
Vol.:(0123456789)

Transportation (2024) 51:371–406
https://doi.org/10.1007/s11116-022-10334-4

1 3

Uncovering the link between intra‑individual heterogeneity 
and variety seeking: the case of new shared mobility

Fangqing Song1  · Stephane Hess1 · Thijs Dekker1

Accepted: 26 August 2022 / Published online: 21 September 2022 
© The Author(s) 2022

Abstract
Preferences can vary both across respondents (i.e. inter-respondent preference heteroge-
neity) and across choice tasks within respondents (i.e. intra-respondent preference het-
erogeneity). Ignoring the existence of intra-respondent preference heterogeneity could 
bias preference elicitation and demand forecast. Thus far, most studies covering inter- and 
intra-respondent preference heterogeneity have applied the mixed multinomial logit model. 
Meanwhile, the behavioural explanations for such preference variations remain under-
explored. This paper accommodates inter- and intra-respondent preference heterogeneity 
through a two-layer latent class modelling structure, where the continuous random distri-
butions are replaced with discrete mixtures in both layers. A latent variable representing 
variety-seeking is included to explain class membership probabilities, offering additional 
behavioural insights concerning the source of preference heterogeneity both across and 
within respondents. Two aspects associated with variety-seeking are examined: novelty-
seeking (i.e. the inclination to adopt new modes) and alternation (i.e. the tendency to vary 
one’s behaviour regularly by selecting different modes continuously). In the context of new 
shared mobility, this paper finds the role of both aspects in preference heterogeneity. Spe-
cifically, novelty seekers are found to be more likely to fall into the class with higher prob-
abilities of switching from existing modes to the new air taxi service than novelty avoid-
ers, and alternation seekers are more likely to belong to the class with higher probabilities 
to exhibit intra-respondent preference heterogeneity than alternation avoiders. This paper, 
therefore, provides empirical evidence to identify the target customers of the new air taxi 
service.
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Introduction

Whilst a great deal of attention has been paid to preference variation over choices in 
revealed-preference (RP) data, for example, day-to-day variability (Cherchi and Cirillo 
2014), preference homogeneity is usually assumed across choice tasks in repeated stated 
choice (SC) data. This is supported by the fact that, unlike RP surveys which can collect 
data over a longer time span where preference variation might arise, SC surveys are usu-
ally conducted in a single sitting so that respondents’ preferences are normally considered 
stable throughout the SC survey. Nevertheless, an increasing number of studies have dem-
onstrated the presence of preference variations within a respondent (i.e. intra-respondent 
preference heterogeneity) in SC surveys (Hess and Rose 2009; Hess and Train 2011; Hess 
and Giergiczny 2015; Becker et al. 2018).

Despite the growing interest in accommodating intra-respondent preference heterogene-
ity on top of inter-respondent preference heterogeneity, there remain research gaps to be 
bridged. Firstly, the common practice to account for inter- and intra-respondent preference 
heterogeneity is establishing the model within a Mixed Multinomial Logit (MMNL) frame-
work by incorporating two layers of preference heterogeneity, i.e. one across respondents 
and another one across choice tasks. However, this is achieved at a high computational cost 
because calculating the resulting log-likelihood involves integration at the two layers (Hess 
and Train 2011). Secondly, existing studies on inter- and intra-respondent preference heter-
ogeneity still lack an explicit behavioural explanation of the sources of the intra-respondent 
preference heterogeneity. Therefore the main objective of the present paper is to accom-
modate inter- and intra-respondent preference heterogeneity at a lower computational cost 
whilst providing a behavioural explanation for intra-respondent preference heterogeneity.

In this paper, we hypothesise that preference heterogeneity can be associated with a 
latent construct of variety-seeking. Regardless of different modelling methods, variety-
seeking can reflect the tendency to experience new things (i.e. novelty-seeking) or to vary 
choices over a period of time (i.e. alternation) (McAlister and Pessemier 1982; Ha and Jang 
2013). While some people intrinsically prefer exploring novel experiences, others would 
be more inclined to avoid changes and stick to their habitual travel experiences; moreo-
ver, some people have stronger tendencies to vary their choices over time, whereas others’ 
choices remain relatively more stable. Our adopted modelling approach treats variety-seek-
ing as an underlying personality trait. As such, the novelty-seeking aspect of variety-seek-
ing relates to preference heterogeneity across respondents, while the alternation aspect of 
variety-seeking is connected with the preference heterogeneity across choices.

Variety seeking might arise, especially when new alternatives are introduced to the mar-
ket. We test our hypotheses on novelty seeking and alternation in the context of a mode 
choice experiment where new shared mobility is introduced. In each choice task, exist-
ing ground-based modes are presented together with an upcoming novel travel mode, i.e. 
air taxi (also known as “flying taxi”). This is an on-demand vertical take-off-and-land-
ing (VTOL) service and a vital element of the broader concept of “Urban Air Mobility” 
(UAM). Although UAM has been gaining substantial investment interest in recent years, 
commercial air taxi products are still in development1 and travel behaviour analysis 
remains limited compared to other modes.

1 For example, Airbus is leading the European commission’s Urban Air Mobility Initiative; and NASA 
aims to establish and expand the UAM network encompassing air shuttle, air taxi and air ambulance, each 
fitting a specific area of the wider UAM spectrum (Goyal 2018).
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This research thereby has a triple contribution. Methodologically, this research provides 
empirical evidence of the presence of inter- and intra-respondent preference heterogeneity 
through a modified latent class modelling structure. From a behavioural perspective, this 
paper offers behavioural explanations of inter- and intra-respondent preference heterogene-
ity and contributes to the application of variety-seeking theory in the transport realm. In 
addition, this paper provides empirical evidence about consumer preferences towards the 
upcoming air taxi service, which can be helpful to policymakers in designing market strate-
gies and improving the level of services.

The remainder of this paper is organised as follows. Section "Literature review" reviews 
existing literature about intra-respondent preference heterogeneity, variety-seeking and 
urban air mobility. Section "Survey and data" describes how the survey was carried out 
and presents a descriptive analysis of the data. Our approach to account for inter- and intra-
respondent preference heterogeneity is explained in Section "Methodology", followed by 
a discussion of the estimation results in section "Estimation and results". Conclusions are 
presented in the last section.

Literature review

Intra‑respondent preference heterogeneity

With regard to recovering preference heterogeneity using repeated SC data, most studies 
assume that preferences of a respondent remain stable across choices (i.e. intra-respondent 
preference homogeneity) whilst allowing for variations in preferences across respondents 
(i.e. inter-respondent preference heterogeneity). Ignoring the existence of intra-respondent 
variations could mislead preference elicitation and demand forecasts (Ben-Akiva et  al. 
2019).

Typically, studies accounting for inter- and intra-respondent preference heterogene-
ity incorporate two layers of preference heterogeneity within the mixed multinomial logit 
(MMNL) model. That is, for a given preference parameter, a continuous mixing density 
across respondents and an additional continuous mixing density across observations are 
specified. This specification essentially assumes random variations around the sample-level 
average preference both across respondents (i.e. the panel) and across choice scenarios 
(i.e. the cross-sectional). Examples can be found in Hess and Rose (2009); Hess and Train 
(2011); Hess and Giergiczny (2015).

The accommodation of inter- and intra-respondent preference heterogeneity is achieved 
at a high computational cost because evaluating the log-likelihood involves integration 
over random distributions at both inter- and intra-respondent layers (Hess and Train 2011). 
Recently, efforts have been made to accommodate inter- and intra-respondent preference 
heterogeneity through other modelling frameworks or estimation methods. For example, 
given that both MMNL and LC models can accommodate preference heterogeneity whilst 
the latter is relatively easier to estimate, Hess (2014) raised the question “whether replac-
ing one layer with weighted summation through a latent class structure would be benefi-
cial”. It is suggested that the preference heterogeneity across respondents can be replaced 
by a latent class structure, leaving only one layer of integration over observations in esti-
mation. However, this idea has not been implemented in an empirical analysis yet, nor has 
it been extended to replacing both layers of continuous mixtures with discrete mixtures to 
reduce the computational cost to a greater extent.
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Apart from this strategy, Bayesian analysis has been used to quicken the estimation 
when integration is needed at both layers. For example, Dekker et al. (2016) investigated 
the impact of decision uncertainty through an integrated choice and latent variable (ICLV) 
model, where the latent uncertainty was introduced at the choice task level while inter-
respondent preference variation was accounted for in the alternative specific constants 
(ASC). Becker et  al. (2018) also introduced a Hierarchical Bayes estimator for MMNL 
models with inter- and intra-respondent preference heterogeneity through Markov Chain 
Monte Carlo (MCMC) estimation rather than the commonly used maximum simulated 
likelihood estimation, leading to a substantial reduction in computational time. Krueger 
et al. (2019) further derived a Variational Bayes method for posterior inference in MMNL 
models that account for inter- and intra-respondent preference heterogeneity. Zhu et  al. 
(2020) uncovered the inter-respondent preference heterogeneity with a collaborative learn-
ing structure and the intra-respondent preference heterogeneity with a time-dependent 
model based on data collected from an online stated choice experiment.

Meanwhile, a growing effort can be seen in the existing studies on uncovering the 
behavioural explanations of this intra-respondent preference heterogeneity in SC experi-
ments. Hess and Rose (2009) suggested that the preferences of a given individual may 
change over stated choice tasks because of learning effect, cognitive burden, etc. In the 
presence of a new alternative, its unique attributes may also lead to ambiguity in inter-
preting their meanings. A recent study on environmental services by Hess and Giergiczny 
(2015) showed that the preference instability across SC tasks could be higher for attrib-
utes which respondents are unfamiliar with. Moreover, Dekker et al. (2016) inferred from 
their analysis that greater uncertainty would not only decrease the scale of utility but also 
increase the likelihood of choosing the status-quo or opt-out option.

