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Abstract
We present deep learning phase-field models for brittle fracture. A variety of
physics-informed neural networks (PINNs) techniques, for example, original
PINNs, variational PINNs (VPINNs), and variational energy PINNs (VE-PINNs)
are utilized to solve brittle phase-field problems. The performance of the differ-
ent versions is investigated in detail. Also, different ways of imposing boundary
conditions are examined and are compared with a self-adaptive PINNs approach
in terms of computational cost. Furthermore, the data-driven discovery of the
phase-field length scale is examined. Finally, several numerical experiments are
conducted to assess the accuracy and the limitations of the discussed deep learn-
ing schemes for crack propagation in two dimensions. We show that results can
be highly sensitive to parameter choices within the neural network.
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1 INTRODUCTION

Numerical approaches to the modeling of fracture initiation and propagation can be divided into two main categories,
namely, discrete crack models and smeared crack models. In discrete crack models, the discontinuities are introduced
into the displacement field using interface elements which are inserted in the mesh a priori,1-4 by means of remeshing,5-7

or by enriching the basis by inserting discontinuities.8,9 These methods have been investigated widely and successful
applications have been reported. However, robust extensions to complex three-dimensional problems are nontrivial.

Smeared approaches are an alternative, in which the sharp discontinuity is distributed over a small, but finite width.10

Early smeared approaches appeared to be deficient in the sense that they caused a loss of well-posedness of the bound-
ary value problem at, or close to structural failure. The concomitant grid sensitivity then prevents physically meaningful
answers. A host of solutions have been proposed as a remedy, but gradient-enhanced damage models appear to be
particularly effective and powerful to model fracture in quasi-brittle and ductile materials.11

More recently, the variational approach has become popular as an elegant and mathematically well-founded approach
to brittle fracture.12 In it, the solution to the fracture problem is found as the minimizer of a global energy functional.
A phase-field implementation of this model has been proposed by Bourdin et al.13 and has been cast in a damage-like,
engineering format by Miehe et al.14,15 Indeed, the phase-field approach to brittle fracture can be classified as a smeared
approach, and bears much similarity to gradient-enhanced damage models.16

Although mathematical and practical data-assimilation endeavors have been growing vastly, the spatiotemporal het-
erogeneity of available data, along with the lack of universally reliable models, underscores the need for a transformative
approach.17 Machine learning (ML) can be used to explore massive design spaces, identify multi-dimensional correlations
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and manage ill-posed problems.17 Although solving ill-posed inverse problems with conventional solvers can be chal-
lenging, PINNs can be easily employed to solve these problems accurately and efficiently. Deep learning approaches can
provide tools for naturally extracting features from massive amounts of multi-fidelity observational data that are currently
available and characterized by unprecedented spatial and temporal coverage.18

Deep learning allows overparameterized neural networks with multiple layers to successively extract higher-level
features from the raw input. These networks are well known to deal with supervised learning tasks, which require a
large amount of labeled training data. To avoid data collection, which is normally expensive in engineering applications,
it is critical to use the method with less data dependency and train deep learning models using primarily constraints
(physical laws) rather than data. Physics-informed neural networks (PINNs)17,19 can be a potential solution. PINNs are
capable of leveraging the underlying laws of physics to extract patterns from high-dimensional data generated from exper-
iments. Nevertheless, Krishnapriyan et al.20 have reported possible issues with PINNs and show that PINNs face some
challenges before they can compete with traditional numerical methods in terms of accuracy and computational cost.
Publications on physics-informed ML have increased substantially across different disciplines, for example, conservative
physics-informed neural networks (cPINNs),21 fractional physics-informed neural networks (fPINNs),22 hp variational
physics-informed neural networks (hp-VPINNs),23,24 and extended physics-informed neural networks (XPINNs).25

Recently, variational energy-based PINNs (VE-PINNs) methods have been used for solving phase-field problems.26-29

In this article, we formulate a brittle phase-field model based on PINNs, VPINNs, and VE-PINNs and demonstrate the
performance of each PINNs version. Also, we investigate different approaches to impose boundary conditions (BC) such
as weakly and strongly applied BC. Additionally, self-adaptive PINNs (SA-PINNs)30 are studied and compared to PINNs
with soft and hard BC impositions. Finally, we investigate the speed of crack propagation for two benchmark problems
of fracture.

The remainder of this article is composed as follows. In Section 2, we succinctly summarize the phase-field model for
brittle fracture. Formulations of PINNs, VPINNs, and VE-PINNs for brittle phase-field models are explained in Section 3.
In Section 4, we discuss and analyze the different PINNs versions for a 1D problem and demonstrate the performance of
SA-PINNs against PINNs approaches, and present a data-driven discovery of phase-field length scale. In Section 5, based
upon conclusions reached from our extensive 1D studies, a more focused set of 2D numerical experiments are conducted
to study the crack propagation path and the propagation velocity.

2 PHASE-FIELD MODEL FOR BRITTLE FRACTURE

We consider a volumeΩwith an internal discontinuity boundary Γ. The position of a material point is determined by the
coordinate x in a Cartesian reference frame. Displacement and traction components are prescribed along disjoint parts
of the external boundary of the domain, 𝜕Ωgi and 𝜕Ωhi , respectively.

