 Specification and Reasoning Framework

Our framework is developed around a simple and general notion of system: nondeterministic

I/O automata. It also provides a notion of policy to describe the (dis)allowed flows of

information in these systems. A policy has several parameters that regulate the tension

between observations (what can be seen) and secrets (what needs to be protected). The

judicious use of these parameters allows fine-tuning not only what, but also how much needs

to be protected, and when, or even for how long. The framework offers methods to prove

that the policies are satisfied by systems, and to manage proof and system complexity via

compositionality results.

2.1 System model

The systems whose information-flow security properties will be studied are nondeterministic

I/O automata. Namely, we call system a tuple A = (State, Act, Out, istate, Trans), where:

State, ranged over by σ, σ′ etc., is the set of states;

Act, ranged over by a, b etc., is the set of actions;

Out, ranged over by ou, ou′ etc., is the set of outputs;

istate ∈ State is the initial state;

Trans ⊆ State × Act × Out × State is the set of transitions.

(Note that we call “action” what is usually called “input” for I/O automata.) A transition

t = (σ, a, ou, σ′) ∈ Trans has the following interpretation: If action a is taken while the

system is in state σ, the system may respond by producing output ou and changing the

state to σ′. We call σ the source, a the action, ou the output, and σ′ the target of t. The

transition’s action a is also denoted by actOf t. We will write σ
t

=⇒ σ
′ to express that

t ∈ Trans, σ is the source of t and σ′ is the target of t.

A trace is any non-empty list of transitions [t1, . . . , tn] such that the source of t1 is istate

and, for all i ∈ ¶2, . . . , n♢, the source of ti is the target of ti−1. We let Trace, ranged over by

tr , be the set of traces. A trace fragment has the form [ti, . . . , t j] with 1 ≤ i < j ≤ n, where

[t1, . . . , tn] is a trace. We write TraceFσ for the set of trace fragments that start in σ, i.e.,

have σ as the source of their first transition. Note that all these concepts are relative to a

system A. When we want to emphasize the underlying system, we may write TraceA instead

of Trace, TraceFA,σ instead of TraceFσ, etc.

2.2 Flow policies

Given a system A = (State, Act, Out, istate, Trans), our goal is to express its information-flow

security via policies that are capable of fine-grained distinctions between desirable flows

(which are important for the system’s functionality) and undesirable flows (which constitute

information leaks possibly exploitable by attackers). To achieve such surgical precision, a

policy should accurately identify the following: (1) What observations can be made on the

system, (2) Which data constitute secrets that need protection, (3) How much of these

secrets should be protected (and how much can be revealed), and (4) Under which conditions

protection is required.

ITP 2021

3:4 Bounded-Deducibility Security

For accommodating these requirements, we define a flow policy F to consist of:

(1) an observation infrastructure (Obs, isObs, getObs), where

Obs, ranged over by o, o′ etc., is a chosen domain of observations,

isObs : Trans → Bool is a predicate identifying observation-producing transitions,

getObs : Trans → Obs is a function for producing observations from transitions;

(2) a secrecy infrastructure (Sec, isSec, getSec), where

Sec, ranged over by s, s′ etc., is a chosen domain of secrets,

isSec : Trans → Bool is a predicate identifying secret-producing transitions,

getSec : Trans → Sec is a function for producing secrets from transitions;

(3) a declassification bound, i.e., a relation on lists of secrets, B : List(Sec) → List(Sec) →

Bool;

(4) a declassification trigger, i.e., a predicate on transitions, T : Trans → Bool.

Note that the observation and secrecy infrastructures have the same form. We define

O : Trace → List(Obs) by O = map getObs ◦ filter isObs, and S : Trace → List (Sec) by

S = map getSec ◦ filter isSec. Thus, O uses filter to select the transitions in a trace that are

observable according to isObs, and then applies getObs to each selected transition. Similarly,

S produces lists of secrets by filtering with isSec and applying getSec. Thus, when applied to

a trace tr , O and S give the lists of observations and respectively secrets produced by tr .

2.3 Bounded-Deducibility security

For the rest of Section 2, let us fix a system A = (State, Act, Out, istate, Trans) and a flow

policy F , where (Obs, isObs, getObs) is its observation infrastructure, (Sec, isSec, getSec)

its secrecy infrastructure, B its declassification bound and T its declassification trigger.

Furthermore, let O : Trace → List(Obs) and S : Trace → List(Sec) be the functions on traces

induced by these observation and secrecy infrastructures.

A system A is said to be Bounded-Deducibility (BD) secure with respect to the flow policy

F , written A ♣= F , provided that for all tr1 ∈ Trace and sl1, sl2 ∈ List(Sec),

if never T tr1, S tr1 = sl1 and B sl1 sl2,

then there exists tr2 ∈ Trace such that O tr2 = O tr1 and S tr2 = sl2.

The predicate never T tr1 says that T holds for no transition in tr1.

Here is how to interpret the above definition: tr1 is a trace that occurs when running the

system, and sl1 is the list of secrets that it produces. BD security says that, if the trigger T

is never fired during tr1, it is impossible for an observer (potential attacker) to distinguish

tr1 from any other trace tr2 that produces some secrets sl2 that are B-related to (i.e., located

within bound B from) sl1. Hence, for all the observer knows (via the observation function

O), the trace tr1 might as well have been tr2.

When referring to the items in this definition, we will call tr1 “the original trace” and

tr2 “the alternative trace”. We will also apply the qualifiers “original” and “alternative” to

the produced lists of observations and secrets. Note that BD security is a ∀∃-statement:

quantified universally over the original trace tr1 and the alternative secrets sl2, and then

existentially over the alternative trace tr2. (The universal quantification over sl1 is done

only for clarity; it can be avoided, since sl1 = S tr1.)

We can think of B negatively, as a lower bound for uncertainty, or positively, as an upper

bound for the amount of information release, also known as declassification. For example, if

B is an equivalence, then the observers learn the equivalence class of the secret, but nothing

more. On the other hand, T is a trigger removing the bound B: As soon as T becomes true,

the containment of declassification is no longer guaranteed. In summary, BD security says:

An observer O cannot learn about the secrets anything beyond B unless T occurs.

A. Popescu, T. Bauereiss, and P. Lammich 3:5

Trace

Nothing

Nothing

Nothing

List(Obs)

Nothing Nothing Nothing List(Sec)

O

S

t1 t2

¬T t′1 t′2
t′′1 t′′2

t′′2

o1 = o2 o′′
1 = o′

2

s1 s2

s′
1 B

s′′
1 s′′

2

Figure 1 BD security illustrated.

Fig. 1 contains a visual illustration of BD security’s two-dimensional nature: The system

traces (displayed on the top left corner) produce observations (on the bottom left), as well

as secrets (on the top right). The figure also includes an abstract example of traces and

their observation and secret projections. The original trace tr1 consists of three transitions,

tr1 = [t1, t
′
1, t

′′
1], of which all produce secrets, [s1, s

′
1, s

′′
1], and only the first and the third

produce observations, [o1, o
′′
1] – all these are depicted in red. The alternative trace tr2 also

consists of three transitions, tr2 = [t2, t
′
2, t

′′
2], of which the first and the third produce secrets,

[s2, s
′′
2], and the first two produce observations, [o2, o

′
2] – all these are depicted in blue. Thus,

the figure’s functions O and S are given by filters and producers behaving as follows:

isObs getObs isSec getSec

t1 true o1 true s1

t′1 false true s′
1

t′′1 true o′′
1 true s′′

1

isObs getObs isSec getSec

t2 true o2 true s2

t′2 true o′
2 false

t′′2 false true s′′
2

The empty slots in the tables correspond to values of getObs and getSec that are irrelevant,

since the corresponding values of isObs and isSec are false. The ∀∃ statement expressing BD

security is illustrated on the figure by making a choice of the ∀-quantified entities and the

∃-quantified entities: Given the original trace, here [t1, t
′
1, t

′′
1] (which produces the shown

observations and secrets and has all its transitions satisfying ¬T) and given some alternative

secrets, here [s2, s
′′
2], located within the bound B of the original secrets, BD security requires

the existence of the alternative trace, here [t2, t
′
2, t

′′
2], producing the same observations and

producing the alternative secrets.