Variety‑seeking

McAlister and Pessemier (1982) and Pessemier (1985) suggest that respondents’ varied 
behaviour can be attributed to external triggers and intrinsic direct motives. Variety seek-
ing behaviour can be classified as an intrinsic direct motive, because individuals may have 
a desire for exploring something unfamiliar, or alternate among familiar options (Trijp 
et  al. 1996; Ha and Jang 2013). Henceforth, we refer to ‘novelty-seeking’ as an individ-
ual’s tendency to explore something new and unfamiliar and define ‘alternation’ as the 
phenomenon of a respondent choosing a different alternative from their choice set over 
time due to the utility derived from the change itself. The latter utility is irrespective of the 
alternative that the decision-maker switches to or from (Borgers et al. 1989; Givon 1984). 
Both aspects of variety-seeking have been widely addressed in consumer and psychology 
research (e.g. (Givon 1984; Borgers et  al. 1989; Chintagunta 1998)). However, they are 
rarely accommodated in discrete choice analyses using stated choice data in the transport 
realm.

Regarding methods of analysis, some variety-seeking studies explicitly specify the 
mathematical structure of switching. For example, Givon (1984) proposed an alternation-
based model assuming that the probability of switching choices depend on the preference 
for the currently chosen alternative and the preference for switching. Borgers et al. (1989) 
focused on transition probabilities in recreational choices, assuming that the probability 
of choosing differently in two consecutive occasions was a function of the (dis)similarity 
between the currently and previously chosen alternatives. Chintagunta (1998) developed 
a brand switching model based on the hazard function, which allowed the brand choice 
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probabilities to vary over time and found that variety seekers are more likely to purchase a 
brand positioned farthest away from the previously purchased brand.

In another stream of work, psychometric scales have been created as tools to measure 
variety-seeking tendencies. Most psychometric scales are context-specific (e.g. Pearson 
(1970); Pessemier and Handelsman (1984); Lee and Crompton (1992); Wills et al. (1994); 
Baumgartner and Steenkamp (1996); Trijp et  al. (1996)). Variety-seeking is commonly 
treated as a personality trait that varies across respondents. On the one hand, this means 
that the preference to stick to old habits, resistance to changes, and uncertainty might be 
stronger for some respondents, whereas others favour unfamiliarity and novelty. On the 
other hand, this means some people might have a stronger desire for alteration and hence 
would choose a broader range of different alternatives compared to others (i.e. alternation 
aspect). Nevertheless, the statements in the scales of variety-seeking usually do not clearly 
distinguish between the novelty-seeking and alternation aspects as these two aspects are 
essentially correlated and intertwined.

Responses to psychometric scales can be used to segment markets (e.g. Van Trijp and 
Steenkamp (1992); Assaker and Hallak (2013)). Such responses can also be used in Struc-
tural Equation Models to analyse the correlation between variety-seeking tendencies and 
other constructs. For example, Jang and Feng (2007) examined the relationship between 
novelty-seeking and tourists’ intentions to revisit destinations. Responses to psychometric 
scales have also been included in discrete choice models. Rieser-Schüssler and Axhausen 
(2012) and Song et al. (2018) both treated variety-seeking as a latent variable explaining 
choices and the responses to the statements from a psychometric scale on variety-seeking. 
Neither paper accounted for the alternation aspect of variety seeking.

Urban air mobility

Urban Air Mobility is a new form of shared mobility.2 It describes an air transportation 
system that enables on-demand, point-to-point and highly automated passenger or pack-
age-delivery air travel services at a low altitude within and around populated urban areas 
(Goyal 2018). Ultimately, the UAM system could enable travellers to find an “air taxi” 
nearby through mobile apps and possibly to share the space and travel cost with other air-
poolers on the same aerial vehicle, just like ride-sourcing service on land.3

Electric or hybrid Vertical Take-off and Landing (VTOL) is recognised as the pri-
mary type of aerial vehicle for UAM in the near future.4 The deployment of VTOL 
would not take up much valuable urban space for constructing “airports”, “runways” 
etc., as high buildings’ rooftops can be transformed into take-off and landing pads. 
Additionally, autonomous VTOL is beneficial to solve a shortage of pilots. In general, 

2 According to Shaheen et al. (2016), shared mobility refers to “an innovative transportation strategy that 
enables users to gain short-term access to transportation modes on an as-needed basis.”
3 Air-taxi is different from “flight-sharing”. The latter (e.g. Wingly, Coavmi) allows certified private pilots 
to carry passengers such that the travel cost could be split among passengers including the pilots. In the 
European Union, flight-sharing is permitted on a non-commercial basis (EASA 2018), whereas flight-
sharing has been completely banned in the U.S., which has caused much criticism (Koopman and Dourado 
2017).
4 On-demand helicopter platforms already exist (e.g. Voom by Airbus in São Paulo and Mexico City). 
However, it is recognised that distributed electric propulsion and autonomous operation technologies, which 
are features of VTOL, are the key to addressing the major barriers to the large-scale commercialised opera-
tion of UAM, such as safety, noise, emission and vehicle performance (Holden and Goel 2016). Ultimately, 
drones will be adopted to transport passengers, which are expected to create zero emissions.
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VTOLs are expected to minimise travel time, mitigate traffic congestion on the ground, 
reduce operation errors and contribute to zero emissions (Holden and Goel 2016).

Various methods have been adopted to evaluate the impacts of on-demand ride 
services on urban development, to assess or optimise the system performance of on-
demand ride service networks, and to improve the understanding of individual behav-
iour in the new context accordingly, etc. However, the research predominantly focuses 
on ground-based services. In constrast, little effort has been devoted to UAM, and 
there is a lack of such empirical evidence in the context of air taxi. Mode choice stud-
ies between air and other modes (e.g. high-speed rail) for medium-to-long distance 
intercity travel have been conducted widely (e.g. Park and Ha 2006; Román et al. 2007; 
Hess et al. 2018). Regarding urban travel, flying has rarely been treated as an option 
as scheduled airline services are usually considered not competitive for short-distance 
travel.

In light of the introduction of the new air taxi service, fit-for-purpose empirical 
analyses need to be conducted with the help of specifically-designed stated choice 
data to explain individual preferences and the impact on travel demand. Some studies 
calibrated (rather than estimated) a multinomial logit model based on existing travel 
surveys excluding the new on-demand air service and then applied the obtained coef-
ficients to compute aggregate mode shares for the new market with the hypothetical 
on-demand air service (e.g. Pu et al. 2014; Joshi et al. 2014; Baik et al. 2008). Thus, 
empirical analysis is needed to verify the assumptions about sensitivities towards vari-
ous level-of-service attributes and explain the behavioural mechanisms behind indi-
vidual choices.

Peeta et  al. (2008) estimated a binary choice model based on stated choice data 
to analyse the probability of switching to the new on-demand “very light jet” service 
rather than the novel UAM services. More recently, Fu et al. (2018) used stated choice 
data to examine mode choice behaviour amongst private car, public transit, autono-
mous vehicle and autonomous VTOL air taxi via MNL models. However, the model 
specification could have been improved to better account for preference heterogeneity 
across respondents. For example, although the author had collected information related 
to respondents’ attitudes towards adopting new autonomous transportation modes, 
this information was not accommodated in the model. Binder et  al. (2018) and Gar-
row et al. (2019) are also empirical studies on mode choices between electric VTOL 
air taxi and other modes. However, the experimental design on mode choices lacks 
sufficient variations in the attribute levels, and the study was only focused on survey 
design without qualitative and modelling analysis. This work was later extended in 
Garrow et al. (2020) where factor analysis was performed followed by cluster analysis 
to explore market segmentation. Al Haddad et al. (2020) lately developed multinomial 
logit (MNL) models and ordered logit models with stated preference data to explore 
the factors influencing respondents’ adoption and use of VTOL, where the adoption 
time horizon was treated as the dependent variable rather than the conventional mode 
alternatives. To the best of our knowledge, no other empirical analyses explored the 
preferences for on-demand aerial services, particularly in the new context of Urban Air 
Mobility, where air taxi is expected to be powered by (autonomous) VTOL vehicles.
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Survey and data

UberAIR service context

This paper uses data provided by Uber on mode choice amongst different alternatives, 
including its upcoming on-demand electric VTOL air taxi service, i.e. UberAIR.56

It is expected to cut existing door-to-door travel times by an estimated 30% to 60% and 
create zero emissions and low levels of noise (Holden and Goel 2016). Flights may be 
shared with other riders, leading to a reduced cost per individual. Passengers will be able 
to book UberAIR services with the same mobile app as existing ground-based services. 
Moreover, Uber’s air and ground services may be integrated and coordinated in operation, 
such that passengers can book door-to-door trips through a single request and payment and 
be driven by ground service like UberX to/from the UberAIR take-off/landing pads. Fig-
ure 1 illustrates the UberAIR service.

Questionnaire and respondent sampling

Since the commercialised operation of UberAIR has not yet been realised, we cannot use 
revealed preference (RP) data to analyse people’s preferences and trade-offs between differ-
ent level-of-service attributes. Instead, a stated choice (SC) survey was conducted.

The survey took around 15min to complete and was mainly comprised of five com-
ponents: (1) screening questions; (2) trip experience; (3) SC survey; (4) attitudinal state-
ments; and (5) socio-demographic characteristics.