2.1 Variational form of fracture

As the starting point for the derivation of the phase-field approximation to brittle fracture, we consider the total potential
energy:12

Ψpot = ∫Ω 𝜓e(𝜺)dV + ∫Γ cdA. (1)

We assume small displacement gradients, and define the infinitesimal strain tensor, 𝜺, with components

𝜀ij = u(i,j) =
1
2

(
𝜕ui

𝜕xj
+
𝜕uj

𝜕xi

)
(2)

as the deformation measure. The displacement components are denoted by ui. We assume isotropic linear elasticity, such
that the elastic energy density is given by

𝜓e =
1
2
𝜆𝜀ii𝜀jj + 𝜇𝜀ij𝜀ij (3)

with 𝜆 and 𝜇 the Lamé constants, and using the Einstein convention. In Equation (1), the fracture energy is denoted by
c. An irreversibility condition is included which enforces that cracks can only nucleate and propagate, and not heal.13
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622 MOTLAGH et al.

2.2 Phase-field formulation

The variational approach to brittle fracture12 determines the nucleation, propagation, and interaction of cracks by finding
a global minimizer of the total potential energy. Solving this variational problem numerically for discrete cracks can be
difficult because the crack path, Γ, evolves with time. In order to overcome this difficulty, a volumetric approximation to
the surface integral has been proposed:13

∫Γ cdA ≈ ∫Ω c𝛾cdV . (4)

The phase-field approximation introduces a crack density, 𝛾c, which depends on a length-scale parameter 𝓁0 and the
continuous scalar-valued phase-field, c ∈ [0, 1], to represent the crack, with c = 0 away from the crack and c = 1 at the
crack:13-15

𝛾c =
1

4𝓁0

[
c2 + 4𝓁2

0|∇c|2]
. (5)

Minimizing the above functional under the constraints c(0) = 1 and c(x) → 0 as |x| →∞ leads to the Euler equation:

c − 4𝓁2
0Δc = 0. (6)

The solution to this equation, c, is the solution to the minimization problem:

argmin(I(c)), I(c) = ∫ 𝛾cdV . (7)

In 1D, the solution to (6) reads

c(x) = e−|x|∕2𝓁0 . (8)

The definition (5) is well-posed variationally for all c ∈ H1(Ω). Note that H1 is the Sobolev space of functions with
square-integrable derivatives.

To model the loss of material stiffness in the failure zone, we follow Miehe et al.14,15 and define the elastic energy as

𝜓e(𝜺) =
[
(1 − c)2 + 𝜅

]
𝜓
+
e (𝜺) + 𝜓−e (𝜺), (9)

where 𝜅 is a model parameter which in our simulations we have set 𝜅 = 0. 𝜓+e and 𝜓
−
e are the strain energies com-

puted from the positive and negative components of the strain tensor, respectively, which can be defined via a spectral
decomposition of the strain tensor,

𝜺 = 𝜺+ + 𝜺−, (10)

where the former describes the tensile mode and the latter the compressive mode contained in 𝜺. The split is defined
based on the spectral decomposition

𝜺
+ =

d∑
i=1

⟨𝜀i⟩+ni ⊗ ni, (11)

𝜺
− =

d∑
i=1

⟨𝜀i⟩−ni ⊗ ni, (12)

where 𝜀i (with i = 1, … , d) are the principal strains and ni are the corresponding principal directions of the strain tensor
and

⟨x⟩+ =
{

0, x < 0,
x, x ≥ 0,

(13)

⟨x⟩− =
{

x, x < 0,
0, x ≥ 0.

(14)
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MOTLAGH et al. 623

Now, 𝜓+e and 𝜓−e read

𝜓
+
e (𝜺) =

1
2
𝜆⟨tr𝜺⟩2 + 𝜇tr[(𝜺+)2] (15)

and

𝜓
−
e (𝜺) =

1
2
𝜆⟨tr𝜺⟩2 + 𝜇tr[(𝜺−)2]. (16)

The Lagrange energy functional using (1), (4), (5), and (9) becomes:

(u, c) = ∫Ω
{
(1 − c)2𝜓+e (∇su) + 𝜓−e (∇su)

}
dV + ∫Ω

c

4𝓁0

[
c2 + 4𝓁2

0|∇c|2] dV , (17)

where the symmetric gradient operator is defined, ∇s ∶ u → 𝜺, as a mapping from the displacement field to the strain
field. In order to obtain the strong form of the governing equations, the Euler–Lagrange equations are utilized

(S)
⎧⎪⎨⎪⎩

𝜕𝜎ij

𝜕xj
= 0, x ∈ Ω,(

4𝓁0𝜓
+
e

c
+ 1

)
c − 4𝓁2

0
𝜕

2c
𝜕x2

i
= 4𝓁0𝜓

+
e

c
, x ∈ Ω,

(18)

where 𝜎ij is the Cauchy stress tensor and is defined as

𝜎ij = (1 − c)2
𝜕𝜓

+
e

𝜕𝜀ij
+
𝜕𝜓

−
e

𝜕𝜀ij
. (19)

There is nothing in the formulation so far to prevent cracks from healing if loads are removed. For a detailed discussion on
how irreversibility can be enforced, see Miehe et al.14,15 The idea is to replace the strain energy in the phase-field equation,
for example in (18)2, by a strain-energy history,, which acts as a threshold and which satisfies the Karush–Kuhn–Tucker
loading/unloading conditions:

𝜓
+
e − ≤ 0, ̇ ≥ 0, ̇(𝜓+e −) = 0. (20)

Now, by substituting for 𝜓+e in (18)2 the final version of the strong form equations read

(S)
⎧⎪⎨⎪⎩

𝜕𝜎ij

𝜕xj
= 0, x ∈ Ω,(

4𝓁0
c

+ 1
)

c − 4𝓁2
0
𝜕

2c
𝜕x2

i
= 4𝓁0

c
, x ∈ Ω.