2.4 From nondeducibility to bounded deducibility

BD security is a natural evolution of the idea of nondeducibility introduced in pioneering

work by Sutherland [46]: by refining the notion of “nothing being deducible” to that of

“nothing being deducible beyond a certain bound and unless a certain trigger occurs”.

Indeed, nondeducibility can be expressed in terms of operators O : Trace → List(Obs)

and S : Trace → List(Sec) by requiring that, for all tr1 ∈ Trace and sl1, sl2 ∈ List(Sec), if

S tr1 = sl1 then there exists tr2 ∈ Trace such that O tr2 = O tr1 and S tr2 = sl2. Thus,

BD security becomes nondeducibility when B is everywhere true and T everywhere false –

meaning no declassification, i.e., maximum uncertainty.

ITP 2021

3:6 Bounded-Deducibility Security

2.5 Unwinding proof method

To prove that the system is BD secure with respect to the flow policy, A ♣= F , one needs to

do the following: Given

the original trace tr1 for which never T holds and which produces the list of secrets sl1,

and an alternative list of secrets sl2 such that B sl1 sl2 holds,

one should provide an alternative trace tr2 whose produced list of secrets is exactly sl2 and

whose produced list of observations is the same as that of tr1.

Following the tradition of unwinding for noninterference-like properties [19,26,41], we want

to construct tr2 from tr1 incrementally: As tr1 grows, tr2 should grow nearly synchronously.

Unwindings are traditionally binary relations ∆ on State that bookkeep the states reached

by tr1 and tr2, say σ1 and σ2, and show how these can evolve transition by transition in the

process of constructing tr2 from tr1; they guarantee that any ∆-related states σ1 and σ2

evolve via transitions σ1
t1=⇒ σ′

1 and σ2
t2=⇒ σ′

2 to ∆-related states σ′
1 and σ′

2. In our case,

unlike in the traditional case, we have a significantly more complex infrastructure to deal

with: Since the produced observations of tr1 and tr2 will have to be equal, it is reasonable

to track them synchronously; but the produced secrets are regulated by arbitrary bounds B,

hence they will have to track them more flexibly.

To address the above, an unwinding for BD security will be not just a binary relation

between states, but a binary relation between pairs consisting of a state and a list of secrets.

Let us introduce some convenient notation to describe this. For any pairs (σ, sl) and (σ′
, sl ′)

in State × List(Sec) and any transition t, we will write (σ, sl)
t

=⇒ (σ′
, sl ′) as a shorthand for

the following two statements: (1) σ
t

=⇒ σ′, and (2) either ¬ isSec t and sl ′ = sl, or isSec t

and there exists s such that sl = [s] · sl ′. The second statement means that the transition t

either does not produce a secret thus leaving sl unchanged (sl ′ = sl), or produces the secret

from the beginning of sl thus reducing it to sl ′; we can think of this as a transition between

lists of secrets that are still to be produced. Moreover, for any two transitions t1 and t2, we

will write t1 =Obs t2 as a shorthand for the following two statements: (1) isObs t1 if and only

if isObs t2, and (2) if isObs t1 then getObs t1 = getObs t2. In other words, t1 and t2 produce

either the same observation or no observation.

A relation ∆ : (State × List(Sec)) → (State × List(Sec)) → Bool is said to be a BD

unwinding if, for all (σ1, sl1), (σ2, sl2) ∈ State × List(Sec) such that σ1 is (¬T)-reachable,

σ2 is reachable and ∆ (σ1, sl1) (σ2, sl2), we have that one of the following three cases holds:

(1) sl1 ̸= [] or sl2 = [], and reaction ∆ (σ1, sl1) (σ2, sl2); or

(2) iaction ∆ (σ1, sl1) (σ2, sl2); or

(3) sl1 ̸= [] and exit σ1 (head sl1).

Above, a state being reachable means that there exists a trace tr leading to it; and (¬T)-

reachability additionally requires that all transitions in tr satisfy ¬T.

The predicates reaction, iaction (read “independent action”) and exit will be defined below.

The first two describe possible evolution patterns for the pairs (σ1, sl1) and (σ2, sl2) so that

the result is still in ∆. By contrast, the exit predicate provides a shortcut for an early finish

during a proof by unwinding. When reading the definitions of these predicates, the reader

should keep in mind what we want from a BD unwinding: to manage the incremental growth

of an alternative trace (that has currently reached state σ2), in response to the growth of an

original trace (that has currently reached state σ1), while considering the list of secrets sl1

that the remainder of the original trace is assumed to produce and the list of secrets sl2 that

the remainder of the alternative trace will have to produce.

A. Popescu, T. Bauereiss, and P. Lammich 3:7

reaction ∆ (σ1, sl1) (σ2, sl2) is defined to mean that, for all t1 ∈ Trans and (σ′
1, sl

′
1) ∈

State × List(Sec) such that (σ1, sl1)
t1=⇒ (σ′

1, sl
′
1), one of the following two cases holds:

(1) ¬ isObs t1 and ∆ (σ′
1, sl

′
1) (σ2, sl2); or

(2) there exist t2 ∈ Trans and (σ′
2, sl

′
2) ∈ State × List(Sec) such that (σ2, sl2)

t2=⇒ (σ′
2, sl

′
2),

t1 =Obs t2 and ∆ (σ′
1, sl

′
1) (σ′

2, sl
′
2).

Thus, reaction ∆ (σ1, sl1) (σ2, sl2) describes two ways in which one can “react” to a

transition t1 taken by the original trace: (1) either ignoring it (if it is unobservable), or (2)

matching it with a transition t2 of the alternative trace. In both cases, we must stay in ∆.

iaction ∆ (σ1, sl1) (σ2, sl2) is defined to mean that there exist t2 ∈ Trans and (σ′
2, sl

′
2)

∈ State × List(Sec) such that (σ2, sl2)
t2=⇒ (σ′

2, sl
′
2), ¬ isObs t2, isSec t2 and ∆ (σ1, sl1)

(σ′
2, sl

′
2).

Thus, iaction describes the possibility of an “independent” (i.e., non-reactive) action

by taking an unobservable secret-producing transition in the alternative trace. While the

unobservability requirement (¬ isObs t2) is justified by the desire to keep the observations

synchronized, the reason for the secret-producing requirement (isSec t2) is more subtle:

Repeating unobservable and non-secret-producing independent actions could indefinitely

delay the growth of the original trace while making no progress with the alternative list of

secrets, rendering unwinding reasoning unsound.

exit σ s is defined to mean that, for all states σ′ that are (¬T)-reachable from σ and all

transitions t with source σ′ such that ¬ T t, if isSec t then getSec t ̸= s.

The idea behind exit is that BD security holds trivially for original traces that are unable

to produce their due list of secrets sl1; and exit detects this (thus closing that branch of the

unwinding proof) by noticing that not even the first secret in sl1 can be produced starting

from the current state σ1 – indeed, in the definition of unwinding, exit is invoked with σ1

and head sl1.