The survey was aimed at people living in the greater Dallas-Fort Worth or Los Angeles 
areas. Respondents were invited from four groups: LA online panel, DFW online panel, 

Fig. 1  Illustration of UberAIR service

5 The University of Leeds, UK, was provided with anonymised data by Uber Technologies, Inc. (“Uber”). 
Neither the University of Leeds nor the authors received funding or financial support from Uber. The views, 
opinions, and conclusions expressed in this article are those of the authors and do not constitute any repre-
sentation of Uber.
6 Uber Elevate planned to launch its “UberAIR” service with commercial flight operations in Dallas-Fort 
Worth and Los Angeles in 2023. However, in December 2020, it was announced that Uber Elevate would 
be acquired by the start-up Joby Aviation and the respective services of both companies would be inte-
grated. As our data was collected in 2018 and the paper was initially submitted in 2019, the new air taxi 
service is still referred to as “UberAIR” in the present paper.
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LA Uber customer list, and DFW Uber customer list. The online panel was general popula-
tion and was representative of resident Census demographics, screening only for a quali-
fying trip within the region. The screening questions were related to respondents’ recent 
trip experiences. If the respondent could not meet all of the criteria below, they would be 
disqualified. As to respondents from Uber customer lists, apart from the requirements men-
tioned below, they would also be disqualified if they had not used a ride-sourcing service in 
the past month. The sampling criteria are:

• Home zip code match qualifying zip code for the targeted location (Dallas-Fort Worth 
or Los Angeles MSAs);

• Having used at least one of the following transportation modes and services within the 
last month - Personal or household vehicle; Rent vehicle; Car-share service; Bus; Light 
rail, metro, or subway; Commuter rail; Taxicab; Ride-sourcing;

• Having completed at least one ground trip that took place in, around, or through the 
Dallas-Fort Worth/Los Angeles area;

• The trip was between 7–75 miles (one-way);
• The trip took at least 30 min in total (one-way);
• The trip purpose was one of the following purposes - Work commute; Other work-

related business; Go to/from school; Go to/from airport; Shopping; Social or recrea-
tional; Entertainment event; Other personal business.

Disqualified respondents did not need to take the SC survey but were branched directly 
to the attitudes and socio-demographics so that they could finish the survey. Regarding 
qualified participants, their qualified trips would be regarded as the “reference trips” which 
would feed into the following SC survey. In the SC survey, individual-specific reference 
mode was always shown as the first alternative; meanwhile, UberX, UberPOOL and the 
new UberAIR were always presented in the SC survey. The modelling work only makes 
use of the responses from qualified participants who completed the whole questionnaire. 
The responses obtained from disqualified respondents were not used for model estimation 
in the current study, even though they were presented with the attitudinal statements.

A total of 2607 qualified respondents finished the entire survey. It needs to be noted 
that only a limited number of people used rental vehicle/car-share services, taxicab, other 
ride-sourcing services or UberBLACK/UberSELECT for their reference trips, accounting 
for much smaller shares (7.2% altogether) compared to the other modes. This leads to a 
situation where these four alternatives were rarely available in the SC survey compared to 
the other modes. Therefore, in order to improve model efficiency, the discrete choice mod-
els included in this paper are all estimated on a subset of the qualified sample, where only 
respondents using personal/household vehicle, transit, UberX or UberPOOL for their refer-
ence trips are involved. Those who travelled by rental vehicle/car-share service, taxicab, 
other ride-sourcing service or UberBLACK/UberSELECT in their reference trips were 
excluded. Consequently, 2419 respondents are used for model estimation. The analysis and 
discussion in the remainder of this paper are all established on these 2419 respondents.

Table 1 illustrates the sampling results among these 2419 respondents. It can be found 
that different trip purposes were almost evenly distributed among the sample. Over 60% of 
respondents used personal/household vehicles in the reference trip, whereas TNC services 
(i.e. UberX and UberPOOL) dominated the remaining 40% of the sample and the rest used 
public transport for their reference trips. This sample is, of course, not necessarily repre-
sentative of the real-world travelling population and is potentially biased towards exist-
ing users of Uber services. However, the purpose of the present study is exploratory and 
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focused on specific behavioural traits rather than seeking representative findings for policy 
work.

Trip experience and socio‑demographic characteristics

Each qualified respondent was required to provide further information about the reference 
trip, including departure time, total duration, delay experience, etc. These questions were 
tailored for respondents based on what the reference mode was. For example, if the ref-
erence mode was personal/household vehicle or ride-sourcing, the respondent needed to 
suggest whether they experienced a delay due to traffic congestion on the trip, how many 
people were in the vehicle on the trip, etc.

Table 2 summarises the reference trip among the 2419 selected respondents. Although 
the average trip distance varies across different reference modes, the average trip time cal-
culated by Google for each reference mode group is around 30 min. However, due to delay 
time, waiting time, access/egress time, etc., the actual door-to-door trip time is much more 
diverse across reference modes, with transit taking the longest time (86 min) and UberX 
costing just over half of the transit time (45 min). Comparing the personal/household vehi-
cle group and UberX group, it can be found that with similar Google-calculated trip dis-
tance and trip time, UberX leads to a quarter less total travel time on average than personal/
household vehicle, which might be due to the time saving from parking. Moreover, we 
can also discover that in comparison to UberPOOL, UberX can allow respondents to reach 
8.1km farther with 6min less on average, which can be largely attributed to the time spent 
matching other ride sharers and detouring to their destinations for UberPOOL trips.

Table  3 describes the distribution of various socio-demographic characteristics. 
Respondents from the Dallas area and Los Angeles area are relatively similar. Females 
account for two-thirds of the population. A sufficient number of respondents in each age 
band were approached, with a slight and steady decrease in proportion as age increases, 
except for the youngest band. Over 93% of the respondents have at least one vehicle in 
the household. Additionally, while the official statistics show that the median household 

Table 1  Reference trips of 
sampled respondents

Count Percentage (out of 
2419 respondents)

Trip purpose
Work commute 310 12.8
Other work-related business 307 12.7
Go to/from school 274 11.3
Go to/from airport 315 13.0
Shopping 308 12.7
Social or recreational 306 12.6
Entertainment event 294 12.2
Other personal business 305 12.6
Trip mode
Personal/household vehicle 1540 63.7
Transit 142 5.9
UberX 542 22.4
UberPOOL 195 8.1
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income (in 2017 inflation-adjusted Dollars) in 2017 is $54,501 in Los Angeles city and 
$47,285 in Dallas city (US Census Bureau 2018), our sample has a mean household income 
of $100,615 and a median household income of $62,500. This means that our sample 
contains a higher proportion of rich people than the census. Nevertheless, given that on-
demand VTOL air taxi services would inevitably be more expensive, at least initially, than 
its ground competitors, we think approaching more high-income people is appropriate.

It needs to be noted that this paper mainly aims to accommodate inter- and intra-
respondent preference heterogeneity and apply the theory of variety-seeking to investigate 
the behavioural explanation of this heterogeneity. Uber’s mode choice data incorporating 
air taxi presented a suitable opportunity to delve into this research objective. This paper, 
however, does not aim to accurately forecast the travel demand of air taxi or calculate the 
modal split among different modes when air taxi enters the market. Therefore, not having a 
representative sample does not affect the objective of this paper.

Stated choice survey

After a brief introduction to UberAIR, each respondent was presented with 10 hypotheti-
cal scenarios and was required to choose the most preferred alternative in each scenario. 
D-efficient experimental design was adopted to generate the stated choice experiment. 
The experimental design used priors only for the explanatory variables (time, cost, etc.), 
which were obtained from past non-academic studies, and not for the constants for differ-
ent modes. As a result, the fact that UberAir does not yet exist is not a problem. Besides, in 
order to make the choice scenarios more realistic, the hypothetical choice scenarios were 
framed around the reference trip reported by each respondent about the travel information 
of a most recent qualified trip.

In each choice task, the first alternative was always related to the reference trip alterna-
tive, and the last alternative was always UberAIR. While this potentially introduces order-
ing effects, this approach was outside the control of the analysis team. Besides, UberX and 
UberPOOL were always included in each choice task. Hence, if a respondent used a private 
vehicle or transit as the reference mode, then UberX and UberPOOL would serve as the 
second and the third alternatives, respectively. In cases where UberX or UberPOOL was 
the reference mode, UberX or UberPOOL would only appear as the reference mode, i.e. 
only three alternatives would be available to be selected from. Figure 2 gives an example of 
a stated choice task where UberPOOL was identified as the reference mode.

Table 2  Descriptive summary of reference trip experience for the focus sample used in modelling (total 
amount: 2419)

Reference mode Personal/ house-
hold vehicle

Transit UberX UberPOOL

Total respondents # 1540 142 542 195
Respondents # who experienced delay 1006 (65%) NA 304 (56%) 134 (69%)
Average total delay time (min) 15 NA 11 17
Average Google-calculated trip distance (mile) 25.5 18 22.7 14.6
Average Google-calculated trip time (min) 33 27 32 26
Average total trip duration (min) 60 86 45 51
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A total of 5 attributes, including “travel cost”, “travel time”, “flight time”, “access time”, 
and “egress time”, were involved in the SC survey, not all of which apply to every alterna-
tive. Travel cost was used to describe the other alternatives except for personal/household 
vehicle. Travel time served as an attribute for all the existing ground-based modes, cap-
turing the total travel time. UberAIR’s total travel time was split into flight time, access 
time and egress time. The cost levels were chosen to be realistic given the market plans 
for the new mode. Table 4 gives each attribute’s median and mean values for each alterna-
tive across observations. We notice that the distributions of travel time in the SC survey 
are comparable to the actual travel time in the reference trip shown in Table 2. The travel 

Table 3  Descriptive summary of the focus sample

Socio-demo characteristics Level Amount Percentage (out of 
2419 respondents)

Residence Dallas 1101 45.5
LA 1318 54.5

Gender Female 1616 66.8
Male 777 32.1
Prefer not to say 26 1.1

Age 18–24 308 12.7
25–29 351 14.5
30–34 338 14.0
35–39 287 11.9
40–44 243 10.0
45–49 195 8.1
50–54 184 7.6
55–59 168 6.9
60–64 140 5.8
65–69 108 4.5
70 or older 97 4.0

Household vehicle None 151 6.2
1 Vehicle 809 33.4
2 Vehicles 962 39.8
3 Vehicles 331 13.7
4 Vehicles 114 4.7
5 or more vehicles 52 2.1

Household annual income <$35,000 479 19.8
$35,000–$49,999 335 13.8
$50,000–$74,999 416 17.2
$75,000–$99,999 368 15.2
$100,000–$149,999 341 14.1
$150,000–$199,999 153 6.3
$200,000–$249,999 75 3.1
$250,000–$499,999 62 2.6
>$500,000 38 1.6
Prefer not to say 152 6.3
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cost for the car option was set to 0 in the experimental design conducted by Uber. This 
assumption was made because the cost for the other non-car alternatives is usually paid on 
a per-trip basis, while the cost associated with a car trip is more complex and less easy to 
perceive on a per-trip basis as it involves fuel cost, maintenance cost, insurance cost etc.