(21)

The strong form of equations is complemented by the following boundary conditions

(S ∶ BC)
⎧⎪⎨⎪⎩

u = gi, x ∈ 𝜕Ωgi ,

𝜎ijnj = hi, x ∈ 𝜕Ωhi ,

𝜕c
𝜕xi

ni = 0, x ∈ 𝜕Ω,
(22)

with gi(x) and hi(x) being prescribed on 𝜕Ωgi and 𝜕Ωhi , respectively and with n(x) being the outward-pointing normal
vector of the boundary. The initial crack is modeled as an induced crack in the phase-field.31,32 An initial strain-history
field,0, is utilized to defined an initial crack in the phase-field. The initial strain-history field can be defined as

0 = 
⎧⎪⎨⎪⎩

c
4𝓁0

(
1 − d(x,l)

𝓁0

)
, d(x, l) ≤ 𝓁0,

0, d(x, l) > 𝓁0,
(23)
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624 MOTLAGH et al.

where d(x, l) is the closest distance from x to the line l that represents the discrete crack. Also,  is a constant and we use
 = 1000 in our work following Borden et al.31

For the variational form of momentum and phase-field equations, we construct the trial solution, u, for the
displacements and c, for the phase-field as

u =
{

u ∈
(

H1(Ω)
)d|ui = gi on 𝜕Ωgi

}
, (24)

c =
{

c ∈ H1(Ω)
}
. (25)

Likewise, the weighting (test) function spaces are defined as

u =
{

v ∈
(

H1(Ω)
)d|vi = 0 on 𝜕Ωgi

}
, (26)

c =
{

q ∈ H1(Ω)
}
. (27)

The weak formulation can be obtained by multiplying equations (21) by the appropriate weighting functions and
performing integration by parts, as follows:

(W)

⎧⎪⎪⎨⎪⎪⎩

Given g and h find u ∈ u and c ∈ c, such that for all
v ∈ u and for all q ∈ c,

(𝝈,∇v)Ω = (h, v)𝜕Ωh
,((

4𝓁0
c

+ 1
)

c, q
)
Ω
+

(
4𝓁2

0∇c,∇q
)
Ω =

(
4𝓁0
c

)
Ω
,

(28)

where (., .)Ω is the L2 inner product on Ω.

3 PHYSICS INFORMED NEURAL NETWORK FOR PHASE-FIELD
MODELS

In this section, we present three versions of the PINNs formulation for the phase-field model for the brittle frac-
ture problem, which are: standard PINNs,19 variational PINNs (VPINNs),23,24 and variational energy based PINNs
(VE-PINNs).26,28 Here, we consider a monolithic scheme to solve the phase-field problem.

We consider the strong form of equations (21) and assume that  (x;W,b) is a neural network (NN) approximation of
the displacements, u, and the phase-field, c in (18) and (22). Particularly, a NN is comprised of 𝓁 hidden layers withi
neurons in each layer and activation functions 𝜎:

NN(x;W,b) = ◦T(𝓁)◦T(𝓁−1)◦ ⋅ ⋅ ⋅ ◦T(1)(x), (29)

where  ∶ R𝓁×d → Rd is the linear mapping in the output and d is the input dimension; Ti(⋅) = 𝜎
(

Wi × ⋅ + bi) is the
nonlinear mapping in each hidden layer i = 1, 2, 3, … ,𝓁. Note that Wi, bi are the weights and biases. The strong-form
residuals rk(u) and r(c), for the momentum and phase-field equations, respectively, and the boundary residual rb

u can be
defined as

rk(û) =
𝜕𝜎kj

𝜕xj
, k = 1, … , d, (30)

r(ĉ) =
(

4𝓁
c

+ 1
)

ĉ − 4𝓁2 𝜕
2ĉ
𝜕x2

i

− 4𝓁
c

, (31)

rk
b(û) = ûk − gk, (32)

where û and ĉ are neural network approximations of the displacements and the phase-field, respectively. Now, in order
to construct the variational forms of the problem, the weighted integral of the residuals can be defined by mapping them
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MOTLAGH et al. 625

onto properly chosen spaces of test (weighting) functions and ̃ ; and then set them to zero. We choose the test functions
vk

j ∈  and qj ∈ ̃ such that

k
j (û) = ∫Ω rk(û)vk

j dV = 0, (33)

k
b,j(û) = ∫

𝜕Ω
rk

b(û)v
k
j dA = 0, (34)

̃j(ĉ) = ∫Ω r(ĉ)qjdV = 0. (35)

The following minimization problem can be formulated in place of solving the nonlinear systems resulting from the
above equations:

min
W,b
 (ĉ, q, û, v), (36)

 (ĉ, q, û, v) =
Nrc∑
j=1

(̃j(ĉ)
)2 +

d∑
k=1

Nru∑
j=1

(k
j (û)

)2
+ 𝜏b

d∑
k=1

Nbu∑
j=1

(k
b,j(û)

)2
. (37)