Left unexplained so far are the (non)emptiness conditions guarding the invocations of the

reaction and exit predicates in the definition of BD unwinding. For exit, it is obvious that we

need sl1 ̸= [] for talking about the first element in sl1. But for reaction, why require that

sl1 ̸= [] or sl2 = []? Again, this decision has to do with the soundness of BD unwinding as a

proof method: If the negation of this condition is true, it means that the original trace is done

with producing its secrets (sl1 = []) and the alternative trace still has some secrets to produce

(sl2 ̸= []). In that case, we want to enforce an iaction move which, being secret-producing,

would make progress through the remaining alternative list of secrets sl2; this is achieved by

preventing a reaction move, which would be the only alternative (since an exit move needs

sl1 ̸= []). With these definitions, BD unwinding fulfills its goal:

▶ Lemma 1. [23, 37] Assume ∆ is a BD unwinding and let σ1, σ2 ∈ State such that

reach ¬ T σ1 and reach σ2. Then, for all tr1 ∈ TraceFσ1
and sl1, sl2 ∈ List(Sec),

if never T tr1, S tr1 = sl1 and ∆ (σ1, sl1) (σ2, sl2),

then there exists tr2 ∈ TraceFσ2
such that O tr2 = O tr1 and S tr2 = sl2.

In other words, assuming ∆ (σ1, sl1) (σ2, sl2) holds and given the remaining part tr1 of

the original trace (starting in σ1) which produces secrets sl1, there exists a trace tr2 that

produces the same observations and produces the desired secrets sl2. The lemma’s proof

goes by induction on the sum of the lengths of tr1 and sl2. The induction step either reaches

a contradiction (if exit is invoked), or consumes a transition from tr1 (if reaction is invoked)

or a secret from sl2 (if iaction is invoked).

To connect this result to BD security, in particular to factor in the bound B as well, we

additionally require that a BD unwinding ∆ includes the bound B in the initial state. So

we can think of ∆ as generalizing and strengthening the bound, and then maintaining it all

ITP 2021

3:8 Bounded-Deducibility Security

the way to the successful production of the alternative trace required by BD security. We

are closing in on the main result about BD unwinding, a consequence of the lemma taking

σ1 = σ2 = istate. It states that BD unwinding is a sound proof method for BD security.

▶ Theorem 2. (Unwinding Theorem [23,37]) Assume that the following hold:

(1) For all sl1, sl2 ∈ List(Sec), if B sl1 sl2 then ∆ (istate, sl1) (istate, sl2).

(2) ∆ is a BD unwinding.

Then A ♣= F .

According to this theorem, to prove BD security of a system, it suffices to define a relation

∆ and show that (1) it includes the bound B in the initial state and (2) it is a BD unwinding.

2.6 Proof compositionality

When verifying a BD security policy for a large system, defining a single monolithic BD

unwinding could be daunting. We can alleviate this by working not with a single unwinding

relation, but with a network of relations, such that any relation may “unwind” into any

number of relations in the network.

To this end, we refine the notion of BD unwinding. Given a relation ∆ and a set of relations

∆s, ∆ is a said to be a BD unwinding into ∆s if it satisfies the same conditions as in the

definition of BD unwinding, just that iaction ∆ and reaction ∆ are replaced by iaction (
∨

∆s)

and reaction (
∨

∆s), where
∨

∆s is the disjunction (i.e., union) of all the relations in ∆s.

Namely, for all (σ1, sl1), (σ2, sl2) ∈ State × List(Sec) such that σ1 is (¬T)-reachable, σ2 is

reachable and ∆ (σ1, sl1) (σ2, sl2), one of the following three cases holds:

(1) sl1 ̸= [] or sl2 = [], and reaction (
∨

∆s) (σ1, sl1) (σ2, sl2); or

(2) iaction (
∨

∆s) (σ1, sl1) (σ2, sl2); or

(3) sl1 ̸= [] and exit σ1 (head sl1).

This enables a form of sound compositional reasoning: If we verify a condition as above

for each component relation, we obtain an overall secure system.

▶ Theorem 3. (Multiplex Unwinding Theorem [37]) Let ∆s be a set of relations. For each

∆ ∈ ∆s, let next∆ ⊆ ∆s be a (possibly empty) set of “successors” of ∆, and let ∆init ∈ ∆s be

a chosen “initial” relation. Assume the following hold:

(1) For all sl1, sl2 ∈ List(Sec), if B sl1 sl2 then ∆init (istate, sl1) (istate, sl2).

(2) Each ∆ ∈ ∆s is a BD unwinding into next∆.

Then A ♣= F .

The network of components can form any directed graph – Fig. 2 shows an example.

However, when doing concrete proofs by unwinding, we found that the following essentially

linear network often suffices (Fig. 3): Each ∆i unwinds either into itself, or into ∆i+1 (if i ≠ n),

or into an exit component ∆e that always chooses the “exit” unwinding condition. (In practice,

∆e will collect “error” situations that break invariants, hence preventing the original trace from

producing its due secrets.) To express this, we define the notion of ∆ being a BD continuation-

unwinding into ∆s similarly to that of “BD unwinding into” but excluding the exit case, i.e.,

requiring that either (1) sl1 ≠ [] or sl2 = [], and reaction (
∨

∆s) (σ1, sl1) (σ2, sl2), or (2)

iaction (
∨

∆s) (σ1, sl1) (σ2, sl2) hold. And ∆ is said to be a BD exit-unwinding if the exit

case, (3) sl1 ̸= [] and exit σ1 (head sl1), holds. We obtain:

▶ Theorem 4. (Sequential Multiplex Unwinding Theorem [37]) Consider the indexed set of

relations ¶∆1, . . . ,∆n♢ and the relation ∆e such that the following hold:

A. Popescu, T. Bauereiss, and P. Lammich 3:9

∆1

��

�� ��
∆2

��

∆3

��
ii

∆4

OO

Figure 2 A network of unwinding compon-

ents.

∆1

��

&&

// ∆2

��

��

// . . . // ∆n

��

xx
∆e

exit

��

Figure 3 A linear network with exit.

(1) For all sl1, sl2 ∈ List(Sec), if B sl1 sl2 then ∆1 (istate, sl1) (istate, sl2).

(2) ∆i is a BD continuation-unwinding into ¶∆i,∆i+1,∆e♢.

(3) ∆e is a BD exit-unwinding.

Then A ♣= F .

Although the Multiplex Unwinding Theorems are easy consequences of the (plain) Un-

winding Theorem, we found them to be very useful tools for managing proof complexity.

2.7 System compositionality

A complexity management desideratum equally important to proof compositionality is system

compositionality: the possibility to infer BD security for a compound system from BD security

of the components. Next, we will describe a compositionality result for a communicating

network of systems. We start with two, then we generalize to n systems.

2.7.1 Product systems

Let A1 = (State1, Act1, Out1, istate1, Trans1) and A2 = (State2, Act2, Out2, istate2, Trans2) be

two systems. We want to model communication between A1 and A2 by matching certain

transitions that these systems must take synchronously while exchanging data. This is

captured by a relation match : Trans1 → Trans2 → Bool. Transition matching gives a very

flexible communication scheme: It can model message-passing communication using the

transitions’ actions and outputs, but also shared-state communication using the transitions’

source and target states.

We will distinguish between separate (local) component actions and communication

actions. We write isComi a (for i ∈ ¶1, 2♢) to indicate that an action a is in the latter category

for Ai. Namely, isComi a holds whenever there exist t1 and t2 such that match t1 t2 holds

and a is the action of ti.