Attitudinal statements

In order to capture the influence of underlying psychometric constructs on choice behav-
iour, attitudinal statements were used to measure these unobserved factors. We excluded 
statements #4, #9 and #12 on Table 5 from factor analysis as they were considered closely 
related to brand loyalty and lexicographic decision and environmental-friendliness in 
respective, and thus irrelevant to the other statements. The remaining statements were used 
in exploratory factor analysis. The scree plot obtained via parallel analysis (see Fig.  3) 
shows 5 observed eigenvalues lie above or very close to the corresponding simulated/resa-
mpled eigenvalues, suggesting that 2–5 factors could be suitable. We tested different factor 
solutions and found that loading the remaining 9 statements on 3 factors with a cut-off 
point of 0.5 gives the most interpretable results. Seven statements were identified, explain-
ing 53% of the variance of the sample. That is, #8 and #10 for “variety-seeking”, #1 and #6 
for “comfort of flying”, and #2, #7 and #11 for “dissatisfaction for status-quo”. Although 

Fig. 2  Example of SC tasks

Table 4  Summary of stated choice tasks

Alternatives

Private vehicle Transit UberX UberPOOL UberAIR

Attributes (median, mean)
Travel cost ($) – (3, 8) (35, 40) (28, 32) (70, 88)
Travel time (min) (58, 70) (87, 99) (51, 62) (55, 68) –
Flight time (min) – – – – (12, 15)
Access time (min) – – – – (7, 9)
Egress time (min) – – – – (7, 9)
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statement #5 was thought to be related to variety-seeking, its loading was below the cut-off 
point and therefore was excluded.

One objective of this paper is to examine the role of variety-seeking in mode choices 
when a novel service enters the market; thereby, we only discuss the statements loaded 
onto the construct of variety-seeking, which are statements #8 and #10 in Table 5. Their 
Chronbach’s alpha estimate is 0.7, and Guttman’s Lambda 6 estimate is 0.54, suggesting 
relatively good internal consistency between these two statements. Table  6 selectively 
presents 4 indices that reflect variety-seeking in the mode choice experiences and stated 
choice tasks and shows the average value for each index by the score of statements #8 and 
#10. It can be observed that stronger agreement with these two statements is related to a 
broader choice of ride-sourcing companies in the past and alternatives in the SC survey, as 
well as a higher frequency of choosing the new UberAIR option and a lower frequency of 
selecting the reference mode in the SC survey.

Table 5  Attitudinal statements used for factor analysis

# Attitudinal statements Underlying constructs

1 I am comfortable with flying in a small aircraft Comfort of flying
2 Traffic congestion is a major problem in my area Dissatisfaction for status-quo
3 I wouldn’t mind pooling with other people on eVTOL flights –
4 Uber is my preferred rideshare service ✗
5 I would use an autonomous vehicle if it is available –
6 I am comfortable with flying in a battery-powered aircraft Comfort of flying
7 My current travel options for long-distance trips (50–100 miles) take 

too long
Dissatisfaction for status-quo

8 I am one of the first to adopt new technology Variety-seeking
9 I usually take the cheapest mode of transportation available to me ✗
10 I’m excited for eVTOL travel to become available in my area Variety-seeking
11 I wish travel times were more consistent and predictable in my area Dissatisfaction for status-quo
12 I am concerned about my impact on the environment ✗

Fig. 3  Parallel analysis scree plots for the factor analysis
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Methodology

Hypothesis

This section discusses the approach we proposed to accommodate intra-respondent prefer-
ence heterogeneity on top of inter-respondent preference heterogeneity and explores the 
role of variety-seeking in mode choice behaviour in the new context of air taxi. All mod-
els discussed in this section are established on the random utility maximisation (RUM) 
assumption.

In the present paper, variety-seeking is regarded as an unobservable personality trait. 
As mentioned in section "Literature review", variety-seeking can be reflected or driven 
by novelty-seeking and (or) alternation. Hence, we aim to distinguish and discern both 
aspects. Two hypotheses are put forward with respect to the novelty-seeking aspect and the 
alternation aspect of variety-seeking:

Hypothesis 1: Stronger novelty-seeking is linked to a higher propensity to adopt the 
upcoming air taxi mode, i.e. UberAIR in our case.

Hypothesis 2: Stronger alternation would relate to a higher tendency to exhibit unstable 
preferences over choice tasks of a SC survey.

As such, part of unobserved preference heterogeneity across respondents (i.e. inter-
respondent preference heterogeneity) is explained by the novelty-seeking aspect of vari-
ety-seeking tendencies. Meanwhile, the alternation aspect is associated with preference 
heterogeneity over choices within a given individual (i.e. intra-respondent preference 
heterogeneity).

We hence explore the role of variety-seeking in a stated choice setting by addressing 
three key questions: 

Table 6  Relation between the responses to attitudinal statements and mode choice experience/ stated 
choices

Score Alternation Novelty-seeking

Ride-sourcing com-
panies used in real 
life (mean)

Different alternatives 
chosen across SC 
tasks (mean)

Times UberAIR 
chosen in SC tasks 
(mean)

Times reference mode 
chosen in SC tasks 
(mean)

Statement #8
   1 0.6 1.6 0.9 7.5
   2 0.8 1.8 1.3 6.1
   3 1.0 2.0 1.7 5.0
   4 1.3 2.2 2.8 3.8
   5 1.5 2.3 3.7 1.9

Statement #10
   1 0.6 1.4 0.7 7.3
   2 0.7 1.6 0.6 7.2
   3 0.9 1.9 1.2 5.6
   4 1.1 2.2 2.6 4.3
   5 1.5 2.3 3.8 2.2
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1. Can variety-seeking reflect itself through the novelty-seeking aspect and whether variety 
seekers have a higher probability of showing a higher inclination to adopt the new air 
taxi service?

2. Can variety-seeking reflect itself through the alternation aspect and whether variety 
seekers have higher tendencies to switch their choices more often over time?

3. If the impact of variety-seeking is detected, what type of respondents are more likely to 
be variety-seekers?

Enlightened by the discussion by Hess (2014), we propose two new models in this paper. 
The first new model involves an additional layer to account for intra-respondent preference 
heterogeneity on top of inter-respondent preference heterogeneity. The other new model 
further introduces a latent variable of variety-seeking to explain what causes the preference 
heterogeneity across respondents and within respondents, leading to behavioural benefits. 
Briefly speaking, we resemble the conventional way of accommodating inter-and-intra het-
erogeneity within a latent class model framework and further incorporate variety-seeking 
as a latent variable to explain class allocation probabilities.

In these two new models, respondents can be probabilistically classified into “novelty-
seeker” class and “novelty-avoider” class, and each can continue to be segmented into 
“alternation-seeker” class and “alternation-avoider” class. This two-step segmentation 
allows us to capture preference variations across respondents. Meanwhile, the alternation 
effect is controlled only within the “alternation-seeker” class by implementing probabilis-
tic allocation on discrete distributions over choice tasks, i.e. allowing for intra-respondent 
preference heterogeneity. In the second new model, variable-seeking is introduced into the 
model as a latent variable to explain the class segmentation functions. The details about 
these two models can be found in sections "New model 1: Two-layer Latent Class (2L-LC) 
model" and "New model 2: Two-layer Latent Variable Latent Class (2L-LV-LC) model".

Basic Latent Class (LC) model

The Multinomial Logit (MNL) model (McFadden 1973) has been widely used in under-
standing choice behaviour. It assumes all the preference heterogeneity is captured determin-
istically, e.g. through interactions between sensitivity parameters with socio-demographic 
characteristics. However, there exists preference heterogeneity that cannot be explained 
deterministically. Two typical methods to capture unobserved preference heterogeneity are 
the Mixed Multinomial Logit (MMNL) model (Boyd and Mellman 1980; Cardell and Dun-
bar 1980) and Latent Class (LC) model (Kamakura and Russell 1989; Gupta and Chinta-
gunta 1994). While the former incorporates unobserved preference heterogeneity by using 
continuous distributions in parameters, the latter uses discrete distributions. Thus, the LC 
model does not need to make specific assumptions about the distribution of parameters. In 
a latent class model, preference heterogeneity can be captured by probabilistically assign-
ing membership to each respondent (Walker and Ben-Akiva 2002).7

A basic LC model is developed with an underlying MNL model. Essentially, this basic 
LC model resembles the MMNL model with the assumption of inter-respondent preference 

7 Comparisons between the latent class model and mixed logit model can be found in some literature (e.g. 
Greene and Hensher (2003); Shen (2009)). Moreover, latent and mixed logit can be combined to allow for 
continuous randomness in preference heterogeneity within a class by specifying a random parameter latent 
class model (Greene and Hensher 2013).
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heterogeneity. It assumes that there are a finite number of classes S with different values 
for the parameters (including ASC vector �s and sensitivities vector �s ) in each class. Given 
class membership s, decision maker n derives an unobserved utility Uint,s from alternative 
i in choice task t. This utility Uint,s consists of a deterministic portion Vint,s and unobserved 
and random disturbance �int,s . Thus, the utility function is written as:

where Vint,s typically follows a linear-in-parameter specification with an alternative-specific 
constant (ASC) �i,s . xint is a vector of explanation variables for alternative i which is pre-
sented to respondent n in task t. A vector of to-be-estimated parameters �s explains the sen-
sitivities, and is treated as homogeneous across choice tasks. The random error term �int,s is 
independently and identically distributed (IID) type I extreme value distribution.