In (37), the first and second terms represent the weighted integral of the phase-field and momentum residuals, respec-
tively and the last term indicates the weighted integral of the displacement boundary condition. Nrc and Nru are the
number of test functions corresponding to phase-field and momentum residuals, respectively. Nbu is the number of collo-
cation points corresponding the displacement essential boundary conditions. Furthermore, 𝜏b is a penalty parameter that
represents the weight coefficient in the loss function and may be user-specified or tuned manually or automatically,23 for
example, based on the numerical experiment in each problem. Its optimal bound, however, is still an open problem in
the literature.33 It is worthwhile to mention that the weak BC enforcement methods, as mentioned above, have several
major drawbacks: (1) there is no quantitative guarantee on the accuracy of the BC being imposed and thus the solution
could be unsatisfactory; (2) the optimization performance can depend on the relative importance of each term, but how
to assign a weight for each term can be difficult. Alternatively, we can impose the BC in a strong form, where a particular
solution that solely satisfies the boundary condition is added.34 To do this we can modify the deep neural network state
variables, û. The essential displacement conditions can be imposed by constructing the ũ as,

ũ = g + G(x)NN(x;W,b), (38)

where G(x) = 0 on the Dirchlet boundary. The cost function,  , in (37) for strong BC enforcement reads

 (ĉ, q, ũ, v) =
Nrc∑
j=1

(̃j(ĉ)
)2 +

d∑
k=1

Nru∑
j=1

(k
j (ũ)

)2
. (39)

3.1 PINNs formulation

In this subsection, we derive standard PINNs19 by starting from the variational form, (36) and (37). To this end, we assume
each of the test functions to be a Dirac delta function, vk(x) = 𝛿(x − xr) and q(x) = 𝛿(x − xr̃), so that xr and xr̃ are the
collocation points for momentum and phase-field, respectively. Basically, by means of these test functions we can project
the residuals onto a finite set of collocation points and enforce the equation to be satisfied at these points. The loss function
for the PINNs reads

PINNs =
d∑

k=1

[
1

Nr

Nr∑
i=1

|||rk(xi
r)
|||
2
+ 𝜏b

1
Nb

Nb∑
i=1

|||rk
b(x

i
b)
|||
2
]
+ 1

Nr̃

Nr̃∑
i=1

|||r̃(xi
r̃)
|||
2
+ 𝜏b̃

1
Nb̃

Nb̃∑
i=1

|||r̃b̃(xi
b̃
)|||

2
, (40)

where r̃b̃ =
𝜕c̃
𝜕xi

; and {xi
r}

Nr
i=1, {xi

r̃}
Nr̃
i=1, {xi

b}
Nb
i=1, and {xi

b̃
}Nb̃

i=1 are collocation points in their domains. Note that Nr and Nr̃ are
the number of collocation points for momentum and phase-field, respectively. In addition, Nb and Nb̃ are the number
of collocation points corresponding the displacement essential boundary conditions and phase-field natural boundary
conditions, respectively. The last term in (40) is the Neumann boundary condition presented in (22).
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626 MOTLAGH et al.

3.2 VPINNs and hp-VPINNs formulations

In order to use the weak form of the governing equations, we use the VPINNs formulation introduced in Reference 24.
We utilize Legendre polynomials as test functions, that is, vk

j (x) = Pj+1(x) − Pj−1(x), j = 1, 2, … ,Ku, qj(x) = Pj+1(x) −
Pj−1(x), j = 1, 2, … ,Kc, where Pj(x) are Legendre polynomials; Ku and Kc are the number of test functions correspond-
ing to momentum and phase-field equations, respectively. Gauss quadrature with Ngauss quadrature points is performed
to compute the integrals. The loss function for VPINNs can be defined as

VPINNs =
d∑

k=1

[
1

Ku

Ku∑
j=1

|||k
j
|||
2
+ 𝜏b

1
Nb

Nb∑
i=1

|||rk
b(x

i
b)
|||
2
]
+ 1

Kc

Kc∑
j=1

||̃j||2
. (41)

Another version of VPINNs is hp-VPINNS presented in Reference 23. In VPINNs, the trial space and test space are
both defined globally over the entire computational domain whereas in hp-VPINNs the test space contains piecewise
polynomials defined locally. The loss function for hp-VPINNs is given as

hp-VPINNs =
d∑

k=1

⎡⎢⎢⎣
Nel∑
e=1

⎛⎜⎜⎝
1

K(e)
u

K(e)
u∑

j=1

|||(e) k
j

|||
2⎞⎟⎟⎠
+ 𝜏b

1
Nb

Nb∑
i=1

|||rk
b(x

i
b)
|||
2⎤⎥⎥⎦
+

Nel∑
e=1

⎛⎜⎜⎝
1

K(e)
c

K(e)
c∑

j=1

|||̃(e)
j
|||
2⎞⎟⎟⎠
, (42)

where K(e)
u and K(e)

c are the total number of test functions in element e.
Note that hp-VPINNs are based on sub-domain Petrov–Galerkin methods to allow for hp-refinement via domain

decomposition as h-refinement and projection onto high order polynomials as p-refinement.23 Although in the current
hp-VPINNs formulation the domain is decomposed into several sub-domains, a single deep neural network is used to
approximate the solution over the entire domain. The optimal choice of test functions is an important open question.