We define the match-communicating product of A1 and A2, written A1 ×match A2, as the

following system (State, Act, Out, istate, Trans):

State = State1 × State2;

Act = Act1 +Act2 +Act1 ×Act2; thus, Act is a disjoint union of Act1 (representing separate

actions of the first component), Act2 (for separate actions of the second component), and

Act1 × Act2 (for joint communicating actions); we write (1, a1), (2, a2), and (a1, a2) for

actions of the first, second and third kind, respectively;

Out = Out1 + Out2 + Out1 × Out2; thus, like Act, Out is a disjoint union, and we use

similar notations for its elements: (1, ou1), (2, ou2) and (ou1, ou2);

istate = (istate1, istate2);

Trans contains three kinds of transitions:

ITP 2021

3:10 Bounded-Deducibility Security

separate A1-transitions ((σ1, σ2), (1, a1), (1, ou1), (σ′
1, σ2)),

where (σ1, a1, ou1, σ
′
1) ∈ Trans1 and ¬ isCom1 a1;

separate A2-transitions ((σ1, σ2), (2, a2), (2, ou2), (σ1, σ
′
2)),

where (σ2, a2, ou2, σ
′
2) ∈ Trans2 and ¬ isCom2 a2;

communication transitions ((σ1, σ2), (a1, a2), (ou1, ou2), (σ′
1, σ

′
2)),

where (σ1, a1, ou1, σ
′
1) ∈ Trans1, (σ2, a2, ou2, σ

′
2) ∈ Trans2

and match (σ1, a1, ou1, σ
′
1) (σ2, a2, ou2, σ

′
2).

Thus, a transition t of A1 ×match A2 has exactly one of the following three forms shown

above. In the first case, t is completely determined by an A1-transition t1 = (σ1, a1, ou1, σ
′
1)

and an A2-state σ2 – we write t = sep1 t1 σ2, marking that t is given by the separate transition

t1. Similarly, in the second case we write t = sep2 σ1 t2, where t2 = (σ2, a2, ou2, σ
′
2). In the

third case, we write t = com t1 t2, marking that t proceeds as a communication transition.

Thus, in our new notation, any transition of A1 ×match A2 has either the form sep1 t1 σ2, or

sep2 σ1 t2, or com(t1, t2).

2.7.2 Product flow policies

Let F1 and F2 be flow policies for A1 and A2. Given i ∈ ¶1, 2♢, we write (Obsi, isObsi, getObsi)

for the observation infrastructure, (Seci, isSeci, getSeci) for the secrecy infrastructure, Bi for

the declassification bound and Ti for the declassification trigger of Fi. We want to compose the

policies F1 and F2 in a natural way, forming a policy for the product A1 ×matchA2. To achieve

this, we need observation and secret counterparts of the transition-matching predicate match,

in the form of predicates matchO : Obs1 → Obs2 → bool and matchS : Sec1 → Sec2 → bool.

Triples (match,matchO,matchS) will be called communication infrastructures.

A sanity property that we will assume about our communication infrastructures is that

its matching operators are compatible with (i.e., preserved by) the secrecy and observation

infrastructure operators.

Compatible Communication: For all t1 ∈ Trans1 and t2 ∈ Trans2, if match t1 t2 then:

isSec1 t1 if and only if isSec2 t2, and in this case we have matchS (getSec1 t1) (getSec2 t2);

isObs1 t1 if and only if isObs2 t2, and in this case we have matchO (getObs1 t1) (getObs2 t2).

The product of F1 and F2 along a communication infrastructure (match,matchO,matchS),

written F1 ×(match,matchO,matchS) F2, is defined as the following flow policy for A1 ×match A2.

We start with its observation and secrecy infrastructures, which are naturally defined con-

sidering that observations and secrets can be produced either separately or in communication

steps. The observation infrastructure (Obs, isObs, getObs) is the following:

Obs1 + Obs2 + Obs1 × Obs2; thus, an element of Obs will have either the form (1, o1), or

(2, o2), or (o1, o2), where oi ∈ Obsi.

For any t ∈ Trans, isObs t and getObs t are defined as follows:

if t has the form sep1 t1 σ2, then isObs t = isObs1 t1 and getObs t = (1, getObs1 t1);

if t has the form sep2 σ1 t2, then isObs t = isObs2 t2 and getObs t = (2, getObs2 t2);

if t has the form com t1 t2, then isObs t = (isObs1 t1 and isObs2 t2) and getObs t =

(getObs1 t1, getObs2 t2).

One could argue that, when t has the form com t1 t2, isObs t should be defined not as

(1) isObs1 t1 and isObs2 t2, but as (2) isObs1 t1 or isObs2 t2, thus making the compound

transition observable if either component transition is observable. However, we will only

work under the assumption of Compatible Communication (introduced above), which makes

(1) and (2) equivalent.

A. Popescu, T. Bauereiss, and P. Lammich 3:11

Sep1

sl ∈ sl1 ×matchS sl2 ¬ isComS1 s1

sl · [(1, s1)] ∈ (sl1 · [s1]) ×matchS sl2

Sep2

sl ∈ sl1 ×matchS sl2 ¬ isComS2 s2

sl · [(2, s2)] ∈ sl1 ×matchS (sl2 · [s2])

Empty
·

[] ∈ [] ×matchS []
Com

sl ∈ sl1 ×matchS sl2 matchS s1 s2

sl · [(s1, s2)] ∈ (sl1 · [s1]) ×matchS (sl2 · [s2])

Figure 4 Shuffle product for lists of secrets.

The secrecy infrastructure (Sec, isSec, getSec) is defined similarly to the observation

infrastructure: Sec is taken to be Sec1 + Sec2 + Sec1 × Sec2, and isSec and getSec are defined

correspondingly.

The trigger T of the product flow policy is also the natural one: Any firing of the trigger

on either side, either separately or during communication, will fire the composite trigger.

Formally, we take T t to mean the following: (1) if t has the form sep1 t1 σ2, then T1 t1

holds; (2) if t has the form sep2 σ1 t2, then T2 t2 holds; (3) if t has the form com t1 t2, then

T1 t1 holds or T2 t2 holds.

It remains to define the bound B of the product flow policy. Let sl ∈ List(Sec) be a list of

secrets in the composite secret domain. Intuitively, the most restrictive bound B we can hope

for will forbid the declassification, for any lists of secrets sl1 ∈ List(Sec1) and sl2 ∈ List(Sec2)

into which sl can be decomposed (i.e., which can be combined to make up sl), of anything

beyond what can be declassified about sl1 and sl2 within the components’ bounds B1 and B2.

To capture this, we collect all valid ways of combining sl1 and sl2, via the matchS-

shuffle product operator ×matchS : List(Sec1) → List(Sec2) → Set(List(Sec)) whose inductive

definition is shown in Fig. 4. The set sl1 ×matchS sl2 contains all possible interleavings of sl1

and sl2, achieved by separate individual steps (rule Sep1 and Sep2) and communication

steps (rule Com). For i ∈ ¶1, 2♢, isComSi s is the secret counterpart of the predicate isComi,

expressing that the secret s participates in a matchS-relationship. We define B sl sl ′ to

mean that, for all sl1, sl
′
1 ∈ List(Sec1) and sl2, sl

′
2 ∈ List(Sec2), if sl ∈ sl1 ×matchS sl2 and

sl ′ ∈ sl ′
1 ×matchS sl ′

2, then B1(sl1, sl
′
1) and B2(sl2, sl

′
2) hold.

2.7.3 Compositionality result

We next introduce some properties that refer to the flow policies F1 and F2 and the commu-

nication infrastructure (match,matchO,matchS). Together with Compatible Communication,

they will be sufficient for compositionality.