In our case, we allow for two classes of respondents, i.e. s ∈ (1, 2) in Eq.1. This was 
found to give adequate gains in fit without undue increase in complexity. Following com-
mon practice, the class allocation model for two classes of respondents is specified in a 
binary logit form. We start from the basic specification, which assumes the class allocation 
functions to be constant across respondents. The probability �s of a given respondent n fall-
ing into class s can be computed by:

such that 
∑S

s=1
�s = 1 and 0 ≤ �s ≤ 1 , where �1 is the class-specific constant in the class 

allocation functions. The unconditional likelihood of making a sequence of choices by 
respondent n can be obtained by taking a weighted summation of the conditional likelihood 
given the class membership across classes, such that:

The log-likelihood function is given by: LL(y) =
∑N

n=1
lnP(yn).

New model 1: Two‑layer Latent Class (2L‑LC) model

Now we elaborate on how the new latent class model with two layers of heterogeneity is 
constructed to resemble the structure of the two-layer MMNL model. This is achieved by 
replacing the continuous mixture with a discrete mixture at both inter-respondent and intra-
respondent layers, which can substantially reduce the computational burden. The alterna-
tion effect is controlled at the intra-respondent layer to manifest preference variation across 
choice tasks. Figure 4 illustrates how the sample is probabilistically classified at the inter-
respondent layer and how the alternation effect is controlled at the intra-respondent layer. 
The model with latent variety-seeking is discussed in the section "New model 2: Two-layer 
Latent Variable Latent Class (2L-LV-LC) model" but still follows this structure.

(1)Uint,s = Vint,s + �int,s = �i,s + ��
s
xint + �int,s,

(2)
�1 =

e�1

e�1 + 1

�2 = 1 − �1

,

(3)P(yn) =

S∑
s=1

�s

(
T∏
t=1

P
(
ynt ∣ �s, �s

))
.
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inter‑respondent layer

At the inter-respondent layer, respondents are first of all probabilistically segmented into 
S classes, each class carrying different preference parameters. This segmentation is the 
same as the basic LC model in section "Basic Latent Class (LC) model". That is, a given 
respondent has a probability of �s to belong to class s with ASC �s and sensitivities �s 
which are specific to class s. In our case, S = 2 as we expect to discern one class of “nov-
elty-avoiders” and one class of “novelty-seekers”.

We continue to segment class s into Q = 2 subclasses based on the assumption that 
while some respondents have consistent preference across choice tasks (i.e. alternation-
avoiders), others experience preference variation in the course of completing choice tasks 
(i.e. alternation-seekers). That is, for each class s, it is further segmented into a “alterna-
tion-avoiders” subclass with a probability of �1 , and a “alternation-seekers” subclass with 
a probability of �2 . Herein, we use (s, q) to denote the class membership, with q = 1 stand-
ing for a “alternation-avoiders” subclass, and q = 2 for a “alternation-seekers” subclass. 
As shown in the upper part of Fig. 4, we eventually obtain four subclasses of respondents, 
among which (1, 1) and (2, 1) are “alternation-avoiders” subclasses with stable preference 
to alternatives across tasks, whereas (1, 2) and (2, 2) are “alternation-seekers” subclasses 
exhibiting heterogeneous preference over tasks.

Therefore, while keeping the class allocation model at the upper part the same as in 
Eq. 2, we further adopt another binary logit model to determine the class allocation prob-
ability at the lower part of the inter-respondent layer such that:

Fig. 4  Structure of the 2L-LC model
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where �1 is the constant specific to “alternation-avoiders” subclasses in the class allocation 
function and is generic in any class s. Herein, �1 (and so is �1 ) is kept generic in any class 
s to facilitate the identification of the 2L-LC model (and also the more complex 2L-LV-LC 
model to be discussed in section "New model 2: Two-layer Latent Variable Latent Class 
(2L-LV-LC) model"). We acknowledge that this restriction may overlook the differences 
regarding the alternation probabilities between the novelty-seekers class and novelty-avoid-
ers class. We will leave this for future research to improve the examination of the role of 
the novelty-seeking aspect and alternation aspect.

As to the “alternation-avoiders” subclasses (i.e. q = 1 ), they are characterised with the 
baseline preference parameters �s and �s at each choice. Thus, the utility function for alter-
native i given the class membership (s,1) is written as:

Moreover, the conditional likelihood of observing a choice made by individual n at task t 
is:

As to the “alternation-seekers” subclassess (i.e. q = 2 ), �i,(s,2) is not a constant value at the 
task level. We discuss how intra-respondent preference heterogeneity is accommodated for 
these subclasses in section "New model 1: Two-layer Latent Class (2L-LC) model".

Intra‑respondent layer

As stated earlier, we associate the alternation effect with the tendency to exhibit intra-
respondent preference heterogeneity. Intra-respondent preference heterogeneity is only 
accommodated for the ‘alternation-seekers” subclasses (i.e. q = 2 ). Contrary to this, prefer-
ences are kept stable across choice tasks if allocated to a “alternation-avoiders” subclass.

Specifically, intra-respondent preference heterogeneity in “alternation-seekers” sub-
classes (i.e. q = 2 ) is implemented by letting the ASC parameters �(s,2) shift around the 
baseline values by Δ at the observation level, such that the intrinsic preferences towards 
each alternative vary across choice tasks. However, the marginal utilities �(s,2) are fixed to 
the baseline values of �s over tasks, i.e. no intra-respondent heterogeneity in the marginal 
utility parameters.8

We replace the continuous distributions across choices used in the MMNL model with 
discrete mixtures at the intra-respondent layer. More precisely, we assume that each �i,s has 
an equal probability to either have an alternative-specific shift term Δi added or deducted, 
where Δi is kept generic in any class s. Thus, we specify:

(4)
�1 =

e�1

e�1 + 1

�2 = 1 − �1

,

(5)Uint,(s,1) = �i,(s,1) + ��
(s,1)

xint + �int,(s,1) = �i,s + ��
s
xint + �int,(s,1), s ∈ (1, 2).

(6)P
(
ynt ∣ �(s,1), �(s,1)

)
= P

(
ynt ∣ �s, �s

)
.

(7)�i,(s,2) = �i,(s,2),mi
= �i,s + Δi(mi == 1) − Δi(mi == 2),

8 This specification is more in line with the definition of alternation, as alternation is more closely related 
to the instability of choices rather than the instability of sensitivities towards specific attributes. Hence, we 
allow variations in ASCs instead of the marginal utilities.
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where mi is an alternative-specific indicator showing whether the shift term is added or 
deducted.

This specification allows us to achieve an analogue of the MMNL model with inter- and 
intra-respondent preference heterogeneity. For a given random parameter in the MMNL 
model, an additional continuous distribution is specified over choice tasks on top of the 
continuous distribution over decision-makers. The mean is captured by the distribution at 
the inter-respondent layer, while the variance is estimated for the distribution at the intra-
respondent layer. In our case, given subclass membership (s, 2), Eq. (7) enables preference 
variation at the choice level while keeping the mean of ASC for alternative i the same as in 
the corresponding “alternation-avoiders” subclass (s, 1), which equates to �i,s.

Given J alternatives in a choice set, alternative J is used as the base for normalisation 
with the corresponding ASC �J,s fixed to 0. Thus, we only account for intra-respondent 
variation for the remaining J − 1 non-zero ASCs. In particular, we take into account all 
the possible combinations for the vector 

(
�1,(s,2),m1

, �2,(s,2),m2
,⋯ , �J−1,(s,2),mJ−1

)
 , such that all 

the combinations amount to 2J−1 in total for a given individual at a given choice task. The 
lower part of Fig. 4 presents the treatment at the intra-respondent layer, where the discrete 
mixture is taken over 2J−1 combinations.

Then we average the probability over the 2J−1 possible situations and use it as the condi-
tional choice probability for respondent n at task t given the membership of a “alternation-
seekers” subclass i.e. q = 2 , such that:

Combined with Eqs. (6)–(8), we can get the unconditional likelihood of observing a 
sequence of choices for a given respondent n by replacing Eq. (3) with:

New model 2: Two‑layer latent variable latent class (2L‑LV‑LC) model

Now we delve deeper into the drivers of inter- and intra-respondent preference heterogene-
ity, i.e. variety-seeking. We treat variety-seeking as a latent variable to reduce the risk of 
endogeneity and measurement errors. It is incorporated in both class allocation functions at 
the inter-respondent layer, with two different parameters �NS and �AT capturing the novelty-
seeking effect and alternation effect, respectively. By doing so, people can be probabilistically 
segmented into different classes as functions of the latent construct (Hess et al. 2013; Motoaki 
and Daziano 2015). Due to the concern that the two aspects of variety-seeking are related and 
intertwined, we do not explicitly specify two separate latent variables. Figure 5 illustrates the 
modelling framework of the 2L-LV-LC model, showing how the latent variable of variety-
seeking is introduced into the 2L-LC model. Apart from having the latent variety-seeking in 
explaining class membership probabilities and the responses to selected indicators, the two-
layer structure is maintained to be the same as in the 2L-LC model (see Fig. 4). This section 
hence only explains the differences against the 2L-LC model.