3.3 VE-PINNs formulation

Here, we recall (17) and rewrite it in the following form;

(u, c) = ∫Ω
[
(1 − c)2𝜓+e (∇su) + 𝜓−e (∇su)

]
]dV + ∫Ω

{ c

4𝓁0

[
c2 + 4𝓁2

0|∇c|2] + (1 − c)2
}

dV . (43)

The last term in (43) enforces the irreversibility to prevent cracks from healing if loads are removed. Next, we minimize
(43) in the NN. To do this, we can define the loss function as follows:

VE-PINNs = L(ĉ, û) +
d∑

k=1

[
𝜏b

1
Nb

Nb∑
i=1

|||rk
b(x

i
b)
|||
2
]
, (44)

where

L(ĉ, û) = ∫Ω
[
(1 − ĉ)2𝜓+e (∇sû) + 𝜓−e (∇sû)

]
dV + ∫Ω

{ c

4𝓁0

[
ĉ2 + 4𝓁2

0|∇ĉ|2] +(1 − ĉ)2
}

dV . (45)

The loss function for VE-PINNs with strong BC can be written as:

VE-PINNs = L(ĉ, û). (46)

Note that an alternative to (43) is the hybrid formulation.32 The idea in devising the hybrid model is to decrease the
computational cost. However, the evolution of phase-field, c, must be driven by the tensile elastic energy 𝜓+e alone to
avoid cracking from occurring in the compressed regions. The hybrid version of (43) is given as

(u, c) = ∫Ω
[
(1 − c)2𝜓e(∇su)

]
dV + ∫Ω

{ c

4𝓁0

[
c2 + 4𝓁2

0|∇c|2] + (1 − c)2
}

dV . (47)
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MOTLAGH et al. 627

4 COMPARATIVE ANALYSIS AND DISCUSSION

In this section, we investigate the performance and relative accuracy of the different versions of PINNs for a
one-dimensional phase-field problem, with the goal of better understanding the relative merits of each variant. For
all simulations, we initialize the weights of the network randomly from a Gaussian distribution using Xavier initial-
ization approach.35 We consider the one-dimensional model problem36 of a unit cross-sectional area with a modulus
of elasticity E = 1 depicted in Figure 1. It consists of a bar with fixed ends which is loaded along its axis by a sinu-
soidal load. We consider a crack at the center of the bar and the discontinuous solution fields in the fully fractured case
are given by

uexact =

{
1
𝜋2 sin(𝜋x) − 1+x

𝜋
, x < 0,

1
𝜋2 sin(𝜋x) + 1−x

𝜋
, x ≥ 0,

(48)

𝜎exact =
1
𝜋

cos(𝜋x) − 1
𝜋
. (49)

4.1 PINNs versus collocation method

For the 1D problem of Figure 1 with a crack at the center of bar an initial history field is given by

0 =

{
1000.0, d(x, l) ≤ 𝓁0,

0, d(x, l) > 𝓁0.
(50)

We consider a fully connected neural network with 4 hidden layers and 50 neurons in each hidden layer. We use
a hyperbolic tangent as the activation function while a linear activation function has been implemented for the last
hidden layer. We have subdivided the domain, [−1, 1], into three subdomains which are [−1.0,−2𝓁0], [−2𝓁0, 2𝓁0],
and [2𝓁0, 1]. 112 collocation points have been generated in each subdomain by using the Gauss–Legendre rule. We
have chosen the collocation points to make a fair comparison with previous works26 as well as with the VPINNs and
VE-PINNs solutions in subsequent subsections. The network architecture of the neural network, the number of col-
location points and the length-scale of phase-field are shown in Table 1. Here, we used the weak BC approach to
consider the boundary conditions in the cost function. Figure 2A,B depicts the comparison of the displacement and
the stress obtained with PINNs, the exact solution and the isogeometric phase-field collocation method on a mesh
of 256 Bézier elements (note that we have selected this as a basis for comparison simply because the isogeomet-
ric collocation approach is one of the most accurate numerical schemes currently available).36 PINNs can accurately
resolve the crack, yielding good results that do not exhibit any oscillations unlike isogeometric collocation. Thus,
it seems that PINNs are able to provide accurate results while it has been reported previously that only VE-PINNs
can do this.26 Note that PINNs requires a large number of training iterations, epochs, to converge in comparison
to VE-PINNs.28

F I G U R E 1 One-dimensional model of a bar with a center crack under a sinusoidal load

T A B L E 1 Neural network setting for 1D PINNs versus collocation method

Method Network architecture No. collocation points 𝓵0

PINNs [1, 50, 50, 50, 50, 2] 336 0.015
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628 MOTLAGH et al.

(A) (B)

F I G U R E 2 Comparison of displacements (A) and stresses (B) for solutions obtained with PINNs, isogeometric phase-field collocation
method, and exact solution

4.2 PINNs, VPINNs, and VE-PINNs

We now investigate the accuracy of PINNs, VPINNs, and VE-PINNs and recall the 1D problem discussed before. The
same neural network architecture of the previous subsection is utilized. We use the collocation points of Section 4.1 as
the integration points to compute the integral in VPINNs and VE-PINNs. For VPINNs, we have adopted K(e)

u = K(e)
c = 60

test functions and used three elements, with each element consisting of 112 quadrature points to compute the integrals.
Furthermore, the displacement Dirichlet boundary conditions have been imposed weakly as well as strongly. Note that
the penalty parameter has been assumed 𝜏b = 1. Figures 3A and 4A show the solutions for the displacement of PINNs,
VPINNs, and VE-PINNs for weakly and strongly imposed boundary conditions, respectively. Also, Figures 3B and 4B plot
the stresses of PINNs, VPINNs, and VE-PINNs for weakly and strongly imposed BC, respectively. Figure 5A,B shows the
convergence histories of PINNs, VPINNs, and VE-PINNs for weakly and strongly imposed BC, respectively. VEPINNs
converge with using much less iterations compared to VPINNs and PINNs. In order to compare the accuracy of the
different methods we assess the quality of the solutions by the L2 norm and the error in the stress which can be considered
as an extension of the error in H1 semi-norm of the elasticity part to the phase-field.