Strong Communication: For all t1 ∈ Trans1 and t2 ∈ Trans2, if the following hold:

isCom1(actOf1 t1) and isCom2 (actOf2 t2),

isObs1 t1, isObs2 t2 and matchO (getObs1 t1) (getObs2 t2),

isSec1 t1 and isSec2 t2 imply matchS (getSec1 t1) (getSec2 t2),

then match t1 t2 holds.

The property says that, for observable communicating transitions, observation matching

together with secret matching (the latter conditional on secrecy) causes the matching of the

entire transitions.

Observable Communication: For all t1 ∈ Trans1, isCom1 (actOf1 t1) implies isObs1 t1; and for

all t2 ∈ Trans2, isCom2 (actOf2 t2) implies isObs2 t2.

The property says that all communicating transitions are observable (i.e., isObs is true

for them), although it does not say anything about what can actually be observed about

them (via getObs).

ITP 2021

3:12 Bounded-Deducibility Security

Secret Polarization: For all t2 ∈ Trans2, isSec2 t2 implies isCom2 (actOf2 t2).

The property says that any A2-transition that is secret-producing must be a communic-

ating transition, which means that only A1 is able to produce secrets independently.

We are now ready to state our system compositionality result about BD security:

▶ Theorem 5. (System Compositionality Theorem [8]) Assume that the flow policies F1 and

F2 and the communication infrastructure (match,matchO,matchS) satisfy all the above prop-

erties, namely Compatible, Strong and Observable Communication, and Secret Polarization.

Moreover, assume A1 ♣= F1 and A2 ♣= F2. Then A1 ×match A2 ♣= F1 ×(match,matchO,matchS) F2.

In [8], we discuss in great detail this theorem’s assumptions in the context of verifying a

concrete distributed system. The main strength of the theorem is that it allows composing

general bounds and triggers. For this to work, we put restrictions on the observation and

secrecy infrastructures. Among these, Compatible Communication seems to occur naturally

in communicating systems – at least in our case studies of interest, which are multi-user web-

based systems. When targeting such systems, Strong and Observable Communication seem to

be achievable for a given desired policy via a uniform process of strengthening the observation

and secrecy infrastructures: allowing one to observe as much non-sensitive information as

possible, and making minor adjustments to the bounds and triggers to accommodate the

additional harmless information unblocked [8, App. B].

On the other hand, Secret Polarization is the major limitation of the theorem.1 For

multi-user systems, this means that, for the notion of secret defined by the flow policies

F1 and F2, only users of one of the two component systems, A1, can be allowed to upload

secrets. However, this does not prevent us from considering another notion of secret, where

the other component is the issuer, as part of a different pair of flow policies F ′
1 and F ′

2.2

Finally, an inconvenience of applying the theorem is the somewhat artificial nature of

the composite bound. While by design the composite bound is as restrictive as possible

(which is good for accuracy), in practice we would prefer a less restrictive but more readable

bound, referring to secrets of a simpler nature than the composite secrets. To obtain this, we

can perform an adjustment using a general-purpose theorem that transports a BD security

property between different observation and secret domains, possibly loosening the bound

and weakening the trigger, i.e., overall weakening the flow policy.

This works as follows. Let F and F ′ be two flow policies for a system A, where we

write (Obs, isObs, getObs) and (Obs′
, isObs′

, getObs′) for their observation infrastructures,

and similarly for their secrecy infrastructures, bounds and triggers. F ′ is said to be weaker

than F , written F ′ ≤ F , if there exist two partial functions f : Sec⇀ Sec′ and g : Obs⇀ Obs′

that preserve the secrecy and observation infrastructures, the bounds and the triggers, i.e.,

such that the following hold:

isSec′ t if and only if isSec t and f is defined on getSec t, and in this case f (getSec t) =

getSec′ t;

isObs′ t if and only if isObs t and g is defined on getObs t, and in this case g (getObs t) =

getObs′ t;

T t implies T′ t;

B′ sl ′ tl ′ and map f sl = sl ′ imply that there exists tl such that map f tl = tl ′ and B sl tl.

1 In [8, Sec. V.8], we discuss in great detail the technical reasons for requiring Secret Polarization, which
have to do with BD security favoring the under-speciĄcation of the time ordering between observations
and secrets.

2 See also [8, App. E] for a discussion on combining independent secret sources for more holistic multi-policy
security guarantees.

A. Popescu, T. Bauereiss, and P. Lammich 3:13

▶ Theorem 6. (Transport Theorem [8]) If A ♣= F and F ′ ≤ F , then A ♣= F ′.

In conclusion, one can use the System Compositionality Theorem to obtain for the

composite system A1 ×match A2 a flow policy F = F1 ×(match,matchO,matchS) F2 with a strong

bound, and the Transport Theorem to produce from this a perhaps weaker but more natural

flow policy F ′ (for the same system A1 ×match A2). [8, App.A] gives more intuition on using

the two theorems in tandem.

2.7.4 The n-ary case

The System Compositionality Theorem generalizes quite smoothly from the binary to the

n-ary case. Let (Ak = (Statek, Actk, Outk, istatek, Transk))k∈¶1,. . .,n♢ be a family of n systems.

We fix, for each k, k′ with k ≠ k′, a matching predicate matchk,k′ : Transk × Transk′ → Bool.

We write match for the family (matchk,k′)k,k′ and isComk,k′ : Actk → Bool for the corresponding

notion of communication action (belonging to Ak and pertaining to communication with

Ak′). We will make the sanity assumption that a system cannot use the same action to

communicate with different systems.

Pairwise-Dedicated Communication: If k′ ̸= k′′, then for all k the predicates isComk,k′

and isComk,k′′ are disjoint, in that there exists no a ∈ Actk such that isComk,k′ a and

isComk,k′′ a. The match-communicating product of the family of systems (Ak)k∈¶1,. . .,n♢, written
∏match

k∈¶1,. . .,n♢Ak, generalizes of the binary case. Namely, it is the following system

(State, Act, Out, istate, Trans):

State =
∏

k∈¶1,. . .,n♢ Statek; so the states are families (σk)k∈¶1,. . .,n♢, or (σk)k for short;

Act =
∑

k∈¶1,. . .,n♢ Actk +
∑

k,k′∈¶1,. . .,n♢,k ̸=k′ Actk × Actk′ ; we write (i, ai) for elements

of the i’th summand on the left (separate actions by component Ai), and ((i, ai), (j, a j))

for elements of the (i, j)’th summand on the right (joint communicating actions by

components Ai and A j);

Out =
∑

k∈¶1,. . .,n♢ Outk +
∑

k,k′∈¶1,. . .,n♢,k ̸=k′ Outk × Outk′ (similarly to Act);

istate = (istatek)k∈¶1,. . .,n♢;

Trans contains two kinds of transitions:

for i ∈ ¶1, . . . , n♢, separate Ai-transitions ((σk)k, (i, ai), (i, oui), (σk)k[i := σ′
i]), where

(σi, ai, oui, σ
′
i) ∈ Transi and ¬ isComi ai;

for i, j ∈ ¶1, . . . , n♢ such that i ̸= j, communication transitions (between Ai and A j)

((σk)k, ((i, ai), (j, a j)), ((i, oui), (j, ou j)), (σk)k[i := σ′
i , j := σ′

j]), where (σi, ai, oui, σ
′
i)

∈ Transi, (σ j, a j, ou j, σ
′
j) ∈ Trans j and matchi, j(σi, ai, oui, σ

′
i)(σ j, a j, ou j, σ

′
j).

Above, we wrote (σk)k[i := σ′
i] for the family of states that is the same as (σk)k, except for

the index i where it is updated from σi to σ′
i ; and similarly for (σk)k[i := σ′

i , j := σ′
j].