(8)

P(ynt ∣ (�(s,2), �(s,2)))

=
1

2J−1

2∑
m1=1

2∑
m2=1

⋯

2∑
mJ−1=1

P
(
ynt ∣

(
�1,(s,2),m1

, �2,(s,2),m2
,⋯ , �J−1,(s,2),mJ−1

)
, �s

)
,

(9)P(yn) =

S∑
s=1

�s

Q∑
q=1

�q

(
T∏
t=1

(
P
(
ynt ∣ �(s,q), �(s,q)

)))
.
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Structural equations for latent variable

We define a latent variable �n to describe the underlying construct of variety-seeking in the 
structural equation. It is explained by selected socio-demographic characteristics in the struc-
tural equations as:

where �n follows a standard Normal distribution across respondents. Zn denotes the vec-
tor of selected covariates, with the vector � measuring its impact on the latent variable for 
respondent n.

Latent variables in class allocation functions

To account for the impact of latent variety-seeking in the two-layer latent class model, we 
rewrite the class allocation probabilities specified in Eq. (2) and in Eq. (4) as:

and

such that the class allocation probabilities �n,s and �n,q vary across respondents. Parameters 
�NS and �AT measure whether and to what extent the novelty-seeking and alternation aspects 
influence class membership probabilities, respectively. Providing that a higher value of the 
latent variable �n is associated with a stronger variety-seeking tendency, we would expect 
to see significant negative �NS and �AT . This implies that variety-seekers have higher prob-
abilities of falling into the class with a stronger inclination to seek novelty (i.e. s = 2 ), and 
variety-seekers are more likely to belong to the class with preference heterogeneity over 

(10)�n = ��Zn + �n,

(11)
�n,1 =

e�1+�NS�n

e�1+�NS�n + 1

�n,2 = 1 − �n,1

,

(12)
�n,1 =

e�1+�AT�n

e�1+�AT�n + 1

�n,2 = 1 − �n,1

,

Fig. 5  Modelling framework of the 2L-LV-LC model
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tasks (i.e. q = 2 ). Of course, the same result also applies if both taus are positive, given that 
a higher latent variable is associated with a lower variety-seeking tendency.

Consequently, the conditional likelihood for the choice model component given the value 
of latent variety-seeking for respondent n can be written as:

where P
(
ynt ∣ �(s,1), �(s,1)

)
 and P

(
ynt ∣ �(s,2), �(s,2)

)
 follow the specifications in Eqs. (6) and 

(8), respectively.

Latent variables in measurement equations

In the meantime, the latent variable of variety-seeking is used in the measurement model com-
ponents to explain four selected observable indicators.

Drawing on the concept of the Gini coefficient, we first calculate an inequality index In,GINI 
as a measure of variety in mode choice in real-world travel experience by:

where gnk stands for a “score of exposure” towards mode k for respondent n which takes a 
value of 2, 1, and 0 for the response of “used mode k within the last month”, “used mode 
k over one month ago” and “never used before” respectively. K = 8 as this exposure infor-
mation is available for 8 modes, encompassing personal/household vehicle, rental vehicle, 
bus, light rail/metro/subway, commuter rail, taxicab, ride-sourcing service, and car-sharing 
service. Similar to the interpretation of the classical Gini coefficient, a higher value of the 
indicator In,GINI is linked with greater inequality in exposure among different modes, mean-
ing that the respondent has less diversity in mode choices and presumably only relies on a 
small set of modes.

In,GINI is treated as a continuous dependent variable in a simple linear regression function 
(Ben-Akiva et al. 2002). Specifically, we centre it on 0 and then use a Normal density so that 
the mean of the Normal distribution does not need to be estimated (Hess and Stathopoulos 
2013), such that:

with IGINI being the mean of In,GINI across respondents. Parameter �GINI measures the role 
of latent variety-seeking in explaining the responses towards the “Gini” indicator. The vari-
ance is estimated by �IGINI , with �IGINI distributed a standard Normal. Thus, the likelihood of 
observing In,GINI is given by:

We also count the number of ride-sourcing companies (i.e. TNC, including Uber/Lyft/Oth-
ers) used in the past as another indicator, which is denoted as In,TNC and can take any inte-
ger from 0 to 3. It suggests “no experience with ride-sourcing services”, “one company”, 

(13)P(yn ∣ �n) =

S∑
s=1

(
�n,s ∣ �n

) Q∑
q=1

(
�n,q ∣ �n

)( T∏
t=1

(
P
(
ynt ∣ �(s,q), �(s,q)

)))
,

(14)In,GINI =

(
K∑
k=1

K∑
r=1

|gnk − gnr|
)/(

2

K∑
k=1

K∑
r=1

gnr

)

(15)In,GINI − IGINI = �GINI�n + �IGINI�IGINI ,

(16)P(In,GINI ∣ �n) =
1

�IGINI

√
2�

⎛⎜⎜⎝
e
−
(In,GINI−IGINI−�GINI�n)

2

2�2
IGINI

⎞⎟⎟⎠
.
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“two companies” and “more than two companies” if In,TNC takes a value of 0, 1, 2 and 3, 
respectively.9 The remaining two indicators are the responses to the two attitudinal state-
ments described in section "Attitudinal statements". As shown in Table 6, higher agree-
ment toward these two statements is associated with a wider choice of alternatives in the 
SC survey and a higher frequency of choosing the new UberAIR alternative. We denote 
these two indicators as In,ATTI8 and In,ATTI10 , accordingly.

We deal with In,TNC , In,ATTI8 and In,ATTI10 in a different way by accounting for the ordered 
characteristics of them, as omitting this nature would result in less behavioural explanation 
power (Daly et al. 2012; Dekker et al. 2016). Following Daly et al. (2012), we specify an 
ordered logit model for each ordinal indicator. We denote Lc as the number of levels that 
indicator c can take, and use �c to measure the impact of latent variety-seeking �n on the 
value of In,c . Thus, the probability of observing indicator In,c taking the value of level l 
( l ∈ (1,⋯ , Lc) ) for respondent n is written as:

where �c,l is the threshold parameter for indicator c and level l. For normalisation purpose, 
we set �c,0 = −∞ and �c,Lc

= +∞ , and each indicator only needs Lc − 1 thresholds to be 
estimated. As such, the likelihood of observing the responses towards the four indicators 
by respondent n given the value of �n is written as:

Log‑likelihood function

Combining Eqs. (13) and (18), the log-likelihood function of observing all the stated 
choices and the indicators across all the respondents can be obtained by taking the integral 
over all possible values of the random latent variable of �n , such that:

Since no closed-form expression can be obtained for the resulting LL function due to the 
integral over the random latent variable, we use simulated log-likelihood to approximate 
the true LL.

(17)P(In,c = l ∣ �n) =
e�c,l−�c�n

1 + e�c,l−�c�n
−

e�c,l−1−�c�n

1 + e�c,l−1−�c�n
,

(18)P(In ∣ �n) = P(In,GINI ∣ �n)P(In,TNC ∣ �n)P(In,ATTI8 ∣ �n)P(In,ATTI10 ∣ �n)

(19)

LL(y, I)

=

N∑
n=1

ln∫
�n

(
S∑

s=1

(
�n,s ∣ �n

) Q∑
q=1

(
�n,q ∣ �n

) T∏
t=1

(
P
(
ynt ∣ �(s,q), �(s,q)

)))
P
(
In ∣ �n

)

f (�n,�n ∣ �n)d�n.

9 This indicator is created according to the 15 binary responses towards 15 different types of ride-sourcing 
services provided by Uber, Lyft and other companies, including both basic economic services and expen-
sive premium services. If a respondent has not used any of the 15 types or claimed to “I don’t know” about 
these ride-sourcing services, we assume they have no experience with ride-sourcing services.
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Estimation and results

Maximum simulated likelihood estimation (MLE) was adopted for each model. All the 
models in this paper were estimated in R using the package Apollo (Hess and Palma 2019). 
The estimation results are summarised in Table 7. Moving from left to right, the specifica-
tion complexity increases and each new model uses the estimates of the previous model as 
starting values in estimation.

In each model, UberX was chosen as the base alternative with the corresponding ASC 
parameters (including �uberx,1 , �uberx,2 , and Δuberx ) fixed to 0 and not shown in Table 7. This 
is due to that UberX was shown to each respondent in each choice task, and that UberX has 
the lowest variance in the unidentified MMNL model that estimates the variance of all the 
alternatives (Walker et al. 2007). Before discussing the estimation results in detail, it needs 
to be noted that as part of the confidentiality agreement, the estimates from which the mar-
ket shares could be inferred are not shown in Table 7 (i.e. ASCs). Consequently, this sec-
tion does not discuss the differences in individual preferences across alternatives. Instead, 
�i,1 for the first class in each model are hidden and marked with “ ⋆ ”. Meanwhile, we show 
how much the ASCs shift in the second class against the first class for the same alternative. 
The t-ratio statistics indicating the significance of the difference in ASCs between classes 
are also presented. Nevertheless, a positive/negative difference in ASC for the same alter-
native does not necessarily imply a higher/lower market share for that alternative in Class 
2 than Class 1.