L2 =
(
∫Ω (û − uexact)2dx

) 1
2

, (51)

e =

(
∫Ω

(
(1 − ĉ)2 dû

dx
− duexact

dx

)2

dx

) 1
2

. (52)

The errors in the L2 norm and the H1 semi-norm for PINNs, VPINNs, and VE-PINNs by imposing the displacement
boundary conditions weakly are shown in Table 2. VE-PINNs provide the most accurate solutions in comparison with the
other versions of PINNs. Table 3 shows the errors when the Dirchlet boundary conditions are applied strongly. Although
these errors are smaller for PINNs there is a concern about the unphysical oscillations in the stress field for the variational
approaches. Table 4 shows the accuracy of the VE-PINNs with weakly imposed BC for the different length scales. The error
in the stress is the smallest for 𝓁0 = 0.02, whereas the most accurate solution in the L2 norm (displacements) obtained for
𝓁0 = 0.005.

Overall, VE-PINNs result in the smallest errors in terms of the displacement and the stresses compared with PINNs
and VPINNs both for weakly and for strongly imposed boundary conditions. In contrast, PINNs show the largest errors in
terms of the displacements and the stresses. Although VPINNs result in a slightly better performance than PINNs with soft
boundary conditions, it results in lower accuracy with hard imposed boundary conditions. Considering the complexity of
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MOTLAGH et al. 629

(A) (B)

F I G U R E 3 (A) Displacements and (B) stresses with a weakly imposed Dirchlet boundary condition

(A) (B)

F I G U R E 4 (A) Displacements and (B) stresses with a strongly imposed Dirchlet boundary condition

(A) (B)

F I G U R E 5 Convergence of the loss functions for (A) a weakly and (B) a strongly imposed Dirchlet boundary condition
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630 MOTLAGH et al.

T A B L E 2 Errors in the L2 norm and the H1 semi-norm for PINNs, VPINNs, and VE-PINNs with weakly applied boundary conditions

Method L2 norm H1 semi-norm

PINNs 0.02963 0.02490

VPINNs 0.02806 0.01104

VE-PINNs 0.01961 0.00803

T A B L E 3 Errors in the L2 norm and the H1 semi-norm for PINNs, VPINNs, and VE-PINNs with strongly applied boundary conditions

Method L2 norm H1 semi-norm

PINNs 0.03084 0.01612

VPINNs 0.08343 0.01159

VE-PINNs 0.02245 0.01198

T A B L E 4 L2 and semi-H1 errors for VE-PINNs with different phase-field length scale, 𝓁0

𝓵0 L2 Semi-H1

0.001 0.25145 0.46525

0.005 0.00810 0.01299

0.010 0.01274 0.00813

0.015 0.01961 0.00803

0.020 0.02542 0.00503

implementation and adjustable parameters, based upon these tests, we conclude that VE-PINNs is the best option among
the various PINNs versions for phase-field problems.

4.3 Data-driven discovery of phase-field length scale

Data-driven discovery of partial differential equations using PINNs has been successfully used for a variety of
problems in the engineering and scientific domains, for example, the Navier–Stokes equations.19 We present here
a simple example that demonstrates data-driven discovery with the phase-field problem for crack propagation.
Using the correct length scale, 𝓁0, is crucial to obtain accurate solutions, since 𝓁0 is a material parameter.37,38

To identify the correct value of 𝓁0 we first solve a forward problem to find the displacements and phase-field
state variables. Subsequently, we can solve an inverse problem to find 𝓁0. First, we recall Equations (44) and
(45) and assume 𝓁0 to be a variable. Next, we rewrite the equation as follows and minimize the VE-PINNs to
find 𝓁0:

VE-PINNs-data-driven = L(ĉ, û) +
d∑

k=1

[
1

Nu

Nu∑
i=1

|||ûk(xi
u) − ūk

i
|||
2
]
+ 1

Nc

Nc∑
i=1

|||ĉ(xi
c) − ci

|||
2
, (53)

where L(ĉ, û) is given in (45) and {xi
u}, {xi

c} denote the training data on u(x), the displacements, and c(x), the
phase-field, respectively. u and c are the solutions obtained from the forward problem. Note that we are minimiz-
ing (53) like (46) with the same network settings. To illustrate the performance of this approach, we consider the
1D problem used in previous subsections. We have created a training dataset by using Nu = Nc = 500 integration
points. To generate a high-resolution dataset for this problem we use an isogeometric finite element method with
quadratic NURBS basis functions. In the forward problem the length scale, 𝓁0, has been assumed 0.015. After min-
imizing (53) the length-scale is estimated with less than 2% error, 𝓁pred

0 = 0.01529. Figure 6 plots the convergence
history.
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MOTLAGH et al. 631

F I G U R E 6 Convergence of the loss function data-driven VE-PINNs

4.4 Self-adaptive PINNS

Now, we apply a self-adaptive approach method to train PINNs and VE-PINNs, which utilizes trainable weights as
a soft multiplicative mask reminiscent of the attention mechanism applied in computer vision.39,40 This method was
first introduced in Reference 30 where the adaptation weights in the loss function were updated by backpropaga-
tion together with the network weights. In order to define the SA-PINNs loss function, we recall (40) and modify it
as follows