Given the flow policies Fk for the component systems Ak and the families of matching

predicates for transitions, match = (matchk,k′)k,k′ , observations, matchO = (matchOk,k′)k,k′ ,

and secrets, matchS = (matchSk,k′)k,k′ , the product flow policy
∏(match,matchO,matchS)

k∈¶1,. . .,n♢ Fk is

defined as a straightforward generalization of the binary case. For example, its observation

domain is
∑

k∈¶1,. . .,n♢ Obsk +
∑

k,k′∈¶1,. . .,n♢,k ̸=k′ Obsk × Obsk′ , so that it contains either

separate observations (k, ok) or joint observations ((k, ok), (k′
, ok′)). Its trigger T is defined

on separate i-transitions to be the trigger of the i component, and on (i, j)-communication

transitions to be the disjunction of the triggers of the i and j component. And its bound

B sl sl ′ is defined from the component bounds: For all (slk)k, (sl
′
k)k ∈

∏
k∈¶1,. . .,n♢ List(Seck),

if sl ∈×matchS
(slk)k and sl ′ ∈×matchS

(sl ′
k)k, then, for all k, Bk slk sl ′

k holds – where×matchS

is the n-ary matchS-shuffle product operator, which applied to a family of lists of secrets

(slk)k gives all possible interleavings of these lists achieved by separate individual steps and

communication steps.

ITP 2021

3:14 Bounded-Deducibility Security

Now we can formulate an n-ary generalization of the System Compositionality Theorem.

Most of its assumptions will be those of the binary version, applied to all pairs of components

(k, k′) for k, k′ ∈ ¶1, . . . , n♢ and k ≠ k′. The only exception is Secret Polarization, which must

be strengthened. It is not sufficient to have a single secret issuer for every pair (k, k′), but

we need a unique secret issuer for the entire system of n components.

Unique Secret Polarization: There exists i ∈ ¶1, . . . , n♢ such that for all k ∈ ¶1, . . . , n♢ with

k ̸= i and for all t ∈ Transk, isSeck t implies isComk,i (actOfk t).

▶ Theorem 7. (System Compositionality Theorem, n-ary case [8]) Assume the following:

For all k, k′ ∈ ¶1, . . . , n♢ such that k ̸= k′, the flow policies Fk and Fk′ and their

communication infrastructure (matchk,k′ ,matchOk,k′ ,matchSk,k′) satisfy the properties of

Pairwise-Dedicated, Compatible, Strong and Observable Communication.

The families (Fk)k∈¶1,. . .,n♢ and (matchk,k′ ,matchOk,k′ ,matchSk,k′)k,k′∈¶1,. . .,n♢,k ̸=k′ (as a whole)

satisfy Unique Secret Polarization.

Ak ♣= Fk for all k ∈ ¶1, . . . , n♢.

Then
∏match

k∈¶1,. . .,n♢Ak ♣=
∏(match,matchO,matchS)

k∈¶1,. . .,n♢ Fk.

In conclusion, the generalization of the System Compositionality Theorem to the n-ary

case proceeds almost pairwise, but with an additional sanity assumption (Pairwise-Dedicated

Communication) and a strengthened assumption (Unique Secret Polarization).

3 Verified Systems

We have formalized in Isabelle/HOL the BD security framework (consisting of Section 2’s

concepts and theorems) [10, 35]. Recall that the framework operates on nondeterministic

I/O automata. We have instantiated it to particular (deterministic) automata representing

the functional kernels of some web-based systems. Fig. 5 shows the high-level architecture of

these systems, which follows a paradigm of security by design:

The kernel is formalized and verified in Isabelle.

The formalization is automatically translated into a functional programming language

– which in all our case studies was Scala, one of the target languages of Isabelle’s code

generator [20,21].

The translated program is wrapped in a user-friendly web application.

3.1 CoCon

CoCon [23,36,37] is an EasyChair-like conference management system, which was deployed to

two international conferences: TABLEAUX 2015 and ITP 2016 [37, §5]. The web application

Web
Application

Functional
Program

Isabelle
Specification

code generation

Figure 5 High-level architecture of the veriĄed systems.

A. Popescu, T. Bauereiss, and P. Lammich 3:15

Table 1 ConĄdentiality properties for CoCon. The observations are made by a group of users G.

Secrets Declassification Trigger Declassification Bound

Paper
Some user in G is

one of the paperŠs authors
Last uploaded version

Some user in G is

one of the paperŠs authors

or a PC memberB

Absence of any upload

Review Some user in G is the reviewŠs author

Last edited version

before Discussion and

all the later versions

Some user in G is the reviewŠs author

or a non-conĆicted PC memberD

Last edited version

before NotiĄcation

Some user in G is the reviewŠs author

or a non-conĆicted PC memberD

or the reviewed paperŠs authorN

Absence of any edit

Discussion
Some user in G is

a non-conĆicted PC member
Absence of any edit

Decision
Some user in G is

a non-conĆicted PC member
Last edited version

Some user in G is

a non-conĆicted PC member

or a PC memberN

or the decided paperŠs authorN

Absence of any edit

Reviewer

assignment

Some user in G is

a non-conĆicted PC memberR

Reviewers being

non-conĆicted PC members,

and number of reviewers

Some user in G is

a non-conĆicted PC memberR

or one of the reviewed paperŠs authorsN

Reviewers being

non-conĆicted PC members

Phase Stamps: B = Bidding, D = Discussion, N = NotiĄcation, R = Review

layer of Fig. 5 was realized as a thin REST API implemented in Scalatra [45] wrapped around

the verified kernel together with a stateless GUI written in AngularJS [2] that communicates

with the API.

CoCon was our first case study, which motivated the initial design and formalization of the

BD security framework. Our goal to express, let alone verify, fine-grained policies concerning

the flow of information in CoCon between users and documents, could not be supported

by the existing concepts in the literature. (See [23, §4.1] for a discussion.) Examples of

properties we wanted to express are:

(1) A group of users learn nothing about a paper beyond the last uploaded version unless

one of them becomes an author of that paper.

(2) A group of users learn nothing about a paper beyond the absence of any upload unless

one of them becomes an author of that paper or a PC member at the paper’s conference.

(3) A group of users learn nothing about the content of a review beyond the last edited

version before Discussion phase and the later versions unless one of them is that review’s

author.

The BD security trigger and bound were born out of the need to formally capture the

“unless” and “beyond” components of such properties. Tab. 1 summarizes informally the

CoCon properties we have expressed in our framework as flow policies. The observation

ITP 2021

3:16 Bounded-Deducibility Security

Table 2 ConĄdentiality properties for the original CoSMed. The observations are made by a

group of users G. The trigger is vacuously false.

Secrets Declassification Bound

Content of a given post

Updates performed while or last before

one of the following holds:

Ű Some user in G is the admin,

is the post owner

or is friends with its owner

Ű The post is marked as public

Friendship status between

two given users U and V

Status changes performed while or last before

the following holds:

Ű Some user in G is the admin

or is friends with U or V

Friendship requests between

two given users U and V

Existence of accepted requests while or last before

the following holds:

Ű Some user in G is the admin

or is friends with U or V

Table 3 ConĄdentiality properties for CoSMeDis, lifted from CoSMed. The observations are

made by n groups of users Ű one group Gi at each node i. The declassiĄcation trigger is vacuously

false.

Secrets Declassification Bound

Content of a given post at node i

Updates performed while or last before

one of the following holds:

Ű Some user in Gi is the nodeŠs admin,

is the post owner

or is friends with its owner

Ű The post is marked as public

Ű Some user in G j for j ̸= i is the admin at node j

or is remote friends with the postŠs owner

Friendship status between

two given users U and V at node i

Status changes performed while or last before

the following holds:

Ű Some user at node i is the nodeŠs admin

or is friends with U or V

Friendship requests between

two given users U and V at node i

Existence of accepted requests while or last before

the following holds:

Ű Some user at node i is the nodeŠs admin

or is friends with U or V

infrastructure is always the same, given by the actions and outputs of a fixed group G of users.