We further conducted post-estimation analysis for each model to better illustrate the dif-
ferences across models and (sub)classes within each latent class model. The results are 
presented in Table 8. To state more precisely:

• Firstly, we calculated the value of travel time (VTT, $/min) for each time component. 
The VTT estimates were computed both over the sample and within each class. As 
to model 2 and model 3, only ASCs vary at the task level, whereas all the sensitivity 
parameters are kept constant across choice tasks given class membership. Thus, VTT 
results are the same for an “alternation-seekers” subclass and an “alternation-avoider” 
subclass if they are grouped under the same class s at the inter-respondent layer. It 
needs to be noted that as a non-linear specification of travel cost is adopted in each 
model, VTT depends on the travel cost. Herein, we used the price of the chosen alter-
native in calculating VTT estimates.

• Secondly, we computed the market share for each alternative by averaging the choice 
probabilities for each alternative across all the tasks using the model estimates. These 
market shares were calculated within each class for the basic latent class model (i.e. 
model 1). Regarding model 2 and model 3, we can obtain four different sets of within-
class choice probabilities, each for one subclass. Additionally, for the “alternation-
seekers” subclass, the choice probability for each alternative at a given choice task is 
obtained by averaging across all the 2J−1 = 16 combinations. Again, we cannot present 
detailed market shares across alternatives due to confidentiality restrictions. Instead, we 
illustrate the order of market shares for the same alternative across (sub)classes. Spe-
cifically, we hide the market shares for the first (sub)class in each latent class model 
(i.e. Class 1 in model 1, and subclass (1,1) in model 2 and model 3), marked with “ ⋆ ”. 
Moreover, we indicate how the market share in each of the remaining (sub)classes 
changes relative to the first (sub)class for a given alternative. The minus symbol “−” 
and the plus symbol “ + ” suggest that the market share in the corresponding (sub)class 
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is lower and higher than that in the starred first (sub)class, respectively. When there 
are more than two classes, and using the example where the value is highest in the first 
class, a single dash “−” indicates the second highest value for that ASC, a double-dash 
“ −− ” the third highest, etc.

Model 1: Basic LC model

Model 1 is a basic latent class model, where preference heterogeneity is accommodated 
solely across respondents.

Sample‑level results

Egress time has the highest VTT over the sample in model 1 (and is relatively consistent 
in all models), indicating that the convenience of moving from landing pads to final des-
tinations plays a crucial role in determining the attractiveness of UberAIR. This implies 
the significance of integrating and coordinating the existing ground-based services with 
UberAIR.

Class‑specific results

As shown in Table 7, the constant �1 (est.=0.280, rob.t=3.78) in the class allocation func-
tion implies a probability of 56.95% for respondents to fall into Class 1 and a probability 
of 43.05% to be in Class 2. Comparing the model estimates of the two classes, we can find 
that Class 2 is associated with significantly lower sensitivities towards all the attributes, 
including travel cost.

If further looking at the VTT results in Table 8, we can see that Class 2 shows much 
lower VTT for all the time components, except for travel time which is almost similar 
between classes. Generally, Class 1 exhibits higher VTT than Class 2 in model 1.

The distinction in preferences towards different alternatives across classes can be mani-
fested by the within-class choice probability of each alternative. For example, as shown 
in Table 8, Class 2 shows a higher probability of selecting the UberPOOL and UberAIR 
options than Class 1. In contrast, car, transit and UberX all have lower proportions in Class 
2 than Class 1. Since UberPOOL was unavailable in reality in the Dallas area during the 
data collection period, the UberPOOL alternative can also be seen as a new mode for 
respondents recruited there. In this sense, we can infer from model 1 that Class 2 respond-
ents are more likely to try new service(s) than Class 1 respondents.

Model 2: 2L‑LC model

Model 2 accounts for intra-respondent preference heterogeneity in addition to inter-
respondent preference heterogeneity, resulting in four subclasses in total. The findings con-
cerning the VTT and choice probabilities over the sample in model 2 do not present many 
differences against model 1. However, model 2 can give more insight into preference pat-
terns and market segmentation (see section "Model 2: 2L-LC model").
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Model estimates

We first look at the sensitivity parameters at the inter layer in Table 7. Similarly to model 
1, marginal utilities for most of the attributes in Class 2 are significantly lower than the 
corresponding parameters in Class 1. The only exception is travel time, of which the dif-
ference is insignificant between classes (diff. = −0.014, rob.t = −1.51, by delta method 
calculation).

Turning to the model estimates at the intra layer, the significant estimates of the shift 
terms Δ for all the ASCs suggest that the 2L-LC models can successfully detect the vari-
ation and instability of preference over choice tasks for a given respondent. For example, 
compared to the base alternative UberX, people’s preferences towards transit and UberAIR 
are much more unstable across choice tasks, whereas the preference disturbance for car and 
UberPOOL is relatively milder.

The two class allocation models are both solely explained by a constant. Parameter �1 
(est.=0.452, rob.t=6.54) results in a generic probability of 61.11% to fall into Class 1 (i.e. 
novelty-avoiders) and a generic probability of 38.89% to fall into Class 2 (i.e. novelty-seek-
ers). Parameter �1 (est.=0.738, rob.t=11.49) leads to a generic probability of 67.66% in 
belonging to a “alternation-avoiders” subclass and 32.34% in being assigned to a “alterna-
tion-seekers” subclass.

Value‑of‑time results

Regarding the VTT patterns shown in Table 8, Class 1 presents a higher value of access 
time and flight time but a lower value for egress time from landing pads and time spent in 
vehicles on land, compared to Class 2. It appears that we cannot, like in model 1, detect 
distinctive VTT patterns between classes in model 2 (and also in model 3), which accounts 
for the instability of preferences towards alternatives across choice tasks.

Within‑class choice probabilities

Nevertheless, the within-class choice probabilities for different alternatives can provide 
sufficient indications with respect to the characteristics of each class. Similar to the results 
of model 1, we can see that Class 2 respondents (including both subclass (2, 1) and sub-
class (2, 2)) present higher probabilities of adopting the new UberAIR alternative as well 
as the UberPOOL alternative. Meanwhile, Class 1 respondents (including both subclass 
(1, 1) and subclass (1, 2)) are much more prone to stick to the other existing ground-based 
modes, particularly personal/household vehicle and transit. These results imply that Class 2 
respondents are more likely to try the new service(s) than Class 1 respondents.

Furthermore, to illustrate the differences between “alternation-avoiders” and “alterna-
tion-seekers” subclasses under a same set of sensitivities, we calculate the mean of chosen 
probability for each subclass which is averaged over all the observations. It is found that 
the “alternation-avoiders” subclasses (1, 1) and (2, 1) have higher average chosen proba-
bilities (i.e. 66.04% and 55.88% ) than “alternation-seekers” subclasses (1, 2) and (2, 2) (i.e. 
45.85% and 30.30% ), respectively. This suggests that respondents who fall into the “alter-
nation-seekers” class are associated with less deterministic choices, which is in accordance 
with our expectation.
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Classes’ profiles

Combining the discussions above, we can obtain the profiles as well as the allocation prob-
abilities for all the four different subclasses of respondents as:

• Subclass (1, 1): 41.35%

– Low tendency to try new modes including UberAIR (i.e. avoid novelty)
– Stable preference across choice tasks (i.e. avoid alternation)

• Subclass (1, 2): 19.77%

– Low tendency to try new modes including UberAIR (i.e. avoid novelty)
– Unstable preference across choice tasks (i.e. seek alternation)

• Subclass (2, 1): 26.31%

– High tendency to try new modes including UberAIR (i.e. seek novelty)
– Stable preference across choice tasks (i.e. avoid alternation)

• Subclass (2, 2): 12.58%

– High tendency to try new modes including UberAIR (i.e. seek novelty)
– Unstable preference across choice tasks (i.e. seek alternation)

Model 3: 2L‑LV‑LC model

As a final step, we report the results of model 3, which uses latent variety-seeking as an 
additional explanatory variable in explaining class allocation probabilities across the 
respondents. Overall, model 3 presents similar patterns to model 2, in terms of model 
estimates, VTT results and within-class choice probabilities. Herein, we only discuss the 
unique characteristics of model 3, i.e. the impact of latent variety-seeking.

Variety‑seeking in class allocation models

As shown in Table 7, the constants �1 and �1 at the inter-respondent layer are very close to 
those in model 2. The negative and significant �NS (est.= −0.523, rob.t = −9.24) means 
that a higher value of the latent variable � would result in greater propensity to fall into 
Class 2, which features stronger willingness to choose the new UberAIR service. Similarly, 
the negative and significant �AT (est. = −0.325, rob.t = −5.27) implies a decrease in prob-
ability of belonging to “alternation-seekers” subclasses (1, 1) and (2, 1) with an increase 
in the latent variable � . Thus, the probabilities of falling in a given subclass vary across 
respondents in model 3, depending on the value of �.

Variety‑seeking in measurement model component

Now we jointly examine the role of the latent variable � in the class allocation functions 
and the measurement equations. The threshold parameter �c,l presents a monotonically 
increasing trend as the level l goes up for each ordinal indicator c. From the positive and 
significant parameters �ATTI8 , �ATTI10 and �TNC , we can see that an increase in the latent 
variable � would lead to a stronger agreement towards the attitudinal statements ATTI8 and 
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ATTI10, as well as a larger number of ride-sourcing companies experienced in the past. 
In terms of the “Gini” coefficient, the negative and significant �GINI implies that a stronger 
� is associated with a lower Gini coefficient, suggesting less inequality and less unique-
ness in mode choice experience. These results infer that the latent variable � can indeed 
be interpreted as “variety-seeking”, such that a larger value in � corresponds to stronger 
variety-seeking.