PINNs =
d∑

k=1

[
1

Nr

Nr∑
i=1

[ k
𝝀 rk(xi

r)
]2 + 1

Nb

Nb∑
i=1

[ k
𝝀b rk

b(x
i
b)
]2
]
+ 1

Nr

Nr∑
i=1

[
�̃� r̃(xi

r)
]2 + 1

Nb̃

Nb̃∑
i=1

[
�̃�b̃ r̃b̃(xi

b̃
)
]2
, (54)

where k
𝝀 = (k𝜆1

, … ,
k
𝜆

Nr ), k
𝝀b = (k𝜆1

b, … ,
k
𝜆

Nb
b ), �̃� = (�̃�

1
, … , �̃�

Nr ), and �̃�b̃ = (�̃�
1
b̃, … , �̃�

Nb̃

b̃
) are trainable self-adaption

weights for momentum collocation points, momentum boundary, phase-field collocation points and phase-field bound-
ary, respectively. These weights force the network to satisfy as much as possible the boundary or residual points. The
main feature of SA-PINNs is that the loss PINNs is not only minimized with respect to the network weights, W,
but also maximized with respect to the self-adaptation weights, k

𝝀,
k
𝝀b, �̃�, and �̃�b̃. This means the training seeks a

saddle point

min
W

max
k
𝝀,k𝝀b,�̃�,�̃�b̃

(W,
k
𝝀,

k
𝝀b, �̃�, �̃�b̃). (55)

The self-adaptive VE-PINNs loss function can be defined as follows

VE-PINNs = L(ĉ, û) +
d∑

k=1

[
1

Nb

Nb∑
i=1

[k
𝝀b rk

b(x
i
b)
]2
]
, (56)

where L(ĉ, û) is given by (45).
Table 5 shows errors for the L2 norm and the H1 semi-norm for PINNs and SA-PINNs where 336 and 240 collocation

points, are used for PINNs and SA-PINNs, respectively. Self-adaptive VE-PINNs provides more accurate results compared
to VE-PINNs while using less collocation points.

Figure 7A,B shows errors for the L2-error and the H1 semi-norm for soft, strong, and self-adaptive
VE-PINNs. Note that for soft VE-PINNs the Dirchlet boundary condition has been imposed weakly. Self-adaptive
VE-PINNs provides the same accuracy of soft and strong VE-PINNs while requiring less collocation points.
The convergence histories of soft and strong VE-PINNs as well as self-adaption VE-PINNs are depicted in
Figure 8.

 10970207, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7135 by <
Shibboleth>

-m
em

ber@
leeds.ac.uk, W

iley O
nline L

ibrary on [23/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



632 MOTLAGH et al.

T A B L E 5 L2 and semi-H1 errors for PINNs, SA-PINNs, VE-PINNs, and SA-VE-PINNs

Method L2 Semi-H1

PINNs 0.02963 0.02490

SA-PINNs 0.02951 0.02562

VE-PINNs 0.01961 0.00803

SA-VE-PINNs 0.01627 0.00760

F I G U R E 7 L2 and semi-H1 errors for soft, strong, and self-adaption VE-PINNs

F I G U R E 8 Convergence of the loss functions for soft, strong, and self-adaption VE-PINNs

5 TWO-DIMENSIONAL CASE STUDIES

In this section, we consider two-dimensional examples. Here, we explain how the spectral decomposition is applied to
compute 𝜓+e and 𝜓−e in the neural network when we use VE-PINNs which we have selected based upon the conclusions
drawn in the previous section. First, we calculate the displacement gradients, ∇u, and then we compute the eigenvalues
of the strain, (𝛼1and 𝛼2) as well as the eigenvectors (v1and v2). Now, we can compute 𝜓+e and 𝜓−e as follows

𝜓
+
e =

𝜆

8
(𝛼t + |𝛼t|)2 + 𝜇

4

2∑
i=1
(𝛼i + |𝛼i|)2 and 𝜓

−
e =

𝜆

8
(𝛼t − |𝛼t|)2 + 𝜇

4

2∑
i=1
(𝛼i − |𝛼i|)2, (57)

where 𝛼t =
∑2

i=1𝛼i.
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MOTLAGH et al. 633

5.1 Single-edge-notched tension test

We consider a square plate with a horizontal notch placed at mid-height from the left outer surface to the center of the
specimen. The geometric properties and boundary conditions are depicted in Figure 9A. In order to capture the crack
pattern properly, the collocation/integration points are more densely spaced in the area where the crack is expected to
propagate, that is, in the center strip of the specimen, Figure 9B. A vertical upward displacement is imposed at the top edge.
The material parameters are E = 210.0 GPa, 𝜈 = 0.3, Gc = 2.7 × 10−3 kN/mm, and 𝓁0 = 0.01 mm. Displacement control
is used with increments 𝛿u = 5 × 10−4. In order to maintain the irreversibility of the crack propagation the strain-history
field,, is update after each load-step in the same approach used in the standard phase-field models.15,32 A finite element
method with 29,896 linear triangle elements is utilized to validate the deep learning results. In terms of the deep learning
setup, VE-PINNs with 4 hidden layers of 50 neurons each are used to carry out the simulations. First, we set tanh up as
the activation function and consider 58,404 collocation points to perform the computation. Furthermore, the Adam opti-
mizer41 with a learning rate of 5 × 10−4 is employed. Regarding the boundary conditions, Dirichlet boundary conditions
are imposed strongly. To do this, the solutions, u and v, are altered as follows:

u = (x2 − 0.25)û, v = (y2 − 0.25)v̂ + (y + 0.5)Δv, (58)

where û and v̂ are provided by the network and Δv is the displacement increments.
It is clear from Figure 10A for VE-PINNs, the crack propagation is much faster than in the finite element simulations.