The secrecy infrastructures are given by the various documents managed by the system (paper

content, review, discussion, decision) but also, in the table’s last two rows, by information

about the reviewers assigned to a paper. These properties should be read as follows: A group

of users learns nothing about the given secret (more precisely, about all the uploads or edits

performed on a document in the indicated “secret” category) beyond the indicated bound,

unless the indicated trigger becomes true. For example, the above properties (1)–(3) are

the first three shown in the table, with slightly stronger triggers factoring in the conference

phase as well, which we indicate succinctly via “phase stamps” – e.g., the presence of the

phase stamp “D” indicates the requirement that the conference must have moved into the

Discussion phase. For each type of secret, we have a range of increasingly restrictive bounds

matched by increasingly weaker triggers – indeed, the more we tighten the bound (meaning

A. Popescu, T. Bauereiss, and P. Lammich 3:17

we allow less information to flow), the weaker the trigger becomes (since there are more

events that could break the bound). This bound–trigger dynamics exhaustively characterizes

the possible flows in the system.

The notion of BD unwinding was developed and refined during the verification of CoCon’s

policies. The opportunity to take proof shortcuts (via the exit predicate) was discovered

during practical “proof hacking” sessions, and led to major simplifications in the development.

The different unwinding components in the Sequential Multiplex Unwinding Theorem were

naturally mapped to the different phases of a conference’s workflow.

3.2 CoSMed

CoSMed [9,11] is a simple Facebook-style social media platform, where users can register,

create posts and establish friendship relationships. It was implemented following the same

high-level architecture as CoCon. But unlike CoCon, CoSMed is only a research prototype,

not intended for practical use.

CoSMed’s confidentiality properties raised new challenges and inspired a more expressive

way of modeling flows. In the style of CoCon, we could have specified and proved properties

such as:

A group of users learn nothing about a post unless one of them is the admin, or is the

post’s owner, or becomes friends with the owner, or the post gets marked as public.

Remember that the trigger introduced via “unless” expresses a condition in whose presence

the property stops guaranteeing anything – in other words, a trigger opens an access window

indefinitely. While true, such a property is not strong enough to be useful for CoSMed, where

both friendship and public visibility can be freely switched on and off by the owner at any

time (e.g., by “unfriending” a user, and later “friending” them again). Instead, we wanted to

prove more dynamic flow policies, reflecting any number of successive openings and closings

of the access windows during system execution.

Tab. 2 summarizes informally the BD security properties that we ended up proving for

CoSMed. The observation infrastructure is again given by a group G of users, and the secrecy

infrastructure refers to either the content of a given post, or to information on the friendship

status between two users or on the issued friendship requests. For example, the property on

the first row is the dynamic-flow refinement of the coarser property discussed above:

A group of users learn nothing about a post beyond the updates performed while (or last

before) one of them is the admin, or is the post’s owner, or becomes friends with the

owner, or the post is marked as public.

Thus, the “beyond–unless” bound-trigger combination we had employed for CoCon gave

way to a “beyond–while” scheme for CoSMed, where “while” refers to the allowed access

windows. To achieve this formally, we made the triggers vacuously false (i.e., deactivated

them completely) and incorporated the opening and closing of access windows in inductively

defined bounds. [9] discusses in detail this paradigm shift, which however did not require

adjustments to the framework itself.

3.3 CoSMeDis

CoSMeDis [8, 12] is a multi-node distributed extension of CoSMed that follows a Diaspora-

style scheme [1]: Different nodes can be deployed independently at different internet locations.

The admins of any two nodes can initiate a protocol to connect these nodes, after which

the users of one node can establish friendship relationships and share data with users of the

other. Thus, a node of CoSMeDis consists of CoSMed plus actions for connecting nodes and

cross-node post sharing and friending.

ITP 2021

3:18 Bounded-Deducibility Security

Our goal was to extend the confidentiality properties we had verified for CoSMed first to

one CoSMeDis node, then to the multi-node CoSMeDis network. [8] describes in great detail

this verification extension effort, which led to the discovery of the System Compositionality

Theorems. The outcome was the properties shown in Tab. 3, which are natural multi-node

generalizations of CoSMed’s properties (from Tab. 2). They were obtained by applying the

n-ary System Compositionality Theorem, then the Transport Theorem to switch to more

readable secrets and bounds.

4 Related Work

We only discuss briefly the most related work, focusing on the general framework rather than

the verification case studies. For more comprehensive literature comparisons (which also

cover verification), we refer to our earlier papers [8, 9, 37].

Since we aimed for high expressiveness and precision, we defined BD security by quantifying

over execution traces of general systems. This “heavy duty” approach, sometimes called

system-based security [26], can be contrasted with language-based security [42], concerned with

coarser-grained but tractable notions that can be automatically analyzed on programming

language syntax.

BD security provides an expressive realization of Sabelfeld and Sands’s dimensions of

declassification [44] in a system-based setting. It descends from the epistemic logic [40]

inspired tradition of modeling information-flow security, pioneered by Sutherland with

Nondeducibility [46] and continued with Halpern and O’Neill’s Secrecy Maintenance [22]

and with Askarov et al.’s Gradual Release [3–6], the latter developed in a language-based

setting. Our BD unwinding is a non-trivial generalization of unwinding proof methods going

back to Goguen and Meseguer [19] and Rushby [41], which have been extensively studied as

part of Mantel’s MAKS framework [24,26]. Unlike these predecessors which use safety-like

unwinding conditions, BD unwinding combines safety with liveness: In the BD unwinding

game, the “defender”, who builds the alternative trace tr2, must

not only be able to always stay in the game – a safety-like property,

but also be able to eventually produce the alternative secrets sl2 (provided the “attacker”,

who controls the original trace tr1, has produced all the original secrets sl1) – a liveness-like

property.

Because of the restrictive way of handling the liveness part of the aforementioned game, BD

unwinding is not a complete proof method, in that it cannot prove every instance of BD

security. We leave a complete extension of BD unwinding as future work.

Our system compositionality result joins a body of technically delicate work in system-

based security, where the difficult terrain was recognized early on [27]. Several frameworks

have been developed in various settings, e.g., event systems [25], reactive systems [39]

and process calculi [13, 17]. Some of these focus on formulating very restricted classes of

security properties that are always guaranteed to be preserved under a given notion of

composition, such as McCullough’s Restrictiveness [28]. Others, such as Mantel’s MAKS

framework [24, 25], formulate side conditions on the components’ security properties that

guarantee compositionality. Our result is in the latter category, and refers to a significantly

more expressive notion of information-flow security than its predecessors (which is not to say

that our result subsumes these previous results).

Temporal logics designed for information-flow security, such as SecLTL [15] and

HyperCTL∗ [14,16,38], can express similar-looking properties to the instances of BD security

we verified for CoCon – though semantically they differ by interpreting trace quantification

synchronously.

A. Popescu, T. Bauereiss, and P. Lammich 3:19

References

1 The Diaspora project. https://diasporafoundation.org/, 2016.

2 The AngularJS Web Framework, 2021. URL: https://angularjs.org/.

3 Aslan Askarov and Stephen Chong. Learning is change in knowledge: Knowledge-based

security for dynamic policies. In CSF, pages 308Ű322, 2012.

4 Aslan Askarov and Andrew C. Myers. Attacker control and impact for conĄdentiality and

integrity. Logical Methods in Computer Science, 7(3), 2011.