Combining the interpretation of the latent variable � and the class allocation models, 
we can confirm our hypothesis. The results suggest that variety-seeking plays a role in both 
inter-respondent and intra-respondent preference heterogeneity. Specifically, compared to 
people with lower variety-seeking tendencies, people perceiving higher variety-seeking 
tendencies are more likely to fall into the class with higher probabilities of switching to the 
novel UberAIR and UberPOOL options and lower probabilities of choosing the long-exist-
ing car and transit alternatives (i.e. falling into novelty-seekers class). This is in line with 
an earlier study of variety-seeking in the context of intermodality between air and high-
speed rail, where variety seekers were found more likely to select the new intermodal ser-
vice (Song et al. 2018). It also aligns with another study in the context of ride-sourcing ser-
vices, where variety-seekers were found more inclined to use ride-sourcing services (Alemi 
et al. 2018). Additionally, we discovered that people with higher variety-seeking tendencies 
also have higher propensities to belong to the “alternation-seekers” subclasses, where pref-
erences for alternatives are unstable and less deterministic across choice tasks. This implies 
that in the course of completing a SC survey, people with stronger variety-seeking are more 
likely to switch their mode choices among different alternatives continuously.

Consequently, the classification of respondents and profiles of different subclasses dis-
cussed in section "Model 2: 2L-LC model" can be retrieved by model 3. Notably, due to 
the significant role of latent variety-seeking, the probability of falling into each of the four 
subclasses varies across respondents rather than being generic.

Structural equation for variety‑seeking

After regressing the responses towards attitudinal statements related to variety-seeking on 
different socio-demographic and trip characteristics, we adopt age, income, the number of 
owned vehicles, gender and whether experienced delay as explanatory variables in the final 
specification for Eq. 10. All these covariates are centred on 0, so the latent variable has a 
mean of 0. Age, income and the number of owned vehicles are treated as continuous vari-
ables, while the remaining two variables are treated as binary ones. To avoid incomparable 
scales between different covariates, we divide the age and income variables by the original 
mean values.

Parameters � in Table 7 show how these explanatory variables affect the value of latent 
variety-seeking. As expected, the negative �age , �female and �vehicles show that older people, 
female respondents and people with more vehicles are characterised by weaker variety-
seeking tendency. Meanwhile, the positive �income and �delay suggest that people with more 
income and who have experienced delays on the same trip in the past have a stronger vari-
ety-seeking tendency.
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Comparisons of model fit

Moving from model 1 to model 2, we can see that model fit improves as the model speci-
fication becomes more complex, in terms of the log-likelihood, �2 values and the Bayesian 
Information Criterion (BIC). This improvement over models can also be confirmed by the 
likelihood ratio test, of which the p-value is 0 when comparing model 2 against model 1. 
All these reflect the significant benefits obtained from better accommodation of preference 
heterogeneity, both across respondents and within respondents.

It is reasonable to see that both log-likelihood and BIC for the whole model in model 
3 are much worse than in other simpler models, as model 3 simultaneously explains the 
observations of indicators of latent variety-seeking in the measurement model component. 
We acknowledge that Vij and Walker (2016) have demonstrated that incorporating latent 
variables in the choice model cannot result in a better fit than a corresponding reduced 
form model without latent variables. In the present paper, neither explanatory variables nor 
random terms are incorporated in the allocation functions in model 2, meaning that model 
2 does not have the same flexibility as model 3 does and should not be regarded as the 
reduced form of model 3. Thus, it is reasonable to achieve a slight improvement in fit for 
the choice component in model 3.

Conclusions

It is crucial to improve the accommodation of unobserved preference heterogeneity in dis-
crete choice modelling analysis. Growing effort in recent years has been devoted to uncov-
ering intra-respondent preference heterogeneity on top of inter-respondent preference het-
erogeneity in stated choice data. These models usually are based on mixed multinomial 
logit (MMNL) with an additional layer of randomness that varies across choice tasks to 
account for intra-respondent preference heterogeneity. This practice is computationally 
demanding because of the additional layer of randomness, and the behavioural explana-
tions of this inter- and intra-respondent preference heterogeneity still require further explo-
ration. Therefore our paper accommodates intra-respondent preference heterogeneity in 
a less computationally demanding way and provides additional behavioural insights. The 
SP data we got from Uber on their upcoming new mobility “UberAir” provides us with a 
proper context to look into this issue. In the meantime, we take this chance to explore the 
impact of both aspects of variety-seeking, i.e. novelty-seeking and alternation-seeking, as 
neither has been sufficiently discussed in existing transport studies.

This paper proposed a two-layer latent class (latent variable) modelling approach 
to accommodate the unobserved preference heterogeneity both across respondents and 
across choice tasks. At the inter-respondent layer, respondents were first probabilisti-
cally segmented into two classes, one exhibiting a higher propensity to adopt the new 
UberAIR service than the other. Then, given class membership, respondents were 
further probabilistically segmented into two subclasses - one with stable preferences 
towards alternatives and another with preference variations across choice tasks. Intra-
respondent preference heterogeneity was only accommodated for the “alternation-seek-
ers” subclasses through an additional layer of discrete mixture, with variations in ASCs 
across choice tasks. This model essentially replaced continuous distributions used in the 
MMNL models (Hess and Rose 2009) with discrete distributions at both layers, which 
can reduce the computational burden.
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We also contributed to the behavioural explanation of unobserved preference het-
erogeneity across respondents as well as the application of variety-seeking theory. We 
treated variety-seeking as an underlying personality construct and introduced it into the 
model as a latent variable. Specifically, each step of segmentation was a function of 
the latent variable of variety-seeking. On the one hand, we associated the novelty-seek-
ing aspect of variety-seeking with inter-respondent preference heterogeneity, assuming 
that stronger variety-seeking would lead to a stronger inclination to try the new alterna-
tive. On the other hand, we related the alternation aspect of variety-seeking with intra-
respondent preference heterogeneity, presuming that stronger variety-seeking would 
contribute to a higher propensity to exhibit unstable preference towards different alter-
natives across choice tasks.

This paper additionally contributed to the urban air mobility literature with empirical 
evidence on mode choice behaviour when the new air taxi service enters the market. We 
believe this work is relevant to the context of air taxi and can be applied in situations 
where we need to understand the adoption and preferences towards other new mobility 
services when they enter the market. Moreover, the proposed new approaches can be 
extended to a non-transport setting to account for consumers’ uptake of new products at 
the initial stage of the diffusion process.

The results confirmed the two hypotheses and answered the three research questions 
identified in the Introduction in a mode choice experiment involving the upcoming air 
taxi service. A significant impact of variety-seeking was discerned in each class alloca-
tion function, which supports our presumption about the roles that the novelty-seeking 
and alternation aspects of variety-seeking would play on mode choices. We found that 
compared to people with lower variety-seeking tendencies, people with stronger variety-
seeking tendencies are not only more likely to adopt the new UberAIR service, but also 
more likely to exhibit unstable preferences towards alternatives across choice tasks than. 
It is also discovered from the structural equation component that people with higher 
income and those who had experienced delays on the same trip have stronger variety-
seeking tendencies than those with lower income and without delays experience. In the 
meantime, the estimates in the measurement question component showed that those 
variety-seekers scored stronger agreement in attitudinal statements describing their 
interest in adopting new technologies. They were found to be associated with broader 
exposure to ride-sourcing services and other types of ground-based transport modes in 
the past.

Policy insights can be derived from these results. Firstly, this work quantified the impact 
of various factors influencing people’s mode choices between the novel air taxi service 
and other conventional modes of transport. The value-of-time estimates suggested that peo-
ple would be relatively more sensitive to the time spent accessing or egressing from the 
take-off-landing pads than to the time spent on the flight or other ground-based vehicles. 
Hence, enhancing the accessibility to air taxi services is paramount to forging an attrac-
tive air taxi product. Secondly, the latent class framework could help policymakers identify 
which group(s) of people are most likely to become early adopters of a newly introduced or 
to-be-introduced mode. For example, our results indicated that younger and high-income 
people are prone to exhibit stronger variety-seeking tendencies and hence show a stronger 
willingness to adopt the new air taxi mode. Thirdly, the coexistence of inter-respondent and 
intra-respondent preference heterogeneity unveiled the complex impact of unobserved pref-
erence heterogeneity on choice decisions. Recognising that preference homogeneity across 
choices might not hold within individual respondents would stimulate transport practition-
ers to maintain a consistently high standard of travel services.
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We acknowledge the shortcomings of the proposed two-layer latent class framework. 
This mainly relates to our estimation method, i.e. maximum simulated likelihood estima-
tion. Thus a model built within this framework might struggle with local optimum issue 
and the estimation results could be sensitive to the starting values. We have tried to mini-
mise the impact of these issues by using the estimates of a more constrained model as the 
starting values of a more general model with a more complex specification. Nevertheless, it 
would be worth testing the model with other alternative estimation methods, e.g. EM algo-
rithms (Train 2008). We also acknowledge that the implications related to variety-seeking 
in our paper are obtained from repeated stated choice data rather than longitudinal revealed 
preference data. Hence novelty-seeking and alternation aspects’ impacts might be not sig-
nificant in real-life situations. However, we cannot test this assumption with our data. We 
will leave the work of validating the role of variety-seeking in real life to future research, 
provided suitable longitudinal RP data is available.

Future research potentials include replicating this work in other choice contexts and 
testing the performance of this new two-layer latent class model with (or without) latent 
variables in explaining inter- and intra-respondent preference heterogeneity. In addition, 
a two-layer latent class model can have more than two classes at each level, so it could be 
tailored to meet the requirement of a specific study. Finally, it is worth exploring whether 
novelty-seeking is a purely short-term effect or also works in the longer run as a counter-
part to habits, e.g. examine the adoption and diffusion of new technology (El Zarwi et al. 
2017).
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