As is shown in Figure 10B for a displacement of 5 × 10−3, crack growth is completed by the deep learning approach

F I G U R E 9 (A) Geometry and boundary conditions. (B) Collocation/integration points distribution

F I G U R E 10 (A) Finite element ground truth. (B) Deep learning prediction with tanh activation function; for the prescribed
displacement of 5 × 10−3 mm
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634 MOTLAGH et al.

whereas the finite element solution of phase-field is still at the early stage of the propagation, Figure 10A. This suggests
that the VE-PINNs approach is not able to predict the correct crack propagation speed. This drawback of VE-PINNs
methods (with tanh activation function) was not reported in the previous research for modeling phase-field with using
VE-PINNs.26-28 This problem can be resolved by using different activation functions, namely, ReLU(x) = max(0, x) and
softplus(x) = ln(1 + ex) by means of a suitable loadstep, 10−6 mm. As it is listed in Table 6, ReLU is the best prediction
in terms of crack propagation speed and also, sofplus provides a slightly high crack speed and tanh has very high crack
growth speed. Figure 11 shows the propagated crack for the different activation functions as well as the finite element
solution for the prescribed displacement.

T A B L E 6 Speed of crack propagation for the different activation functions for the single-edge-notched tension test with loadstep of
10−6 mm

Activation function Crack propagation speed

ReLU Normal

softplus Slightly high

tanh High

F I G U R E 11 (A) Finite element ground truth. (B) Deep learning prediction with ReLU activation function. (C) Deep learning prediction
with softplus activation function. (D) Deep learning prediction with tanh activation function; for the prescribed displacement of 6 × 10−3 mm
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MOTLAGH et al. 635

As linear finite element basis functions are represented by ReLU,42 this results in the promising crack growth speed
in comparison to tanh. Furthermore, sofplus can produce acceptable crack speed as it has the same tendency of ReLU as
depicted in Figure 12. Note that sofplus has continuous derivatives as well.

5.2 Single-edge-notched shear test

As a second benchmark, we consider the same specimen, but now subjected to a pure shear loading. The corresponding
boundary conditions are illustrated in Figure 13A. A horizontal displacement increment, Δu = 1 × 10−6 mm, is
utilized throughout the loading history. The material parameters are considered as E = 210.0 GPa, 𝜈 = 0.3, Gc = 2.7 × 10−3

kN/mm, and 𝓁0 = 0.01 mm. A finite element method with 60,572 linear triangle elements is used to compare with the
deep learning predictions. For the deep learning part, the same setup as the previous subsection is implemented. We use
ReLU, softplus, and tanh as the activation functions and consider 95,686 collocation points to conduct the computational
experiment. Regarding boundary conditions, we utilize the same network settings used for the previous 2D example. The
strongly imposed boundary conditions read:

v = (x2 − 0.25)v̂, u = (y2 − 0.25)û + (y + 0.5)Δu. (59)

F I G U R E 12 ReLU, softplus, and tanh activation functions

F I G U R E 13 (A) Geometry and boundary conditions. (B) Collocation/integration points distribution
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636 MOTLAGH et al.

F I G U R E 14 (A) Finite element ground truth. (B) Deep learning prediction with ReLU activation function. (C) Deep learning prediction
with softplus activation function. (D) Deep learning prediction with tanh activation function; for the prescribed displacement of 1.2 × 10−3 mm

As illustrated in Figure 14D, the VE-PINNs can show a faster crack growth than finite element solution. Nevertheless, by
selecting different activation functions such as ReLU and softplus the crack rate propagation can be kept under control,
as shown in Figure 14B,C.

6 CONCLUDING REMARKS

We have examined a variety of PINNs formulations, namely, standard PINNs, VPINNs, VE-PINNs, and SA-PINNs to
solve a 1D phase-field problem. The standard PINNs or collocation PINNs require extra treatment in terms of boundary
conditions, as they inherit the features of the collocation methods. This leads to the inclusion of the phase-field Neumann
boundary condition in the cost function whereas this boundary condition for VPINNs and VE-PINNs can be treated as
a natural boundary condition. Apart from this issue, we can obtain more accurate solutions by means of VPINNs and
VE-PINNs in comparison with PINNs. Although VPINNs have almost the same features of finite element methods such
as test functions, defining the suitable kind of test functions as well as the enough number of weighting functions is not
so straightforward. Moreover, implementation of VPINNs is not as easy as PINNs or VE-PINNs. We found that VE-PINNs
are quite simple to implement and can produce more accurate results in comparison to VPINNs and PINNs. VE-PINNs
are capable of generating precise results, but are limited to problems which can be formulated in the energy form or in a
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functional format. In addition, we have shown that SA-PINNs can produce the results with the same accuracy as the other
versions of PINNs by means of a much smaller number of collocation points. Finally, for the 1D phase-field problem, we
have investigated data-driven discovery to find the correct phase-field length scale.

Regarding two-dimensional numerical examples, we have assessed two benchmark problems, namely,
single-edge-notched tension and shear tests. We have observed that VE-PINNs do not seem to yield a robust predictive
approach. While the shape of the crack path is predicted properly, which is especially critical in the shear test, the speed
of crack propagation is dependent on the chosen activation function and on the load step. A judicious choice of the activa-
tion function is mandatory in order to obtain a correct speed of the crack propagation, with the ReLU activation function
being the only one among the activation functions applied which correctly reproduced the finite element results. Finally,
we have found that the number of the hidden layers and the number of neurons in each layer does not affect the speed of
crack propagation. Nevertheless, it is clear from the sensitivity of the two-dimensional results that further research will
need to be undertaken by the community before methods from the PINNs family, including variational or self-adaptive
approaches inter alia, can be used reliably for this class of problem in 2D or higher.
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