5 Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassiĄcation, encryption

and key release policies. In IEEE Symposium on Security and Privacy, pages 207Ű221, 2007.

6 Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-release policies for

dynamic languages. In CSF, pages 43Ű59, 2009.

7 Thomas Bauereiss, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi. CoSMed:

A ConĄdentiality-VeriĄed Social Media Platform. In ITP, 2016.

8 Thomas Bauereiss, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi.

CoSMeDis: A distributed social media platform with formally veriĄed conĄdentiality

guarantees. In IEEE Symposium on Security and Privacy, pages 729Ű748, 2017.

9 Thomas Bauereiss, Armando Pesenti Gritti, Andrei Popescu, and Franco Raimondi. CoSMed:

A ConĄdentiality-VeriĄed Social Media Platform. J. Autom. Reasoning, 61(1-4):113Ű139,

2018.

10 Thomas Bauereiss and Andrei Popescu. Compositional BD Security. Archive of Formal

Proofs, 2021. URL: https://www.isa-afp.org/entries/Compositional_BD_Security.html.

11 Thomas Bauereiss and Andrei Popescu. CoSMed: A conĄdentiality-veriĄed social media

platform. Archive of Formal Proofs, 2021. URL:

https://www.isa-afp.org/entries/CoSMed.html.

12 Thomas Bauereiss and Andrei Popescu. CoSMeDis: A conĄdentiality-veriĄed distributed

social media platform. Archive of Formal Proofs, 2021. URL:

https://www.isa-afp.org/entries/CoSMeDis.html.

13 Annalisa Bossi, Damiano Macedonio, Carla Piazza, and Sabina Rossi. Information Ćow in

secure contexts. Journal of Computer Security, 13(3):391Ű422, 2005. URL:

http://content.iospress.com/articles/journal-of-computer-security/jcs235.

14 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.

Rabe, and César Sánchez. Temporal logics for hyperproperties. In POST, pages 265Ű284,

2014.

15 Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and Helmut Seidl.

Model checking information Ćow in reactive systems. In VMCAI, pages 169Ű185, 2012.

16 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking

HyperLTL and HyperCTL ˆ*. In International Conference on Computer Aided Verification,

pages 30Ű48. Springer, 2015.

17 Riccardo Focardi and Roberto Gorrieri. ClassiĄcation of security properties (Part I:

Information Ćow). In FOSAD, pages 331Ű396, 2000.

18 Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE

Symposium on Security and Privacy, pages 11Ű20, 1982.

19 Joseph A. Goguen and José Meseguer. Unwinding and inference control. In IEEE Symposium

on Security and Privacy, pages 75Ű87, 1984.

20 Florian Haftmann. Code Generation from Specifications in Higher-Order Logic. Ph.D. thesis,

Technische Universität München, 2009.

21 Florian Haftmann and Tobias Nipkow. Code generation via higher-order rewrite systems. In

FLOPS 2010, pages 103Ű117, 2010.

22 Joseph Y. Halpern and Kevin R. OŠNeill. Secrecy in multiagent systems. ACM Trans. Inf.

Syst. Secur., 12(1), 2008.

23 Sudeep Kanav, Peter Lammich, and Andrei Popescu. A conference management system with

veriĄed document conĄdentiality. In CAV, pages 167Ű183, 2014.

ITP 2021

https://diasporafoundation.org/
https://angularjs.org/
https://www.isa-afp.org/entries/Compositional_BD_Security.html
https://www.isa-afp.org/entries/CoSMed.html
https://www.isa-afp.org/entries/CoSMeDis.html
http://content.iospress.com/articles/journal-of-computer-security/jcs235

3:20 Bounded-Deducibility Security

24 Heiko Mantel. Possibilistic deĄnitions of security - an assembly kit. In CSFW, pages 185Ű199,

2000.

25 Heiko Mantel. On the composition of secure systems. In IEEE Symposium on Security and

Privacy, pages 88Ű101, 2002.

26 Heiko Mantel. A Uniform Framework for the Formal Specification and Verification of

Information Flow Security. PhD thesis, University of Saarbrücken, 2003.

27 Daryl McCullough. SpeciĄcations for multi-level security and a hook-up property. In IEEE

Symposium on Security and Privacy, 1987.

28 Daryl McCullough. A hookup theorem for multilevel security. IEEE Trans. Software Eng.,

16(6):563Ű568, 1990.

29 John McLean. Security models. In Encyclopedia of Software Engineering, 1994.

30 Toby C. Murray, Andrei Sabelfeld, and Lujo Bauer. Special issue on veriĄed information Ćow

security. Journal of Computer Security, 25(4-5):319Ű321, 2017.

31 Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer, 2014.

32 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant

for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

33 Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Proving concurrent noninterference. In

CPP, pages 109Ű125, 2012.

34 Andrei Popescu, Johannes Hölzl, and Tobias Nipkow. Formalizing probabilistic

noninterference. In CPP, pages 259Ű275. Springer, 2013.

35 Andrei Popescu and Peter Lammich. Bounded-deducibility security. Archive of Formal Proofs,

2014. URL: https://www.isa-afp.org/entries/Bounded_Deducibility_Security.html.

36 Andrei Popescu and Peter Lammich. CoCon: A conĄdentiality-veriĄed conference

management system. Archive of Formal Proofs, 2021. URL:

https://www.isa-afp.org/entries/CoCon.html.

37 Andrei Popescu, Peter Lammich, and Ping Hou. CoCon: A conference management system

with formally veriĄed document conĄdentiality. J. Autom. Reason., 65(2):321Ű356, 2021.

38 Markus N. Rabe, Peter Lammich, and Andrei Popescu. A shallow embedding of HyperCTL.

Archive of Formal Proofs, 2014, 2014.

39 Willard Rafnsson and Andrei Sabelfeld. Compositional information-Ćow security for

interactive systems. In CSF, pages 277Ű292, 2014.

40 Yoram Moses Ronald Fagin, Joseph Y. Halpern and Moshe Vardi. Reasoning about knowledge.

MIT Press, 2003.

41 John Rushby. Noninterference, transitivity, and channel-control security policies. Technical

report, Computer Science Laboratory SRI International, December 1992. URL:

http://www.csl.sri.com/papers/csl-92-2/.

42 Andrei Sabelfeld and Andrew C. Myers. Language-based information-Ćow security. IEEE

Journal on Selected Areas in Communications, 21(1):5Ű19, 2003.

43 Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-threaded programs.

In CSFW, pages 200Ű214, 2000.

44 Andrei Sabelfeld and David Sands. DeclassiĄcation: Dimensions and principles. Journal of

Computer Security, 17(5):517Ű548, 2009.

45 The Scalatra Web Framework, 2021. URL: http://scalatra.org/.

46 D. Sutherland. A model of information. In 9th National Security Conf., pages 175Ű183, 1986.

47 Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure Ćow

analysis. Journal of Computer Security, 4(2,3):167Ű187, 1996.

https://www.isa-afp.org/entries/Bounded_Deducibility_Security.html
https://www.isa-afp.org/entries/CoCon.html
http://www.csl.sri.com/papers/csl-92-2/
http://scalatra.org/

	1 Introduction
	2 Specification and Reasoning Framework
	2.1 System model
	2.2 Flow policies
	2.3 Bounded-Deducibility security
	2.4 From nondeducibility to bounded deducibility
	2.5 Unwinding proof method
	2.6 Proof compositionality
	2.7 System compositionality
	2.7.1 Product systems
	2.7.2 Product flow policies
	2.7.3 Compositionality result
	2.7.4 The n -ary case

	3 Verified Systems
	3.1 CoCon
	3.2 CoSMed
	3.3 CoSMeDis

	4 Related Work

